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INTRODUCTION

Deltares is a research institute in the Netherlands that specializes applied research in the
field of water and subsurface. This research includes building applications that can sim-
ulate shallow-water flow in a variety of environments. One such application is Delft3D-
FLOW [1].

As the demands on scale and resolution of these simulation models increases, it be-
comes more attractive to consider doing the computations on a GPU, a Graphics Pro-
cessing Unit as opposed to the traditional CPU, Central Processing Unit. The idea is that
moving computations to the GPU will is beneficial to the large-scale viability of simu-
lation models as GPUs are both more cost-efficient and energy-efficient compared to a
CPU.

In 2017 a GPU computing initiative was started at Deltares by Maarten Pronk and
Erik de Goede, and as a result a proposal was developed for exploring the possibility of
GPU implementation of Shallow-Water models together with the department of com-
puter science at the TU Delft as part of a master thesis project.

The aim of the project is to first develop a satisfactory GPU-accelerated explicit solv-
ing method and then aim to do the same for an implicit method. An explanation of
explicit and implicit methods can be found in chapter 3. The main resulting research
question is then:

“Which numerical method is best suited for solving the shallow water equations on
a GPU in terms of versatility, robustness and speedup?”
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In this literature review the theoretical background necessary for the development of
these methods is presented. A number of literature research questions have been pro-
posed:

1. What are the Shallow Water Equations and which form will be solved?

2. What discretization method exist and which is most suitable?

3. Which time integration methods exist and are suitable?

4. What GPU architecture aspects will need to be taken into consideration?

5. What linear solvers exist and are suitable for GPU implementation?

6. Is there a possible use of the new Nvidia Tensor cores for accelerating solver com-
putations?

Chapters 1 through 5 will aim to provide the background necessary to answer the
literature research questions, the conclusion of which will be presented in chapter 6.



1
THE SHALLOW WATER EQUATIONS

1.1. INTRODUCTION
The shallow water equations are a set of equations that describe fluid flow on a domain
which has a much larger length scale than depth scale. This also means that the applica-
bility of the shallow water equations is not necessarily restricted to bodies of water that
are actually shallow.
They were first derived in one dimensional form by Adhémar Jean Claude Barré de Saint-
Venant in 1871 who also was the first to derive the Navier-Stokes equations [2]. The
Navier-Stokes equations are the full set of equations describing viscous fluid flow. These
equations are hard to solve due to their inherent nonlinearity and complexity.
The shallow water equations can be derived from the Navier-Stokes equations as a spe-
cial case where the complexity is reduced by averaging over the depth, hence the shal-
lowness condition. This makes them a very popular set of equations for use in simula-
tion.

1.2. DERIVATION

1.2.1. THE NAVIER-STOKES EQUATIONS

In order to derive the shallow water equations we will first start by stating the Cauchy
momentum equation in convective form [3]:

ρ
∂u

∂t
=−∇p +∇·τ+ρg (1.1)

Where u is a 3-dimensional flow velocity vector, ρ0 the fluid density, p the pressure, τ the
deviatoric stress tensor and g the vector of body forces acting on the fluid.

Since we have conservation of mass, we can derive from the continuity equation [3]

that ∂ρ
∂t =−∇· (ρu

)
. Substituting this into 1.1 we obtain:

1
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∂
(
ρu

)
∂t

+∇· (ρuuT )=−∇p +∇·τ+ρg (1.2)

We know that water is only slightly compressible. However, when the shallowness
assumption holds the pressures involved are small so it can be assumed incompressible,
which means the density is constant. 1.2 and also the continuity equation then become:

∂ (u)

∂t
+∇· (uuT )= 1

ρ0

(−∇p +∇·τ)+ g (1.3)

∇·u = 0 (1.4)

These are the incompressible Navier-Stokes equations in conservation form.

1.2.2. BOUNDARY CONDITIONS

For illustration a 3 dimensional representation of the shallow water domain is given in
figure 1.1.

Figure 1.1: A schematic of the shallow water domain. ux,y,z are the flow velocities in their respective directions,
source: [4]

The bottom and free surface boundaries are important to consider first for the deriva-
tion of the shallow water equations. After that the domain boundary conditions will be
discussed.
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BOTTOM BOUNDARY

At the bottom z =−b we have the following conditions:

1. No slip condition: u(x, y,−b(x, y)) = 0

2. The flux through the bottom is 0: ux
∂b
∂x +uy

∂b
∂y +uz = 0

3. The bottom shear stress equals τbx = τxx
∂b
∂x +τx y

∂b
∂y +τxz similarly for y

FREE SURFACE

At the free surface z = ζ we have the following conditions:

1. The flux through the surface is 0: ∂ζ
∂t +ux

∂ζ
∂x +uy

∂ζ
∂y −uz = 0

2. The bottom shear stress equals τζx =−τxx
∂ζ
∂x −τx y

∂ζ
∂y +τxz similarly for y

3. The pressure defined as p = p −p0 = 0 with p0 the atmospheric pressure.

1.2.3. PRESSURE APPROXIMATION
If we only look at the z component of equation 1.3 it can be assumed that all terms except
the pressure can be neglected when compared to the gravitational acceleration, so the

equation can be reduced to ∂p
∂z = ρ0g .

After integrating we find p = ρ0g (ζ− z), which is simply the hydrostatic pressure.

This also produces the other terms of the gradient of p: ∂p
∂x,y = ρ0g ∂ζ

∂x,y .

1.2.4. DEPTH AVERAGING
By assuming the density was constant we have essentially eliminated the z regarding
pressure in equation 1.3. This suggest that we can also approximate the velocities setting
them to be their average when integrated over depth. We denote this average as ūx,y =
1
H

∫ ζ
−b ux,y d z Integrating the the continuity equation of 1.3 we apply the Leibniz integral

rule and our boundary conditions to obtain:

∫ ζ

−b
∇·ud z =∇

∫ ζ

−b
ud z−u(z = η)∇η+u(z = b)∇b = ∂H

∂t
+ ∂

∂x
(Hūx )+ ∂

∂y

(
Hūy

)= 0 (1.5)

Likewise we can also integrate 1.3 and apply the shear stress boundary conditions to
obtain:

∂

∂t
(Hūx )+ ∂

∂x

(
Hū2

x

)+ ∂

∂y

(
Hūx ūy

)=−g H
∂ζ

∂x
+ 1

ρ0

[
τζx −τbx +

∂

∂x
τ̄xx + ∂

∂y
τ̄x y

]
∂

∂t

(
Hūy

)+ ∂

∂x

(
Hūx ūy

)+ ∂

∂y

(
Hū2

y

)
=−g H

∂ζ

∂y
+ 1

ρ0

[
τζy −τby +

∂

∂x
τ̄x y + ∂

∂y
τ̄y y

]
(1.6)

Now finally we can expand the derivatives on the left hand side using the chain rule
and simplify using use 1.5 and divide by H to obtain:
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∂ūx

∂t
+ ∂ūx

∂x
ūx + ∂ūx

∂y
ūy =−g

∂ζ

∂x
+ 1

ρ0H

[
τζx −τbx +

∂

∂x
τ̄xx + ∂

∂y
τ̄x y

]
∂ūx

∂t
+ ∂ūy

∂x
ūx +

∂ūy

∂y
ūy =−g

∂ζ

∂y
+ 1

ρ0H

[
τζy −τby +

∂

∂x
τ̄x y + ∂

∂y
τ̄y y

]
(1.7)

1.5 together with 1.6 are what we call the 2D shallow water equations. The terms that
are still undetermined are the surface and bottom stress terms and the stress derivatives
on the right-hand side.
Finally, it is known [5] that the divergence of the deviatoric stress equals the viscosity
multiplied by the Laplacian of the velocity for incompressible flow.
The surface stress can often be neglected and the bottom stress can be modeled [5] as
τbx
ρ0

= g ux ||u||
C 2 H

, where C is the Chézy coefficient [6]. Combining this with 1.6 and 1.5 we
obtain:

∂H

∂t
+ ∂

∂x
(Hūx )+ ∂

∂y

(
Hūy

)= 0

∂ūx

∂t
+ ∂ūx

∂x
ūx + ∂ūx

∂y
ūy =−g

∂ζ

∂x
− g ux ||u||

C 2H 2 +ν
(
∂2ux

∂x2 + ∂2ux

∂y2

)
∂ūx

∂t
+ ∂ūy

∂x
ūx +

∂ūy

∂y
ūy =−g

∂ζ

∂y
− g uy ||u||

C 2H 2 +ν
(
∂2uy

∂x2 + ∂2uy

∂y2

)
(1.8)

We now have a workable form of the shallow water equations.

1.3. LINEARISED SYSTEM
Non linear systems are often quite difficult to solve. If global system behaviour is an
acceptable result it can often be more practical to linearise the system and obtain an
approximate solution instead. In equation 1.8 we can identify a number of non-linear
terms. On the left hand side, we have the product of velocities and their spatial deriva-
tives, and on the right-hand side we have the bottom friction and the viscosity terms.

In order to linearize these equations it is suggested [4] that we consider a steady uni-
form flow that is perturbed. This means that u = (ux ,uy ) = U+u′ and ζ= Z +ζ′
The viscosity term is technically linear but second order derivatives also complicate
things so it is neglected for now.

The bottom friction is approximated by a constant C that is proportial to the unper-
turbed bottom friction coefficient. The linear approximation to the bottom friction also
neglects the acceleration terms which are assumed to be small for almost steady uni-
form flow. This breaks down in the case of tidal flow for example, as in that case the
acceleration terms become quite significant.



1.4. WELL POSEDNESS

1

5

Inserting this into 1.8 and after canceling some terms and neglecting the higher order
terms we obtain our linear approximation:

∂H

∂t
+ ∂H

∂x
Ux + ∂H

∂y
Uy +Z

(
∂ux

∂x
+ ∂uy

∂y

)
= 0

∂ux

∂t
+ ∂ux

∂x
Ux + ∂ux

∂y
Uy =−g

∂H

∂x
− cux

∂ux

∂t
+ ∂uy

∂x
Ux +

∂uy

∂y
Uy =−g

∂H

∂y
− cuy (1.9)

Where we have omitted the depth averaging bars and perturbation accents for readabil-
ity.

Since this is a linear system of equations it can be conveniently written in vector-
matrix form to aid the discretization process:

∂u

∂t
= A

∂u

∂x
+B

∂u

∂y
+C u (1.10)

Where

u =
ux

uy

H

 A =
Ux 0 g

0 Ux 0
Z 0 Ux

 B =
Uy 0 0

0 Uy g
0 Z Uy

 C =
c 0 0

0 c 0
0 0 0

 (1.11)

1.4. WELL POSEDNESS
A set of differential equations has very little meaning if it is not supplied by initial condi-
tions and boundary conditions. We call a problem well-posed if:

1. A solution exists

2. The solution is unique

3. The solution its behaviour changes continuously with changing initial and bound-
ary conditions.

1.4.1. DOMAIN BOUNDARIES
For a two dimensional shallow water domain there exist two possible domain bound-
aries, open and closed. A closed boundary permits no flux in the direction normal to the
boundary. An open boundary is an artificial boundary through which flow moves unhin-
dered. An example domain with closed boundaries would be when simulating an entire
lake, surrounded by land on all sides. Open boundaries would occur when simulating
part of a river, where the open boundary would be at the points where the river enters
and leaves the domain.
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One problem with an open boundary is that imposing a boundary condition in order
to guarantee well posedness might lead to wave reflection at the artificial boundary. It
can be shown [7] that if the Sommerfeld radiation condition is perfectly satisfied it guar-
antees no wave reflection. In practice this works only in an ideal case. However prop-
erties can be determined that minimize reflection, which is why Sommerfeld radiation
conditions are also called weakly reflective boundary conditions.

1.4.2. HYPERBOLIC SYSTEM
According to Courant & Hilbert [8], the shallow water equations are a hyperbolic sys-
tem of equations if we omit the viscosity term. When the viscosity term is neglected, it
is known that the solutions of the linearized SWE are wave-like solutions called Gravity
waves.

The system can be written in terms of characteristics which represent the behaviour
of the solutions over time. Hyperbolic systems have characteristic solutions and at any
point of the boundary of the region it is necessary to specify as many boundary condi-
tions as there are characteristic planes entering the region [4].

The characteristic wave speed can be shown to be related to the long wave speed√
g H : u +√

g H and u −√
g H .

If |u| < √
g H we call the flow subcritical which is the most common scenario. In this

scenario when there is a positive flow into the domain there are also two characteristics
entering, which requires two boundary conditions.
When there is a negative flow into the domain only a single characteristic enters and we
require a single boundary condition for the problem to be well posed.

1.4.3. PARABOLIC SYSTEM
If the viscosity is taken into account the system is parabolic. This means that the system
can no longer be described by a set of characteristics. Oliger & Sundström [9] used an
energy conservation argument to conclude which additional boundary conditions need
to be imposed. For a closed boundary, it is necessary to specify either a no-slip boundary
which means the tangential velocity is 0, or a free-slip boundary which implies the shear
stress at that boundary is 0. On an open boundary Sundström proposed one should
require zero shear stress when water flows through the boundary out of the domain.
When water flows into the domain, the flux through the boundary is required to remain
constant. [4] notes that the physical significance of the two requirements on an open
boundary is not clear.

1.4.4. INITIAL CONDITIONS
If one imagines the simulation space as a plane in the (x, y, t ) space, the moment t = 0 is
a boundary of the region. Thus the principle of characteristics that a boundary condition
is necessary for every characteristic entering the region holds. Every single characteristic
enters the "region" through this boundary which means that all three possible boundary
conditions need to be specified, the initial x velocity, y velocity and water level H .



2
DISCRETIZATION

2.1. INTRODUCTION
In chapter 1 we derived the shallow water equations. Before they can be solved however,
the problem needs to be discretized, which means dividing the domain of computation
into gridpoints on which function values are evaluated.
There exist three main approaches to discretization: the finite differences method, the
finite volumes method and the finite elements method.

2.2. FINITE DIFFERENCES
A differential equation involves (partial) derivatives, and a derivative is a continuous
limit. If we wish to solve a differential equation on a computer, we cannot take a con-
tinuous limit because a computer itself operates in discrete terms. Therefore in order
to state our problem in a computer language the derivatives must be approximated in a
discrete way. If we approximate these derivatives using Taylor polynomials we call this
the method of finite differences. Taylor’s theorem states that if a function is k times dif-
ferentiable at a point a we can approximate the function in a neighborhood of a as:

f (x) = f (a)+ f ′(a)(x −a)+ f ′′(a)(x −a)2

2
+ ...+ f (k)(a)(x −a)k

k !
+ ... (2.1)

Now suppose we wish to approximate a first order derivative on a numerical grid with
grid distance h. If we set x = a+h we obtain f (a+h) = f (a)+ f ′(a)h+O(h2). Rearranging
for the derivative produces:

f ′(a) = f (a +h)− f (a)

h
+O(h) (2.2)

Which means that we can approximate the value of the derivative in point a using the
function value in point a and a neighbor function value with an error of order h.

