What is the Discontinuous Galerkin method? And why should we use it?

DG for a simple one-dimensional advection equation

Cindy Caljouw

Delft University of Technology, Delft

KNMI, De Bilt

June 13, 2017

Motivation

Two problems of numerical weather prediction and climate models:

- 1 Mathematically modelling atmospheric processes.
- 2 Evaluating the models as accurate and efficient as possible.

Motivation

Two problems of numerical weather prediction and climate models:

- Mathematically modelling atmospheric processes
 - e.g. parametrization of atmospheric processes using DALES.
- 2 Evaluating the models as accurate and efficient as possible
 - e.g. Improving the advection scheme.

Advection scheme is used for, e.g.:

- the continuity equation,
- important scalars like q_t and θ_l .

But why improve the advection scheme (of DALES)?

Simple 1D Advection Equation

$$\begin{cases} \frac{\partial \varphi}{\partial t} + \frac{\partial f(\varphi)}{\partial x} = 0 & x \in [a, b], t > 0, \\ \varphi(x, 0) = \varphi_0(x) & x \in [a, b], \end{cases}$$

where $f(\varphi) = u\varphi$ with u constant.

Exact solution is given by:

$$\varphi(x,t)=\varphi_0(x-ut)$$

Exact Solution

TUDelft

Tested Finite Difference Methods of DALES

- 1 First order upwind,
- Second order central,
- 3 Fifth order upwind,
- 4 WENO method.

First Order Upwind at t = 10

Figure: First order upwind at t = 10 with $\Delta x = 0.1$ and $\Delta t = 0.3 \frac{u}{\Delta x}$.

First Order Upwind at t = 50

Figure: First order upwind at t = 50 with $\Delta x = 0.1$ and $\Delta t = 0.3 \frac{u}{\Delta x}$.

Second Order Central at t = 10

Figure: Second order central at t = 10 with $\Delta x = 0.1$ and $\Delta t = 0.3 \frac{u}{\Delta x}$.

Second Order Central at t = 50

Figure: Second order central at t = 50 with $\Delta x = 0.1$ and $\Delta t = 0.3 \frac{u}{\Delta x}$.

Fifth Order Upwind at t = 10

Figure: Fifth order upwind at t = 10 with $\Delta x = 0.1$ and $\Delta t = 0.3 \frac{u}{\Delta x}$.

Fifth Order Upwind at t = 50

Figure: Fifth order upwind at t = 50 with $\Delta x = 0.1$ and $\Delta t = 0.3 \frac{u}{\Delta x}$.

WENO method at t = 10

Figure: WENO at t = 10 with $\Delta x = 0.1$ and $\Delta t = 0.3 \frac{u}{\Delta x}$.

WENO method at t = 50

Figure: WENO at t = 50 with $\Delta x = 0.1$ and $\Delta t = 0.3 \frac{u}{\Delta x}$.

Moment Limited DG at t = 10

Figure: Moment limited DG at t = 10 with N = 4, $\Delta x = 0.1$ and $\Delta t = 0.95$ CFL₂ $\frac{u}{\Delta x}$

Moment Limited DG at t = 50

Figure: Moment limited DG at t = 50 with N = 4, $\Delta x = 0.1$ and $\Delta t = 0.95$ CFL₂ $\frac{u}{\Delta x}$

Differences between FDM, FVM and FEM

- FDM Finite Difference Method
- FVM Finite Volume Method
- FEM Finite Element Method

	FDM	FVM	FEM
solves	direct	integral	weak
discontinuities	X	\checkmark	X
values	lebon	cell average	lebon
Varaes	nouui	cen average	noual
unstructured grids	X	✓	√ √

DG in comparison with FDM, FVM and FEM						
	FDM	FVM	FEM	DG		
solves	direct	integral	weak	weak		
discontinuities	X	\checkmark	X	1		
values	nodal	cell average	nodal	nodal		
unstructured grids	X	\checkmark	\checkmark	\checkmark		
conservation of mass	X	\checkmark	X	1		

 $\mathsf{DG}\xspace$ is a combination of FEM and FVM

Advantages of DG

- Unstructured grids, discontinuities and conservation of mass,
- Dynamic h-p refinements,
- Compact stencil,

• High scalability.

Discontinuous Galerkin Method

- 1 Split domain into non-overlapping *elements*.
- 2 Find weak form of the partial differential equations.
- 3 Fill in the approximation in the weak form.
- 4 Find *element matrices*.
- **5** Solve $M_k \mathbf{a}'_k = S_k \mathbf{a}_k$ for each element.

Steps 1 and 2

1 Split domain into non-overlapping elements.

Find weak form of the partial differential equations:

$$\begin{cases} \int_{I_k} \left[\frac{\partial \varphi}{\partial t} + \frac{\partial}{\partial x} f(\varphi) \right] \eta \, dx = 0, \\ \int_{I_k} \varphi(x, 0) \eta \, dx = \int_{I_k} \varphi_0(x) \eta \, dx. \end{cases}$$

Step 3 (1/2)

3 Fill in the approximation in the weak form.

$$\varphi_h^k(x,t) = \sum_{j=0}^N a_h^k(x_j^k,t) \ell_j^k(x), \ \forall x \in I_k$$

Figure: Lagrangian polynomials with LGL nodes.

Steps 3 (2/2), 4 and 5

3 Fill in the approximation in the weak form:

$$\begin{split} \int_{I_k} \sum_{j=0}^N \frac{\partial}{\partial t} a^k(x_j^k, t) \ell_j(\xi(x)) \ell_i(\xi(x)) \, dx &- \int_{I_k} f(\varphi_h) \frac{\partial \ell_i(\xi(x))}{\partial x} \, dx \\ &+ \left[f(\varphi_h) \ell_i(\xi(x)) \right]_{x_{k-1/2}}^{x_{k+1/2}} = 0, \\ \int_{I_k} \sum_{j=0}^N a^k(x_j^k, t) \ell_j(\xi(x)) \ell_i(\xi(x)) \, dx &= \int_{I_k} \varphi_0(x) \ell_i(\xi(x)) \, dx. \end{split}$$

4 Find element matrices.

$$M_k \mathbf{a}'_k = S_k \mathbf{a}_k,$$
$$M_k \mathbf{a}_k(0) = \tilde{\varphi}_{\mathbf{0}}$$

5 Solve
$$M_k \mathbf{a}'_k = S_k \mathbf{a}_k$$
 for each element.

DG with N = 4 at t = 10

Figure: DG with N = 4 at t = 10.

DG with N = 4 at t = 50

Figure: DG with N = 4 at t = 50.

Moment Limiter

Krivodonova: $\hat{a}_j^k \approx \frac{\partial^j \varphi_h^k}{\partial x^j}$

Idea:

Compare \hat{a}_j^k with numerical derivatives using forward and backward differences.

Moment Limited DG at t = 10

Figure: Moment limited DG at t = 10 with N = 4, $\Delta x = 0.1$ and $\Delta t = 0.95$ CFL₂ $\frac{u}{\Delta x}$

Moment Limited DG at t = 50

Figure: Moment limited DG at t = 50 with N = 4, $\Delta x = 0.1$ and $\Delta t = 0.95$ CFL₂ $\frac{u}{\Delta x}$

Conclusion

DG is very promising method.

- No time lags,
- Unstructured grids,
- Dynamic *h-p* refinements,

- Compact stencil,
- High scalability.

Figure: Moment limited DG at t = 50.

Figure: WENO at t = 50.