
Discontinuous
GalerkinMethods
for Numerical
Weather Prediction
Literature Study

C. Caljouw





Discontinuous
Galerkin Methods
for Numerical
Weather
Prediction

Literature Study
by

C. Caljouw
in partial fulfilment of the requirements for the degree of

Master of Science in Applied Mathematics
at the Delft University of Technology,

to be defended publicly on Tuesday June 13th, 2017.

Daily supervisors: Dr. ir. D. Den Ouden TU Delft
Prof. dr. A. P. Siebesma The Royal Netherlands Meteorological Institute

Responsible professor: Prof. dr. ir. C. Vuik TU Delft





List of Figures

2.1 Temperature and pressure of the atmospheric layers. Image taken from [6]. . . . . . . . 4
2.2 Flowchart of DALES. Image taken from [10]. . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Arakawa C-grid. Image taken from [10]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Initial condition 𝜑 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 First order upwind with Δ𝑥 = 0.1 and Δ𝑡 = 0.3 . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Second order central with Δ𝑥 = 0.1 and Δ𝑡 = 0.3 . . . . . . . . . . . . . . . . . . . . . 12
3.5 Fifth order upwind method with Δ𝑥 = 0.1 and Δ𝑡 = 0.3 . . . . . . . . . . . . . . . . . . 13
3.6 WENO method with Δ𝑥 = 0.1 and Δ𝑡 = 0.3 . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.7 Computational time of the various advection schemes of DALES to simulate till 𝑡 = 50 s. 15

4.1 Relation between FEM, FVM and DG where 𝑁 is a finite number of non-overlapping el-
ements and 𝑝 the order of basis functions. (Spectral elements is a finite element method
with high order basis functions and spectral transform is also finite element method with
only one element and high order basis functions.) Image taken from [18]. . . . . . . . . 18

4.2 Example of a function 𝑔 which is discontinuous at the element boundaries. . . . . . . . 20
4.3 Nodal and Modal solution with 𝑁 = 1, Δ𝑥 = 0.1 and Δ𝑡 = 10 at 𝑡 = 10. . . . . . . . . . 25
4.4 DG with 𝑁 = 1, Δ𝑥 = 0.1 ⇔ 𝐾 = 100 and Δ𝑡 = 0.95CFL | | . . . . . . . . . . . . . . . . 27

4.5 DG with 𝑁 = 2, Δ𝑥 = 0.1 ⇔ 𝐾 = 100 and Δ𝑡 = 0.95CFL | | . . . . . . . . . . . . . . . . 27

4.6 DG with 𝑁 = 2, Δ𝑥 = 0.2 ⇔ 𝐾 = 50 and Δ𝑡 = 0.95CFL | | . . . . . . . . . . . . . . . . . 28

4.7 DG with 𝑁 = 4, Δ𝑥 = 0.1 ⇔ 𝐾 = 100 and Δ𝑡 = 0.95CFL | | . . . . . . . . . . . . . . . . 28

4.8 DG with 𝑁 = 4, Δ𝑥 = 0.4 ⇔ 𝐾 = 25 and Δ𝑡 = 0.95CFL | | . . . . . . . . . . . . . . . . . 28
4.9 Computational time of the advection schemes in DALES and the tested DG to simulate

till 𝑡 = 50 s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.10 Numerical error of advecting 𝜑 till 𝑡 =10 s with Δ𝑡 = 0.95CFL . . . . . . . . . . . . . 29
4.11 Numerical error of advecting the smooth part of 𝜑 till 𝑡 =10 s with Δ𝑡 = 0.95CFL . . 30
4.12 Advecting 0.5 sin( 𝑥) till 𝑡 =10 s with Δ𝑡 = 0.95CFL . . . . . . . . . . . . . . . . . . 30
4.13 Numerical errors of DG with 𝑁 = 4 using Δ𝑡 = 0.001. . . . . . . . . . . . . . . . . . . . . 31
4.14 Moment limited DG with 𝑁 = 1, Δ𝑥 = 0.1 and Δ𝑡 = 0.95CFL . . . . . . . . . . . . . . 33
4.15 Moment limited DG with 𝑁 = 2,Δ𝑥 = 0.1 and Δ𝑡 = 0.95CFL . . . . . . . . . . . . . . 33
4.16 Moment limited DG with 𝑁 = 4, Δ𝑥 = 0.1 and Δ𝑡 = 0.95CFL . . . . . . . . . . . . . . 33
4.17 Numerical errors of the moment limited DG with 𝑁 = 4 using Δ𝑡 = 0.001. . . . . . . . . . 34
4.18 Numerical errors of the WENO method using Δ𝑡 = 0.001. . . . . . . . . . . . . . . . . . 35
4.19 Computational time of the advection schemes in DALES and the tested DG to simulate

till 𝑡 = 50 s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1 Staggered grid options for 𝑁 = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 Staggered grid options for 𝑁 = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Temperature inversion. Image taken from [8]. . . . . . . . . . . . . . . . . . . . . . . . . 39

iii





List of Tables

3.1 Position of the variables in the Arakawa C-grid. . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Coefficients 𝑎 of the different stencils. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1 CFL for RKDG order 𝑣 and polynomial order 𝑝, where ⋆ is unstable. Table taken from
[5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

v





Nomenclature
Mathematical Notation

ℓ (𝑥) Basis function of element 𝐼 of the nodal form of DG

�̂� (𝑥 , 𝑡) Nodal coefficient of polynomial order 𝑗 and element 𝐼 at grid point 𝑥 and time 𝑡

�̂� (𝑡) Modal coefficient of polynomial order 𝑗 and element 𝐼 at time 𝑡

Ω Domain of computation

⊗ Outer product

𝜓 (𝑥) Basis function of the modal form of DG

𝜑 Quantity of interest 𝜑(𝑥, 𝑡) of the advection equation

𝜑 Initial condition 𝜑 (𝑥) of the quantity of interest 𝜑(𝑥, 𝑡)

𝐹 Flux matrix of element 𝐼 depending on element 𝐼

𝐹 Flux matrix of element 𝐼 depending on element 𝐼

𝐼 Element of the computational domain 𝐼 ⊂ Ω

𝐾 Number of non-overlapping elements in Ω

𝑀 Mass matrix of element 𝐼

𝑁 Polynomial degree of the basis functions

𝑆 Stiffness matrix of element 𝐼

𝑉 Vandermonde matrix

Physical Scalars and Constants

𝛼 Specific volume m3 kg 1

ΩΩΩ Coriolis force

𝑔𝑔𝑔 Effective gravity ms 2

𝑢𝑢𝑢 Velocity field ms 1

𝜌 Density kgm 3

𝑐 Heat capacity at constant pressure for dry air 1004.7 J kg 1 K 1

𝑒 Specific internal energy J kg 1

𝐾 Eddy diffusivity coefficient

𝐾 Eddy viscosity coefficient

𝐿 Latent heat of vaporization 2.5 × 106 J kg 1

𝑚 Mass kg

𝑚 Mass of dry air kg

vii



viii List of Tables

𝑚 Mass of liquid water kg

𝑚 Mass of water vapour kg

𝑝 Pressure Nm 2

𝑞 Cloud liquid water specific humidity kg kg 1

𝑞 Total water specific humidity kg kg 1

𝑞 Water vapour specific humidity kg kg 1

𝑅 Gas constant for dry air 287 J kg 1 K 1

𝑇 Temperature K



Contents

List of Figures iii

List of Tables v

Nomenclature vii

1 Introduction 1
1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Atmospheric Modelling 3
2.1 The Atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Air movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Model equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Governing equations of DALES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Numerical methods of DALES for the advection equation 9
3.1 Grid spacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Time integration method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Advection schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3.1 Shortcomings of the advection schemes of DALES . . . . . . . . . . . . . . . . . 15

4 Discontinuous Galerkin for One-dimensional Advection Equation 17
4.1 Relations and differences between FDM, FVM, FEM and DG . . . . . . . . . . . . . . . . 17
4.2 Basics of Discontinuous Galerkin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Modal discontinuous Galerkin Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3.1 Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4 Nodal discontinuous Galerkin Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4.1 Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.5.1 Numerical Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5.2 Computational time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5.3 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.6 Moment Limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.6.1 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Open problems & Issues 37
5.1 Higher Dimensions & Polynomial Basis Functions . . . . . . . . . . . . . . . . . . . . . . 37

5.1.1 Basis Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.1.2 Staggered Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.1.3 Initial and Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.1.4 Higher Dimensional Moment Limiter. . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Other Limiters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2.1 Algebraic Flux Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2.2 Shock Detection using Multiwavelets . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Summary and Conclusion 41
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3 Future Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Bibliography 43

ix





1
Introduction

Mathematically modelling atmospheric phenomena is one of the two main challenges of numerical
weather prediction (NWP) and climate models. The most important atmospheric processes are turbu-
lence, convection and cloud formation. However, the coarse grid of themodels resolve these processes
that are smaller than the grid size. Therefore, these sub-grid processes are parametrized in the NWP
and climate models. For parametrization development, the processes are simulated in a model with
a higher resolution. At the Royal Netherlands Meteorological Institute (KNMI), the Dutch Atmospheric
Large-Eddy Simulation model, also known as DALES, is used. On top of that, DALES can be used
to predict weather on a smaller domain with a higher resolution, for example to provide short-range
forecasts for near surface wind and solar power for the renewable energy sector.

Nevertheless, DALES can still be improved, especially the implemented advection schemes. Each fi-
nite difference advection scheme of DALES has its own favourable properties, like computational time
or accuracy. However, the implemented high accuracy methods are still too diffusive and/or dispersive
when steep gradients in temperature, moisture and momentum are present.

The other main challenge of NWP and climate models is to evaluate these models as accurate and
efficiently as possible. This can be done by using all the available computational resources. The archi-
tecture of a finite difference scheme does not take full advantage of the architecture of the modern-day
computers and is thus not the most computational efficient method.

To solve these two problems, the discontinuous Galerkin (DG) method is suggested. DG is an attractive
method, because it allows discontinuities, it has a geometric flexibility and has a high parallel-scalability
due to a compact stencil. However, it is known that non-physical oscillations are generated with DG.
Therefore, a limiter has to be added.

The question of this thesis project is if DG has a faster computation or a higher accuracy, without in-
creasing the running time too much, than the already implemented schemes in DALES. In this literature
study, the DG method is investigated for a simple one-dimensional advection equation and compared
to several of the implemented finite difference schemes of DALES. Moreover, the dispersion errors are
removed by adding a moment limiter.