An important thing to note is that the form defined in 2.2 is called forward difference,
as the function value in the positive neighboring spatial direction is used to approximate

7
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the derivative. Other options are central difference where the information is used from
both neighbors, or backwards difference where information is used from the negative
spatial direction.

The order of the error is quite large, the same order as the grid distance. This means
in order to obtain an accurate estimate of the derivatives a very fine grid must be used
for computation, which may take a lot of computing time. Various different methods
have been developed that provide higher order accuracy at the cost of computational
intensity.

One remark regarding finite differences is that it requires equidistant grid points,
which imposes some restrictions on real world applicability. It is technically possible
to construct a method based on the Taylor approximation of the derivative on an non-
equidistant grid, but in practice this is so cumbersome that often a finite element or
finite volume method is chosen.

2.3. FINITE VOLUMES
The principle behind the Finite volumes method is Gauss’s theorem, which states that in
a 2 dimensional domainΩ for a vector field F (x, y) it holds that:∫ ∫

Ω
∇·F dΩ=

∫
S

F ·ndS (2.3)

Where S denotes the boundary ofΩ and n denotes the vector normal to the boundary S.
In this way a differential equation involving a divergence term can be solved by invoking
the above equivalency to simplify the equation. The boundary integral can be numeri-
cally integrated using Newton-Cotes integration [10]. The idea of the method is to parti-
tion the domain in a set of control volumes on which the differential equation is solved
using this principle.

A big advantage of finite volume schemes is that they are conservative: The fluxes are
approximated at the boundaries and whatever flows out of one control volume enters
the next. Thus if the differential equation that is solved using the method represents
a conserved variable such as energy, mass or momentum, the scheme will guarantee
conservation which is very desirable.

2.4. FINITE ELEMENTS
The finite element method is similar to the finite volumes method in the sense that the
problem is often reformulated in a so called "weak formulation" by integrating with a
chosen test function and applying 2.3. The major difference however, is that the solu-
tion of the differential equation is approximated by a finite linear combination of basis
functions. The problem then reduces into calculating the weights of the basis functions.

These basis functions are defined on the edges of the numerical grid and are prefer-
ably nearly orthogonal. This is because the differential equation often involves a sum of
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inner products between those basis functions. Every non zero inner product will then
correspond to an entry in the computation matrix and thus if a sparse matrix is desired
the basis functions must be nearly orthogonal.

Many different basis functions can be chosen to suit the differential equation and
boundary conditions. For example the incompressible SWE’s have the incompressiblity
condition ∇u = 0, and it is possible to choose elements in such a way that this condition
is automatically satisfied, significantly reducing computational complexity. Like the fi-
nite volume method it is also possible to choose your elements such that conserved vari-
ables are also conserved by the numerical scheme.

A big advantage of the finite element method is that the grid on which the basis func-
tions exist does not have to be structured. This means that if greater numerical precision
is required on a subsection of the domain of computation, the grid can be refined only
on that subsection and remain coarse on the rest of the domain which reduces compu-
tational complexity.

2.5. STRUCTURED AND UNSTRUCTURED GRIDS
The methods described in the preceding sections all have different requirements for the
discretized grid that represents the domain of computation. The two main grid cate-
gories are structured and unstructured grids.

2.5.1. STRUCTURED GRIDS
A structured grid has a constant structure: it contains a number of nodes that have a
regular connectivity. This makes it very easy to represent the domain in matrix form:
A grid node at index (i , j ) is represented by matrix element (i , j ) and nodes adjacent in
space are also adjacent in memory. Intuitively one would expect that this means that the
domain represented is always a rectangle. A problem with a rectangular domain is that
the boundaries of your physical problem may not be rectangular. This means that the
boundary values on the gridpoints must be inter- or extrapolated which is cumbersome
and introduces errors. The matrix structure that there is no need for a connectivity ma-
trix: simply all neighboring matrix entries are connected, which is very storage efficient.

Fortunately a method exists to circumvent this problem: boundary fitted coordi-
nates. By reformulating the problem in general curvilinear coordinates the grid can be
morphed to fit the physical boundaries [10]. This solves the boundary problem but re-
formulation of the original problem into curvilinear coördinates is often nontrivial.

An illustration of curvilinear reformulation is given in figure 2.1.
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Figure 2.1: An illustration of boundary fitting a structured grid using curvilinear coordinates. Source: [4]

2.5.2. UNSTRUCTURED GRIDS

A structured grid has the requirement that every row and column has a constant number
of grid points. An unstructured grid is simply a grid that has no such restriction. This
makes unstructured grids very useful for representing complex domains, or domains
where greater grid density is required at specific subdomains. An unstructured grid is
easier to generate for complex problems but harder to represent and store in computer
memory. An example of an unstructured grid is given in figure 2.2.

Figure 2.2: An example of an unstructured grid using triangular elements. Source: [11]

Since the domain of computation has a large impact on grid generation and storage
complexity, and since grid choice and solving method are closely entwined the optimal
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choices in these matters are highly problem dependent.

2.6. COLLOCATED AND STAGGERED GRIDS
The linearised shallow water equations 1.9 involve three unknown variables, ux ,uy and
H . In the discretisation process the domain of computation is represented by a finite
number of connected grid nodes. When representing a structured grid in computer
memory the grid nodes easily map to the matrix elements, and thus it would be very in-
tuitive to define all three variables on these same nodes. This is what we call a collocated
grid, where all the variables are defined on the same position. Defining the variables on
the same location as the grid nodes is called the vertex-centered approach [10].

It is not necessary however, to define function values at the same location as the grid
nodes. If the function values are instead defined in the center of the cells created by the
grid nodes, we call this the cell-centered approach. An advantage of the cell-centered
approach is that when using the finite volumes method the cell boundaries automati-
cally define the control volumes.

When using the central finite difference approximation of a derivative of a variable,
the values from neighboring grid nodes are used to approximate the derivative but not
the value on the node itself. This leads to idea that if a derivative of a variable and the
variable itself are never used at the same time in the same equation, there is no need for
them to be defined on the same node. If a grid is built in this fashion it is called a stag-
gered grid. The advantage here lies in the fact that only a quarter of the total number of
variables need to be computed and stored when compared to the original grid.

In the case of the linearized shallow water equations 1.9, the water height and ve-
locities can be staggered in this fashion. Arakawa [12] proposed four different staggered
grids. According to [13], the Arakawa C-grid is best suited for the shallow water equa-
tions. It is staggered such that the water height H is defined on the grid points, the flow
velocity ux is defined between grid points neighboring in the x-direction and the flow
velocity uy is defined between grid points neighboring in the y-direction. An illustration
of the grid is given in 2.3.

The staggering prevents odd-even decoupling leading to checkerboarded solutions,
and allows for a larger grid size as variable density is reduced.
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Figure 2.3: An illustration of the Arakawa C-grid. u, v are the flow velocity in the x, y directions respectively, h
is the water depth and i , j are the node indices. The control volumes for the conserved variables are coloured
white, pink and blue. Source: [14]



3
TIME INTEGRATION METHODS

3.1. INTRODUCTION
In chapter 2 various discretization methods for solving partial differential equations have
been described. However, these methods involve approximating spatial derivatives in
order to obtain an approximate numerical solution. The shallow water equations do not
only contain spatial derivatives but also temporal derivatives. Taylor’s theorem 2.1 can
be used in the same way as in chapter 2 to approximate the time derivative:

∂φn

∂t
≈ φn+1 −φn

∆t
= F (φn+θ) (3.1)

Where is φn the value of the function φ at time t , and φn+1 is the value at time t +∆t and
F (φ) some function of φ dat defines the (partial) differential equation, and θ some value
between 0 and 1 which exists due to the intermediate value theorem

There is however one crucial difference between the application of the approxima-
tion of the derivative. In the case of a spatial derivative, all function values are known
and used to approximate the value of the derivative at a point. In the temporal case the
derivative is used to approximate a function value at a later time given the values from
the past.

This method is what we call time integration, because the partial differential equa-
tion is essentially integrated over a small time step. There exist two different classes of
time integration methods, explicit and implicit, which will be covered in more detail in
the next sections.

3.2. EXPLICIT TIME INTEGRATION
The expression in equation 3.1 is not complete as the function F (φ) is not yet discretized.
In order to approximate the function F (φ) it seems obvious to take some linear combi-

13
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nation of the past and future value:

φn+1 −φn

∆t
= aF (φn+1)+ (1−a)F (φn) (3.2)

Two obvious choices for a exist, which are a = 1 and a = 0. If we take a = 0 then the right-
hand side of the equation depends only on the past values of φ, and we call the method
Explicit. It is then quite easy to reorder the equation to find an expression for φn+1:

φn+1 =φn +∆tF (φn) (3.3)

Euler [15] was the first to publish this method in 1768. Since it uses information from the
present to approximate a function forward in time, it is called the Euler forward method.
An advantage of the Euler forward method is that it is very easy to implement. A disad-
vantage of the method is that it is only numerically stable for small enough time steps.

For explicit time integration the right-hand side of the recurrence relation equation
3.3 is composed of known variables. After discretization of the problem the function
F (φ) if it is a linear function can be expressed as a product of a matrix A and the vector
φn .
The φn term can be absorbed into A by adding the identity matrix to A. This leads to the
following update procedure for explicit time integration

φn+1 = Aφn (3.4)

This means that for each timestep a matrix vector product must be calculated. Matrix
vector product operations are highly parallelizable because every resulting vector value
results from a row-column multiplication that is independent from all other rows. This
makes explicit methods ideal for implementation on a GPU, which will be explained
further in chapters 4 and 5.

3.2.1. STABILITY

When numerically integrating a hyperbolic partial differential equation, it is important
to know when the method is stable or not.

One factor is that when using a Taylor approximation to discretize a PDE as described
in chapter 2, only the first order term is taken. This means that an error is made in order
of the square of the grid distance. This error can be seen as something called ’numerical
diffusion’. It behaves like diffusion and is introduced as a result of truncating the Taylor
expansion.

As explained in chapter 3, explicit methods’ stability depends on the size of the time
step chosen. Specifically, the time step must satisfy the Courant-Friedrichs-Lewy condi-
tion, or CFL condition, who derived it in 1928 [8].

C = ux d t

d x
+ uy d t

d y
≤Cmax (3.5)
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Where C is the Courant number, ux and uy the characteristic velocity in its respective
dimensions, and Cmax some number that depends on the PDE.

One way of describing the CFL condition is that for an explicit scheme, the speed
at which information travels in a single timestep must not exceed the spacing of the
grid. Since the Courant number is the ratio of information propagation distance to grid
distance it follows that in an Euler forward case the Courant number must be less or
equal to 1.

Higher order methods tend to use values from neighbors that are further away, for
example the RK3 method has a C F Lmax number of 3 since it uses spatial information
from 3 grid points away [16].

The CFL condition is a necessary but not sufficient condition for stability, however.
Usually a method’s inherent stability region is decided using the so called test problem.
The test problem is defined as

y ′ =λy (3.6)

When we apply the Taylor approximation as described in chapter 3 we obtain the
following recurrence relation:

yn+1 = yn +∆tλyn = (1+∆tλ) yn (3.7)

It follows that if |1+∆tλ| > 1 the solution will grow indefinitely over time, which leads to
a restriction on the time step based on the value of λ.

Note that this condition means that for positive values of λ, the method is inherently
unstable for problems that behave like the test problem. The stability region of the Euler
backwards method is the complement of the region for Euler forward, which means that
in such a case an implicit method should be used.

3.3. IMPLICIT TIME INTEGRATION
If a = 1 then the right-hand side of 3.2 depends purely on the function value F (φn+1).
This means that solving the equation is now not as straightforward as with equation 3.3.
This method is also called the Euler backward method. The complexity is highly depen-
dent on the form of the function F . The big advantage of implicit time integration is that
it is unconditionally stable with respect to the size of the time step. Do note that this
does not mean that the solution will be accurate for all time steps, however.

In the case of backwards Euler assuming as before F to be linear the update proce-
dure can be expressed as:

(A+ I )φn+1 =φn (3.8)

Which is a system of linear equations to which the solution can be obtained by inverting
the matrix A+ I . This means that every time step a linear system of equations needs to
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be solved which is computationally expensive. An advantage is that since the method is
unconditionally stable often a larger time step can be used which can offset this.

Solving a system of linear equations is computationally expensive and not trivial to
parallelize. Chapter 5 describes various solving methods and their discusses suitability
for GPU implementation.

3.3.1. MIXED AND SEMI-IMPLICIT METHODS

CRANK-NICHOLSON

In the last two sections we have described the simplest fully explicit or implicit time in-
tegration. However both these methods will only produce first order accurate solutions.
This of course led to the development of more accurate schemes. For example, Crank
and Nicolson [17]found that setting a = 1/2 in 3.2 leads to second-order numerical ac-
curacy while preserving the unconditional stability of the Euler backwards method.

SEMI-IMPLICIT EULER

When Euler Forward proves to be unstable one option is to try to improve stability by us-
ing the semi-implicit Euler method. The semi-implicit method is a somewhat confusing
name as no implicit time integration actually takes place. When time integrating a sys-
tem of equations explicitly often multiple variables need to be updated every time step.
In the case of the Shallow-Water equations 1.9 the water level, x-velocity and y-velocity
all need to be updated. In the case of Euler forward all three variables are updated inde-
pendently using values from the previous timestep.

The idea behind the semi-implicit Euler method updates the variables explicitly in
sequential order, where once a variable has been updated the updated expression is used
to update the other variables.

Other methods were developed by Runge and Kutta, of which their fourth order method
is the most popular, which takes a weighted average of four different increments in order
to achieve fourth order accuracy at the cost of additional computation.

ADI
Another interesting method which is very relevant to the shallow water equations is a
semi implicit method called the alternating direction implicit method, or ADI. The idea
is that for a coupled system of partial differential equations in two spatial directions x
and y , a time step is split into two parts where first the x-derivative is calculated explic-
itly and the y-derivative implicitly, and for the next half time step this is reversed. This
results into a tridiagonal system that needs to be solved twice at every time step, which
systems which are comparatively computationally cheap to solve.
Aackermann & Pedersen [18] used this method do discretize the SWE and solve the re-
sulting tridiagonal system on a GPU and concluded it was very efficient.
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3.4. RUNGE-KUTTA METHODS
Around 1900 Carl Runge and Martin Kutta developed a family of implicit and explicit
time integration methods [16]. As mentioned before the Runge-Kutta 4 method has re-
mainded very popular to this day. The family of explicit Runge-Kutta methods is given
by the following expression:

un+1 = un +h
s∑

i=1
bi ki

k1 = f (tn , yn)

k2 = f (tn + c2h, yn +h(a21k1))

k3 = f (tn + c3h, yn +h(a31k1)+a32k2)

...

ks = f
(
tn + cs h, yn +h

[
as1k1 + ...+as,s−1ks−1

])
(3.9)

Where un is the solution to the to be solved initial value problem at time t = tn . ai j

are the coefficients and bi j and ci j are the weights. The weights and coefficients can be
conveniently organised in a so called Butcher tableau, which John C. Butcher developed
60 years after the RK methods were developed. [16]:

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s
...

...
...

. . .
...

cs as1 as2 · · · ass

b1 b2 · · · bs

Table 3.1: Butcher tableau for weights and coefficients
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The question now is which values to pick for the weights and coefficients. For a
Runge-Kutta method of the above form to be consistent it is necessary that the sum of
coefficients of each row i equals the row-weight ci .

If this consistency requirement is applied to an RK method with only 1 stage it fol-
lows that Euler forward is the only consistent single stage method.

If the formula 3.9 is observed it can be concluded that if all nonzero coefficients lie
on the bottom-triangular part of the Butcher tableau the method is explicit, and if they
lie on the upper-triangular part the method is implicit.

The Runge-Kutta 4 method for example has the following tableau:

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 1/3 1/3 1/6

The choice of Runge-Kutta method is a trade-off between accuracy and computa-
tional intensity.
Butcher [16] shows that in order to obtain accuracy of order p the method must have a
number of stages s equal to p for s ≤ 4 and at least p +1 for s ≥ 5.
This partially explains why the RK4 method is so popular, as it is the highest order method
that has a number of stages equal to the order of accuracy. The exact relation between p
and s is an open problem.
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3.5. PARAREAL

An important concept in time integration is a method called Parareal [19]. When paral-
lelizing the solving process of a partial differential equation, usually the system of equa-
tions that needs to be solved at every time step is parallelized. Parareal however, at-
tempts to put the parallelization one level higher by parallelizing the method at the tem-
poral stage. The main idea behind the method is to decompose the time interval over
which the initial value problem is integrated into parts that are then assigned each to a
parallel processor.

The idea is to have a coarse solving method that is executed serially for all time steps.
If speedup is desired then the course method should be chosen in such a way that this
serial execution is somewhat accurate and fast. If we denote the coarse method that
calculates the solution u at time j given the solution at time j −1 by
u j =C (u j−1, t j , t j−1).

Secondly the solution is iteratively improved in parallel. If we denote the fine solver
by F (u j−1, t j , t j−1) and we denote the iteration number by superscript k we obtain the
following procedure:

uk
j =C (uk

j−1, t j , t j−1)+F (uk−1
j−1 , t j , t j−1)−C (uk−1

j−1 , t j , t j−1) (3.10)

It is obvious that if the course method converges e.g C (uk
j−1, t j , t j−1) = C (uk−1

j−1 , t j , t j−1)

then the two course terms cancel out and only the fine solver term remains.

3.6. NUMERICAL SCHEMES FOR THE SHALLOW WATER EQUA-
TIONS

In chapter 1 the shallow water equations have been derived, in chapter 2 various dis-
cretization methods have been described and in this chapter various time integration
methods have been described.
Now what remains is to use one of the discretization and time integration methods to
construct a numerical scheme that solves the SWE.

3.6.1. STELLING & DUINMEIJER SECOND ORDER SCHEME

Stelling & Duinmeyer [20] developed a first order finite difference scheme for the shallow
water equations that can be modified for second order accuracy.
They start with the non-conservative one dimensional form given by
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∂ζ

∂t
+ ∂ (hu)

∂x
+ ∂ (hv)

∂y
= 0 (3.11)

∂u

∂t
+u

∂u

∂x
+ v

∂u

∂y
+ g

∂ζ

∂x
+ c f

u|u|
h

= 0 (3.12)

∂v

∂t
+u

∂v

∂x
+ v

∂v

∂y
+ g

∂ζ

∂y
+ c f

v |u|
h

= 0 (3.13)

Where u is the depth averaged flow velocity in the x-direction, v the flow velocity in the
y-direction u the vector containing u and v , ζ the water level above the plane of refer-
ence, c f the bottom friction coefficient, d the depth below the plane of reference and h
the total water depth h = ζ+d .

The scheme uses a staggered Arakawa C grid, see figure 2.3, to spatially decouple the
values of h and u and v . Discretizing equation 3.11 and noting that the bottom height is
time independent leads to

hn+1
i , j −hn

i , j

∆t
+

h′n
i+1/2, j un+θ

i+1/2, j −h′n
i−1/2, j un+θ

i−1/2, j

∆x
+

h′n
i , j+1/2vn+θ

i , j+1/2 −h′n
i , j−1/2vn+θ

i , j−1/2

∆y
= 0

(3.14)
Where un+θ = θun+1 + (1−θ)un and
h′

i+1/2, j = hi , j if ui+1/2, j > 0,

h′
i+1/2, j = hi+1, j if ui+1/2, j < 0 and

h′
i+1/2, j = max(ζi , j ,ζi i +1, j )+mi n(di , j ,di+1, j ) if ui+1/2, j = 0

With rules analogous in the y-direction.

When discretizing equations 3.12 and 3.13 the question is how to approach the non
linear tems, which are the bed friction with a product of u, |u| and h, and the advection
term which is a product of flow velocity and its spatial derivative.

Stelling & Duinmeijer propose two different approximations which can be used de-
pending on which characteristics of the scheme are required. One is a momentum con-
servative advection approximation, the other an energy head conserving approach, which

is defined as eh = u2

2g +ζ in one dimension.

For the momentum conservation the advection terms are approximated using first-
order upwinding, which means the flow velocity takes on the values of neighboring points
depending on the flow direction. This results in the following expression:
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dui+1/2, j

d t
+

(
q−x

u

)
i , j

h−x
i+1/2, j

ui+1/2, j −ui−1/2, j

∆x
+

(
q−x

v

)
i , j−1/2

h−x
i+1/2, j

ui+1/2, j −ui+1/2, j−1

∆y

+ g
ζi+1, j −ζi , j

∆x
+ c f

ui+1/2, j ||ui+1/2, j ||
h−x

i+1/2, j

= 0 (3.15)

Where
dui+1/2, j

d t is the time derivative x-velocity u evaluated at grid point (i +1/2, j ),
qu = uh and h−x

i+1/2, j = (hi , j +hi+1, j )/2, with the y equation defined analogously.

The energy-head conserving discretization in the x-direction is given by:

dui+1/2, j

∆t
+ ui+1/2, j +ui−1/2, j

2

ui+1/2, j −ui−1/2, j

∆x
+ vi+1/2, j−1/2 + vi−1/2, j−1/2

2

ui+1/2, j −ui+1/2, j−1

∆y

+ g
ζi+1, j −ζi , j

∆x
+ c f

ui+1/2, j ||ui+1/2, j ||
h−x

i+1/2, j

= 0 (3.16)

Stelling and Duinmeijer propose the following system of linearized equations based
on the θ method that is momentum conservative for θ = 0.5.

hn+1
i , j −hn

i , j

∆t
+

h′n
i+1/2, j un+θ

i+1/2, j −h′n
i−1/2, j un+θ

i−1/2, j

∆x
+

h′n
i , j+1/2vn+θ

i , j+1/2 −h′n
i , j−1/2vn+θ

i , j−1/2

∆y
= 0

(3.17)

un+1
i+1/2, j −un

i+1/2, j

∆t
+un

→
un

i+1/2, j −un
i−1/2, j

∆x
+ vn

↑
un

i+1/2, j −un
i+1/2, j−1

∆y

+ g
ζn+θ

i+1, j −ζn+θ
i , j

∆x
+ c f

un+1
i+1/2, j

∣∣∣∣∣∣u=n
i+1/2, j

∣∣∣∣∣∣
(h−x )n

i+1/2, j

= 0 (3.18)

vn+1
i , j+1/2 −un

i , j+1/2

∆t
+un

→
vn

i , j+1/2 − vn
i−1, j+1/2

∆x
+ vn

↑
vn

i , j+1/2 − vn
i , j−1/2

∆y

+ g
ζn+θ

i , j+1 −ζn+θ
i , j

∆y
+ c f

vn+1
i , j+1/2

∣∣∣∣∣∣u=n
i+1/2, j

∣∣∣∣∣∣
(h−y )n

i , j+1/2

= 0 (3.19)

With (h−x )n
i+1/2, j =

(
hn

i , j +hn
i+1, j

)
/2 and (h−y )n

i+1/2, j =
(
hn

i , j +hn
i , j+1

)
/2

and u→ and v↑ the convective velocity approximations, which can be either momentum-
conservative or energy-conservative.

This system can be represented in matrix form similar to 1.11:
It is proposed that the scheme could be implemented dynamically, switching be-

tween the momentum- and energy-conserving algorithm depending on the magnitude
of the spatial derivatives.
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The system of equations that follows is symmetric and positive definite, which makes
the implicit system suitable for the Conjugate Gradient method further discussed in
chapter 5.

It is noted that the method can be constructed to be second order accurate by using
upwinded second-order approximations instead of first-order in combination with so
called ’slope limiters’. Slope limited approximations guarantee non-negative water lev-
els for sufficiently small time steps. A slope limiter is added to the flow velocity terms
and is a function of neighboring terms.

It is also important to note that the above approximations are all for positive flow di-
rection. Because upwinding is used which depends on the flow direction, the upwinding
terms change too when flow direction is reversed. This makes calculations complex for
situations with often reversing flow directions, such as tidal simulations.

3.6.2. BAGHERI ET AL. FOURTH ORDER SCHEME
Bagheri et al. [21] have constructed an implicit finite difference scheme that is fourth
order accurate on a rectangular grid.

The method starts with the non-conservative SWE including bottom friction, equal
to equation 1.8. The equation can be written in the form:

∂u

∂t
+ A

∂u

∂x
+B

∂u

∂y
= S(u) (3.20)

Where

u =
 h

ux

uy

 A =
 0 1 0
−u2

x + g h 2ux 0
−ux uy uy ux

 B =
 0 0 1

−ux uy uy ux

−u2
y + g h 0 2uy

 S =


0

−g
(
∂z
∂x + ux ||u||

C 2h

)
−g

(
∂z
∂y + uy ||u||

C 2h

)


(3.21)

The idea now is to improve the accuracy of the scheme by using a second order fi-
nite difference approximation. Recalling the Taylor expansion from chapter 1 2.1 and
substracting the forward and backwards approximations:

f (x +d x) = f (x)+d x f ′(x)+d x2 f ′′(x)/2+d x3 f ′′′(x)/6+O(d x4)

f (x −d x) = f (x)−d x f ′(x)+d x2 f ′′(x)/2−d x3 f ′′′(x)/6+O(d x4)

f (x +d x)− f (x −d x)

d x
− f ′(x) = d x2

6
f ′′′(x)+O(d x4) (3.22)

Bagheri proposes to substract an approximation of the third order derivatives d x2

6

(
A ∂3u
∂x3

)
and d y2

6

(
B ∂3u
∂y3

)
from 3.20 which themselves are approximated by differentiating 3.20.
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Since the x and y differentiation procedure is analogous, we will restrict to the x
direction for readability. Differentating with respect to x twice produces:

−
(

A
∂3u

∂x3

)
= ∂2 A

∂x2

∂u

∂x
+2

∂A

∂x

∂2u

∂x2 + ∂2B

∂x2

∂u

∂y
+2

∂B

∂x

∂2u

∂x∂y
+B

∂3u

∂y∂x2 − ∂2S(u)

∂x2 (3.23)

If we denote the discrete central difference operator as δn with n = x, y and substitute
into 3.20:

[
Aδx +Bδy

]
u+

d x2

6

[(
δ2

x Aδx +2δx Aδ2
x +δ2

x Bδy +2δx Bδxδy +Bδyδ
2
x

)
u+δ2

x S+O(d x2,d y2)
]+

d y2

6

[(
δ2

y Bδy +2δy Bδ2
y +δ2

y Aδx +2δy Aδyδx + Aδxδ
2
y

)
u+δ2

y S+O(d x2,d y2)
]

= S+O(d x4,d y4) (3.24)

Bagheri proposes introducing several terms for readability:

C = A+ d x2

6
δ2

x A+ d y2

6
δ2

y A

D = B + d x2

6
δ2

x B + d y2

6
δ2

y B

E = 2d x2δx B +2d y2δy A

F = d x2

3
δx A

G = d y2

3
δy B

J = 1+
d x2δ2

x +d y2δ2
y

6
(3.25)

Finally the time derivative is added to the source term:

S(u) = S(u)− ∂u
∂t and ∂u

∂t is discretised as δ+t un = un+1−un

d t where un is the value of the
vector u at time t = n.
Adding all this into equation 3.24 and rearranging leads to:

[
J Iδ+t Cδx +Dδy +Fδ2

x +Gδ2
y +

1

6

(
d y2 Aδxδ

2
y +d x2Bδyδ

2
x +Eδxδy

)]
un = JS+O(d x4,d y4)

(3.26)
Now if we call Cδx +Dδy +Fδ2

x +Gδ2
y + 1

6

(
d y2 Aδxδ

2
y +d x2Bδyδ

2
x +Eδxδy

)
= K and

introduce the variableµ that decides the implicit/explicit factor of the scheme we obtain:

J Iδ+t un + (1−µ)K un +µK un+1 = (1−µ)Sn +µSn+1 +O(d t p ,d x4,d y4) (3.27)
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This equation can be written into matrix-vector form with the following procedure:

1∑
k1=−1

1∑
k2=−1

wi+k1, j+k2un+1
i+k1, j+k2

=
1∑

k1=−1

1∑
k2=−1

w ′
i+k1, j+k2un

i+k1, j+k2
+24d t J

[
µSn+1

i j + (1−µ)Sn
i j

]
(3.28)

with

wi+k1, j+k2 = pi+k1, j+k2 +qi+k1, j+k2

w ′
i+k1, j+k2

= (µ−1)
d t

d x2d y2 pi+k1, j+k2 +qi+k1, j+k2 (3.29)

(3.30)

They can be represented by a 9-point stencil in the following way:

w =µ d t

d x2d y2

pi−1, j−1 pi−1, j pi−1, j+1

pi , j−1 pi , j pi , j+1

pi+1, j−1 pi+1, j pi+1, j+1

+
 0 4I 0

4I 8I 4I
0 4I 0

 (3.31)

and the elements of the p-matrix:

pi−1, j−1 =−2d xd y2 Ai j −2d x2d yBi j +6d xd yEi j

pi , j−1 =−12d x2d yDi j +4d x2d yBi j +24d x2Gi j

pi+1, j−1 =−2d xd y2 Ai j +2d x2d yBi j −6d xd yEi j

pi−1, j =−12d xd y2Ci j +4d xd y2 Ai j +24d y2Fi j

pi , j =−12d y2Fi j −12d x2Gi j

pi+1, j = 12d xd y2Ci j −4d xd y2 Ai j +24d y2Fi j

pi−1, j+1 =−2d xd y2 Ai j +2d x2d yBi j −6d xd yEi j

pi , j+1 = 12d x2d yDi j −4d x2d yBi j +24d x2Gi j

pi+1, j+1 = 2d xd y2 Ai j +2d x2d yBi j +6d xd yEi j

(3.32)



4
THE GRAPHICS PROCESSING UNIT

(GPU)

4.1. INTRODUCTION

A graphics processing unit, or GPU, is a computer part that is primarily developed, de-
signed and used to generate a stream of output images, computer graphics, to a display
device. The most widespread use is to generate the output of a video game. However,
in recent years their use for accelerating scientific computations has become an active
research topic.

