## Literature Study

Modeling an angiogenesis treatment after a myocardial infarction
Linda Crapts
4 april 2012

TUDelft

## Introduction



TUD ${ }^{T}$ Ift

[^0]

## Outline

(1) Mathematical model
(2) Mathematical analysis
(3) Numerical methods

4 Further research

## Next section

(1) Mathematical model
(2) Mathematical analysis
(3) Numerical methods

4 Further research

## Mathematical model

Stem cell density

$$
\begin{aligned}
& \frac{\partial m}{\partial t}=-\beta_{1} m \\
& \quad m(x, 0)= \begin{cases}m_{0} & x \in \Omega_{w} \\
0 & x \in \Omega \backslash \Omega_{w}\end{cases}
\end{aligned}
$$

## Mathematical model

Stem cell density

$$
\begin{aligned}
& \frac{\partial m}{\partial t}=-\beta_{1} m \\
& \quad m(x, 0)= \begin{cases}m_{0} & x \in \Omega_{w} \\
0 & x \in \Omega \backslash \Omega_{w}\end{cases}
\end{aligned}
$$

## Concentration TG-beta (attractant)

$$
\begin{aligned}
& \frac{\partial c}{\partial t}-D_{1} \frac{\partial^{2} c}{\partial x^{2}}+\lambda c=\alpha m \\
& \quad c(x, 0)=0, \\
& \quad \frac{\partial c}{\partial x}(0, t)=\frac{\partial c}{\partial x}(1, t)=0 .
\end{aligned}
$$

## Mathematical model

Capillary tip density

$$
\begin{aligned}
& \frac{\partial n}{\partial t}+\chi_{1} \frac{\partial}{\partial x}\left(n \frac{\partial c}{\partial x}\right)-D_{2} \frac{\partial^{2} n}{\partial x^{2}}=\alpha_{0} \rho c+\alpha_{1} H(c-\hat{c}) n c-\beta_{2} n \rho, \\
& \text { - } n(x, 0)=0, \\
& \text { - } \frac{\partial n}{\partial x}(0, t)=\frac{\partial n}{\partial x}(1, t)=0 .
\end{aligned}
$$

## Mathematical model

Capillary tip density

$$
\begin{aligned}
& \frac{\partial n}{\partial t}+\chi_{1} \frac{\partial}{\partial x}\left(n \frac{\partial c}{\partial x}\right)-D_{2} \frac{\partial^{2} n}{\partial x^{2}}=\alpha_{0} \rho c+\alpha_{1} H(c-\hat{c}) n c-\beta_{2} n \rho, \\
& \text { - } n(x, 0)=0, \\
& \text { - } \frac{\partial n}{\partial x}(0, t)=\frac{\partial n}{\partial x}(1, t)=0 .
\end{aligned}
$$

Vessel density

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}-\epsilon \frac{\partial^{2} \rho}{\partial x^{2}}+\gamma\left(\rho-\rho_{e q}\right)=\mu_{1} \frac{\partial n}{\partial x}-\chi_{2} n \frac{\partial c}{\partial x}, \\
& \bullet \rho(x, 0)= \begin{cases}0 & x \in \Omega_{w}, \\
\rho_{e q} & x \in \Omega \backslash \Omega_{w},\end{cases} \\
& -\frac{\partial \rho}{\partial x}(0, t)=0, \rho(1, t)=\rho_{e q} .
\end{aligned}
$$

## Next section

## (1) Mathematical model

(2) Mathematical analysis
(3) Numerical methods

4 Further research

## Stem cell density

The stem cell density decreases exponentially:

$$
m(x, t)= \begin{cases}m_{0} e^{-\beta_{1} t} & x \in \Omega_{w} \\ 0 & x \in \Omega \backslash \Omega_{w}\end{cases}
$$



## Amount of TG-Beta

The amount of TG-beta is determined by $\int_{\Omega} c d \Omega$.


## Characteristics of the capillary tip density

Speed of the characteristics: $\frac{d x}{d t}=\chi_{1} \frac{\partial c}{\partial x}$.


Boundary wound: $\delta=0.2$. $\Rightarrow$ Amount of stem cells is not enough when we have the used parameters!

