
Fourier Analysis of Iterative Methods
for the Helmholtz problem

Hanzhi Diao

MSc Thesis Defence
supervisor: Prof. dr. ir. C. Vuik

December 20, 2012

Hanzhi Diao (TU Delft) Helmholtz problem December 20, 2012 1 / 32



Outline

1 Problem Formulation

2 Iterative Methods
Iterative Solvers
Preconditioning Techniques
Multilevel Krylov Multigrid Method

3 Fourier Analysis
Theory
Analysis of the Preconditioning
Multigrid Analysis
Multigrid Convergence

4 Numerical Experiments

5 Future Work

Hanzhi Diao (TU Delft) Helmholtz problem December 20, 2012 2 / 32



Problem Formulation

Helmholtz Problem

Helmholtz equation

−∆u(x)− k2 u(x) = f(x) in Ω ∈ R3

Boundary condition

Dirichlet / Neumann / Sommerfeld

Discretization

finite difference method / finite element method

Linear system • sparse
• symmetric but non-Hermitian
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Problem Formulation

Thesis Work

Objective

spectral properties =⇒ convergence behaviour

Task
1 Preconditioning techniques

– shifted Laplacian preconditioner M
– deflation operator P and Q

2 Iterative solver
– multigrid method for M−1

– Krylov subspace method for Ax = b / AM−1x = b / AM−1Qx = b

3 Fourier analysis
– spectrum distribution
– convergence factor

4 Numerical solution
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Problem Formulation

Model Problem

1D dimensionless Helmholtz problem with homogeneous Dirichlet
boundary condition{

−∆u(x)− k2 u(x) = f(x) for x ∈ (0, 1),

u(0) = u(1) = 0.

The resulting linear system

Ax = b where A =
1

h2


2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1
−1 2

− k2I
Wave resolution

gw · h =
2π

k
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Problem Formulation

Model Problem

Eigenvalue

λl =
4

h2
sin2(lπh/2)− k2 for l = 1, 2, · · · , n

Difficulty in solving Helmholtz problem
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Iterative Methods Iterative Solvers

Multigrid Method

The solver for inverting the shifted Laplacian preconditioner M
• The coarsening strategy is done by doubling the mesh size,

i.e. Ωh → Ω2h.
• The smoother is ω-Jacobi iteration operator.

– ω is chosen as the optimal one ωopt.
• The intergrid transfer

– restriction by full weighting operator
– prolongation by linear interpolation operator

The failure of MG in solving Ax = b

• The coarse grid cannot cope with high wavenumber problem.
• The ω-Jacobi iteration does not converge.
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Iterative Methods Iterative Solvers

Krylov Subspace Methods

The solver for solving the linear system Ax = b

• GMRES, used in the thesis work
• CG
• BiCGStab
• GCR,IDR(s),. . .
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Iterative Methods Iterative Solvers

Approximated Inversion

Given the iteration operator G, there is the approximated inversion

A−1 = (I −G)A−1.

For the stationary iteration, there is

A−1m = (I −Gm)A−1.

For the multigrid iteration, there is

A−1MG = (I − Tm1 )A−1.
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Iterative Methods Preconditioning Techniques

Shifted Laplacian Preconditioner

M := −∆h − (β1 + ιβ2︸ ︷︷ ︸
shift

)k2I

• preconditioned system

Â := AM−1 = M−1A and σ(AM−1) = σ(M−1A)

• preservation of symmetry

(AM−1)T = AM−1

• circular spectrum distribution

(λr −
1

2
)2 + (λi −

β1 − 1

2β2
)2 =

β22 + (1− β1)2
(2β2)2
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Iterative Methods Preconditioning Techniques

Shifted Laplacian Preconditioner

β1 = 1 =⇒ the most compact distribution
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The spectrum distributions of the preconditioned matrix AM−1 with respect to
several typical shifts when k = 100
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Iterative Methods Preconditioning Techniques

Deflation Operator

For an invertible Â, take any n× r full rank matrices Y and Z{
left P := I − Â ZÊ−1Y T + λd ZÊ

−1Y T ,

right Q := I − ZÊ−1Y T Â+ λd ZÊ
−1Y T ,

where Ê = Y T ÂZ.
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The spectrum distributions of the deflated matrix ÂQ towards λd = 0.2
where k = 100, shift = 1− ι1,AZ = Z Λr and Y T Â = Λr Y

T
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Iterative Methods Preconditioning Techniques

Deflation Operator
σ(Â) = {λ1, · · · , λn} with |λ1| 6 · · · 6 |λn|

• Projector in case of λd = 0

PD · PD = PD and QD ·QD = QD.