Historically, the field of scientific computing has focused and done most of said com-
puting on the central processing unit, partially because the concept of a central process-
ing unit came first and graphics processing units did not become mainstream until many
years later. Early GPUs were designed used exclusively for video game rendering.

Later people realised that the computing capabilities of a GPU could be harnessed
for other uses, which they proceeded to do by rewriting their problems and presenting
them to the GPU as if it were a video game [22]. It was not until 2007 when Nvidia in-
troduced the CUDA GPU programming framework that GPU computing became more
accessible for mainstream use.
Modern GPUs have a large amount of computing cores that when utilized together in
parallel provide a great deal of computing power at comparatively low monetary and en-
ergy cost. The challenges lie in rewriting problems to be suitable for parallel computing
and dealing with the other limitations of a GPU.
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4.2. GPU STRUCTURE

4.2.1. ARCHITECTURE
As mentioned in the introduction, a GPU contains many cores. In the case of a central
processing unit, a program contains a number of threads to be executed which are then
mapped to the cores by the operating system. Due to the parallel nature of a GPU this
process is a little more complex.

Computer architectures can be classified using Flynn’s taxonomy [23]. A classical
computer is classified as SISD, Single Instruction Single Datastream, which means a sin-
gle program is executed on a single dataset sequentially. A GPU is considered a Single
Instruction Multiple Datastream, or SIMD device. This means that a single instruction is
run multiple times in parallel on different data.

A GPU does not simply contain a number of cores which can execute threads like a
CPU. An Nvidia GPU consists of a number of streaming multiprocessors, or SM’s, which
each contain a number of CUDA cores which can perform floating point operations.
Threads are grouped in blocks which are assigned to the SM’s, which will explained fur-
ther in section 4.2.2. Every SM can be considered an SIMD device, as blocks are assigned
to the SM’s.
As SMs can receive instructions that are not identical within the same program, the SIMD
classification does not truly fit a GPU as a whole. Thankfully a new term has been coined:
Single Program Multiple Datastreams, or SPMD.

For example, the Nvidia Turing TU102 GPU [24] contains 68 SMs, each with 64 CUDA
cores for a total of 4352 cores. The cores have a clockrate of 1350mhz to 2200mhz and
can perform 2 floating point operations (flops) per clock cycle.
This results in a total of roughly 12 to 19 Teraflops.
For comparison, an average modern desktop CPU has compute capability in the order
of 100 Gigaflops. This means that a perfectly parallelizable program could run around
100 times faster when executed on the GPU.

4.2.2. BLOCKS & WARPS
As mentioned before, threads on a GPU are grouped per 32 in warps, which then are
grouped together in blocks. This is schematically represented in figure 4.1.

When a program is executed on a GPU, every block in the program is assigned to
an SM. If the number of blocks in the program exceeds the number of SMs, they will be
executed sequentially. This is schematically represented in figure 4.2.
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Figure 4.1: A schematic representation of GPU program structure Source: [25]

Because the program is divided into blocks which are then subdivided into warps, it
is not self-evident how many blocks and how many warps per block should be chosen.
To keep every SM active, there need to be at least as many blocks as there are SMs on the
GPU. Since one SM can execute 32 threads, or 1 warp, at the same time, there should be
at least 32 threads per block in order to have full GPU utilization. Memory restrictions
complicate this a bit further, which shall be explained in the next section. There can be a
maximum of 1024 threads in a single block on modern GPUs, and the maximum number
of blocks is 231 −1 or around 2 billion for modern GPUS.
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Figure 4.2: A schematic representation of GPU program execution structure Source: [25]

4.2.3. MEMORY

A CPU uses data that is stored in random access memory, or RAM. RAM is faster than
storage media such as solid state drives, but it is expensive, has limited capacity and
does not retain data when powered off. When running a program on the CPU the only
constraint is that you do not exceed the system’s RAM capacity.
A GPU’s memory structure is more complex. In figure 4.3 the different types of memory
a thread has access to is schematically represented.

SHARED MEMORY

Shared memory is arguably the most important memory on a GPU. Shared memory is
very fast memory that is accessible to every thread in a block. This for example means
that if a matrix matrix product is being done on a GPU, all threads can quickly add their
result to the result matrix in the shared memory.

An important aspect to consider when deciding on block count and threads per block
when designing a program is the shared memory use. The TU102 GPU has a maximum
of 64Kb of shared memory per block. This means that if a block wants to efficiently use
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Figure 4.3: A schematic representation of GPU memory structure Source: [25]

shared memory the threads in the block must not occupy a total of more than 64Kb.

GLOBAL MEMORY

The bulk of the memory available within GPU is the global memory. It is generally faster
than RAM, but the transfer of data from RAM to Global memory is through the PCI-E bus
which has comparatively high latency and low .

REGISTERS

Register memory is extremely fast, but it is only accessible by a single thread and data
stored in a register only lasts for the lifetime of the thread. This is usually where memory
intensive operations are performed.

LOCAL MEMORY

Local memory is almost identical to registers, except it is off-chip and part of the global
memory. The difference is that global memory can be accessed by every thread while
local memory is a subsection of global memory that is reserved for a single thread. Be-
cause of this the local memory available to a thread larger than the register memory, but
as slow as global memory.

CONSTANT MEMORY

Constant memory is read-only memory that can only be modified by the host, usually
the CPU. It is intended for data that will not change over the course of the program. It is
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optimized for broadcasting data to multiple threads at the same time which it does faster
than global memory.

TEXTURE MEMORY

Texture memory is mainly used for storing video game textures. It is read-only in the
same way as constant memory and has high latency, although it is still faster than global
memory. However, an advantage of texture memory is that it does not share with global
memory, which is benificial for -limited applications. Texture memory is optimized for
spatial locality [26], which means that threads in the same warp acess data that is close
together in memory will be faster.

Texture memory has some other functions that can be used for free, such as linear
interpolation of adjacent data, automatic data normalization on fetch, and automatic
boundary handling [26].

4.3. MEMORY BANDWIDTH AND LATENCY
When talking about GPU floating point Teraflops usually the maximum performance is
meant, assuming that every GPU core is processing data at the same time. When perfor-
mance of the execution of actual programs is measured, the throughput is often less than
this theoretical maximum. This is because in order for the GPU cores to do calculations
they need to be fed instructions and data. Memory bandwidth and latency limitations
will often prevent this, and thus code optimization of a GPU program will often mean
optimizing memory utilization.

4.3.1. BANDWIDTH

Memory bandwidth is defined as the maximum amount of data that can pass through
the memory to the execution units. It is calculated with the following formula: B =
bw

8 ∗mc. Here B is the in bytes per second, bw is the memory bus width in bits, and
mc is the memory clock in Hertz.
For example the TU102 GPU has a 352 bit Memory bus width which is 48 bytes. TU102
memory is GDDR6 with a base memory clock of 14 Ghz for a of 616 Gigabyte per sec-
ond. If data needs to be sent from CPU RAM to the GPU execution cores this happens
through the PCIE-bus. This bus also has a limited bandwidth which needs to be taken
into account as well. Modern GPUs still use the PCI Express 3.0 x16 standard released
in 2010, which has a maximum of 15,76 Gigabyte per second. Compared to the inter-
nal memory of the TU102 GPU this is slower by approximately a factor 40. This means
that when doing calculations on a GPU with a very large dataset the limiting factor, also
called bottleneck, will be the PCIE .

4.3.2. LATENCY

Bandwidth limits the maximum data transfer rate through a memory bus. This figure
however is only important when it is exceeded. When transferring data when not ex-
ceeding the bandwidth capacity there is still a delay between sending and receiving the
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data. This is what is called the data latency, the time it takes for a single byte of data to
transfer. Because any memory transfer takes at least as much time as the latency, it is
advantageous to send as much data as possible per transfer operation.

4.3.3. BANDWIDTH LIMITATION EXAMPLE
To illustrate the bandwidth limitations of GPU computing capability, consider a matrix-
vector product b = Ax that is to be computed on a GPU in parallel with A an NxN matrix
and x an Nx1 matrix.
Doing this calculation sequentially would require N vector-vector products which cost
N ∗ t1 seconds for a total of Tseq = N 2t1 = O(N 2), where t1 the time it takes for a single
flop on the sequential unit.

Doing the same calculation in parallel on P processors would take

Tpar = N
P ∗N ∗ t2 = O( N 2

P ) seconds, as P operations are performed in parallel, where t2

is the time it takes for a single flop on the parallel machine. Note that the maximum
speedup would be achieved when using N parallel processors.

This sounds very appealing until communication time is taken into account, the ma-
trix parts of A and the vector x need to be copied (also called scattering) to the parallel
processors, and the result b needs to be copied back (also called gathering). The matrix

part is N 2

P copy operations for each processor and the two vectors are each N
P operations.

This results in:
Tcomm = P

[
N 2

P +2 N
P

]
t3 = O(N 2) Where t3 is the time it takes per memory copy opera-

tion.
This means that if

( t2
P + t3

)<< N it follows that:

Tpartot = N 2

P t2 +P
[

N 2

P +2 N
P

]
t3 =O(N 2)

Because in this case the sequential and the parallel implementation are of the same
order of magnitude, any speedup achieved will be at most a constant factor. Thankfully,
various other methods have been developed to work around this communication bot-
tleneck, which will be described further in chapter 5.

The above example is a worst case scenario. One way to circumvent the memory
bottleneck is to construct the matrix and vector on the GPU instead of constructing it on
the CPU and then scattering it to the GPU.

4.3.4. ROOFLINE MODEL
A Parallel program will often run into some kind of bottleneck, as illustrated in the pre-
ceding section, that prevents it from utilizing the maximal computing capabilities of the
device it runs on. Since bottlenecks lead to inefficiency, it is important for code writers
to know what is the limiting factor. The idea behind the Roofline model is to provide a
visual guide on what the limiting factors are. The most simple form of the roofline takes
the minimum of two functions [27]:

R = mi n{π,β∗ W

Q
} (4.1)
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Where R is the roofline, representing the performance bottleneck, π the peak device per-
formance in flops, β the communication bandwidth in bytes, W the program arithmetic
intensity in flops and Q the memory usage in bytes per second. An elementary example
Roofline model is presented in figure 4.4.

Figure 4.4: A schematic representation of the Roofline model,
maximum program Gflops vs program Operational intensity, where Operational Intensity is W

Q Source: [28]

To increase the accuracy of the model, other limitations can be added to better indi-
cate performance bottlenecks. These include concurrency or cache coherence effects in
the memory category, in-core ceilings (lack of parallelism) limiting peak performance or
locality walls which limit Operational Intensity [27].

4.4. COMPUTATIONAL PRECISION ON THE GPU
Data and variable values in a computer are often stored as floating point numbers. A
floating point number consists of a significant, a base and an exponent. The value of
the number is then equal to F = S ∗B E , where F is the number being represented as a
floating point, S the significant, B the base and E the exponent. Computers store data in
bits and calculate in binary, and thus they do not have to store the base.

Several standards exist for floating point precision:

• Half precision or FP16: 1 sign bit, 5 exponent bits and 10 significant bits for a total
of 16

• Single precision or FP32: 1 sign bit, 8 exponent bits, 23 significant bits for a total of
32

• Double precision or FP64 1 sign bit, 11 exponent bits, 52 significant bits for a total
of 64

When using a CPU for computation, double precision calculations are just as fast as
single precision. Double precision takes up twice the memory, however, which is some-
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thing to consider when working with large datasets.

A GPU however is much more specialised. Most video games, which are still the
main usecase of a GPU, do not require 64-bit precision. In order to save heat, memory
and physical die space GPU CUDA cores were designed to only perform single or half
precision flops.
Despite this, every SM has a small amount of FP64 cores. In the case of the TU102 GPU
there are 2 FP64 cores per SM compared to 64 FP32 cores. This means that the GPU is
able to perform floating point calculations up to 32 times faster when working in single
precision, and this is often represented as with the FP64 to FP32 ratio 1:32.
Nvidia GPUs which are not specialized for FP64 computing have ratios between 1:8 and
1:32 [29], with the more modern architectures having the lower ratios.

When using GPUs for high performance scientific computing became more popular
it lead to Nvidia developing the Tesla line of GPUs of which the first was the Fermi-based
20 series in 2011. The Tesla line has 1:4 to 1:2 FP64 compute capability and error correct-
ing memory, but they are marketed towards enterprises at enterprise costs. For example
a modern Tesla V100 GPU released in 2017 provides 7 Tflop at a release price of roughly
10.000 American dollars [30].

This changed with the release of the GTX Titan which was a consumer card and had
an unprecedented 1:3 double precision ratio at a release price of 999 American dollars
[31]. It provides 1.882 Tflop of double precision compute power.
The Titan was succeeded by the Titan V which has a 1:2 double precision ratio and pro-
vides 7.45 Tflop of double precision compute power. It was released in 2017 at a price of
3000 American dollars and is to this day has the most FP64 performance per dollar for
an Nvidia GPU [32]. The Titans lack error correcting memory, however.

AMD gaming GPUs commonly have ratios between 1:8 to 1:16. Like Nvidia they
also released a few consumer GPUs with FP64 ratios of 1:4. These include the Radeon
HD7970 with .95 Tflop FP64 at a launch price of 550 USD in 2011, the Radeon R9 280
with 1.05 Tflop FP64 for 300 USD in 2013, and the Radeon VII with 3.36 Tflop for 699
USD in 2019.

AMD also has an enterprise line of double precision GPUs, the Radeon (Fire)Pro line
going as far back as 1995. Despite many Radeon Pro GPUs having low FP64 ratios of
around 1:16, the Radeon Pro drivers allowed the use of FP32 cores to work together to
provide FP64 output at a 1:3 ratio [33].