TUDelft

## Characteristics of the capillary tip density

Speed of the characteristics: $\frac{d x}{d t}=\chi_{1} \frac{\partial c}{\partial x}$.


Boundary wound: $\delta=0.2$. $\Rightarrow$ Amount of stem cells is not enough when we have the used parameters!

## Next section

## (1) Mathematical model

(2) Mathematical analysis
(3) Numerical methods

4 Further research

## FDM and FEM

Maximum relative difference between the finite difference method and the finite element method.

|  | $\Delta x=0.001$ |  |  |
| :---: | :---: | :---: | :---: |
|  | c | n | $\rho$ |
| $t=0.5$ | 0.0100 | 0.0286 | 0.0156 |
| $t=1.0$ | 0.0100 | 0.0574 | 0.0548 |
| $t=1.5$ | 0.0100 | 0.0567 | 0.0566 |
| $t=2.0$ | 0.0100 | 0.0366 | 0.2712 |

## Results with FEM

The follwing results are with the finite element method, where we have used $\Delta x=0.001, \Delta t=0.01$ and $T=2$.


## Results with FEM



THDelft

## Péclet number

## Péclet number

$$
P e=\frac{v \Delta x}{D},
$$

where $v$ is the absolute speed and $D$ the diffusion coefficient.

pure diffusion,
diffusion-dominated,
both are important,
convection-dominated
nure convection
$\square$
imnrove the results hy imnlementing SIJPG

## Péclet number

## Péclet number

$$
P e=\frac{v \Delta x}{D}
$$

where $v$ is the absolute speed and $D$ the diffusion coefficient.

$$
\begin{array}{ll}
P e=0, & \text { pure diffusion, } \\
P e \leq 1, & \text { diffusion-dominated, } \\
1<P e \leq 10, & \text { both are important } \\
P e>10, & \text { convection-dominated } \\
P e=\infty, & \text { pure convection. }
\end{array}
$$

If the equation is dominated by convection, we can try to
imnrove the resilts hy imnlementing SIJPG

## Péclet number

## Péclet number

$$
P e=\frac{v \Delta x}{D}
$$

where $v$ is the absolute speed and $D$ the diffusion coefficient.

$$
\begin{array}{ll}
P e=0, & \text { pure diffusion, } \\
P e \leq 1, & \text { diffusion-dominated, } \\
1<P e \leq 10, & \text { both are important } \\
P e>10, & \text { convection-dominated, } \\
P e=\infty, & \text { pure convection. }
\end{array}
$$

If the equation is dominated by convection, we can try to improve the results by implementing SUPG.

## Basics of SUPG

The advection equation:

$$
u_{t}+u_{x}=0
$$

Multiply by a testfunction $\eta(x)=\varphi(x)+p(x)$ and take the integral over the domain:

$$
\begin{aligned}
& \int_{\Omega} u_{t} \eta+u_{x} \eta d \Omega=0, \\
& \Rightarrow \underbrace{\int_{\Omega} u_{t} \varphi+u_{x} \varphi d \Omega}_{\text {FEM }}=\underbrace{-\int_{\Omega} u_{t} p+u_{x} p d \Omega}_{\text {Additional for SUPG }},
\end{aligned}
$$

where $p(x)=\xi \frac{\Delta x}{2} \frac{d \varphi}{d x}$ and $\xi$ equals the sign of the speed.

## Advection equation with SUPG

With discontinuous initial condition, after $t=0.05$.


Figuur: Without SUPG


Figuur: With SUPG

## Our model with SUPG

Péclet number equals:

$$
P e=\frac{\chi_{1} \frac{\partial c}{\partial x}}{D_{2}} \Delta x
$$

FEM already worked relatively well, so we did not obtain any results yet that showed the functionality of SUPG to our model

## Our model with SUPG

Péclet number equals:

$$
P e=\frac{\chi_{1} \frac{\partial c}{\partial x}}{D_{2}} \Delta x
$$

FEM already worked relatively well, so we did not obtain any results yet that showed the functionality of SUPG to our model.

## Basics of DG

- $e_{j}=\left[x_{j-1 / 2}, x_{j+1 / 2}\right]$, $j=1 \ldots$. .
- Maximum element size:
$\Delta x=\max _{1 \leq j \leq N} \Delta j$
- Legendre polynomials as our basisfunctions.