1.1. Outline
In Chapter 2, the background of DALES is given by explaining the origin of the model equations. There-
after, in Chapter 3 the numerical methods of DALES are explained and the shortcomings of the imple-
mented advection schemes are shown with numerical results. Chapter 4 describes the discontinuous
Galerkin method for a one-dimensional advection equation and the moment limiter. On top of that, the
numerical results are shown for both DG with and without limiter, including convergence and compu-
tational time. Then in Chapter 5 the open problems and issues are discussed that need to be reflected
on before DG can be implemented in DALES. The literature study is concluded in Chapter 6 with a

1



2 1. Introduction

summary and conclusion.



2
Atmospheric Modelling

In this chapter some general information is given on the atmosphere. Thereafter, the general equations
for atmospheric modelling are shown and explained. Finally, an explanation is given on the adjustments
for the governing equations of DALES and its prognostic variables.

2.1. The Atmosphere
The atmosphere is a layer of multiple gasses, known as air, around the Earth that is kept in place by
the Earth’s gravity. The atmosphere consists of a number of layers:

• Troposphere,

• Stratosphere,

• Mesosphere,

• Thermosphere,

• Exosphere.

Each layer has different properties like the composition and temperature. In Figure 2.1 [6], the temper-
ature and air pressure of the layers are given as a function of height.

Most weather takes place in the troposphere. Many different processes that take place in the air cause
all the different weather types. The most important ones are turbulence, convection and particularly,
cloud formation. These three processes are results of the movement of air in the atmosphere.

2.1.1. Air movement
As the Earth’s surface warms up, water evaporates and also the air near the surface warms up. Warm
air and moist air are lighter than cold air and dry air, therefore, the air parcel with water vapour travels
higher into the sky. How far the air parcel rises, depends on the temperature of the surrounding air and
the amount of water vapour the air parcel holds.

During the upward motion of the air parcel, the air pressure around the air parcel descends, as a result
the air parcel expands. Due to the expansion the air parcel loses energy and consequently, the air
parcel cools down a bit. At a certain point, the air pressure and the temperature are so low that the air
parcel cannot hold the amount of water vapour any more; the air parcel is saturated. Further cooling
leads to condensation, however, the air parcel keeps rising by the release of latent heat during conden-
sation. For this reason, the water droplets can get higher in the sky which even can become ice crystals.

The tiny water droplets and ice crystals are so small and light that they are able to stay up in the air.
When there is a visible amount of tiny water droplets, ice crystals or a mixture of both, it forms a cloud

3



4 2. Atmospheric Modelling

Figure 2.1: Temperature and pressure of the atmospheric layers. Image taken from [6].

in the sky.

Ultimately the sun is the reason behind all rising motion. Other factors causing air to rise or cool, are
[19]:

• Orography - Air parcels are forced to rise because of physical obstacles like mountains.

• Large scale convergence - Streams of air flowing from different directions are forced to rise where
they meet.

– For example frontal systems - When warm air and cold air meet each other, the warm air
mass rises up over the cold air mass.

• Turbulence - Sudden changes in wind speed with height create turbulent eddies in the air. This
is sometimes notable in an air plane.

Another important factor for cloud formation are the condensation nuclei, like salt, dust and smoke
particles. These particles are needed for the water vapour to condense onto. This can particularly be
seen as the cloud lines that air planes leave behind in the sky.

2.2. Model equations
For the movement of air, three conservation laws of momentum, mass and energy must hold. These
laws must also hold in the absence of air movement. With the three laws, the time evolution of mo-
mentum, density, temperature and humidity can be described.

Conservation of momentum
First, for a small package of air, the momentum must be conserved. The Navier-Stokes equations
describe the differential equations that the motion of air in the atmospheric boundary layer must satisfy:

𝜕𝜌𝑢𝑢𝑢
𝜕𝑡 + ∇ ⋅ (𝜌𝑢𝑢𝑢 ⊗𝑢𝑢𝑢) = −∇𝑝 − 2𝜌(ΩΩΩ ×𝑢𝑢𝑢) − 𝜌𝑔𝑔𝑔, (2.1)
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where 𝜌 denotes the density, 𝑢𝑢𝑢 the velocity field, 𝑝 the pressure, ΩΩΩ the Coriolis force, which is the force
that rotates the Earth, and 𝑔𝑔𝑔 the effective gravity, which is the sum of the true gravity and the centrifugal
force. The equation is derived from Newton’s second law for motion relative to a rotating coordinate
frame and says that the acceleration that follows the relative motion in the rotating frame is equal to
the sum of the effective gravity, the pressure gradient and the Coriolis force. More information of the
derivation of the equation can be found in [11].

Conservation of mass
Second, conservation of mass must hold which is known as the continuity equation:

𝜕𝜌
𝜕𝑡 + ∇ ⋅ (𝜌𝑢𝑢𝑢) = 0. (2.2)

This means that the local rate of change of density equals the mass divergence.

Conservation of energy
Third, the energy is conserved. By all means the change in specific internal energy of the system 𝑒 is
equal to the difference between the heat added to the system 𝑑𝑄 and the work done by the system 𝑑𝑤,
known as the first law of thermodynamics (per unit mass):

𝑑𝑒 = 𝑑𝑄 − 𝑑𝑤. (2.3)

To create prognostic equations for thermodynamic variables like temperature, the ideal gas law is
needed to rewrite the first law of thermodynamics:

𝑝 = 𝜌𝑅 𝑇 = 𝑅 𝑇
𝛼 , (2.4)

where 𝑅 is the gas constant, 𝑇 the temperature and 𝛼 is the specific volume.
Using Legendre transformations, the ideal gas law (2.4) and other state functions, especially with the
use of the enthalpy ℎ (which is defined as ℎ = 𝑒 + 𝑝𝛼), equation (2.3) can be rewritten:

𝑑ℎ = 𝑐 𝑑𝑇 = 𝑇𝑑𝑠 + 𝛼𝑑𝑝, (2.5)

where 𝑐 is the heat capacity at constant pressure for dry air and 𝑑𝑠 is the change in entropy.

The heating of air changes both the temperature and the pressure of the air parcel. Therefore, the
“potential” temperature of the air parcel is defined.

When a dry air parcel is adiabatically moved, it means that the system does not lose or gain heat
(𝑑𝑄 = 𝑇𝑑𝑠 = 0). Using this information, equation (2.4) and integrating (2.5) from state 𝑇 = 𝑇, 𝑝 = 𝑝
to the reference state 𝑇 = 𝜃, 𝑝 = 1000 hPa, we obtain:

𝜃 = 𝑇 ( 𝑝𝑝 )
/

⇔ 𝑇 = 𝜃Π, (2.6)

in which Π is the exner function given by Π = ( )
/

.

The potential temperature 𝜃 describes what the temperature that a dry air parcel at a pressure 𝑝 and
temperature 𝑇 would have if it were compressed or expanded to the standard pressure 𝑝 . Conse-
quently, we have redefined the temperature such that the pressure contribution is removed. Moreover,
𝜃 is conserved under dry adiabatic changes.

However, an air parcel can contain water vapour or even little water droplets. For this mixture, another
variable must be introduced which is also conserved under phase transition.
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Since the air is mixed, the mass of air can be written as the mass of liquid water 𝑚 , water vapour 𝑚
and dry air 𝑚 :

𝑚 = 𝑚 +𝑚 +𝑚 . (2.7)

Instead of the masses, the mass fractions 𝑞 are used in equations.

𝑞 = 𝑚
𝑚 , 𝑞 = 𝑚

𝑚 , 𝑞 = 𝑞 + 𝑞 . (2.8)

The total water specific humidity 𝑞 is the sum of the water vapour specific humidity 𝑞 and the cloud
liquid water specific humidity 𝑞 . One can understand that 𝑞 is conserved under the phase transitions
from liquid water to water vapour and vice versa.

Moreover, a temperature can be constructed which is also conserved under the phase transition. During
the phase transition latent heat is released, i.e. 𝑑𝑄 = 𝑇𝑑𝑠 = 𝐿𝑑𝑞 where 𝐿 is the latent heat of
vaporization. Therefore, when using the same tricks as for (2.6), we get a temperature conserved
under the phase transition:

𝜃 = 𝜃 exp ( −𝐿𝑐 𝑇𝑞 ) ≈ 𝜃 −
𝐿
𝑐 Π𝑞 . (2.9)

The liquid water potential temperature 𝜃 can be linearly approximated, since 𝑞 is usually very small
(∼ 10 , a few grams of liquid water per kilogram of air mixture). For more information on the thermo-
dynamics of atmospheric modelling can be found in [11] and [1].

When there is no precipitation or other explicit sources, 𝜃 and 𝑞 are conserved and for conserved
variables 𝜙(𝑥, 𝑦, 𝑧, 𝑡) it holds that the total derivative = 0. Writing out the total derivative, we obtain:

𝐷𝜙
𝐷𝑡 =

𝜕𝜙
𝜕𝑡 +

𝜕𝜙
𝜕𝑥
𝜕𝑥
𝜕𝑡 +

𝜕𝜙
𝜕𝑦
𝜕𝑦
𝜕𝑡 +

𝜕𝜙
𝜕𝑧
𝜕𝑧
𝜕𝑡

= 𝜕𝜙
𝜕𝑡 +𝑢𝑢𝑢 ⋅ ∇𝜙 = 0,

(2.10)

which is the advection equation. If there is an explicit source 𝑆 , for example precipitation, the equation
is given by:

𝜕𝜙
𝜕𝑡 +𝑢𝑢𝑢 ⋅ ∇𝜙 = 𝑆 . (2.11)

2.3. Governing equations of DALES
DALES is a Large-Eddy simulation, for this reason the equations are slightly different from equations
(2.1), (2.2) and (2.11).

A Large-Eddy simulation is a mathematical model for turbulence. For the simulation of the time evo-
lution of the air flow, all different time and length scales affect the flow field and therefore, all must be
resolved. However, the difference between the largest (∼ 1 km) and smallest scales (∼ 1mm) of eddies
are huge. LES models reduce the computational cost by ignoring the smallest length scales.

The eddies that are smaller than the grid size, called the sub-grid scales, are filtered out of the nu-
merical solution. This is done by using a low-pass filter, which can be seen as an averaging of the
flow quantities in time and space. The sub-grid scale dynamics are subsequently parametrized by the
sub-grid model. For more details on LES models, the book of Berselli et al. [2] can be read.

The anelastic approximation1 is also applied on the filtered equations of DALES. These filtered equa-
tions are derived by Böing and can be found in the appendix of his dissertation [4]. Since the advection
1The anelastic approximation takes the density differences in the vertical direction of the continuity equation into account, while
the Boussinesq approximation, used in the previous version DALES 3.2, takes no density variations into account unless the
density is multiplied by the gravitational acceleration.
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equation is the centrepiece of the thesis, the filtered equation is stated:

𝜕
𝜕𝑡 �̃� = −

1
𝜌 ∇ ⋅ 𝜌 �̃��̃�𝑢𝑢 +

1
𝜌 ∇ ⋅ 𝜌 𝐾 ∇�̃� + 𝑆 . (2.12)

Here the filtered variables are denoted by ⋅̃ and 𝐾 is the eddy diffusivity coefficient. Hence a diffusion
term is added as a result of the filtering. However, the diffusion term is ignored in this thesis, since the
sub-grid diffusion is solved in a separate routine.

Prognostic variables
The three mandatory prognostic variables of DALES are the velocity 𝑢𝑢𝑢, the liquid water potential tem-
perature 𝜃 and the sub-filter scale turbulence kinetic energy 𝑒, which is used in the parametrization of
the sub-filter scale dynamics. On top of that, the total water specific humidity 𝑞 , the rain water specific
humidity 𝑞 , the rain droplet number concentration 𝑁 , and up to 100 passive and reactive scalars can
be included. However, the additional prognostic variables do not have to be calculated unless these
are used. Figure 2.2 shows the processes of all variables and how the variables are affected by them.

Figure 2.2: Flowchart of DALES. Image taken from [10].

More information on the other processes of DALES than the advection process can be found in [10].





3
Numerical methods of DALES for the

advection equation

The present chapter describes the numerical methods that are important for the advection equation in
DALES. First, the spacial discretisation of the variables are specified and thereafter, the time integration
method. Last but not least, the finite difference methods are described, among others their numerical
solutions and their shortcomings.

3.1. Grid spacing
In DALES, a uniform Cartesian grid is used in the horizontal directions with optional stretching in the
𝑧-direction. Normally the horizontal grid sizes Δ𝑥 and Δ𝑦 are 100m and the vertical grid size 𝑑𝑧 is
around 50m. On top of that, a staggered grid in space is used as an Arakawa C-grid which can be
seen in Figure 3.1. An Arakawa C-grid defines the pressure 𝑝, the SFS-TKE 𝑒 and the scalars 𝜑
in the centre of the cell, while the velocity components, 𝑢, 𝑣, and 𝑤, are defined at the faces of the
cell, respectively. As 𝑤 is given at a different height than the other variables, this level is called the
half level, denoted by 𝑧 and the other variables are at the full level 𝑧 . This is summarized in Table 3.1.

Figure 3.1: Arakawa C-grid. Image taken from [10].

Variable Position 𝑧 level
𝑝, 𝑒, 𝜑 𝑥𝑥𝑥 + (Δ𝑥, Δ𝑦, Δ𝑧) 𝑧
𝑢 𝑥𝑥𝑥 + (0, Δ𝑦, Δ𝑧) 𝑧
𝑣 𝑥𝑥𝑥 + (Δ𝑥, 0, Δ𝑧) 𝑧
𝑤 𝑥𝑥𝑥 + (Δ𝑥, Δ𝑦, 0) 𝑧

Table 3.1: Position of the variables in the Arakawa C-grid.

9
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3.2. Time integration method
A time integration method solves the following equation:

𝜕
𝜕𝑡𝜙 = 𝑔(𝜙). (3.1)

Thus, the differential equations are rewritten so that it has the same form as in (3.1).

DALES uses Runge Kutta 3 as the time integration method. This method calculates the next time step
𝜙 as follows:

𝜙∗ = 𝜙 + Δ𝑡3 𝑔(𝜙 ),

𝜙∗∗ = 𝜙 + Δ𝑡2 𝑔(𝜙
∗),

𝜙 = 𝜙 + Δ𝑡𝑔(𝜙∗∗),

(3.2a)

(3.2b)

(3.2c)

where the asterisks denote the intermediate time steps.

The size of the time step Δ𝑡 is determined adaptively to keep the numerical solution stable. The two
criteria that limit the time steps are the Courant-Friedrichs-Lewy (CFL) condition:

CFL = max(|𝑢Δ𝑡Δ𝑥 | + |
𝑣Δ𝑡
Δ𝑦 | + |

𝑤Δ𝑡
Δ𝑧 |) .

and the diffusion number 𝑑 [26], which is needed for the diffusion terms that arose from the LES-filtering:

𝑑 = max(∑ 𝐾 Δ𝑡
Δ𝑥 ) ,

where 𝐾 is the eddy viscosity coefficient.

3.3. Advection schemes
In this section the several advection schemes of DALES are explained with their results, advantages
and disadvantages.

In DALES multiple advection schemes can be chosen, for example:

• First order upwind,

• Second order central,

• Fifth order upwind,

• Weighted essentially non-oscillatory (WENO) method.

Each advection scheme has their own favourable properties such as high accuracy or little computation
time, however they also have their own cons. These pros and cons are given and shown by solving a
test case.

As test case, the following boundary value problem is used:

{
+ ( ) = 0 𝑥 ∈ [𝑎, 𝑏], 𝑡 > 0,

𝜑(𝑥, 0) = 𝜑 (𝑥) 𝑥 ∈ [𝑎, 𝑏],
𝜑(𝑎, 𝑡) = 𝜑(𝑏, 𝑡) 𝑡 > 0,

(3.3)

where 𝜑(𝑥, 𝑡) is the quantity of interest and 𝑓(𝜑) = 𝑢𝜑 the given flux function. If the speed 𝑢 is constant,
the exact solution of this problem is: 𝜑(𝑥, 𝑡) = 𝜑 (𝑥 − 𝑢𝑡).
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Many properties of an advection scheme can be seen by solving a test case with an initial condition that
contains a smooth and a discontinuous part. For example, for domain Ω = [−5, 5] and initial condition
(see Figure 3.2):

𝜑 (𝑥) = {

( ( )) , 𝑥 ∈ [−3,−1],
1, 𝑥 ∈ [1, 3],
0, otherwise.

(3.4)

When 𝑢 is set to 1m s 1, then the solution 𝜑(𝑥, 𝑡) is at the same place after every 10 s (one period), in
mathematical terms

𝜑(𝑥, 10𝑐) = 𝜑 (𝑥) for all 𝑐 ∈ ℕ (3.5)

Figure 3.2: Initial condition .

In general, the advection schemes are defined such that the derivative of the flux is approximated:

𝜕𝑓(𝜑 )
𝜕𝑥 =

𝐹 / − 𝐹 /
Δ𝑥 , (3.6)

where 𝐹 / is the convective flux of variable 𝜑 through face 𝑖 + 1/2 of the grid box. How 𝐹 / is
defined, depends on the choice of the advection scheme.

First order upwind
The first order upwind is a simple first order method which defines the flux as follows:

�̂� st
/ = {𝑢 / 𝜑 if 𝑢 / > 0,

𝑢 / 𝜑 if 𝑢 / < 0.

The truncation error of this method is 𝒪(Δ𝑥) when function 𝑓(𝜑) ∈ 𝐶 [−5, 5] [24].

In Figure 3.3a and Figure 3.3b the numerical solutions are plotted after 1 and 5 periods. Clearly, one can
see that the first order upwind is overly diffuse and after only 5 periods the mass is almost completely
smoothened out over the domain.
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(a) First order upwind at . (b) First order upwind at .

Figure 3.3: First order upwind with . and . .

Second order central
The second order central differencing method approximates 𝐹 / with:

�̂� nd
/ =

𝑢 /
2 (𝜑 + 𝜑 ),

and has a truncation error of 𝒪(Δ𝑥 ) if 𝑓(𝜑) is sufficiently smooth. An other interesting fact is that the
first order upwind is actually second order central with extra artificial diffusion. This means that the
second order central should theoretically be less diffusive than the first order upwind.

The numerical results of second order central differencing after 1 and 5 periods can be found in Figure
3.4a and in Figure 3.4b respectively. Indeed the second order central is less diffusive than the first
order upwind. However, dispersive errors are present when using second order central differencing,
leading to solutions that are not recognizable as the initial condition.

(a) Second order central at . (b) Second order central at .

Figure 3.4: Second order central with . and . .
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(a) Fifth order upwind at . (b) Fifth order upwind at .

Figure 3.5: Fifth order upwind method with . and . .

Fifth order upwind
For a high accuracy method with a truncation error of 𝒪(Δ𝑥 ) for sufficiently smooth functions, the fifth
order upwind can be used, which approximates 𝐹 / by:

�̂� th
/ = {

/ (−3𝜑 + 27𝜑 + 47𝜑 − 13𝜑 + 2𝜑 ) if 𝑢 / > 0,
/ (−3𝜑 + 27𝜑 + 47𝜑 − 13𝜑 + 2𝜑 ) if 𝑢 / < 0.

The numerical solutions (see in Figure 3.5a and Figure 3.5b) are less diffusive than the first order
upwind results. However, there are non-physical oscillations which are bad for the model; especially
the negative values are physically impossible. Moreover, every period the solution is shifted to the left,
also known as a time lag.

WENO method
The WENO method is based on an essentially non-oscillatory (ENO) method. The basic concept be-
hind the ENO method is to choose between different stencils, upwind, central or downwind such that
the 𝜑 / is approximated with the stencil that does not contain a discontinuity [9][21][22].

The three different stencils are given by:

�̂� / = 𝑎 𝜑 +𝑎 𝜑 +𝑎 𝜑 ,
�̂� / = 𝑎 𝜑 +𝑎 𝜑 +𝑎 𝜑 ,
�̂� / = 𝑎 𝜑 +𝑎 𝜑 +𝑎 𝜑 ,

(3.7)

where the coefficients 𝑎 are given in Table 3.2.

𝑎 𝑘 = 0 𝑘 = 1 𝑘 = 2
𝑙 = 0 2/6 -7/6 11/6
𝑙 = 1 -1/6 5/6 2/6
𝑙 = 2 2/6 5/6 -1/6

Table 3.2: Coefficients of the different stencils.

The WENO method is a weighted ENO method that was introduced by Liu et al. [17]. Liu noted that all
stencils should contribute to the value of 𝜑 / by interpolating:

�̂� / =∑𝜔 �̂� / , (3.8)
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where �̂� / are the three different stencils, given in (3.7), the 𝜔 are normalized weights that depend
on a smoothness criterion 𝛽 :

𝜔 = 𝛼
∑ 𝛼 , 𝛼 = 𝐶

(𝜖 + 𝛽 ) , [𝐶 , 𝐶 , 𝐶 ] = 1
10[1, 6, 3].

The 𝜖 is a parameter that is very small (10 ) to make sure that the denominator is never zero and the
smoothness metric 𝛽 is calculated as:

𝛽 = (𝜑 −2𝜑 +𝜑 ) + (𝜑 −4𝜑 +3𝜑 ) ,
𝛽 = (𝜑 −2𝜑 +𝜑 ) + (𝜑 −𝜑 ) ,
𝛽 = (𝜑 −2𝜑 +𝜑 ) + (3𝜑 −4𝜑 +𝜑 ) .

(3.9)

When a completely smooth field is advected, the fifth order WENO scheme is equivalent to the fifth
order upwind scheme. Therefore, the truncation error is 𝒪(Δ𝑥 ) for sufficiently smooth functions.

In Figure 3.6, the numerical results are given for 𝑡 = 10 and 𝑡 = 50. As with the fifth order upwind (See
3.5, a time lag is present. However, there are no oscillations. On top of that WENO is diffuse, which
can be seen in the discontinuous part of the solutions, but is significantly less diffusive compared to the
overly diffusive first order upwind. All in all, the WENO method is the most accurate advection scheme
that can be used in DALES.

(a) WENO method at . (b) WENO method at .

Figure 3.6: WENO method with . and . .

Computational time
The computational time of an advection scheme is, besides the accuracy of the scheme, important to
the KNMI, therefore, the computational time for the various advection schemes of DALES is plotted
against the grid size Δ𝑥 (see Figure 3.7). For this test, a similar implementation is used in MATLAB to
remove as many biases as possible.

Since WENO changes the stencils every time step and adapt them to location 𝑥, it can be expected
and seen in Figure 3.7, the computational time of WENO is the largest of the four different advection
schemes. The other three finite difference methods, first order upwind, second order central and fifth
order upwind, do not change the stencil which is also very compact, especially for one-dimensional
problems. Therefore, the computational time is less and for small grid sizes, the computational time is
about the same for all three of them.
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Figure 3.7: Computational time of the various advection schemes of DALES to simulate till 50 s.

3.3.1. Shortcomings of the advection schemes of DALES
The four discussed advection schemes give different results and every scheme has its own advantages
and disadvantages, but none of them are as flawless as it needs to be.

The low order difference methods may have a low computational time, also when implemented for
higher dimensional problems. Nonetheless, the first order upwind is overly diffusive and the second
order central differencing has too many dispersive errors; the initial condition is not recognizable after
a few time steps.

Also, the high accuracy methods, the fifth order upwind and WENO method, are still diffusive, though
they are not overly diffusive as the first order upwind is. Moreover, the fifth order upwind is dispersive.
This problem is absent when WENO is used, but instead its computational time becomes much larger.

On top of that, the WENO and fifth order upwind method have a time lag making the long simulations
inaccurate. This time lag also appears in the solutions of the first order upwind and second order cen-
tral. It seems that the speed of the numerical solution is lower than the actual speed 𝑢, leading to a time
lag that increase in time. More research is needed to find the specific reason of the time lags. In this
specific case, where the speed 𝑢 is constant and the time lag is after every period of the same size, the
time lag for WENO and the fifth order upwind could be resolved by shifting the solutions horizontally to
remove the time lag.

As the advection scheme is important for the DALES model, an other advection scheme should be im-
plemented such that either the accuracy is better than the implemented advection schemes of DALES
or the computational time is less. The best possible outcome of this thesis project is to have an advec-
tion scheme that is better in both accuracy and computational time.





4
Discontinuous Galerkin for

One-dimensional Advection Equation
In this chapter the discontinuous Galerkin (DG) method is explained by solving a one-dimensional ad-
vection equation. First, the differences are shown between DG and the standard methods: finite differ-
ence method (FDM), finite volume methods (FVM) and finite element methods (FEM). Then the basics
of DG will be explained. Thereafter, the two different methods of DG are explained separately: modal
discontinuous Galerkin and nodal discontinuous Galerkin in Section 4.3 and Section 4.4 respectively.

4.1. Relations and differences between FDM, FVM, FEM and DG
There are several numerical methods that can be used to solve partial differential equations (PDEs),
such as:

• Finite difference method (FDM),

• Finite volume method (FVM),

• Finite element method (FEM).
The most popular method is the finite difference method which is also used in DALES.

FDM solves PDEs directly by approximating the derivatives using local Taylor expansion, while FVM
solves the differential equations after integration over a control volume. For FEM, the domain is divided
in a finite number of non-overlapping elements so that the numerical solution is reconstructed on every
element by giving weights to specified basis functions. The weights are found by solving the equations
that are obtained by using the weak form of the PDEs.

Both FEM and FDM find the nodal values while FVM give the cell average values. A disadvantage of
FDM is the difficulty that comes in to play when having non-equidistant grids, while this is not a problem
for FVM and FEM. Only the FVM has an advantage of guaranteeing mass conservation and allowing
discontinuities.

DG is a combination of FEM and FVM. FVM is actually a DG method with constant basis functions and
DG is a special case of FEM where discontinuities are allowed (see Figure 4.1). Therefore, DG has
good qualities from both methods:

• discontinuities are allowed

• non-equidistant grids can be used,

• conservation of mass,

• dynamic ℎ-𝑝 refinements (where ℎ is the grid size and 𝑝 the polynomial order of the basis function),

• high scalability - only communication between elements which share faces.

17
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Figure 4.1: Relation between FEM, FVM and DG where is a finite number of non-overlapping elements and the order of
basis functions. (Spectral elements is a finite element method with high order basis functions and spectral transform is also

finite element method with only one element and high order basis functions.) Image taken from [18].

4.2. Basics of Discontinuous Galerkin
The problem that is solved in this chapter is the same simple one-dimensional advection equation (3.3)
as in Section 3.3:

{
+ ( ) = 0 𝑥 ∈ [𝑎, 𝑏], 𝑡 > 0,

𝜑(𝑥, 0) = 𝜑 (𝑥) 𝑥 ∈ [𝑎, 𝑏],
𝜑(𝑎, 𝑡) = 𝜑(𝑏, 𝑡) 𝑡 > 0,

(3.3 revisited)

where 𝜑(𝑥, 𝑡) is the quantity of interest and 𝑓(𝜑) = 𝑢𝜑 the given flux function.

First, the domain Ω = [𝑎, 𝑏] is partitioned into 𝐾 non-overlapping elements Ω = ∪ 𝐼 with 𝐼 =
[𝑥 / , 𝑥 / ], 𝑘 = 1,… , 𝐾. Just as in the finite element method, the function 𝜑(𝑥, 𝑡) is approximated
locally on every element 𝐼 :

𝜑(𝑥, 𝑡) ≅ 𝜑 (𝑥, 𝑡) =⨁𝜑 (𝑥, 𝑡), where

𝜑 (𝑥, 𝑡) ∈ 𝑉 = {𝑣 ∈ 𝐿 (𝑎, 𝑏) ∶ 𝑣| ∈ ℙ (𝐼 ), 𝑘 = 1,… , 𝐾}.

Here ℙ is the space of polynomials of degree 𝑁.

DG is resolved around the weak formulation of the equation which is obtained by multiplying the dif-
ferential equation and initial condition with an arbitrary piecewise continuous function 𝜂 and integrating
over element 𝐼 :

⎧⎪
⎨⎪⎩

∫ [𝜕𝜑𝜕𝑡 +
𝜕
𝜕𝑥𝑓(𝜑)] 𝜂 𝑑𝑥 = 0,

∫ 𝜑(𝑥, 0)𝜂 𝑑𝑥 = ∫ 𝜑 (𝑥)𝜂 𝑑𝑥.

(4.1a)

(4.1b)

Using integration by parts, equation (4.1a) can be rewritten:

∫ 𝜕𝜑
𝜕𝑡 𝜂 − 𝑓(𝜑)

𝜕𝜂
𝜕𝑥 𝑑𝑥 + [𝑓(𝜑 )𝜂] /

/
= 0, (4.2)

Hereafter, 𝜂 is chosen to be a test function from 𝑉 and 𝜑 is approximated by assigning weights to
specified basis functions:

𝜑 (𝑥, 𝑡) =∑�̂� (𝑡)𝜓 (𝑥) =∑𝑎 (𝑥 , 𝑡)ℓ (𝑥), ∀𝑥 ∈ 𝐼 . (4.3)

The first expression 𝜑 (𝑥, 𝑡) is known as the modal form and the second the nodal form. Thus �̂� (𝑡)
are the modal coefficients and 𝑎 (𝑥 , 𝑡) the nodal coefficients. Basis functions 𝜓 (𝑥) are the functions
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belonging to the modal form and ℓ (𝑥) to the nodal form. With the use of the Vandermonde matrix
which is defined as a (𝑘 +1)× (𝑘 +1) matrix 𝑉 by 𝑉 = 𝜓 (𝑥 ), one can switch between the two forms:

𝑉�̂̂��̂�𝑎 = 𝑎𝑎𝑎 . (4.4)

In Section 4.3 the modal form of DG is used to solve problem (3.3) and in Section 4.4, the nodal form
is utilized.

4.3. Modal discontinuous Galerkin Method
First, the basis functions 𝜓 (𝑥) have to be chosen. The use of Legendre polynomials is a very popular
choice. These polynomials are 𝐿 -orthogonal which causes the mass matrix to become a diagonal
matrix.

The Legendre polynomials are defined as follows:

𝑃 (𝑥) = 1
2 ∑(𝑛𝑘) (𝑥 − 1) (𝑥 + 1) ,

and its orthogonality relation is given by:

∫ 𝑃 (𝑥)𝑃 (𝑥) 𝑑𝑥 = 2
2𝑚 + 1𝛿 ,

where 𝛿 is the Kronecker delta function.

In order to take full advantage of the Legendre polynomials, the coordinate transformation 𝜉(𝑥) = ( )

is applied such that the Legendre polynomials can be used on the reference element [−1, 1].

In short, the basis function 𝜂 and the approximation 𝜑 are given by:

𝑥 ∈ 𝐼 ∶
⎧

⎨
⎩

𝜂 (𝑥) = 𝑃(𝜉(𝑥)), 𝑖 ∈ {0, … , 𝑁}

𝜑 =∑�̂� (𝑡)𝑃(𝜉(𝑥)) . (4.5)

Using the above and filling this in the weak formulation (4.2), we get the following equations:

∀𝑖 ∈ {0,… , 𝑁} ∶

⎧
⎪⎪

⎨
⎪⎪
⎩

∫ ∑ 𝜕
𝜕𝑡 �̂� (𝑡)𝑃 (𝜉(𝑥))𝑃(𝜉(𝑥)) − 𝑓(𝜑 )𝜕𝑃(𝜉(𝑥))𝜕𝑥 𝑑𝑥 + [𝑓(𝜑 )𝑃(𝜉(𝑥))] /

/
= 0,

∫ ∑�̂� (𝑡)𝑃 (𝜉(𝑥))𝑃(𝜉(𝑥)) 𝑑𝑥 = ∫ 𝜑 (𝑥)𝑃(𝜉(𝑥)) 𝑑𝑥.