Despite AMD GPUs providing more double precision flops per dollar, the maturity
of the CUDA platform has led Nvidia to be the dominant player in the field of scientific
computing [34].
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4.5. GPU TENSOR CORES
Nvidia’s Volta architecture of which the first GPU was released in 2017 was the first mi-
croarchitecture to feature Tensor cores. Tensor cores are a new kind of cores that were
specifically designed to be very suitable for artificial intelligence and deep learning re-
lated workloads.
A single Tensor core provides a 4x4x4x4 processing array which performs a so called
FMA, fused multiply addition, by multiplying two 4x4 matrices and adding the result
to a third for 64 floating point operations per cycle. This has been schematically repre-
sented in figure 4.5.
The input matrices are FP16 precision, but even if the input is FP16 the accumulator can
still be FP32. Because the operation then uses half-precision input to produce a single-
precision result, this is also called mixed-precision.

Figure 4.5: A schematic representation of a Tensor core operation Source: [35]

The TU102 GPU contains 8 Tensor cores per SM, which work together to do a total of
1024 FP16 operations per clock cycle per SM. This concurrency allows the threads within
a warp to perform FMA operations on 16x16 matrices every clock cycle. To achieve this
the warp of 32 threads is split into 8 cooperative groups which each compute part of the
16x16 matrix in four sequential steps. These four steps for the first top-left group have
been schematically represented in figure 4.6.

Tensor cores can be utilized by the CUDA cuBLAS GEMM library. BLAS stands for
Basic Linear Algebra Subroutine and cuBLAS contains the fastest GPU basic linear alge-
bra routines.
GEMM stands for GEneral Matrix Multiply. However, in order for the cuBLAS GEMM to
utilize Tensor cores, a few restrictions exist because of the 4x4 nature of the basic tensor
core operation.
If the GEMM operation is represented as D = A ∗B +C with A an ld A∗m, B an ldB ∗k
and C an ldC∗n matrix then for the GEMM library to utilize Tensor cores the parameters
l d A,ldB ,l dC and k must be multiples of 8, and m must be a multiple of 4.
Other rules of matrix multiplication and addition apply too, so m = ldB and l d A = l dC
and k = n.
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Figure 4.6: A schematic representation of a Tensor core 16x16 operation Source: [36]
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4.6. CUDA & OPENCL
There exist two major GPU programming languages: CUDA and OpenCl. CUDA stands
for Compute Unified Device Architecture. When using GPUs for general purpose pro-
cessing gained popularity it was developed by Nvidia and released in 2007. It is a propri-
etary framework and only compatible with Nvidia GPUs.
OpenCl stands for Open Compute Language which was developed by the Khronos group
and released in 2009. It is a more general language for compute devices which include
GPUs

CUDA has the advantage of being easier to work with, and also has a variety of tools
and profilers have been built by Nvidia to aid development.
OpenCl has the advantage of supporting other GPU brands, with Advanced Micro De-
vices being the most prominent.

A study done by the TU Delft [37] found that translating a CUDA program into OpenCl
reduced performance by up to 30%, but this difference disappeared when the corre-
sponding OpenCl specific optimizations were performed.

A third, less known programming standard was exists called OpenACC, or open ac-
celerators, with the aim to simplify parallel programming on heterogeneous systems, of
which the first version was released in 2012 [38]. An advantage of OpenAcc is that it is
easier to work with than OpenCl and CUDA but less efficient, according to [39].

4.7. CUDA PROGRAM STRUCTURE
In order for a program to be executed on a GPU it must be started from a ’host’, generally
the system’s CPU, and also receive the relevant data from the host. In the case of CUDA
it has its own compiler called nvcc. It compiles both the host code which is compiled in
the C language, and the GPU code which are combined into a single .cu source file.
In the case of CUDA Fortran a program can be compiled using the PGI compiler from
The Portland Group [40]. Third party wrappers are available for a variety of languages
such as Python, Java, Matlab and OpenCL.

A generic CUDA program structure consists of the following steps:

1. Initialize host program, load CUDA libraries and declare variables

2. Allocate memory on GPU and send data from host

3. Launch kernel on GPU

4. Collect kernel result and send it to the host

5. Process result on host

This structure has been illustrated in figure 4.7:
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Figure 4.7: A schematic representation of CUDA processing flow Source: [41]





5
PARALLEL SOLVERS ON THE GPU

5.1. INTRODUCTION
As mentioned in chapter 4, a GPU is a device with an enormous amount of computing
power. In chapter 3 was explained that an implicit time integration method requires
solving a linear system of equations Ax = b at every time step. This majority of this
chapter aims to describe the various methods that exist for efficiently solving systems of
linear equations and how the methods can be adapted to be used in parallel on a GPU.

5.2. MATRIX STRUCTURE AND STORAGE
As mentioned in chapter 3 time integrating a discretized system of partial differential
equations leads to a matrix equation. Often the differential equation is structured on the
domain, and can be represented in stencil notation. This means that the matrix will have
a band structure, with only a few diagonals filled and everything else zeros. This is also
called a sparse matrix.

When storing matrix values into computer memory, it does not make sense to also
store the components with value zero. If only the non zero entries of the matrix are
stored, the memory footprint is greatly reduced but also calculations are sped up. These
two qualities have led to the development of various methods to efficiently store large
sparse matrices.

5.2.1. CONSTRUCTION FORMATS
There are two elementary categories. The first are efficient modification systems, which
are generally used for constructing sparse matrices such as:

• Coordinate list, a list that contains triples of coordinates and their values.

• Dictionary of keys, a dictionary-structure that maps coordinate pairs to corre-
sponding matrix entry values.

39



5

40 5. PARALLEL SOLVERS ON THE GPU

• List of lists, which is a list that stores every column as another list

Often after constructing the matrix in a construction format it is then converted to a
more computationally efficient format.

5.2.2. COMPRESSED FORMATS
The second are the Yale and compressed sparse row/column formats. These compressed
formats reduce memory footprint without impeding access times or matrix operations
[42]

The Yale format stores a matrix A using three one dimensional arrays:

• A A an array of all nonzero entries in row-major order, which means the index
loops through the matrix per row.

• I A is an array of integers that contains the index in A A of the first element of the
row, followed by the total number of non-zero entries plus one.

• J A contains the column index of each element of I A

Compressed sparse row format, or CSR, is effectively the same as Yale format except
J A is stored second and I A is stored third.

Compressed sparse column format, or CSP is ’transposed’ CSR. Here I A contains the
index in A A of the first element of each column of A, and J A contains the row index of
each element of I A.

For example, the matrix 
1 0 0 2 0
3 4 0 5 0
6 0 7 8 9
0 0 10 11 0
0 0 0 0 12

 (5.1)

Is represented in CSR format by:

AA 1 2 3 4 5 6 7 8 9 10 11 12
JA 1 4 1 2 4 1 3 4 5 3 4 5
IA 1 3 6 10 12 13

5.2.3. DIAGONAL FORMATS
If a sparse matrix contains only a small amount of non-zero diagonals (for example the
ADI method produces a tridiagonal system), even more efficient storage methods can
be used to exploit this. The simplest is to only store the diagonals in a "rectified" array
as one vector per diagonal. In this case the offset of a row is equal to the column index
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which makes matrix reconstruction simple.

A slightly more complex method is Modified Sparse Row format, or MSR. The MSR
format has just two arrays, A A and J A. The first N elements of A A contain the main
diagonal of A. Starting at N + 2 the array contains all other non-zero elements of A in
row-major order. The elements starting at N +2 of J A contain the column index of the
corresponding elements of A A. The first N +1 positions contain the pointer to the be-
ginning of each row in A A and J A.

A third scheme suited for matrices with a diagonal structure is the Ellpack-Itpack for-
mat. If the number of diagonals is nd , the scheme stores two N xnd arrays called COEF
and JCOEF. Every row in COEF containing the elements on that row in A, very similar
to the trivial storage method. The integer array JCOEF contains the column positions of
every entry in COEF.

5.2.4. BLOCK COMPRESSED ROW FORMAT

After discretization of the shallow water equations we have a system of three equations
and three unknowns per grid point if a collocated grid is used. In this case every element
of A is not a value but instead a diagonal 3x3 matrix. The three vectors are the same as in
normal CSR except that the A A array is now not one dimensional but stores the diagonal
of each submatrix as a vector.

If the submatrices are dense instead of diagonal, the array becomes three dimen-
sional and the entire submatrix is stored.

5.3. EXPLICIT METHODS
As mentioned in chapter 3, an explicit time integration method means that every timestep
a matrix vector multiply needs to be performed. As demonstrated in the example in
section 4.3.3 this operation is highly parallelizable but primarily memory-bound. This
means that when an explicit method is implemented on a GPU, memory optimizations
should be performed to assure data locality and optimize shared memory usage.

5.3.1. TENSOR CORES FOR SPARSE MATRIX VECTOR MULTIPLICATION

As described in section 4.5 the TU102 can utilize Tensor cores for fast matrix-matrix mul-
tiplication and accumulation. On first glance they seem ill suited for matrix vector mul-
tiplication as the matrix sizes need to be an integer multiple of 4 in both dimensions.

However, the shallow water equations consist of three coupled equations which have
to be solved in parallel. Since for an explicit method the equations are independent, the
system could be formulated in such a way that an N ×N ×3∗N ×1×3 operation must
be done every time step, with N the total number of grid points.

If we then add a dummy row filled with zeroes to both systems, we obtain an N ×N ×
4∗N ×1×4 system, which can be computed in parallel using Tensor cores as it involves
N parallel N ×4∗N ×4 multiplications, as long as N is a multiple of 4.
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Adding the dummy row reduces computational efficiency by 33%, but this is com-
pensated for by the fact that the TU102 GPU has an 8 fold increase in compute capability
when performing operations using the Tensor cores.

The question remains whether the Tensor cores will be able to exploit the sparsity of
the matrices.

5.4. DIRECT SOLUTION METHODS
When solving an Ax = b problem, with A a square matrix and x and b vectors, two classes
of solution methods exist: direct solution methods and iterative solution methods. A di-
rect solution method solves the system of equations in a few computationally expensive
steps. An iterative solution method uses an iterative process that is computationally light
which is repeated until the solution is accurate enough. It is also possible to combine the
two methods.

The most simple way of solving a linear system is by means of Gaussian Elimination,
also called sweeping. Since for a set of linear equations it is possible to perform linear
operations on the equations without changing the solution, the matrix can be reduced to
the identity matrix by this method which provides the solution. Performing these linear
operations takes in order of N 3 operations, if A is an N xN matrix. Most direct solution
methods also rely on Gaussian elimination, but aim to have a computational cost that is
smaller than calculating the full matrix inverse.

5.4.1. LU DECOMPOSITION
The idea behind LU decomposition is that if it is possible to write the matrix as

A = LU (5.2)

Where L is a lower triangular matrix and U an upper triangular matrix.
The system of equations Ax = b can then be solved in two steps by introducing an auxil-
iary vector w and solving the following two systems:

Lw = b (5.3)

U u = w (5.4)

(5.5)

Solving these two systems is computationally cheap. The difficulty lies in factorizing
A as the product of L and U .

It is first important to check in which case an LU-factorization exists and is unique.
The LU-factorization of A can be proven to exist if all principal submatrices are non-
singular. A principal submatrix of a matrix consists of the first k rows and columns, for
1 ≤ k ≤ N . A non-singular matrix is a matrix that has an inverse, which coincides with
having a non-zero determinant.
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The LU-factorization can be shown to be unique if either U or L has a main diagonal
that consists only of ones.

The simplest way to compute an LU factorization is to perform a sequence of row
operations that bring A to upper triangular form through Gaussian elimination. If we
represent the matrix A as [

l11

l21 L22

][
u11 u12

U22

]
=

[
a11 a12

a21 A22

]
(5.6)

Where a11 is the matrix element at index (1,1), a12 the remaining 1x(N-1) first matrix row
and a21 the remaining (N-1)x1 first column and A22 the N-1xN-1 trailing matrix after re-
moval of the first row and column.

Because l11 = 1 we know u11 = a11 and u12 = a12 and l21 = a21./a11. What remains is
the trailing matrix update L22U22 = A22 − l21u21.

Observe that this method factorizes a single row-column of the original matrix per
step. This method is not well suited for parallel implementation on a GPU as it is inher-
ently sequential: it is only possible to start factorizing the next row-column pair after the
trailing matrix update has been performed. This method is also called the right-looking
method since it moves through the columns from left to right and updates the trailing
matrix on the right side.

It can be shown that using this method the computational cost of solving the linear
system is O

( 2
3 N 3

)
PIVOTING AND FILL-IN

In the LU factorization algorithm described in the previous section, the column update
involves dividing the values on the column by the value on the diagonal of that column in
the original matrix A. If the value on the diagonal is very small then the updated column
values will become very large, leading to an ill-conditioned matrix which makes the so-
lution unreliable. If the value on the diagonal is 0 the algorithm breaks down. Therefore
it is important that the values on the diagonal of A are not too small and of comparable
size.

Fortunately which values lie on the diagonal is flexible since for a system of linear
equations the order is irrelevant and can be shuffled as desired. The process of swap-
ping rows to make sure the diagonal of the matrix contains desirable values is also called
pivoting.

Another reason to use row pivoting is to reduce an effect called fill-in. A big problem
that factorization algorithms have is that if A is a sparse matrix with a certain band width,
this does not guarantee that L and U have comparable bandwidth. In certain cases it is
possible for the matrix L and U to be almost full matrices in their nonempty sections,
which is inefficient both computationally and memory wise.

This is why most factorization algorithms also have a so called "preordering" phase,
where the order of equations is changed in such a way that predicted fill-in is minimal.
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This is usually achieved by reordering the matrix A in such a way that the densest rows
are in the lowest part of the matrix and the densest columns are in the rightmost part.

PARALLEL SPARSE LU FACTORIZATION ON A GPU BY KAI HE ET AL.

Kai He et al. [43] developed a parallel column-based right-looking LU factorization al-
gorithm designed for the GPU. In order to parallelize the factorization they perform a
symbolic analysis to predict non-zero LU factors after which data dependence between
columns can be identified. Every dependency introduces a new graph layer and columns
in the same layer are independent and thus can be updated in parallel. This process is
represented in figures 5.1 and 5.2.
For example, the first row has a non-zero right looking entry on column 8, which means
that column 8 must be factorized after column 1. Subsequently, the second row has a
non-zero entry on column 4, which means column 4 must be factorized after column 2.
If this process is repeated for every row we obtain the top graph in figure 5.2.

Since the column levels are factorized sequentially it is important to distribute the
work among levels as equally as possible, to ensure that a single level is the bottleneck
while on other levels the majority the GPU is idling. This technique is also called load
balancing. This is why in figure 5.2 the levels are redistributed in such a way that the first
level contains three columns and the third contains two, instead of four and one. The
maximum number of columns per level should be chosen in such a way that the GPU
occupancy is maximal but not exceeded.

Figure 5.1: Representation of expected fill-in of a simple matrix with 8 rows and columns, where the white
entries on the right are the predicted fill-in elements.
Source: [43]
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Figure 5.2: Levelization tree of the columns of the right matrix shown in figure 5.1.
The top figure shows naive column leveling, the bottom figure shows equalized column leveling.
Source: [43]

After the preprocessing algorithm then consists of two steps:
First all columns of the L matrix in the current level are computed in parallel.
Then the subcolumns of the trailing matrix which depend on the corresponding columns
in the L matrix need to be updated, which can also be done in parallel.
These two steps are repeated for every sequential level that was constructed during pre-
processing.

CHOLESKY DECOMPOSITION

If the matrix A is symmetric and positive definite (SPD), the LU-decomposition reduces
to its so-called Cholesky decomposition, which means it is possible to write
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A =CC T (5.7)

Where C is a lower triangular matrix and C T its transpose.

The fact that only a single lower triangular matrix needs to be computed theoreti-
cally cuts memory requirements and the necessary number of flops in half, which makes
Cholesky decomposition very attractive. Furthermore, because A is positive definite in
this case this guarantees non-zero diagonal elements which means no partial pivoting is
needed.

5.5. ITERATIVE SOLUTION METHODS
As mentioned before, the second class of linear system solvers is the iterative solution
methods. Instead of computing a solution directly instead an iterative process is used
whose result converges to the exact solution. Two main classes of iterative solution
methods exists, namely the basic iterative methods and the Krylov subspace methods,
which will be covered in their respective subsections.

When solving a system Ax = b using an iterative method, we call the k’th approxi-
mation of the solution xk . If the true solution is x, the solution error at step k is defined
as

ek = x −xk (5.8)

The problem however is that knowing the error is equivalent to knowing the true solu-
tion. Therefore instead often the residual vector r k is used as a measure of the error. The
residual vector follows from the fact that

Axk = b + r k (5.9)

and thus
r k = b − Axk (5.10)

5.5.1. BASIC ITERATIVE METHODS
A basic iterative method is a method that uses a splitting of the matrix A by defining a
non-singular matrix M such that A = M −N in order to obtain a recursion relation for
the solution approximation in the following way:

Ax = b

M x = N x +b

x = M−1N x +M−1b

x = M−1 (M − A) x +M−1b

x = x +M−1 (b − Ax)

(5.11)
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Now since Ax = b we have essentially written x = x in a fancy way.
However remember that if we do not take x but instead substitute the approximate so-
lution xk then b − Axk = r k . This suggests the expression can be used to define the
recurrence relation:

xk+1 = xk +M−1r k (5.12)

Which is the basis for all basic iterative methods. The question now becomes how to
define the matrix M . Since the matrix M is inverted it must be the case that it is much
easier to invert M than to invert A, otherwise the method provides no advantage.

JACOBI METHOD

The simplest iterative method is the method of Jacobi, named after Carl Gustav Jacob
Jacobi (1804-1851) who presumably was the first to propose the method. As mentioned
before, the matrix M should be easily invertible. The method of Jacobi consists of choos-
ing M to be the diagonal of the matrix A which we denote as D . In this case inverting M is
a matter of simply replacing every non-zero value on the diagonal by its reciprocal value.

Because the Jacobi method involves multiplications with a diagonal matrix it means
that all components of the vector xk are updated independently of each other. This
makes the method inherently parallel and thus well suited for GPU implementation.

GAUSS-SEIDEL METHOD

The Gauss-Seidel method, named after Carl Friedrich Gauss (1777-1855) and Philipp
Ludwig von Seidel (1821-1896), is another basic iterative method.
Where the Jacobi method chooses the diagonal of A as M matrix, the Gauss-Seidel method
instead takes the diagonal and the lower triangular part of A. If we call the strictly lower
triangular part of A E and the strictly upper part F and insert these expressions into 5.12
after some reshuffling the Gauss-Seidel recursion relation can be written as

xk+1 = D−1
(

f −E xk+1 −F xk
)

(5.13)

This may not look like a good recurrence relation because xk+1 exists on both sides of
the equals sign. However it is important to note that on the right-hand side xk+1 is
multiplied by a strictly upper triangular matrix. This means that to calculate the nth
component of xk+1, only the values xk+1

1 through xk+1
n−1 are necessary. In other words, the

Gauss-Seidel method uses newly calculated components of xk+1 as soon as they become
available.

This means that the Gauss-Seidel method converges faster than the Jacobi method,
but is inherently sequential making it ill-suited for parallel implementation on a GPU.

RED-BLACK ORDERING

As mentioned before, a linear system of equations may be reordered to aid computa-
tions. In the case of the Gauss-Seidel method, the structure of the method makes it in-
herently sequential which makes the method ill-suited for parallel computing. Reorder-
ing provides the solution to this problem.
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The Gauss-Seidel method is sequential because nodes require the computed values
from neighboring nodes in order to do their own computations. If nodes are marked
either red or black, with black nodes surrounded by only red nodes and vice versa, a
checkerboard configuration is obtained.

The advantage here lies in that red nodes are surrounded by only black nodes thus
only require information from black nodes to update their own values. This means that if
all red values are known, subsequently all black values can be computed independently
and thus in parallel. In the next step, the roles of red and black are reversed.

A red-black ordered matrix problem has the form

A =
[

DR C T

C DB

]
(5.14)

Where DR is a diagonal block matrix corresponding to the red nodes, DB a diagonal
matrix corresponding to the black nodes and C a matrix representing the connectivity
of the nodes. A simple example for a 4x4 tridiagonal system can be seen in figure 5.3

Figure 5.3: Example of reordering of a tridiagonal 4x4 matrix in Red-Black format
Source: [44]

Note that if the connectivity of the system of equations is such that nodes are con-
nected not only in the x or y direction but also in the x y directions, as for example with a
9-point stencil, the Red-Black ordering does no longer work and more colors are needed.

5.5.2. CONVERGENCE CRITERIA

In the introduction section to basic iterative methods the error vector at step k ek was
defined as x −xk , the difference between the approximation of the solution and the true
solution. The error vector is not very useful during calculations since it cannot be known.
However if we use relation 5.12 we can define:

ek+1 = x −xk+1

= x −xk −M−1r k

= ek −M−1 Aek

= (
I −M−1 A

)
ek

= (
I −M−1 A

)k+1
e0

(5.15)
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Intuitively this means that if the matrix
(
I −M−1 A

) = B makes the vector it is right-
multiplied with smaller then the error will increase. This is a vague statement, but there
exist a more precise mathematical definition of the convergence criteria:

ρ
(
I −M−1 A

)< 1 ⇐⇒ lim
k→∞

ek = 0 ⇐⇒ lim
k→∞

xk = x (5.16)

Where the function ρ is the spectral radius of the matrix which is equal to its largest
eigenvalue in absolute value.
This spectral radius also determines the convergence speed. If it is close to 1 the conver-
gence will be very slow, while if it is small convergence will be fast.

5.5.3. DAMPING METHODS
From the definition of the Jacobi iteration matrix M = D it follows that the error propaga-
tion matrix of the Jacobi method B = I −D−1 A = E +F . This means that if the diagonal of
A is small compared to the upper and lower triangular parts E and F the Jacobi method
will not converge. This problem can be solved by introducing a damping parameter ω:

xk+1 = (1−ω)uk +ωxk+1
J AC (5.17)

Where xk+1
J AC is the original value of xk+1 calculated with the Jacobi method.

It follows that the new error propagation matrix B Jac = I −ωD−1 A. Which means the
parameter ω may be used to adjust the convergence rate depending on A.

This same damping strategy can also be used to modify the Gauss-Seidel method,
after which it is called the Successive Overrelaxation method, or SOR. Again the new
recurrence relation is

xk+1 = (1−ω)xk +ωxk+1
GS (5.18)

which written in matrix-vector form is:

(D +ωE) xk+1 = (1−ω)Dxk −ωFuk +ωb (5.19)

It follows that MSOR(ω) = D
ω +E .

Another variant is the symmetric SOR method, which consist of a forward and back-
ward step with M1 = D

ω +E and M2 = D
ω +F . The resulting product iteration matrix is

MSSOR(ω) = 1

ω(2−ω)
(D +ωE)D−1 (D +ωF ) (5.20)

5.6. CONJUGATE GRADIENT METHOD

5.6.1. THE KRYLOV SUBSPACE
A second very important class of methods for solving linear systems of equations are
the Krylov subspace methods. One of the problems with the basic iterative methods de-
scribed in section 5.5 is that while they are more suited for large problems than the direct
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solution methods of 5.4, their convergence speed is linear. As will be shown later, an ad-
vantage of Krylov subspace methods is that they will exhibit superlinear convergence
behaviour under the right circumstances. A disadvantage is that they are not suitable for
all problems, and adapting the problem to suit the method may be nontrivial.

The Krylov subspace is named after Alexei Krylov (1863-1945) who was the first to
introduce the concept in 1931. The Krylov subspace appears organically when one ex-
amines the recursion relation of basic iterative methods 5.12:

xk+1 = xk +M−1r k = xk +M−1
(
b − Axk

)
xk+2 = xk+1 +M−1

(
b − Axk+1

)
xk+2 = xk +M−1r k +M−1

(
b − A

(
xk +M−1r k

))
xk+2 = xk +M−1r k +M−1

(
b − Axk

)
+M−1 AM−1r k

xk+2 = xk +2M−1r k +M−1 AM−1r k

xk+3 = xk +C1M−1r k +C2M−1 AM−1r k +C3
(
M−1 A

)2
M−1r k (5.21)

Since this also holds for k = 0 it follows that xk is some linear combination of powers of
M−1 A multiplied with M−1r 0.
In other words:

xk ∈ x0 + span
{

M−1r 0, M−1 AM−1r 0, ... ,
(
M−1 A

)k−1
M−1r 0

}
(5.22)

A Krylov subspace of order r generated by an N ×N matrix A and an N × 1 vector b is
defined as the span of the images of b under the first r powers of A:

K k (A,b) = span
{

b, Ab, ... , Ak−1b
}

(5.23)

It follows that the BIM solution at step k is equal to the starting guess x0 plus some ele-
ment of the Krylov subspace K k

(
M−1 A, M−1r 0

)
.

The fact that the iterative method converges to the true solution x means that this
true solution must also lie in this subspace. This means the structure of this subspace
may be exploited in order to find the solution in an efficient fashion.

The conjugate gradient method is a method that takes advantage of the Krylov sub-
space nature of iterative solutions. It was discovered independently many times in the
early 20th century, but the first paper on it was published by Stiefel and Hestenes in 1951
[45]. It is a very popular method because it is well suited for sparse linear systems and
convergence is superlinear under the right circumstances.

5.6.2. THE METHOD OF GRADIENT DESCENT
The conjugate gradient method is a modification of the method of gradient descent [46].
The method of gradient descent is a very intuitive method. If one imagines himself at
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night and walking around a hilly landscape with the objective to find the lowest point in
the area, traversing in the direction of steepest descent is guaranteed to lead to a local
minimum. An illustration of this can be observed in figure 5.4.

Figure 5.4: Illustration of successive steps of the Gradient Descent method
Source: [47]

The method of gradient descent is based on the same principle. In mathematical
terms in the case of the linear problem Ax = b this means the objective of the method is
to find a minimum of the function

F (x) = ‖Ax−b‖2 (5.24)

Where the lower case 2 means the L2 norm or Euclidian norm.

Now the direction of steepest descent in a point x is minus the gradient of the func-
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tion evaluated at that point:

−∇F (x) =−


∂F (x)
∂x1
∂F (x)
∂x2

...
∂F (x)
∂xn

 (5.25)

Because F (x) is a linear function the gradient can be conveniently written as a matrix
vector product:

∇F (x) = 2AT (Ax−b) (5.26)

If we substitute x = xk we find
∇F (xk ) = 2AT r k (5.27)

This means the direction of steepest descent in a point xk lies in the direction of the
residual in that point left-multiplied by the transpose of the problem matrix A:

xk+1 = xk +αAT r k (5.28)

The question is now what the value of α should be.
For readability, assume x0 = 0 which implies x1 =αAT r 0.
Then∥∥x −x1∥∥

2 =
(
x −αAT r 0)T (

x −αAT r 0)= xT x −α(
r 0)T

Ax −αxT AT r 0 +α2 (
AT r 0)T

AT r 0

(5.29)

Using that Ax = b produces:∥∥x −x1∥∥
2 = xT x−α(

r 0)T
b−αbT r 0+α2 (

AT r 0)T
AT r 0 = xT x−2α

(
r 0)T

b+α2 (
AT r 0)T

AT r 0

(5.30)

Setting the derivative with respect to α to zero produces

α=
(
r 0

)T
b(

AT r 0
)T AT r 0

(5.31)

One of the problems with the method of Gradient descent is that it will only converge
to a global minimum if ∇F is Lipschitz continuous and F is a convex function.

5.6.3. CONJUGATE DIRECTIONS
One of the problems of the method of Gradient Descent is that it can occur that it often
takes steps in the same direction as earlier steps. One way of avoiding this is to make
sure that every new step is in a direction that is orthogonal to every previous step direc-
tion. Since you are no longer moving in the direction of the gradient this is no longer the
method of gradient descent. However it does eventually lead to the conjugate gradient
method.
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Now one way to implement this orthogonal search direction idea is to use the con-
dition that the new search direction must be orthogonal to the current error direction.
Otherwise it could occur that the method would have to move more than once in a par-
ticular direction. This means xk+1 = xk +αk dk where dk is the k’th search direction. The
orthogonality criterion gives

d T
k ek+1 = 0

d T
k (ek +αk dk )

αk =− d T
k ek

d T
k dk

(5.32)

(5.33)

This is a useless expression as the error vector ek is unknown. This can be solved by
instead using the matrix A-norm for the orthogonality criterion, which can be shown
that this inner product and corresponding norms are properly defined when the matrix
A is symmetric and positive definite.
It is defined as:

〈y,y〉A = yT Ay (5.34)∥∥y
∥∥

A =√〈y,y〉A (5.35)

Where y is some vector of dimension N .

Since the value of α in equation 5.32 is the quotient of two inner products we may
use the A inner product instead to ensure A-orthogonality. This produces:

αk =− d T
k Aek

d T
k Adk

= d T
k r k

d T
k Adk

(5.36)

Now an α has been found the method is not yet complete. It remains to construct N
orthogonal search directions.
A classic method of orthogonalizing a set of vector with respect to an inner product is by
the Gram-Schmidt orthogonalisation process.

5.6.4. COMBINING THE METHODS
If the set of vectors to be used as search directions is chosen to be the residuals we call
the resulting method the conjugate gradient method.

It uses the search directions of the method of Gradient descent and then proceeds to
make them more efficient by orthogonalizing them with respect to the A-norm.