TUDelft

## Basics of DG

- $e_{j}=\left[x_{j-1 / 2}, x_{j+1 / 2}\right]$, $j=1 \ldots N$.
- Maximum element size:

$$
\Delta x=\max _{1 \leq j \leq N} \Delta j .
$$

## Basics of DG

- $e_{j}=\left[x_{j-1 / 2}, x_{j+1 / 2}\right]$,

$$
j=1 \ldots N .
$$

- Maximum element size: $\Delta x=\max _{1 \leq j \leq N} \Delta j$.
- Legendre polynomials as our basisfunctions.



## Basics of DG

- $e_{j}=\left[x_{j-1 / 2}, x_{j+1 / 2}\right]$,

$$
j=1 \ldots N .
$$

- Maximum element size:

$$
\Delta x=\max _{1 \leq j \leq N} \Delta j .
$$

- Legendre polynomials as our basisfunctions.
- Scale element interval to $[-1,1]$ by
$r=\frac{2\left(x-x_{j}\right)}{\Delta x}$.


## Basics of DG

The approximation is given by:

$$
\begin{aligned}
u_{h}(x, t) & =\sum_{l=0}^{K} u_{j}^{(I)}(t) \varphi_{j}^{(I)}(x) \\
& =\sum_{l=0}^{K} u_{j}^{(I)}(t) P_{l}\left(\frac{2\left(x-x_{j}\right)}{\Delta x}\right) \\
& =\sum_{l=0}^{K} u_{j}^{(I)}(t) P_{l}(r)
\end{aligned}
$$

So each global $x$, has its own local value $r$.

## Advection equation with DG

With discontinuous initial condition, after $t=0.25$. Here we have used two Legendre polynomials, so up to order $K=1$.


Figuur: $\Delta x=0.01, \Delta t=0.001$.

## The monotonized central-difference limiter

The limiter can be used for polynomial basis up to order $K=1$. It uses the minmod function, which is given by:

$$
m(a, b, c)= \begin{cases}\operatorname{sgn}(a) \cdot \min \{|a|,|b|,|c|\} & \text { if } \operatorname{sgn}(a)=\operatorname{sgn}(b)=\operatorname{sgn}(c) \\ 0 & \text { elsewhere. }\end{cases}
$$

## The monotonized central-difference limiter

The limiter can be used for polynomial basis up to order $K=1$. It uses the minmod function, which is given by:

$$
m(a, b, c)= \begin{cases}\operatorname{sgn}(a) \cdot \min \{|a|,|b|,|c|\} & \text { if } \operatorname{sgn}(a)=\operatorname{sgn}(b)=\operatorname{sgn}(c) \\ 0 & \text { elsewhere. }\end{cases}
$$

## Solution using the limiter

$$
u_{h}\left(x, t^{k}\right)=\bar{u}_{j}^{k}+\sigma_{j}^{k}\left(x-x_{j}\right) .
$$

Here, $\bar{u}_{j}^{k}$ is the averaged approximation over $e_{j}$ at $t=k$ and $\sigma$ is defined as:

$$
\sigma_{j}^{k}=m\left(\frac{\bar{u}_{j+1}^{k}-\bar{u}_{j-1}^{k}}{2 \Delta x}, 2 \frac{\bar{u}_{j}^{k}-\bar{u}_{j-1}^{k}}{\Delta x}, 2 \frac{\bar{u}_{j+1}^{k}-\bar{u}_{j}^{k}}{\Delta x}\right) .
$$

## Advection equation with DG and limiter



Figuur: Without limiting


Figuur: With limiting

## Next section

## (1) Mathematical model

(2) Mathematical analysis
(3) Numerical methods

4 Further research

## Further research

Our model:

- Expand the model to 2D. (Apply FEM)
- Are the parameter values realistic?
- Are the initial conditions realistic?


## Further research

Research for DG:

- Try to limit the DG approximation using higher order basisfunctions.
- Apply DG to our 1D model.
- How does DG works for a two dimensional scheme?
- Apply DG to our 2D model.


## Further research

Research question:

- How many stem cells should be injected when aiming at avoiding the formation of scar tissue?


[^0]:    $4 \square>$ • $\square$
    $4 \square>$ • $\square$