As a result of the coordinate transformation, integrals and derivatives can be rewritten using 𝑑𝑥 =
𝑑𝜉 and = . Furthermore, the orthogonality of the basis functions can be used to

simplify the equations:

∀𝑖 ∈ {0,… , 𝑁} ∶
⎧⎪
⎨⎪
⎩

Δ𝑥
2𝑖 + 1

𝜕
𝜕𝑡 �̂� (𝑡) − ∫ 𝑓(𝜑 ) 𝑑𝑑𝜉𝑃(𝜉) 𝑑𝜉 + [𝑓(𝜑 )𝑃(𝜉(𝑥))] /

/
= 0,

Δ𝑥
2𝑖 + 1�̂� (0) = ∫ 𝜑 (𝑥)𝑃(𝜉(𝑥)) 𝑑𝑥.

(4.6a)

(4.6b)
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𝑥 𝑥 𝑥𝐼 𝐼

𝑔

𝑔

Figure 4.2: Example of a function which is discontinuous at the element boundaries.

As the approximated function is allowed to have discontinuities, there are some ambiguities around the
boundaries of the elements as can be seen in Figure 4.2. Therefore, the following notation is used to
indicate which value is used:

𝜂 , / = lim
↓ /

𝜂 (𝜉(𝑥)),

𝜂 , / = lim
↑ /

𝜂 (𝜉(𝑥)).

With the given notation, the third term of (4.6a) can be written as:

[𝑓(𝜑 )𝜂 (𝜉(𝑥))] /
/
= �̂� / 𝜂 / − �̂� / 𝜂 , / ,

where �̂� ± / denotes the numerical flux value on the boundary 𝑥 ± / which can depend on both 𝑥 ± /
and 𝑥 ± / .

There are many choices for the numerical fluxes[16], such as:

1. Upwind,

2. Godunov,

3. Lax-Friedrich.

The DG solution is not very sensitive to the choice of numerical fluxes. This means that a very simple
numerical flux suffices [18].

4.3.1. Example
For illustration, a constant speed 𝑢 and a simple numerical flux, the first order upwind method, are
chosen:

𝑓(𝜑) = 𝑢𝜑 where 𝑢 ∈ ℝ ,
�̂� ± / = 𝑓(𝜑 , ± / ).

(4.7a)
(4.7b)

Equations (4.6) becomes for all 𝑖 ∈ {0, … , 𝑁}:

⎧
⎪

⎨
⎪
⎩

Δ𝑥
2𝑖 + 1

𝜕
𝜕𝑡 �̂� (𝑡) − ∫ 𝑢(∑�̂� (𝑡)𝑃 (𝜉)) 𝑑

𝑑𝜉𝑃(𝜉) 𝑑𝜉 + �̂� / 𝜂 , / − �̂� / 𝜂 , / = 0,

Δ𝑥
2𝑖 + 1�̂� (0) = ∫ 𝜑 (𝑥)𝑃(𝜉(𝑥)) 𝑑𝑥.

(4.8a)

(4.8b)

Then with the use of the definition of the chosen numerical fluxes and the basis function, it is known
that 𝜂 , / = 𝑃(1) = 1 and 𝜂 , / = 𝑃(−1) = (−1) and (4.8a) can be rewritten:

Δ𝑥
2𝑖 + 1

𝜕
𝜕𝑡 �̂� (𝑡) − 𝑢∑�̂� (𝑡)∫ 𝑃 (𝜉) 𝑑𝑑𝜉𝑃(𝜉) 𝑑𝜉 + 𝑓(𝜑 , / ) − 𝑓(𝜑 , / )(−1) = 0. (4.9)
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Using the flux function and the definition of 𝜑 , the fluxes can be rewritten:

𝑓(𝜑 , / ) − 𝑓(𝜑 , / )(−1) = 𝑢 (∑�̂� (𝑡)𝑃 (1)) − 𝑢(∑�̂� (𝑡)𝑃 (1)) (−1) = 0,

= 𝑢 (∑�̂� (𝑡)) − (−1) 𝑢 (∑�̂� (𝑡)) .

(4.10a)

(4.10b)

Hence, element 𝐼 , which is the left neighbour of element 𝐼 , is needed.

Altogether, the following equations have to be solved for 𝑘 ∈ {1,… , 𝐾}:

⎧
⎪

⎨
⎪
⎩

Δ𝑥
2𝑖 + 1

𝜕
𝜕𝑡 �̂� (𝑡) − 𝑢∑�̂� (𝑡)∫ 𝑃 (𝜉) 𝑑𝑑𝜉𝑃(𝜉) 𝑑𝜉 + (∑�̂� (𝑡)) − (−1) (∑�̂� (𝑡)) = 0,

Δ𝑥
2𝑖 + 1�̂� (0) = ∫ 𝜑 (𝑥)𝑃(𝜉(𝑥)) 𝑑𝑥,

(4.11a)

(4.11b)

for all 𝑖 ∈ {0, … , 𝑁}, which is in matrix form:

⎧⎪
⎨⎪⎩

𝑀 𝜕
𝜕𝑡�̂̂��̂�𝑎 − 𝑆 �̂̂��̂�𝑎 + 𝐹 �̂̂��̂�𝑎 − 𝐹 �̂̂��̂�𝑎 = 0,

𝑀 �̂̂��̂�𝑎 (0) = (∫ 𝜑 𝑃(𝜉(𝑥)) 𝑑𝑥) = �̃̃��̃�𝜑 .

(4.12a)

(4.12b)

Suppose we take linear basis functions (𝑁 = 1), then the mass matrix of element 𝑘 is:

𝑀 = (
Δ𝑥 0
0 ) ,

the stiffness matrix:

𝑆 = 𝑢∫ 𝑃 (𝜉) 𝑑𝑑𝜉𝑃 (𝜉) 𝑑𝜉 ⟺ 𝑆 = 𝑢 (0 0
2 0) ,

and the numerical fluxes for element 𝑘, which also depend on element 𝑘 − 1:

𝐹 = 𝑢 (1 1
1 1) , 𝐹 = 𝑢 ( 1 1

−1 −1) .

The same domain Ω = [−5, 5] and initial condition as in Section 3.3 is taken:

𝜑 (𝑥) = {

( ( )) , 𝑥 ∈ [−3,−1]
1, 𝑥 ∈ [1, 3]
0, otherwise

(4.13)

The initial vector �̂̂��̂�𝑎 (0) is found by solving 𝑀 �̂̂��̂�𝑎 (0) = �̃̃��̃�𝜑 , giving the initial condition projected to
the finite element space. The 𝐿 -projection of the initial condition, 𝜑 (𝑥, 0), is the 𝜑 which minimizes
‖𝜑 (𝑥) − 𝜑 (𝑥, 0)‖ . For this the initial condition 𝜑 is multiplied with the test function and integrated
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exactly:

�̃̃��̃�𝜑 = (∫
𝜑 𝑃 (𝜉(𝑥)) 𝑑𝑥

∫ 𝜑 𝑃 (𝜉(𝑥)) 𝑑𝑥) , with

∫ 𝜑 𝑃 (𝜉(𝑥)) 𝑑𝑥 =
⎧

⎨
⎩

[𝜉 − sin(𝑎𝜉 + 𝑏)] , 𝐼 ⊆ [−3,−1],
Δ𝑥 , 𝐼 ⊆ [1, 3],
0, otherwise,

, and

∫ 𝜑 𝑃 (𝜉(𝑥)) 𝑑𝑥 =
⎧

⎨
⎩

[ 𝜉 − (𝑎𝜉 sin(𝑎𝜉 + 𝑏) + cos(𝑎𝜉 + 𝑏)) ] , 𝐼 ⊆ [−3,−1],
0, 𝐼 ⊆ [1, 3],
0, otherwise,

(4.14a)

(4.14b)

(4.14c)

where 𝑎 = and 𝑏 = 𝜋(𝑥 − 1).

4.4. Nodal discontinuous Galerkin Method
For the basis function ℓ (𝑥), we take the Lagrangian polynomials, which are based on the Legendre-
Gauss-Lobatto (LGL) points; those are 𝑁 + 1 nodes in the interval [−1, 1] that satisfy:

(1 − 𝑥 )𝑃 (𝑥) = 0. (4.15)

One can also take 𝑁+ 1 equidistant nodes, however, the extrema and minima of the Lagrangian poly-
nomials can get out of control when𝑁 becomes greater. In [18] the problems of using equidistant nodes
are explained more thoroughly. For this reason we chose to use LGL nodes.

After we have chosen the basis functions, we can fill in

∀𝑥 ∈ 𝐼 ∶
⎧⎪
⎨⎪⎩

𝜂 (𝑥) = ℓ (𝜉(𝑥)), 𝑖 ∈ {0, … , 𝑁},

𝜑 =∑𝑎 (𝑥 , 𝑡)ℓ (𝜉(𝑥)),

(4.16a)

(4.16b)

into the weak formulation (4.1), ∀𝑖 ∈ {0, … , 𝑁}:

⎧
⎪⎪

⎨
⎪⎪
⎩

∫ ∑ 𝜕
𝜕𝑡𝑎 (𝑥 , 𝑡)ℓ (𝜉(𝑥))ℓ (𝜉(𝑥)) − 𝑓(𝜑 )𝜕ℓ (𝜉(𝑥))𝜕𝑥 𝑑𝑥 + [𝑓(𝜑 )ℓ (𝜉(𝑥))] /

/
= 0,

∫ ∑�̂� (𝑥 , 𝑡)ℓ (𝜉(𝑥))ℓ (𝜉(𝑥)) 𝑑𝑥 = ∫ 𝜑 (𝑥)ℓ (𝜉(𝑥)) 𝑑𝑥.

(4.17a)

(4.17b)

4.4.1. Example
Just as in the example of the modal form (4.3.1), we take a simple flux and numerical flux as given in
(4.7), domain Ω = [−5, 5] and the same initial condition given in (4.13).

For 𝑁 = 1, the coordinate transformation 𝜉(𝑥) = / is used to take advantage of a linear coor-
dinate transformation for the integration. Hence the element matrices of the matrix-vector form of the
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problem, see (4.12a), are defined as:

𝑀 = Δ𝑥∫ ℓ (𝜉)ℓ (𝜉) 𝑑𝜉 ⇒ 𝑀 = Δ𝑥( ) ,

𝑆 = 𝑢∫ ℓ (𝜉) 𝑑𝑑𝜉 ℓ (𝜉) 𝑑𝜉 ⇒ 𝑆 = 𝑢(
− −

) ,

𝐹 = 𝑢 (0 0
0 −1) ,

𝐹 = 𝑢 (0 1
0 0) .