One of the big advantages of the Conjugate gradient method is that since the search
directions are orthogonal, and for every search direction the method reduces the com-
ponent of the residual in that direction to zero, it follows that the method arrives at the
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solution after at most N iterations.
In practice, floating point errors cause the search directions not to be completely orthog-
onal and causes an error in the residual as well, which may slow down the method.

5.6.5. CONVERGENCE BEHAVIOUR OF CG
It can be proven [48] that the following relation holds:

∥∥∥x −xk
∥∥∥

A
≤ 2

(p
C (A)−1p
C (A)+1

)k ∥∥x −x0∥∥
A (5.37)

Where C (A) is the condition number of the matrix A. The condition number associated
with a linear equation Ax = b is defined as the maximum ratio of the relative error in the
solution x to the relative error in b. This can be proven to be equal to ‖A‖∥∥A−1

∥∥.

If A is a normal matrix, e.g. A commutes with its conjugate transpose, the condition
number equals the ratio of the largest eigenvalue of A and the smallest eigenvalue of A.
This criterion is automatically satisfied when A is symmetric and positive definite.
This means that the conditioning of the matirx A is a very important factor in its suit-
ability for the CG algorithm.
Preconditioning modifies the eigenvalues of A, so a good preconditioner will provide a
large speedup for the CG method.

The above bound is a linear bound with a constant rate of convergence. When us-
ing the CG method in practice, one may observe superlinear convergence behaviour in-
stead.

RITZ VALUES

According to [48] the Ritz values θk
i of the matrix A with respect to the Krylov subspace

Kk are defined as the eigenvalues of the mapping

Ak =πk A|Kk (5.38)

where πk is the orthogonal projection upon Kk and k is the iteration number and i is the
index of the value.

Correspondingly, the Ritz vectors yk
i are the normalized eigenvectors of Ai corre-

sponding to θk
i with the property that

Ayk
i −θk

i yk
i ⊥ Ki (5.39)

The normalized residual matrix Rk is then defined as

Rk =
[

ri

‖r1‖2
... rk−1

‖rk−1‖2

]
(5.40)

The Ritz matrix is then defined as

Tk = RT
k ARk (5.41)
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The Ritz matrix can be seen as the projection of A onto the Krylov subspace K k
(

A;r 0
)

The Ritz values approximate the extreme eigenvalues of A, and correspondingly the
Ritz vectors approximate the eigenvectors of A.
Now suppose a Ritz value θk and corresponding eigenvector are exactly an eigen value
and vector yk of A. Then, since we can write u as a linear combination of eigenvectors
and its projection upon those vectors we obtain:

u =
N∑

i=1

(
uT yi

)
y j (5.42)

Because y j is contained in the Krylov subspace it must follow that rk is perpendicular to
it. Thus (

rk
)T

yk = (u−uk )T AT yk = (u−uk )T θk yk = θk eT
k yk = 0 (5.43)

The conclusion is that the component of the error vector in the direction of the eigen-
vector yk is zero.
Thus it follows that although the condition number of A remains unchanged, the con-
vergence of the conjugate gradient method is now limited not by the condition number
of A but by the effective condition number. Where the effective condition number is the
condition number with θk excluded.

5.6.6. PARALLEL CONJUGATE GRADIENT
The conjugate gradient method consists of calculating inner products and matrix-vector
multiplications, which are perfectly parallelizable. However as mentioned in chapter 4
subsection 4.3.3 these operations are memory-bound.

The process finding a preconditioner is well suited for parallel implementation and
preconditioning the method will also provide speedup. The process of finding an effec-
tive preconditioner using a parallel method will be explored in section 5.8.

5.6.7. KRYLOV SUBSPACE METHODS FOR GENERAL MATRICES
Preconditioned Conjugate Gradient is one of the most efficient methods for solving lin-
ear problems where A is symmetric and positive-definite. However many problems will
not fit this requirement. Thus various Krylov methods have been developed to accomo-
date for this.

Many of these methods involve expanding the matrix A in order to make it symmet-
ric. One idea was to precondition the system with the matrix AT to obtain

AT Ax = AT b (5.44)

However a problem here is that AT is often a very poor preconditioner with respect to
the condition number, significantly slowing down this method.

Another option is the so called Bi-CG method. The idea is instead of defining the
residual vector of CG to be orthogonal to the Krylov subspace constructed it creates a
second subspace to account for the non-symmetry of A.
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Where the first subspace was K k
(
M−1 A, M−1r 0

)
this second subspace is of the form

K k
(
M−1 AT , M−1r 0

)
and thus is constructed out of the powers of the transpose of the

problem matrix.

The Bi-CG method thus also introduces a second residual that relates to this second
subspace, where it tries to make the second residuals A-orthogonal instead of standard
orthogonal. It also uses the bi-Lanczos method to orthogonalize the residuals instead of
the classical CG orthogonalization method.

One of the problems with Bi-CG is that it is numerically unstable and thus not robust.
A modification was developed around 1992 [49] which was called Bi-CGSTAB where
STAB stands for stabilized. The main idea is that in the Bi-CG method the residuals do
not need to be explicit, and instead defines a modified residual that is multiplied with a
polynomial:

r̃i =Qi (A)ri = (I −ω1 A) ... (I −ωi A) (A)ri (5.45)

Which allows for smoother and more stable convergence.
Bi-CG uses short recurrences but is only semi-optimal. It is possible for the method to
experience a near-breakdown which may still produce instabilities.

Another method for general matrices is the GMRES algorithm, which stands for Gen-
eralized Minimal RESidual. It uses Arnoldi’s method for computing an orthonormal ba-
sis of the Krylov subspace K K

(
A;r 0

)
[50]. It is an optimal method in terms of conver-

gence, but has as a drawback that k vectors need to be stored in memory for the k-th
iteration.
A second drawback is that the cost Gram-Schmidt orthogonalization process that is part
of Arnoldi’s method scales quadratically in the number of iterations. One option to rem-
edy this is to restart GMRES after a chosen number of iterations, but this destroys the
superlinear convergence behavior and optimality problem.

Thus when preconditioning GMRES often agressive preconditioners are chosen that
aim to greatly limit the number of GMRES iterations needed for convergence but are
costly to compute.

5.7. MULTIGRID
Multigrid methods were developed in the late 20th century and has since then become
quite popular due to their computational efficiency. Properly implemented Multigrid
exhipbits a convergence rate that is independent from the number of unknowns in the
discretized system, and thus is called an optimal method [51].

The name Multigrid comes from the fact that the method solves an Ax = b problem
using multiple grids with different mesh sizes.

Usually the complexity of a problem is expressed in powers of N . For example, a full
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inversion of the matrix A using Gaussian elimination costs O(N 3) floating point oper-
ations, and using an LU decomposition costs 2

3 O(N 3) operations, where A is an N ×N
matrix.

Thus the time it takes to solve linear problems usually scales somewhere between
quadratically and cubic in the number of unknowns. It follows that an easy way of re-
ducing computation time is to sacrifice some accuracy by coarsening the grid. Halving
the number of unknowns will reduce the problem matrix by a factor 4. However, this
often leads to a loss of accuracy that is unacceptable and thus is not feasible.

The multigrid method instead uses this cheaper coarse solution to accelerate the
process of finding the solution on the fine grid.
This is done by successively coarsening the grid and then using a basic iterative method
to obtain a coarse residual. The next step is solving the problem once grid coarseness
is so low that computational cost is negligible, and finally resharpening by interpolation
and then correcting the solution with the calculated coarse solution and residuals.
An illustration of the method can be observed in figure 5.5.

Figure 5.5: Illustration of an iteration of a V-cycle multigrid method
Source: [52]
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5.7.1. ALGEBRAIC VS GEOMETRIC MULTIGRID

When discretizing a physical problem there is an obvious choice as how to construct the
coarse matrix: it follows naturally from discretizing the problem with half the number of
variables as in the original problem. However when all you have is a matrix A without
any knowledge of the underlying problem constructing a coarser grid becomes nontriv-
ial.

Choosing a coarsening method that is optimal for the multigrid method based on
nothing but the problem matrix A is known as Algebraic multigrid. Because the prob-
lems considered in this thesis are all of the geometric type, it has been chosen to not go
into the theory behind Algebraic multigrid any further.

5.7.2. ERROR FREQUENCY

One of the key elements in the efficiency of the multigrid method is the fact that it com-
bines a coarse solution with a basic iterative method which complement each other well.
Since the problem matrix A can be decomposed into a sum of weighted eigenvectors,
this means that any function on the grid is some weighted sum of eigenmodes corre-
sponding to these eigenvectors.
These eigenmodes will be either high frequency or low frequency, where a low frequency
mode corresponds to a small eigenvalue of A and a high frequency mode corresponds to
a large eigenvalue of A.

This means that the error vector x − xk can also be decomposed into these eigen-
modes. In other words: the error is a sum of low and high frequency errors.

Solving the system of equations on a coarsened grid will only correct the low fre-
quency errors. This is because when a smooth function is discretized coarsely, the inter-
polation between nodes will approximate the true function well since it varies slowly. An
illustration of this principle can be observed in figure 5.6.

Figure 5.6: Illustration of coarsening error for a smooth function (left) and an oscillatory function (right) when
moving from a fine grid with grid distance h to a coarse grid with grid distance 2h.
Source: [51]
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Fortunately, a basic iterative method is very effective at reducing high frequency er-
rors but is slow to correct low frequency errors. This explains the slow convergence rate
of unrelaxed Jacobi or Gauss-Seidel.

To illustrate this, if the Jacobi method M = D is substituted into expression 5.15 the
error propagation matrix consists of the rescaled strictly lower and upper triangular parts
of the matrix A. This means that the error in a certain point i after multiplication with
the error propagation matrix will be some linear combination of neighboring values de-
pending on the structure of A.

It follows intuitively that after this repeated error averaging the high frequency errors
will reduce quickly, while low frequency errors will be on average the same and thus will
damp out slower.

5.7.3. CONVERGENCE BEHAVIOUR
As mentioned before, the multigrid method is an optimal method for problems that are
suitable and thus converges in O(1) iterations as it reduces the error by a fixed factor
independent of the problem size N . This means that the total number of floating point
operations necessary to solve a linear problem depend only on the cost of the iterations.
A basic iterative method residual computation and the grid coarsening operations will
be of order O(N ) when A is sparse enough, which would make the multigrid method an
order N method [51].

5.8. PARALLEL PRECONDITIONERS
As mentioned before, many iterative solvers suffer from a lack of robustness. The con-
vergence speed of the methods is highly dependent on the characteristics of the prob-
lem matrix which makes them ill suited for wide applications. Fortunately there exists a
method called preconditioning that aims to compensate for this.

Preconditioning a linear problem Ax = b means left or right multiplying both sides
of the equation with a preconditioner M−1, which produces

M−1 Ax = M−1b (5.46)

or

AM−1u = M−1b

x = M−1u

(5.47)

The solution of these new systems is exactly the same as the original problem, except
the problem matrix is transformed. The characteristics of the preconditioner depend
on the solution method that it tries to accelerate. For example the convergence rate of
the Conjugate Gradient method described in section 5.6 is bounded by the ratio of the
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largest and smallest eigenvalues of A. Thus when preconditioning the system for accel-
eration of CG the aim of M−1 is to bring the ratio of the smallest and largest eigenvalues
of the preconditioned system closer to 1.

When choosing a preconditioner it is important to keep in mind that its inverse must
also be implicitly formulated. Two trivial choices of preconditioner would be the identity
matrix I or the problem matrix inverse A−1. In the first case the preconditioned system
is exactly the same as the original problem and thus the preconditioning is useless.
In the second case inverting the preconditioner is exactly as hard as the original problem
so nothing is gained either.

A good preconditioner will have the property that inverting it and multiplying the
system with it saves more time for the iterative method than the cost of computing it.

Note that when preconditioning a Krylov subspace method there is the extra condi-
tion that the preconditioned system must remain symmetric and positive definite. In
this case the simplest way to make sure of this is to require the preconditioner to be
Cholesky decomposable: M = PP T .

In which case the system becomes:

P−1 AP−T u = P−1b

x = P−T u

(5.48)

5.8.1. INCOMPLETE DECOMPOSITION
As mentioned in section 5.4, LU or Cholesky decomposition algorithms are rarely used
due to poor scaling with problem size and fill in. The incomplete factorization precondi-
tioner aims to remedy these problems. It involves the system matrix as A = LU−R, where
L and U are lower- and upper triangular matrices, and R is some factorization residual
due to the factorization being incomplete.

The idea is here to only factorize the parts of A that do not produce any fill-in, and
leave the rest as a residual for the actual solution method to solve. This is also called
ILU(0) incomplete factorization.

The accuracy of the incomplete ILU(0) factorization in may be insufficient to accel-
erate the actual solution method, as discarding fill in terms can prove to be quite signif-
icant. In this case, it can be chosen to allow some but not all fill in during the factoriza-
tion.

5.8.2. BASIC ITERATIVE METHODS AS PRECONDITIONERS
Basic iterative methods themselves exhibit slow convergence behaviour as they are gen-
erally only effective at reducing high frequency errors. However they are well suited for
use as a preconditioner. Because for a basic iterative method the matrix A is split into
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A = M−N , from the third step in equation 5.11 we have x = M−1 (M − A) x+M−1b Which
we can rewrite to (

I −M−1 (M − A)
)

x = M−1 Ax = M−1b (5.49)

Thus it follows that the splitting introduced by a basic iterative method also automati-
cally defines a preconditioned system associated with the splitting. Note that if the pre-
conditioner is intended to be used with the preconditioned conjugate gradient method,
M must be symmetric and positive-definite.

The simplest preconditioner is the Jacobi preconditioner, where M−1 = D−1 the in-
verse of the diagonal of A. This preconditioner is effective at reducing the condition
number of the preconditioned system. It is easy and cheap to calculate and it has the
efficient property that the diagonal of the preconditioned matrix consists of only ones,
which saves N multiplications per matrix vector product.

The Relaxed Gauss-Seidel preconditioner is similar with M = D −ωE . An important
thing to mention is that it is also possible to use the Symmetric Gauss-Seidel method,
described in section 5.5.3 which is already of the form M = PP T .

5.8.3. MULTIGRID AS A PRECONDITIONER
The multigrid algorithm is theoretically optimal when implemented properly. However
its performance is highly problem specific and often requires fine-tuning of the smooth-
ing to coarsening ratio. Using Multigrid as a preconditioner instead to obtain a rough
solution which is then subsequently improved by a solver may yield convergence rates
similar to a full multigrid method while being more robust [53] [54].

