Fourier Analysis of Iterative Methods for the Helmholtz problem

Hanzhi Diao

MSc Thesis Defence supervisor: Prof. dr. ir. C. