Discontinuous Galerkin Method for Numerical Weather Prediction

Discontinuous Galerkin in a large-eddy simulation

Cindy Caljouw

Delft University of Technology, The Netherlands

Royal Netherlands Meteorological Institute (KNMI), The Netherlands

November 17, 2017

Contents

- 1 Problem description
- 2 Discontinuous Galerkin
- **3** Discontinuous Galerkin Method in DALES
- **4** Results, conclusions & recommendations

Numerical weather prediction models

Atmospheric processes

Numerical methods

Conserved variables:

$$\frac{d}{dt}\varphi(x,t)=0$$

1D advection equation:

$$\frac{\partial \varphi}{\partial t} + u \frac{\partial \varphi}{\partial x} = 0$$

Requirements advection scheme

- High numerical accuracy
- Fast

Proposed solution

Discontinuous Galerkin method

Advantages:

- superconvergence $\mathcal{O}(h^{p+1})$,
- high scalability,
- dynamic h-p refinements,
- unstructured grids,
- conservation of mass.

Discontinuous Galerkin

Discontinuous Galerkin

Prescribe the unknown function per element by:

$$\varphi^k(x,t) = \sum_{i=0}^p a_i^k(t)\ell_i(x)$$

Basis functions

Figure: Lagrange polynomials $\ell_j(x)$ using p + 1 Legendre-Gauss-Lobatto nodes.

Discontinuous Galerkin

For each element:

$$\varphi^k(x,t) = \sum_{i=0}^p a_i^k(t)\ell_i(x)$$

Advection equation:

$$\frac{\partial}{\partial t}\varphi + \frac{\partial}{\partial x}\left(u\varphi\right) = 0$$

Linear system of ODEs:

Discontinuous Galerkin

$$\frac{\partial}{\partial t}\tilde{\varphi} = -\frac{1}{\rho_0(z)}\nabla\cdot(\rho_0(z)\tilde{\varphi}\tilde{\boldsymbol{u}})\frac{\partial}{\partial t}\tilde{\varphi} = -\frac{1}{\rho_0(z)}\nabla\cdot(\rho_0(z)\tilde{\varphi}\tilde{\boldsymbol{u}}) + \frac{1}{\rho_0(z)}\nabla\cdot(\rho_0(z)\tilde{\varphi}\tilde{\boldsymbol{u}})$$
Advection equation
Diffusion

DALES

ŤUDelft

Advection scheme

Mappings

Mappings

Mappings a (FVM to DG):

- Cell average a
- L₂-projection

Mappings b (DG to FVM):

- Cell average of tendency $\frac{\partial \varphi}{\partial t}$
- Cell average b

Cell average a

- Simple, computational efficient
- Discontinuities

L₂-projection

- mass conservation
- no discontinuities

Mappings b

From DG values to FVM values:

$$g_{\text{FVM}} = \frac{1}{\Delta x \Delta y \Delta z} \int_{\Omega_k} g(\mathbf{x}) \ d\Omega_k,$$

Cell average of tendency:

$$\frac{\partial}{\partial t} \varphi_{\mathsf{DG}} o \frac{\partial}{\partial t} \varphi_{\mathsf{FVM}}$$

Cell average b:

$$\frac{\partial}{\partial t}\varphi_{\mathsf{DG}} \rightarrow \varphi_{\mathsf{DG}}(t + \beta \Delta t) \rightarrow \varphi_{\mathsf{FVM}}(t + \beta \Delta t) \rightarrow \frac{\partial}{\partial t}\varphi_{\mathsf{FVM}}$$

Numerical Results

Using cell average *a* and the cell average of the tendency:

Overdiffusive

Numerical Results

Using the L_2 -projection and the cell average of the tendency:

Underdiffusive

Numerical Results

Using the L_2 -projection and cell average b:

Time delay

Discontinuous Galerkin

Problem description Discontinuous Galerkin DALES Results & recommendations 24 / 27

Mappings

Conclusions

- DG as advection solver very promising
- in DALES inaccurate due to mappings

A recommendation

Multiple DALES cells as a DG cell: for example:

