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Main Research questions

Which numerical method is best suited for solving the shallow water
equations on a GPU in terms of versatility, robustness and speedup?

Subquestions:

1 Explicit vs implicit methods

2 Viability of software package solutions

3 Suitability for FORTRAN/Deltares

4 Possible use of GPU Tensor cores

5 32 vs 64 bit precision tradeoffs

2 / 19



Literature Research questions

1 What are the SWE and which form are we going to solve?

2 What discretization method exist and which is most suitable?

3 Which time integration methods exist and are suitable?

4 What linear solvers exist and are suitable for GPU implementation?

5 What GPU architecture aspects will need to be taken into
consideration?
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What are the SWE and which form are we going to solve?
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What are the SWE and which form are we going to solve?
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Most terms are non-linear!
Full set is Parabolic, without viscosity term it becomes Hyperbolic.
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What are the SWE and which form are we going to solve?

Linearised system:
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A, B, C : 3N × 3N matrices with diagonal N ×N matrices as entries.
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What are the SWE and which form are we going to solve?

Stelling & Duinmeijer:
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What discretization method exist and which is most
suitable?

● Finite differences ← easiest

● Finite volumes

● Finite elements

Grid choice:

● Arakawa C-grid ← best way to avoid odd-even decoupling

● Collocated grid
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Arakawa C-grid
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Which time integration methods exist and are suitable?

Explicit

● Euler forward ← starting point

● Runge-Kutta 4

Implicit:

● Euler backwards

● Crank-Nicholson

● Theta method ← suggested by Stelling & Duinmeijer

● Alternating direction implicit
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What GPU architecture aspects will need to be taken into
consideration?

Nvidia vs AMD?:

● AMD: Cheap High-bandwidth memory, cheap double precision

● Nvidia: Industry standard CUDA platform

● OpenCL is an Open Standard and easily portable but less mature

● Computations will be done on a single Nvidia 2080 Ti GPU

● FP32 performance: 13.45 Teraflops

● FP64 performance: 420 Gflops (1:32)

● Expensive Scientific Computing cards have better double precision,
error correcting memory and more memory bandwidth.
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What GPU architecture aspects will need to be taken into
consideration?

● An Nvidia GPU consists of Streaming multiprocessors that execute
blocks of 32 parallel threads sequentially
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What GPU architecture aspects will need to be taken into
consideration?

Four main types of memory are available to a GPU program:

● registers: very fast on-chip memory accessible to a single thread

● Shared memory: very fast on-chip memory accessible to all threads
in a block

● Device memory: slower memory accessible to all threads in a
program

● Host memory: very slow memory accessible to GPU and CPU

GPU computations are often memory-bound so memory management is
key.
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What linear solvers exist and are suitable for GPU
implementation?

● Basic iterative methods: (relaxed) Jacobi & Gauss-Seidel

● Direct solution methods; LU/Cholesky decomposition

● Preconditioned Conjugate gradient

● Multigrid
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What linear solvers exist and are suitable for GPU
implementation?

● Conjugate gradient is a clear winner as the Stelling & Duinmeijer
scheme is SPD.

● Main focus is likely to find an effective preconditioner for CG.

● Other methods mentioned are good options for a preconditioner.
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Possible use of Tensor cores

● Tensor cores are extremely efficient at performing dense
low-precision matrix-matrix multiplication.

● Most linear solvers perform sparse matrix-vector multiplication
which is not suitable

● LU/Cholesky factorization can formulated to contain matrix-matrix
multiplications
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Test problems

Two proposed problems:

1 Closed (zero-flux boundary) square domain with a non-uniform
initial water level

2 Closed square domain with linearly increasing bathymetry and a
Dirichlet b.c.
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Conclusion

We have successfully defined the scope of the project:

● Stelling & Duinmeijer scheme

● Finite differences discretization on staggered structured grid

● Program will be built in CUDA and run on a 2080 Ti GPU

● Explicit time integration using Euler forward

● Implicit time integration using theta method

● Solve implicit linear system using Conjugate Gradient

● Find an appropriate preconditioner for Conjugate Gradient

● Test solver packages for comparison

● Test additional methods
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