(4.18a)

(4.18b)

(4.18c)

(4.18d)

To find the 𝐿 -projection of the initial condition, the initial condition multiplied with the basis function is
calculated exactly:

�̃� = (∫
𝜑 ℓ (𝜉(𝑥)) 𝑑𝑥

∫ 𝜑 ℓ (𝜉(𝑥)) 𝑑𝑥) ,

∫ 𝜑 ℓ (𝜉(𝑥)) 𝑑𝑥 =
⎧⎪
⎨⎪⎩

[𝜉 − 𝜉 + cos(𝑎𝜉 + 𝑏) + (𝜉 − 1) sin(𝑎𝜉 + 𝑏)] , 𝐼 ⊆ [−3, −1],
, 𝐼 ⊆ [1, 3],

0, otherwise,

∫ 𝜑 ℓ (𝜉(𝑥)) 𝑑𝑥 =
⎧⎪
⎨⎪⎩

[ 𝜉 − (𝑎𝜉 sin(𝑎𝜉 + 𝑏) + cos(𝑎𝜉 + 𝑏)) ] , 𝐼 ⊆ [−3, −1],
, 𝐼 ⊆ [1, 3],

0, otherwise,

(4.19a)

(4.19b)

(4.19c)

where 𝑎 = 𝜋Δ𝑥 and 𝑏 = 𝜋(𝑥 / − 1).

For an 𝑁 > 1 and particularly if the initial condition is a vector of values instead a function, then inte-
grating exactly cannot be done. This problem can be solved by using quadrature rules. The quadrature
rule that works well with the LGL nodes 𝑥 is the Lobatto-Gauss-Legendre quadrature:

∫ 𝑓(𝑥)𝑑𝑥 ≈∑𝜔 𝑓(𝑥 ) with 𝜔 = 2
𝑁(𝑁 + 1)(𝑃 (𝑥 )) . (4.20)

This rule is exact for all polynomials of order 2𝑁 − 1 or less [12].

The linear coordinate transformation 𝜉(𝑥) = ( ) is used in order to have reference element [−1, 1]
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where also the LGL nodes lay. The following element matrices are obtained for (4.12a):

𝑀 = ∫ ℓ (𝜉(𝑥))ℓ (𝜉(𝑥)) 𝑑𝑥 = Δ𝑥
2 ∫ ℓ (𝜉)ℓ (𝜉) 𝑑𝜉 ≈ Δ𝑥

2 ∑𝜔 ℓ (𝜉 )ℓ (𝜉 ) = Δ𝑥
2 𝜔 𝛿 ,

𝑆 = 𝑢∫ ℓ (𝜉(𝑥))𝑑ℓ (𝜉(𝑥))𝑑𝑥 𝑑𝑥 = 𝑢∫ ℓ (𝜉)𝑑ℓ (𝜉)𝑑𝜉 𝑑𝜉 ≈ 𝑢∑𝜔 ℓ (𝜉 )ℓ (𝜉 ) = 𝑢𝜔 ℓ (𝜉 ),

𝐹 , = 𝑓(𝜑 / )ℓ (𝑥 / ) ⇒ 𝐹 = 𝑢(
0 … … 0
⋮ ⋱ ⋮
⋮ ⋱ 0
0 … 0 −1

) ,

𝐹 , = 𝑓(𝜑 / )ℓ (𝑥 / ) ⇒ 𝐹 = 𝑢(
0 … 0 1
⋮ ⋱ 0
⋮ ⋱ ⋮
0 … … 0

) .

(4.21a)

(4.21b)

(4.21c)

(4.21d)

The integration for the 𝐿 -projection of the initial condition can also be calculated using the LGL quadra-
ture:

�̃� = ∫ 𝜑 ℓ (𝜉(𝑥)) 𝑑𝑥 ≈ Δ𝑥
2 ∑𝜑 (𝜉 )𝜔 ℓ (𝜉 ) = Δ𝑥

2 𝜑 (𝜉 )𝜔 . (4.22)

4.5. Numerical Experiments
In this section, several numerical experiments are done with DG. First of all, the reason for the nodal
representation is given. Thereafter, the CFL restrictions for the time integrations and the error calcula-
tion are given. Next, the numerical results are shown and discussed.

As we have seen, there are two sorts of DG: nodal and modal, although as given in (4.3), the solutions
are equivalent. Certainly, one can see that in Figure 4.3 there is no difference between the modal and
nodal solutions. However, each representation has its own favourable properties. The modal form can
be handy when going from order 𝑁 − 1 to 𝑁 since only one extra basis function is added. This is not
the case for the nodal form. Moreover, most limiters are used on the modal form of the solutions. How-
ever, for the nodal representation there is no need to transfer between the spectral and physical space,
making it easier to plot and implementing the boundary and initial conditions. Also for the definition of
element continuity the nodal form is handier. Therefore, the nodal representation is used in this thesis
project.

CFL condition
For the Runge-Kutta discontinuous Galerkin (RKDG) the CFL condition is not restricted by the common
1-limit, but the condition has to ensure 𝐿 -stability:

|𝑢| Δ𝑡Δ𝑥 ≤ CFL .

In [5], Cockburn and Shu give the CFL conditions for different order Runge-Kutta integration methods
and polynomial orders. These CFL numbers are given in Table 4.1.

Error calculation
To see how fast the method convergences, the errors are shown for different grid sizes. The error is
estimated by measuring the difference between the exact solution 𝜑(𝑥, 𝑡) = 𝜑 (𝑥 − 𝑢𝑡) and its finite
element approximation 𝜑 (𝑥, 𝑡). In the error calculation, instead of the exact solution, the 𝐿 -projected
initial condition is compared to the numerical solution after exactly one period which should exactly be
the initial condition (recall (3.5)). Because the 𝐿 -projection is advected, which is the finite element
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(a) Nodal solution (b) Modal solution after transforming to physical space

Figure 4.3: Nodal and Modal solution with , . and at .

𝑝 0 1 2 3 4 5 6 7 8
𝑣 = 1 1.000 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
𝑣 = 2 1.000 0.333 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
𝑣 = 3 1.256 0.409 0.209 0.130 0.089 0.066 0.051 0.040 0.033
𝑣 = 4 1.392 0.464 0.235 0.145 0.100 0.073 0.056 0.045 0.037
𝑣 = 5 1.608 0.534 0.271 0.167 0.115 0.085 0.065 0.052 0.042

Table 4.1: CFL for RKDG order and polynomial order , where ⋆ is unstable. Table taken from [5].

version of the initial condition and not the initial condition, moreover, comparing the 𝐿 -projection sim-
plifies the error calculation.

A very simple way to obtain the error is by using vector norms. The vector of the 𝐿 -projection is
given by 𝑎𝑎𝑎 (0) and the approximation by 𝑎𝑎𝑎 (10𝑐) for 𝑐 ∈ ℕ. In fact the difference between 𝜑 (𝑥) and
𝜑 (𝑥, 10𝑐) for every grid point 𝑥 is calculated with different vector norms. The vector norms that are
used are the ℓ -norm, ℓ -norm (Euclidean norm) and the ℓ -norm (infinity norm):

‖𝑎𝑎𝑎 (0) − 𝑎𝑎𝑎 (10𝑐)‖ =∑|𝑎 (0) − 𝑎 (10𝑐) | ,

‖𝑎𝑎𝑎 (0) − 𝑎𝑎𝑎 (10𝑐)‖ = √∑(𝑎 (0) − 𝑎 (10𝑐) ) ,

‖𝑎𝑎𝑎 (0) − 𝑎𝑎𝑎 (10𝑐)‖ = max |𝑎 (0) − 𝑎 (10𝑐) | .

(4.23a)

(4.23b)

(4.23c)

Since two functions are compared, a function norm should, however, be used. For this reason the
difference between the two functions is also calculated with the 𝐿 -norm:

‖𝜑 − 𝜑 ‖ = √∫ |𝜑 − 𝜑 | 𝑑Ω. (4.24)

With the basis function representation of the 𝐿 -projected initial condition and the solution exactly 𝑐
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periods later, the 𝐿 -norm can be written as:

‖𝜑 (𝑥, 0) − 𝜑 (𝑥, 10𝑐)‖ = √∫ |𝜑 (𝑥, 0) − 𝜑 (𝑥, 10𝑐)| 𝑑Ω

= √∑∫ (∑𝑎 (𝑥 , 0)ℓ (𝑥) −∑𝑎 (𝑥 , 10𝑐)ℓ (𝑥)) 𝑑𝑥

= √∑∫ (∑[𝑎 (𝑥 , 0) − 𝑎 (𝑥 , 10𝑐)]ℓ (𝑥)) 𝑑𝑥.

(4.25a)

(4.25b)

(4.25c)

For simplification, a new vector 𝛼𝛼𝛼 is defined which has 𝛼 = 𝑎 (𝑥 , 0) − 𝑎 (𝑥 , 10𝑐) as elements.

‖𝜑 − 𝜑 ‖ = √∑(∑∑𝛼 𝛼 ∫ ℓ (𝑥)ℓ (𝑥) 𝑑𝑥)

= √∑∑𝛼 (∫ ℓ (𝑥)ℓ (𝑥) 𝑑𝑥 … ∫ ℓ (𝑥)ℓ (𝑥) 𝑑𝑥)(
𝛼
⋮
𝛼
)

= √∑(𝛼𝛼𝛼 ) 𝑀 𝛼𝛼𝛼

= √𝛼𝛼𝛼 𝑀𝛼𝛼𝛼.

(4.26a)

(4.26b)

(4.26c)

(4.26d)

4.5.1. Numerical Solutions
In this section, three different DG methods are shown by changing the polynomial order of the basis
functions. First, only linear basis functions (𝑁 = 1) are used. Thereafter, the results of DG using
quadratic basis functions (𝑁 = 2) and basis functions of order 𝑁 = 4 are described. These polyno-
mial orders are chosen, because of their theoretical convergence of 𝑁 + 1. Since the time integration
method has only order 3, using basis functions higher than 2 would theoretically not add any advan-
tages, because the error of the time integration would play a bigger role. However, the WENO method
is of order 5, therefore, using basis functions of order 4 would give a fair comparison.

In Figure 4.4a and Figure 4.4b, the numerical solutions at 𝑡 = 10 and 𝑡 = 50 are given for DG with
linear basis functions. It shows that for 𝑁 = 1, the results are dispersive and also a bit diffusive, but
significantly less than the first order upwind. A more positive feature is the absence of time lag which
are present in the finite difference methods.

The numerical solutions of DG with 𝑁 = 2 at 𝑡 = 10 and 𝑡 = 50 are shown in Figure 4.5a and Figure
4.5b respectively. For 𝑁 = 2, DG is less dispersive and diffusive as DG with 𝑁 = 2. Hence there are
significantly more grid points than for 𝑁 = 1, since every element has an extra point in the middle of
the element. Therefore, Figure 4.6 is given to show the results when all the grid points are the same
as for 𝑁 = 1. Still for 𝑁 = 2, the diffusion is less.