• Preservation of symmetry in case of λd = 0,
• Spectrum distribution

σ(PÂ) = σ(ÂQ) = {λd, · · · , λd, µr+1, · · · , µn}.

• Condition number

κ(PÂ) =
|µn|

min{|λd|, |µr+1|}
in case of λd 6= 0,
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Iterative Methods Preconditioning Techniques

Deflation Operator
Inaccuracy in Ê−1

Assume AZ = Z Λr and Y T Â = Λr Y
T , then Ê = Y T ÂZ = Λr.

Ê−1 = diag(
1− ε1
λ1

, · · · , 1− εr
λr

)
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Iterative Methods Multilevel Krylov Multigrid Method

Multilevel Krylov Multigrid Method

A recursive Krylov solution of Ê−1

1 Use the approximation

M−1 ≈ Z(Y TMZ)−1Y T .

2 Take the replacement

Ê :=Y T ÂZ = Y TAM−1Z ≈ Y TAZ︸ ︷︷ ︸
A(2)

(Y TMZ︸ ︷︷ ︸
M(2)

)−1 Y TZ︸ ︷︷ ︸
B(2)

Ê−1 ≈
(
A(2)M

−1
(2)B(2)

)−1
3 Solve A−1(2) in the same way as A−1
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Iterative Methods Multilevel Krylov Multigrid Method

Multilevel Krylov Multigrid Method

1

2

3

4

5

k-th iteration (k + 1)-th iteration◦ multigrid method
• multilevel Krylov method
� exact inversion of M(m)

� exact inversion of Â(m)

The illustration of multilevel Krylov multigrid method in a five-level grid
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Fourier Analysis Theory

Principles of Fourier Analysis

Find out a subspace E = span{φ1, · · · , φm} such that

KE ⊂ E =⇒ K Φ = Φ K̃.

For any v = Φc ∈ E, there is

K v = K Φc = ΦK̃ c where K̃ amplifies c.

Assume E is the union of several disjoint subspaces. Then, there is a
diagonal block matrix

K :
∧
= [K̃ l] with l as the block index.
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Fourier Analysis Theory

Fourier Analysis for Multigrid Analysis

In a two-level grid, the invariance subspace is given by

Elh := span{φlh, φn−lh } in Ωh =⇒ El2h := span{φl2h} in Ω2h.

A1,M1, S :Elh → Elh

A2,M2 :El2h → El2h

R2
1 :Elh → El2h

P 1
2 :El2h → Elh

 =⇒ T 2
1 : Elh → Elh

In a multilevel grid, there is

T̃mk = S̃ν2k

(
I − P̃ kk+1 (I − T̃mk+1)M̃

−1
k+1 R̃

k+1
k M̃k

)
S̃ν1k with T̃mm = 0,

Hanzhi Diao (TU Delft) Helmholtz problem December 20, 2012 18 / 32



Fourier Analysis Theory

Fourier Analysis for Multigrid Analysis

In a two-level grid, the invariance subspace is given by

Elh := span{φlh, φn−lh } in Ωh =⇒ El2h := span{φl2h} in Ω2h.

A1,M1, S :Elh → Elh

A2,M2 :El2h → El2h

R2
1 :Elh → El2h

P 1
2 :El2h → Elh

 =⇒ T 2
1 : Elh → Elh

In a multilevel grid, there is

T̃mk = S̃ν2k

(
I − P̃ kk+1 (I − T̃mk+1)M̃

−1
k+1 R̃

k+1
k M̃k

)
S̃ν1k with T̃mm = 0,

Hanzhi Diao (TU Delft) Helmholtz problem December 20, 2012 18 / 32



Fourier Analysis Theory

Application to Preconditioning

Shifted Laplacian preconditioner

˜̂
A = ÃM̃−1

Deflation operator

Q̃ = I − P̃ 1
2

˜̂
E2R̃

1
2(λnI − ˜̂

A) with ˜̂
E2 = R̃2

1
˜̂
AP̃ 1

2

Advantage of Fourier analysis
• computational time
• memory requirement
• accuracy
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Fourier Analysis Analysis of the Preconditioning

Basic Preconditioning Effect

• The spectrum of AM−1 is restricted to a circular distribution.
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• The spectrum of AM−1Q is clustered around (1, 0).
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Fourier Analysis Analysis of the Preconditioning

Choice of Shift β1 + ιβ2

1 β2 determines the length of arc on which the eigenvalues of
AM−1 are located.
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2 β2 has the indirect influence on the tightness of spectrum
distribution of AM−1Q.
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Fourier Analysis Analysis of the Preconditioning

Influence of Wave resolution gw

1 High resolution exerts little negative influence on the spectrum
distribution of AM−1.
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2 High resolution results in a more favourable spectrum distribution
of AM−1Q.
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Fourier Analysis Multigrid Analysis

Approximated Shifted Laplacian Preconditioning
AM−1 = A(I − Tm

1 )M−1

• The multigrid introduces disturbance to the preconditioning effect.