In [51] an explicit form is derived for the two-grid preconditioner which is called B−1
T G

to avoid confusion:

B−1
TG = [

M
(
M +M T − A)−1)M T ]−1 + (

I −M−T A
)

I A−1
c I T (

I − AM−1) (5.50)

Where M is the chosen Basic Iterative Method splitting from A = M − N , Ac the once
coarsened matrix A with dimensions N

2 × N
2 and I is the intergrid transfer operator with

the property that Ac = I AI T

The full Multigrid preconditioner can then be defined recursively as

B−1
k = [

M
(
M +M T − A)−1)M T ]−1 + (

I −M−T A
)

I k
k+1B−1

k+1

(
I k

k+1

)T (
I − AM−1) (5.51)

Where at the coarsest level k = 1 we take Bl = Al , the matrix A coarsened l times.

According to [55] the multigrid method is very well suited as a preconditioner for the
conjugate gradient method as it preserves the symmetry and positive definitiveness of
the system. Using multigrid as a preconditioner for CG retains the O(N ) convergence
rate but is more robust than pure multigrid, making it an attractive preconditioning
choice.
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5.8.4. SPARSE APPROXIMATE INVERSE PRECONDITIONERS

The idea behind the sparse approximate inverse preconditioner is its suitability for par-
allel computing. It involves finding a sparse inverse of the problem matrix A, which is
equivalent to finding

min
M∈P

‖I −M A‖ (5.52)

Where P is defined as the subset of N ×N matrices that fit some chosen sparsity pattern.

It can be shown [56] that the Frobenius norm is optimal, which is defined as

‖A‖2
F =

N ,N∑
i , j=1

a2
i , j = tr ace

(
AT A

)
(5.53)

It follows that

min
M∈P

‖I −M A‖F =
N∑

j=1
min

m j ∈P j

∥∥e j − Am j
∥∥2

2 (5.54)

Where m j is the j-th column of M and P j is the sparsity pattern of column j

This means that finding a sparse approximate inverse equations to solving N least
squares problems in parallel, which are cheap as long as P is sparse.

In the paper [57] it is stated that if A is a discrete approximation of a differential op-
erator, it is very likely that the spectral radius of the matrix G = I −A is less than one, and
it then follows that

(I −G)−1 = I +G +G2 +G3 + ... (5.55)

It follows that the approximate inverse is a truncated form of this power series.

The inverse of a non-diagonal matrix is generally dense, and thus a sparse approxi-
mate inverse can never be a perfect matrix inverse. Despite this, a sparse approximate
inverse is a good preconditioner if the significant elements of A−1 is well approximated
by the chosen sparsity pattern P , but in practice it is hard to predict this which makes an
optimal choice of P a matter of trial and error.

5.8.5. POLYNOMIAL PRECONDITIONERS

The idea of a polynomial precondtioner is to accelerate a Krylov subspace method by
first finding a polynomial that encloses the eigenvalue spectrum of A, and then using
the Chebychev or Richardson’s iterative method [58] to construct the preconditioner. In
practice this is done by starting with the normal Krylov subspace method until the Ritz
values can be computed
Then the Ritz values from the first stage are used to compute parameters for the precon-
ditioning polynomial, and finally solve the preconditioned system using the same Krylov
subspace method as in the first stage.
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[57] states a polynomial preconditioner is of the form

M−1
m =

m∑
j=0

y j ,mG j (5.56)

It then follows that the approximate inverse is a preconditioner with all coefficients set
to 1.

From the definition of the polynomial preconditioner it follows that

M−1
m A =

m∑
j=0

y j ,mG j A = δ0,m A+δ1,m A2 + ...+δm,m Am+1 = pm(A)A (5.57)

Where pm(A) is some polynomial in A.

So the preconditioned matrix M−1
m A is some polynomial in A and its spectrum is

given by λi pm(λi ) where λi is an eigenvalue of A.

It is then possible to define the polynomial qm+1(y) = y pm(y) and this polynomial
vanishes at y = 0 and has the property that qm+1(y) for λmi n ≤ y ≤λmax is a continuous
approximation of the spectrum of M−1

m A.

The objective then becomes to find

min
q∈Qm+1

maxλmi n≤y≤λmax q(y)

mi nλmi n≤y≤λmax q(y)
(5.58)

Where Qm+1 is the set of polynomials of degree m +1 or less which are positive on the
interval [λmi n ,λmax ] and vanish at zero.

It can be proven [57] that the Chebychev iterative method minimizes this function
and also that least-squares Legendre polynomial weights are a viable alternative to Cheby-
chev polynomial weights.

5.8.6. BLOCK JACOBI PRECONDITIONERS

The Block-Jacobi preconditioner can be interpreted as a domain decomposition precon-
ditioner.
The concept of domain decomposition usually involves defining block matrix that splits
the domain of computation into (almost) independent blocks. This idea arises from the
fact that sparse matrices can often be written in block form. A block matrix is a matrix
whose elements themselves are matrices.
The advantage here lies in the fact that the block splitting can make it easy to identify
matrix parts that are independent and thus can be solved independently.

For example a 5-point difference scheme for a two dimensional system will result
in an N × N matrix A that has five diagonals, a tridiagonal inner part plus two outer
diagonals. This same system matrix can be written in tridiagonal block matrix form:
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D1 E2

F2 D2 E3

. . .
. . .

. . .
Fm−1 Dm−1 Em−1

Fm Dm

 (5.59)

Where the D matrices are tridiagonal k×k matrices and E and F diagonal k×k matrices,
and N is mk

Here, every diagonal block represents a part of the domain and the off-diagonal en-
tries represent dependencies between domains.

The simplest domain decomposition preconditioner is the block-Jacobi precondi-
tioner, which is defined as

M =

D1

. . .
Dm

 (5.60)

In this preconditioned matrix the off-diagonal terms are discarded which makes the in-
dividual D matrices independent and thus invertible in parallel.

One of the problems with block-Jacobi is that it exhibits poor scaling behaviour, the
number of iterations increase with the number of subdomains [59]. One strategy to solve
this is to use a certain overlap between subdomains to improve propagation of informa-
tion. Care should be taken for the variables in the overlapping domains as they will re-
ceive corrections from both domains they belong to.

5.8.7. MULTICOLORING PRECONDITIONERS
As explained in section 5.5.1 for the Gauss-Seidel algorithm a multicoloring turns the
sequential Gauss-Seidel method into a highly parallel scheme. The Red-Black ordering
plus incomplete LU factorization of the problem matrix is also a form of preconditioning.

A more advanced colouring scheme is for example the RRB-method, that can serve
as a preconditioner for the CG method [60]. RRB stands for repeated red-black ordering.
A normal Red-Black ordered matrix has two levels that are independent and thus can
be LU-factorized in parallel. The repeated red black ordering algorithm extends this by
defining multiple levels depending on domain size and the preconditioner can then be
constructed level-wise in parallel. On these levels an incomplete factorization is then
performed.
An illustration of RRB numbering on an 8×8 grid can be observed in figure 5.7
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Figure 5.7: Illustration of the seven RRB numbering levels on an 8×8 grid.
Source: [60]
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As can be observed, every successive RRB level becomes smaller, and thus the gain
from adding this small extra level of parallelism also becomes smaller. At some point it
might be beneficial to stop the RRB numbering at some chosen level, and proceed by
computing a full Cholesky decomposition of the remaining nodes. The stopping level
should be chosen such that using the Cholesky decomposition on the remainder is not
much larger than incompletely factorizing it with the RRB method.

It should be mentioned that the level-wise LU decomposition algorithm described in
section 5.4.1 is also a form of multicoloring where every parallel level corresponds to a
color.

5.9. SOLVER SOFTWARE PACKAGES
Programming on a GPU is not as straightforward as classical CPU programming. As
mentioned in chapter 4 it can be difficult to properly take advantage of the parallel ar-
chitecture of a GPU without running into memory limitations. In many cases carefully
optimizing a GPU method can yield as much of a performance improvement as the ini-
tial switch from CPU to GPU. For this reason beginners to GPU programming are often
warned to be prepared to chase after the state of the art performance and fail miserably.

Fortunately in order to make it easier for programmers with limited GPU program-
ming experience to still be able to accelerate methods using a GPU many solver software
packages exist that will provide acceptable results without the often frustrating optimiza-
tion process.

5.9.1. PARALUTION
Paralution is a C++ library for sparse iterative methods that focues on multi-core CPU
and GPU technology. It has a dual license model with either an open-source GPLv3 li-
cense and a commersial one. It has support for both OpenMP, OpenCL and CUDA, with
plug-ins for FORTRAN, OpenFoam, MATLAB others [61]

One of the key selling points of the paralution package is that it provides seamless
portable integration which will run on the hardware it detects. Thus if a Paralution ac-
celeration method intended for a GPU is written and then is used on a system without a
GPU available the code will simply use the CPU instead.

The Paralution package contains the following solvers:

• Basic iterative methods: Jacobi, Gauss-Seidel and relaxed variants

• Chebyshev iteration

• Mixed precision defect correction

• Krylov subspace method: CG, CR, BiCGStab, Gmres

• Deflated preconditioned CG
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• Both Geometric and Algebraic Multigrid

• Iterative eigenvalue solvers

Every solver method can also be used as a preconditioner, but additionally it sup-
ports a wide array of incomplete factorization preconditioners, approximate inverse pre-
conditioners and colouring schemes. The preconditioner and solver design is such that
you can mix and match preconditioners and methods as desired since everything is com-
patible and based on a single source code.

5.9.2. CUSOLVER & CUSPARSE
CuSOLVER and cuSPARSE are libraries developed and published by Nvidia and are in-
cluded in the CUDA toolkit package in C and C++ language. CuSPARSE is a library that
consists of mostly basic linear algebra subroutines that are optimized for sparse matri-
ces, and is a useful library to consider when building a parallel program in CUDA. It is
mentioned because it also contains a sparse triangular solver, tridiagonal solver and in-
complete LU and Cholesky factorization preconditioners.

CuSOLVER is high level packages based on cuBLAS and cuSPARSE. The intent of cu-
SOLVER is to provide LAPACK-like features. This includes LU, QR and Cholesky decom-
position. Unfortunately cuSOLVER is limited to direct solution methods [62].

5.9.3. AMGX
AmgX is an open source software package that offers solvers accessible through a simple
C API that completely abstracts the GPU implementation. It contains a number of alge-
braic multigrid solvers, PCG, GMRES, BiCGStab and flexible variants. As preconditioners
Block-Jacobi, Gauss-Seidel, incomplete LU, Polynomial and dense LU are available [63].

In addition it supports MPI and OpenMP which makes it very suitable for multi
GPU systems, and as with Paralution the flexible implementation allows nexted solvers,
smoothers and preconditioners.

5.9.4. MAGMA
Another library that is freely available is MAGMA, which stands for Matrix Algebra on
GPU and Multicore Architectures. It was developed by the team that also created LA-
PACK and it aims to provide a package that dynamically use the resources available in
heterogeneous systems. It achieves this by using a hybridization methodology where al-
gorithms are split into tasks of varying granularity and their execution is scheduled over
the available components, where non-parallelizable tasks will often be assigned to the
CPU while larger parallel tasks will be assigned to the GPU [64]

All MAGMA features are available for CUDA while most features are available in OpenCL
or Intel Xeon Phi. The package includes

• LU, QR Cholesky factorization
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• Krylov subspace methods: BiCG, BiCGStab, PCG, GMres

• Iterative refinement

• Transpose free quasi minimal residual algorithm

• ILU, IC, Jacobi ParILU, Block Jacobi and ISAI preconditioners



6
CONCLUSIONS

6.1. LITERATURE REVIEW CONCLUSIONS
WHAT ARE THE SHALLOW-WATER EQUATIONS AND WHICH FORM WILL BE SOLVED?
In the course of the project the linearised form chosen by Stelling & Duinmeijer [20] will
be used as a governing system of equations, see also 1.9 and 3.19.

WHAT DISCRETIZATION METHOD EXIST AND WHICH IS MOST SUITABLE?
The main three methods to discretize a partial differential equation are Finite Volumes,
Finite Differences and Finite Elements, all of which are described in chapter 3. As the
first step in the project is to implement the Stelling & Duinmeijer scheme which is dis-
cretized by finite differences, this is the method of choice.

As a starting point the finite difference scheme will be implemented on a regular
structured rectangular staggered Arakawa-C grid described in chapter 2.

WHICH TIME INTEGRATION METHODS EXIST AND ARE SUITABLE?
The first step in the project is to implement the Stelling & Duinmeijer scheme which uses
the θ method with θ = 0.5. As this results in an implicit system this can not be used as a
starting point for an explicit solving method.
The explicit method will integrate of the same system of equations with θ set to 0 with
the semi-implicit Euler method described in chapter 3.

WHAT GPU ARCHITECTURE ASPECTS WILL NEED TO BE TAKEN INTO CONSIDERATION?
In chapter 4 GPU architecture is described.
After review of the options with regards to device vendor and programming language the
conclusion is that GPU calculations will be performed on an Nvidia TU-102 GPU, specif-
ically a Nvidia 2080 Ti GPU. The program will be written in CUDA.

69
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With regards to then design of GPU solvers most low-level methods will result in a
memory bottleneck. Therefore the method should be designed to maximize coalesced
memory access and use of shared memory. It was also found that single precision calcu-
lations will be up to 32 times faster on the chosen device.

WHAT LINEAR SOLVERS EXIST AND ARE SUITABLE FOR GPU IMPLEMENTATION?
An implicit time integration method will result in a linear system of equations that needs
to be solved at every time step, as described in chapter 3. In chapter 5 an overview of
possible linear system solvers has been given. It is proposed that after successful imple-
mentation of an explicit method on the GPU an implicit method will be implemented as
well where the linear system is solved at every time step using the Preconditioned Con-
jugate Gradient method, which is very suitable for GPU implementation.

If this proves successful the aim is to then compare a number of preconditioners to
find one suitable for acceleration of the Conjugate Gradient method.

To compare the viability of using solver software package solutions several will be
tested as a linear solver for an implicit method.

IS THERE A POSSIBLE USE OF THE NEW NVIDIA TENSOR CORES FOR ACCELERATING SOLVER

COMPUTATIONS?
As described in chapter 4, Tensor cores are extremely efficient at performing 4×4 matrix-
matrix multiplications. Unfortunately most explicit and implicit methods avoid matrix-
matrix multiplications as they are computationally very expensive. One possible candi-
date is the LU-factorization method described in 5 as it does involve them.

6.2. FURTHER RESEARCH SUBQUESTIONS
After the conclusion of the literature study it will be attempted to design and implement
various shallow-water solvers as mentioned in the preceding section.
A number of additional research questions have been formulated that will be answered
after the conclusion of the project.

1. What are the tradeoffs involved in solving the shallow water equations on a GPU
using explicit methods compared to implicit?

2. How does the performance of existing software packages compare to a self-built
solver?

3. What are the tradeoffs involved in solving the shallow water equations on a GPU
in 32-bit floating point precision compared to 64 bit and 16 bit?

4. Which method or solver library is best suited for integration into Deltares’ existing
FORTRAN based solvers?
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