For 𝑁 = 4, the solutions are shown in Figure 4.7. First, it must be noted that for 𝑁 = 4 only inexact
integration with LGL quadrature is used. However, there is no sign of diffusion. On top of that, only
a small part of the domain, around the discontinuities, 𝜑(𝑥, 10) is approximated incorrectly due to the
oscillations. An extra result is plotted with the same grid points as the combinations 𝑁 = 1, 𝐾 = 100
and 𝑁 = 2, 𝐾 = 50 in Figure 4.8 to compare those three solutions in an other way. For 𝑁 = 4, the
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diffusion is less than for 𝑁 = 1 and 𝑁 = 2, nevertheless, the dispersion is more. An other interesting
note, is the similarity between the fifth order upwind at 𝑡 = 10 and DG with 𝑁 = 4 at 𝑡 = 50, obviously
without the time lag.

For all three different polynomial orders, DG seems to work well, obviously for higher 𝑁 the accuracy
is higher. Especially DG is very good in smooth regions. It is as diffusive as the fifth order upwind
and the WENO method and is also conservative. Moreover, there is no time lag as the finite difference
methods that are implemented in DALES. The only disadvantage of DG is the dispersion error around
the discontinuity.

(a) DG with at . (b) DG with at .

Figure 4.4: DG with , . ⇔ and . CFL | | .

(a) DG with at . (b) DG with at .

Figure 4.5: DG with , . ⇔ and . CFL | | .
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(a) DG with at . (b) DG with at .

Figure 4.6: DG with , . ⇔ and . CFL | | .

(a) DG with at . (b) DG with at .

Figure 4.7: DG with , . ⇔ and . CFL | | .

(a) DG with at . (b) DG with at .

Figure 4.8: DG with , . ⇔ and . CFL | | .
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4.5.2. Computational time
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Figure 4.9: Computational time of the advection schemes in DALES and the tested DG to simulate till 50 s.

The computation time of DG is 10 times longer than WENO for 𝑁 > 2. This is due to more grid points
where the solution is approximated; three grid points per element extra are needed. However, we
suspect that DG could be faster when parallelization is used.

4.5.3. Convergence
The convergence of DG for Cartesian grids is 𝒪(Δ𝑥 ), which has been proven by LeSaint and Raviart
[15]. In this subsection, the numerical methods are tested to see whether they converge with order𝑁+1.
The advection equation depends on time and space, therefore, both time and spatial discretization are
tested on convergence at the same time. Since the time integration method is theoretical of order 3,
DG with 𝑁 = 4 is tested without the coupling to time.

Coupled tests
Figure 4.10a and Figure 4.10b show that the vector errors do not converge for both 𝑁 = 1 and 𝑁 = 2.
The 𝐿 -norm for 𝑁 = 1 and 𝑁 = 2 does converge with , while it should be 2 and 3. The reason for
this could be the presence of oscillations around the discontinuities. Therefore, the tests are also done
without advecting the discontinuous part of 𝜑 .
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Figure 4.10: Numerical error of advecting till 10 s with . CFL .
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The initial condition with only the smooth part of 𝜑 is given by:

�̆� (𝑥) = {
( ( )) , 𝑥 ∈ [−3,−1]

0, otherwise
(4.27)

In Figure 4.11b and Figure 4.11a the errors of advecting this function for several grid sizes are given.
In Figure 4.11b we see that DG with 𝑁 = 1 can indeed converge with order 2, however with 𝑁 = 2 a
convergence of order 3 has not been achieved. This means that this function is not smooth enough
which can for example be seen in the dispersion around the smooth part of 𝜑 in Figure 4.6. Moreover,
the vector norms converge which was not the case when 𝜑 was advected.
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Figure 4.11: Numerical error of advecting the smooth part of till 10 s with . CFL .

A very smooth and period function is a cosine or sine. Therefore, a sinus function with amplitude 0.5
and a period of is used. In Figure 4.12a a numerical result of DG with 𝑁 = 2 is shown of the sinus
function which show no limitations. Moreover, a convergence of order 3 is achieved, which confirms
the order of convergence to be 𝑁 + 1 for 𝑁 ≤ 2 for very smooth functions.

(a) Numerical solution with . ⇔ at
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Figure 4.12: Advecting . ( ) till 10 s with . CFL .

Decoupled tests
By taking Δ𝑡 constant and small enough to keep the method stable, only the discretization errors can
influence the results. These decoupled tests are done for 𝑁 = 4 with different initial conditions. For
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Figure 4.13a, the initial condition 𝜑 is advected. The numerical error calculated with the 𝐿 -norm con-
verges with order 0.5, nevertheless, the vector norms do not converge. This was also the case for
𝑁 = 1 and 𝑁 = 2 (see Figure 4.10). The convergence of DG with 𝑁 = 4 achieves order 2.5 when only
the smooth part of 𝜑 is advected, which can be seen in Figure 4.13b. In Figure 4.13c, the numerical
error is given when a smoother function as a sinus function is used. It shows that for 𝑁 = 4 the method
converges with order 5 till it does not converge anymore and for the ℓ - and ℓ - errors even rise. We
suspect that the time error starts playing a bigger role for the smaller grid sizes, which can be resolved
by using a smaller Δ𝑡.

All in all, the DG method with basis functions of polynomial order 𝑁 can indeed converge with order
𝑁 + 1 for smooth functions.
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Figure 4.13: Numerical errors of DG with using . .

4.6. Moment Limiter
A disadvantage of the DG method is the presence of non-physical oscillations in the results, therefore,
a limiter is needed. However, with most limiters the solution is reduced to first-order accuracy and the
advantage of high-order methods is lost.

The limiters that are made for DG are defined for the modal form of the DG, thus, the following steps
have to be taken:

1. Transform from nodal to modal representation,

2. Apply limiter,

3. Transform back from modal to nodal representation.
These steps can be done on element basis[18], meaning that there is no global assembly operation
needed which can save computational time.
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In this literature study the moment limiter is used. The choice for the moment limiter is the simple im-
plementation and the underlying idea. The moment limiter was first developed by Biswas et al. and
is a generalization to higher order of the second-order minmod limiter of van Leer [3]. Krivodonova
generalized the limiter and extended it to two-dimensional problems on tensor-product meshes [13].

The moment limiter gradually reduces the order if it is needed. It limits the derivative of order 𝑗 in a
given cell using the derivatives of order 𝑗 − 1 in the neighbouring cells. The limiter starts by limiting,
when needed, the highest orders first. Then the limiting process continues until it is not needed to limit
any more or until all terms are limited. With this strategy the solution has the highest order accuracy
possible when limiting is needed.

The moment limiter uses the minmod function which is defined as:

𝑚(𝑎 ,… , 𝑎 ) = {𝑠min |𝑎 |, if sgn(𝑎 ) = … = sgn(𝑎 ) = 𝑠,
0, otherwise.

(4.28)

The moment limiter also uses the modal form of the DG solution 𝜑 (𝑥, 𝑡) = ∑ �̂� (𝑡)𝜓 (𝑥). The
pseudoalgorithm of the Moment limiter can be found in Algorithm 1.

Algorithm 1 Moment Limiter
for all elements 𝐼 do
Set 𝑗 = 𝑁
while 𝑗 = 𝑁 or (�̃� ≠ �̂� and 𝑗 > 1) do
𝛽 = √ /

√ /

�̃� = 𝑚 (�̂� , 𝛽 (�̂� − �̂� ), 𝛽 (�̂� − �̂� ))
𝑗 = 𝑗 − 1

end while
end for

The idea behind this algorithm is that roughly speaking the �̃� corresponds to the 𝑗th derivative of the
solution of element 𝑘. Thus, this coefficient is compared with the numerical derivative using forward
and backward differences.

4.6.1. Numerical Results
In this subsection, the numerical results are given for the moment limited DG methods with basis func-
tions of polynomial order 𝑁 = 1, 𝑁 = 2 and 𝑁 = 4 using coupled tests. Moreover, the convergence
and computational time will be computed.

For 𝑁 = 1, only one coefficient can be limited, meaning that when limiting is needed, the second order
derivatives are set to zero. In Figure 4.14, the numerical results are given at 𝑡 = 10 and 𝑡 = 50. The
peak is clipped and diffusion is added. Moreover, the extrema of the dispersion is smaller, but not
completely removed. In time, we see that the diffusion has a significant impact. On top of that, the
smooth part of the results lean to the right, the direction of the speed and towards the discontinuous
part. The cause of this could be the dispersion that comes from the discontinuous part of 𝜑 .

For a one order higher method, DG with 𝑁 = 2, the effect of the moment limiter is significantly better
than for 𝑁 = 1 (see 4.15). The remains of the dispersion that were still present for 𝑁 = 1, are almost
removed at 𝑡 = 10 and for 𝑡 = 50 completely gone. Moreover, the amount of diffusion is similar as the
amount for 𝑁 = 1, only there is no peak clipping.

In Figure 4.16, the numerical results of moment limited DG with 𝑁 = 4 are given. The remains of the
dispersive errors which were still present for 𝑁 = 1, 𝑁 = 2 at 𝑡 = 10, are absent for 𝑁 = 4. An other
striking result, is the similarity between the numerical solutions at 𝑡 = 50 for both 𝑁 = 2 and 𝑁 = 4.
It seems as if the moment limiter considers this function as smooth when Δ𝑥 = 0.1. The solution for
𝑡 = 10 is better approximated when 𝑁 = 4 than for 𝑁 = 2.
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(a) at (b) at

Figure 4.14: Moment limited DG with , . and . CFL

(a) at (b) at

Figure 4.15: Moment limited DG with , . and . CFL

(a) at (b) at

Figure 4.16: Moment limited DG with , . and . CFL
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Convergence
In this section, the convergence of the moment limited DG is tested with 𝑁 = 4. The convergence of the
not limited DG with 𝑁 = 4 is of order 5 for very smooth functions. In general, a limiter reduces the order
of the method. This can also be concluded from the convergence plots in Figure 4.17. Even for smooth
functions the convergence of order 5 is not obtained. However, if we compare this with the convergence
of the WENO method which can be seen in Figure 4.18, it can be seen that the convergence of the
methods are the same. Nevertheless, the numerical error of the limited DG with 𝑁 = 4 is less in all
cases, for 𝜑 , the smooth part of 𝜑 and the sine. This is due to the time lag the WENO method has.
Thus even though the shape is better maintained with WENO, the numerical error of limited DG is less.
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Figure 4.17: Numerical errors of the moment limited DG with using . .
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Figure 4.18: Numerical errors of the WENO method using . .

Computation time
In Figure 4.19, the computation time of DG, limited DG and the WENO method is given. For 𝑁 = 2
and 𝑁 = 4 the computational time with the addition of a limiter is twice as long than without limiter. For
𝑁 = 1 the computational time becomes 5 times as long with than without limiter. Compared to WENO,
the limited DG with 𝑁 = 4 is twice as slow. However, parallelization is not used for the computation of
the method of DG and the limiter and that could speed up the computation.
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Figure 4.19: Computational time of the advection schemes in DALES and the tested DG to simulate till 50 s.

4.7. Concluding Remarks
All in all, the discontinuous Galerkin method works good for smooth functions. Namely, the truncation
error of the method is 𝒪 (Δ𝑥 ) where 𝑁 is the polynomial order of the basis functions. Moreover,
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there is no time lag present which was present when the WENO method was used. The absence of
the time lag is very important to the KNMI, especially for the long-time predictions. However, at discon-
tinuous parts non-physical oscillations take place. Therefore, a limiter is needed.

The limiter that is tested in this chapter is the moment limiter. This limiter removes the oscillations by
adding diffusivity. Unfortunately, this makes the method too diffusive and it also reduces the method to
a lower order. Nonetheless, the convergence is the same as the WENO method and on top of that, the
numerical error is smaller than of the WENO, due to the absence of a time lag.



5
Open problems & Issues

In this chapter the open problems and issues will be examined. In the past chapters, one dimensional
advection equations are discussed, nevertheless, DALES is a three dimensional model. This has
several consequences for the DG method. Moreover, other options for limiters and ideas for test cases
are given.

5.1. Higher Dimensions & Polynomial Basis Functions
5.1.1. Basis Functions
As told before, DALES considers a three dimensional problem. This means that the DG method needs
three dimensional basis functions. Since the grid cells in DALES are cuboids, a tensor product of the
one-dimensional basis functions is a simple option. In other words, a tensor product of the Lagrangian
functions which are based on LGL grid points should be used. When for example a triangulated grid
was used, multivariate lagrangian polynomials would be an option [20]. For the modal form, which is
needed for the limiter, a tensor product of the scaled Legendre polynomials could be a good choice.

5.1.2. Staggered Grids
As told in Chapter 3, DALES uses an Arakawa C-grid for the grid discretization. This must not be
changed when DG is implemented. Therefore, the use of staggered grids with DG needs to be re-
flected on.

Recall that the weak formulation is written as:

∫ 𝜕𝜑
𝜕𝑡 𝜂 − 𝑓(𝜑)

𝜕𝜂
𝜕𝑥 𝑑𝑥 + ∫ 𝑓(𝜑 )𝜂 ⋅ 𝑛𝑛𝑛 𝑑Γ = 0, (5.1)

where the flux function is given by 𝑓(𝜑) = 𝑢𝑢𝑢𝜑. In other words, the velocity 𝑢𝑢𝑢 is integrated over the grid
box and the faces of the grid cell. Especially when 𝑢𝑢𝑢 is not constant, the location of the approximated
𝑢𝑢𝑢 is very important.

For every 𝑁, many options are available. One-dimensional drawings are used to illustrate several op-
tions which can be extended to higher dimensions by using a tensor product.

In Figure 5.1, two possibilities for linear basis functions are displayed. The Arakawa C-grid for one-
dimension is drawn in black and the DG option in red. The left figure is the most straightforward choice:
take the whole grid cell as element. Then 𝜑 is calculated by interpolating 𝜑 and 𝜑 or their average.
On the right side, the grid cell is split into two elements. This means that no interpolation is needed
to acquire 𝜑 but it can be taken as 𝜑 or 𝜑 . Instead the velocity at 𝑥 must be approximated by
interpolating 𝑢 and 𝑢 .

For 𝑁 = 2, two options are illustrated in Figure 5.2. On the left side, the element is exactly one grid
cell. For this method, the velocity has to be approximated at 𝑥 = 𝑥 , but no interpolation is needed

37
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Figure 5.1: Staggered grid options for .

to find 𝜑 . On the right side, a less straightforward suggestion is given which shows an element that
covers two grid cells. The advantage of this is that computational time is shorter, because there are
less extra values of 𝜑 approximated that are not needed (like 𝜑 and 𝜑 in the left side of the figure).
However, interpolation is needed to get 𝜑 and 𝜑 leading to even more inaccuracy than it has by
having bigger elements. For higher polynomial degrees 𝑁 > 2, about the same options can be used.
By taking even polynomial degrees 𝜑 is always calculated and no extra interpolation is needed than
when taking uneven polynomial orders.
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Figure 5.2: Staggered grid options for .

In my thesis project, the whole grid cell will be taken as an element. This gives a higher accuracy than
taking more grid cells as one element and a shorter computational time than when a grid cell is split
into multiple elements.

5.1.3. Initial and Boundary Conditions
As shown in the left figure of Figure 5.2, the value 𝜑 of multiple grid points are calculated, meaning
that these has also to be given by the initial condition and also for the boundary condition. When the
initial and/or boundary condition is a function, there is no problem. However, the initial and/or boundary
condition is a vector of values, so an extra interpolation is needed.

5.1.4. Higher Dimensional Moment Limiter
The moment limiter has to be extended to three dimensions. In [13], the derivations of the limiter for
one-dimensional and two-dimensional problems are thoroughly explained, therefore, the extension to
three-dimensional problems should be doable.

5.2. Other Limiters
In this section two other limiters than the moment limiter are given that can be used for advection
equations.

5.2.1. Algebraic Flux Correction
An algebraic approach to find a high-resolution scheme for scalar conservation laws is algebraic flux
correction (AFC) by Kuzmin [14]. AFC is a generalization of the flux-corrected transport (FCT) method-
ology. AFC creates from a given standardGalerkin discretization, a positivity-preserving implicit Galerkin
scheme and removes excessive artificial diffusion in sufficiently smooth areas. This is done by decom-
posing the antidiffusive part of the discrete operator into numerical fluxes and limit those fluxes in a
conservative way.
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5.2.2. Shock Detection using Multiwavelets
Another limiter that could be used is a troubled cell indicator by using multiwavelets [25]. Vuik used
a multiwavelet formulation to decompose the modal DG approximation into a sum of global averages
and finer details on different levels. Moreover, she proved that there is an exact relation between the
multiwavelet coefficients of the highest decomposition level and jumps in the DG approximation. With
this troubled cell indicator, only troubled cells can be limited instead that also local extrema are limited.

5.3. Test Cases
When DG is implemented in DALES, it must be tested and compared with the other implemented
advection equations. This will be done with several test cases. First, a simple advection equation will
be tested with periodic boundaries and flux function 𝑓(𝜑) = 𝑢𝑢𝑢𝜑 where𝑢𝑢𝑢 is constant. The initial condition
would be a smooth function like a sinus. Thereafter, a discontinuous initial condition condition will be
tested. This could be a cubic that is advected. Another test could be a temperature and/or moisture
inversion as in Figure 5.3 is shown. With this test it becomes clear whether there is too much artificial
diffusivity is added. If that is the case the eddies that arise, would not be shown in the simulation.

Figure 5.3: Temperature inversion. Image taken from [8].





6
Summary and Conclusion

In this chapter, the summary and conclusion of the literature study are given. At last, the literature study
is concluded with the future work of the thesis project.

6.1. Summary
The problems of numerical weather prediction and climate models are mathematically modelling atmo-
spheric processes and to evaluate the models as accurate and efficiently as possible. One of these
atmospheric processes that could be solved more accurately and efficiently is the advection. Advection
is one of the most important processes that takes place in the atmosphere. The Dutch Atmospheric
Large-Eddy Simulation model (DALES) that is used, among other things, for parametrization devel-
opment, still has problems with its advection schemes. Therefore, the discontinuous Galerkin (DG)
method is suggested which is known for its high scalability, geometric flexibility and allowance of dis-
continuous approximations.

The atmosphere is a layer of air around the Earth that is kept in place by the Earth’s gravity. Most
weather takes place in the lowest part of the atmosphere, the troposphere. The origin of the processes
that cause the different weather types is the movement of air in the atmosphere. For the movement of
air and even in absence of air movement, three conservation laws must hold: conservation of motion,
mass and (thermodynamic)energy. This is described by three equations: the Navier-Stokes equation,
the continuity equation and the advection equation. In DALES, the filtered versions of these equations
are used such that the computational cost is reduced by filtering out the smallest scales of the turbu-
lence.

Moreover, various finite difference advection schemes of DALES have been tested for a simple one-
dimensional advection problem. The low order advection schemes have a very short computation time,
but do not have a high accuracy. The WENO method has a higher accuracy and no dispersion errors,
whereas the fifth order upwind has dispersion errors. Not to mention, the finite difference schemes all
have a time lag creating a problem for long-time predictions.

The DG method is a combination of the finite element method and the finite volume method. This
method solves the weak form of the differential equations instead solving the differential equations like
the finite difference method does. The idea of DG works well for smooth applications, DG shows no
problems like time lags or diffusion. On top of that, DG superconverges with 𝑁 + 1 where 𝑁 is the
polynomial order of the basis functions. However, at discontinuities there are non-physical oscillations
in the approximations. These can be resolved by using a limiter. Like most limiters, the tested moment
limiter removes the dispersion errors, but adds too much artificial diffusion which reduces the order
of the method. Moreover, the limited DG method does not have a shorter computation time than the
WENO method.

As DG will be implemented in DALES, the implementation of DALES should be taken into account.
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This means that the one-dimensional DG that was tested in this literature study, has to be extended
to the three-dimensional advection problem. The extension has consequences on the basis functions,
initial and boundary conditions, and the limiters. Moreover, the Arakawa C-grid of DALES, which is a
staggered grid, also has influence on DG. These open problems are reflected on in Chapter 5. More-
over, more limiters are given as other options for the moment limiter. At last, several test cases are
shown that can be used to test the higher dimensional advection DG schemes.

6.2. Conclusion
All in all, the DG method shows that it is very promising. The method converges with order 𝑁+1 where
𝑁 is the polynomial degree of the basis functions and even though the computation time is not shorter
than the other implemented advection schemes of DALES, we have not yet taken the advantage of
the high-scalability of DG. The disadvantage of DG is the dispersion errors at the discontinuities. To
remove these oscillations, a limiter is needed. Unfortunately, the tested moment limiter reduces the
order by adding too much artificial diffusion. This does not take away that the results of DG are much
better because of the absence of the time lags.

6.3. Future Work
First, DG will be implemented for a two-dimensional Discontinuous Galerkin method in the horizontal
direction 𝑥 and vertical direction 𝑧 (height). Thereafter, the three-dimensional DG method will be imple-
mented in such way the Fortran subroutine can be used in the DALES model, but will be tested outside
the DALES model. Last but not least, the moment limiter will be implemented and tested. If the project
goes smoothly, the shock detection method of Vuik [25] can be tested.
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