−0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

ℜ(λ)

ℑ
(λ

)

1-grid analysis

−0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

ℜ(λ)

ℑ
(λ

)

2-grid analysis

−0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

ℜ(λ)

ℑ
(λ

)

3-grid analysis

−0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

ℜ(λ)

ℑ
(λ

)

4-grid analysis

• The disturbance can be easily corrected by several iterations at a
cheap cost.
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Fourier Analysis Multigrid Analysis

Approximated Deflation Preconditioning
AM−1Q where the construction of Q is based on the M−1

• The preconditioning AM−1Q is much more sensitive to the
accuracy in the approximation of M−1.
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Fourier Analysis Multigrid Convergence

Multigrid Convergence Factor

• independence of k
• independence of the sign of β2
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• High resolution is favourable for the convergence.
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Fourier Analysis Multigrid Convergence

Optimal Shift for the Preconditioner

• A small shift is favourable for the Krylov convergence of AM−1.
• A large shift is favourable for the multigrid convergence of M−1.

To find out

(β1 + ιβ2)opt := arg min{|β1 + ιβ2| : max
16l6n−1

G(l, β1, β2) 6 c < 1}.

gw = 10 gw = 30 gw = 60 gw = 120 gw = 240

m = 2 0.1096 0.0126 0 0 0
m = 3 0.3228 0.0616 0.0150 0 0
m = 4 0.3931 0.2002 0.0632 0.0155 0
m = 5 0.3931 0.2886 0.2012 0.0636 0.0156

The optimal β2 in the shift 1 + ιβ2 for ρ(Tm
1 ) 6 c = 0.9
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Numerical Experiments

Basic Convergence Behaviour
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Overview of the convergence behaviour by different preconditioning

• verify
– the different preconditioning effect
– the advantage of AM−1Q over AM−1

– the influence of wavenumber and wave resolution
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Numerical Experiments

Influence of Orthogonalization

• Householder reflection outperforms modified Gram-Schmidt in
convergence behaviour.
• GMRES using modified Gram-Schmidt fails to converge in the

very small system.
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Numerical Experiments

Influence of Approximated Preconditioning

• The inaccuracy in M−1 has little influence on the convergence
behaviour

gw k = 10 k = 50 k = 100 k = 200 k = 300 k = 400 k = 500

10 11/11 36/36 60/60 108/105 153/149 193/188 265/258
30 12/12 36/36 60/58 114/108 161/152 209/196 255/240
60 12/12 36/36 63/62 113/111 161/158 207/204 255/250

Number of iterations with respect to different degrees of approximations i.e. AM−1 / AM−1

• The inaccuracy in Q slows down the convergence.

gw k = 10 k = 50 k = 100 k = 200 k = 300 k = 400 k = 500

10 6/9/9 11/18/18 14/26/27 21/43/44 28/59/61 33/71/70 39/98/111
30 4/5/5 6/13/13 6/15/17 8/36/37 9/54/55 10/73/75 11/92/ 94
60 3/4/4 4/ 5/ 8 4/ 7/ 9 5/12/16 6/18/22 6/24/27 6/32/ 34

Number of iterations with respect to different degrees of approximations i.e. AM−1Q / AM−1Q / AM−1Q
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Numerical Experiments

Internal Iteration in MKMG
(�,#2, · · · ,#m−1, ◦)

• It is worth doing more iterations on the higher levels.
• The convergence behaviour will be slowed by more iterations on

the lower levels.
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Number of iterations with respect to different MKMG setup in a six-level grid
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Future Work

Suggestion on Future Work

• higher dimensional problems
• local Fourier analysis
• different Krylov solvers
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Thank you for watching !

Hanzhi Diao (TU Delft) Helmholtz problem December 20, 2012 32 / 32


	Problem Formulation
	Iterative Methods
	Iterative Solvers
	Preconditioning Techniques
	Multilevel Krylov Multigrid Method

	Fourier Analysis
	Theory
	Analysis of the Preconditioning
	Multigrid Analysis
	Multigrid Convergence

	Numerical Experiments
	Future Work

