What is the Discontinuous Galerkin method? And why should we use it?

$D G$ for a simple one-dimensional advection equation

Cindy Caljouw
Delft University of Technology, Delft
KNMI, De Bilt

June 13, 2017

Motivation

Two problems of numerical weather prediction and climate models:
(1) Mathematically modelling atmospheric processes.
(2) Evaluating the models as accurate and efficient as possible.

Motivation

Two problems of numerical weather prediction and climate models:
(1) Mathematically modelling atmospheric processes

- e.g. parametrization of atmospheric processes using DALES.
(2) Evaluating the models as accurate and efficient as possible - e.g. Improving the advection scheme.

Advection scheme is used for, e.g.:

- the continuity equation,
- important scalars like q_{t} and θ_{l}.

But why improve the advection scheme (of DALES)?

Simple 1D Advection Equation

$$
\begin{cases}\frac{\partial \varphi}{\partial t}+\frac{\partial f(\varphi)}{\partial x}=0 & x \in[a, b], t>0 \\ \varphi(x, 0)=\varphi_{0}(x) & x \in[a, b]\end{cases}
$$

where $f(\varphi)=u \varphi$ with u constant.
Exact solution is given by:

$$
\varphi(x, t)=\varphi_{0}(x-u t)
$$

Exact Solution

Tested Finite Difference Methods of DALES

(1) First order upwind,
(2) Second order central,
(3) Fifth order upwind,
(4) WENO method.

First Order Upwind at $t=10$

Figure: First order upwind at $t=10$ with $\Delta x=0.1$ and $\Delta t=0.3 \frac{u}{\Delta x}$.

First Order Upwind at $t=50$

Figure: First order upwind at $t=50$ with $\Delta x=0.1$ and $\Delta t=0.3 \frac{u}{\Delta x}$.

Second Order Central at $t=10$

Figure: Second order central at $t=10$ with $\Delta x=0.1$ and $\Delta t=0.3 \frac{u}{\Delta x}$.

Second Order Central at $t=50$

Figure: Second order central at $t=50$ with $\Delta x=0.1$ and $\Delta t=0.3 \frac{u}{\Delta x}$.

Fifth Order Upwind at $t=10$

Figure: Fifth order upwind at $t=10$ with $\Delta x=0.1$ and $\Delta t=0.3 \frac{u}{\Delta x}$.

Fifth Order Upwind at $t=50$

Figure: Fifth order upwind at $t=50$ with $\Delta x=0.1$ and $\Delta t=0.3 \frac{u}{\Delta x}$.

WENO method at $t=10$

Figure: WENO at $t=10$ with $\Delta x=0.1$ and $\Delta t=0.3 \frac{u}{\Delta x}$.

WENO method at $t=50$

Figure: WENO at $t=50$ with $\Delta x=0.1$ and $\Delta t=0.3 \frac{u}{\Delta x}$.

Moment Limited DG at $t=10$

Figure: Moment limited DG at $t=10$ with $N=4, \Delta x=0.1$ and $\Delta t=0.95 \mathrm{CFL}_{2} \frac{u}{\Delta x}$

Moment Limited DG at $t=50$

Figure: Moment limited DG at $t=50$ with $N=4, \Delta x=0.1$ and $\Delta t=0.95 \mathrm{CFL}_{2} \frac{u}{\Delta x}$

Differences between FDM, FVM and FEM

FDM - Finite Difference Method
FVM - Finite Volume Method
FEM - Finite Element Method

	FDM	FVM	FEM
solves	direct	integral	weak
discontinuities	\boldsymbol{x}	$\boldsymbol{\checkmark}$	\boldsymbol{x}
values	nodal	cell average	nodal
unstructured grids	\boldsymbol{x}	$\boldsymbol{\checkmark}$	$\boldsymbol{\checkmark}$
conservation of mass	\boldsymbol{x}	$\mathbf{\checkmark}$	\boldsymbol{x}

DG in comparison with FDM, FVM and FEM

	FDM	FVM	FEM	DG
solves	direct	integral	weak	weak
discontinuities	x	\checkmark	x	\checkmark
values	nodal	cell average	nodal	nodal
unstructured grids	x	\checkmark	\checkmark	\checkmark
conservation of mass	x	\checkmark	x	\checkmark

DG is a combination of FEM and FVM

Advantages of DG

- Unstructured grids, discontinuities and conservation of mass,
- Dynamic $h-p$ refinements,
- Compact stencil,

- High scalability.

Discontinuous Galerkin Method

(1) Split domain into non-overlapping elements.
(2) Find weak form of the partial differential equations.
(3) Fill in the approximation in the weak form.
(4) Find element matrices.
(5) Solve $M_{k} \mathbf{a}_{k}^{\prime}=S_{k} \mathbf{a}_{k}$ for each element.

Steps 1 and 2

(1) Split domain into non-overlapping elements.

Find weak form of the partial differential equations:

$$
\left\{\begin{array}{l}
\int_{l_{k}}\left[\frac{\partial \varphi}{\partial t}+\frac{\partial}{\partial x} f(\varphi)\right] \eta d x=0 \\
\int_{l_{k}} \varphi(x, 0) \eta d x=\int_{l_{k}} \varphi_{0}(x) \eta d x
\end{array}\right.
$$

Step 3 (1/2)

(3) Fill in the approximation in the weak form.

$$
\varphi_{h}^{k}(x, t)=\sum_{j=0}^{N} a_{h}^{k}\left(x_{j}^{k}, t\right) \ell_{j}^{k}(x), \quad \forall x \in I_{k}
$$

Figure: Lagrangian polynomials with LGL nodes.

Steps 3 (2/2), 4 and 5

(3) Fill in the approximation in the weak form:

$$
\begin{aligned}
& \int_{I_{k}} \sum_{j=0}^{N} \frac{\partial}{\partial t} a^{k}\left(x_{j}^{k}, t\right) \ell_{j}(\xi(x)) \ell_{i}(\xi(x)) d x-\int_{I_{k}} f\left(\varphi_{h}\right) \frac{\partial \ell_{i}(\xi(x))}{\partial x} d x \\
& \quad+\left[f\left(\varphi_{h}\right) \ell_{i}(\xi(x))\right]_{x_{k-1 / 2}}^{x_{k+1 / 2}}=0, \\
& \int_{I_{k}} \sum_{j=0}^{N} a^{k}\left(x_{j}^{k}, t\right) \ell_{j}(\xi(x)) \ell_{i}(\xi(x)) d x=\int_{I_{k}} \varphi_{0}(x) \ell_{i}(\xi(x)) d x .
\end{aligned}
$$

(4) Find element matrices.

$$
\begin{aligned}
M_{k} \mathbf{a}_{k}^{\prime} & =S_{k} \mathbf{a}_{k}, \\
M_{k} \mathbf{a}_{k}(0) & =\tilde{\varphi}_{0}
\end{aligned}
$$

(5) Solve $M_{k} \mathbf{a}_{k}^{\prime}=S_{k} \mathbf{a}_{k}$ for each element.

DG with $N=4$ at $t=10$

Figure: DG with $N=4$ at $t=10$.

DG with $N=4$ at $t=50$

Figure: DG with $N=4$ at $t=50$.

Moment Limiter

Krivodonova: $\hat{a}_{j}^{k} \approx \frac{\partial^{j} \varphi_{h}^{k}}{\partial x^{j}}$

Idea:

Compare \hat{a}_{j}^{k} with numerical derivatives using forward and backward differences.

Moment Limited DG at $t=10$

Figure: Moment limited DG at $t=10$ with $N=4, \Delta x=0.1$ and $\Delta t=0.95 \mathrm{CFL}_{2} \frac{u}{\Delta x}$

Moment Limited DG at $t=50$

Figure: Moment limited DG at $t=50$ with $N=4, \Delta x=0.1$ and $\Delta t=0.95 \mathrm{CFL}_{2} \frac{u}{\Delta x}$

Conclusion

DG is very promising method.

- No time lags,
- Unstructured grids,
- Dynamic h - p refinements,

Figure: Moment limited DG at $t=50$.

- Compact stencil,
- High scalability.

Figure: WENO at $t=50$.

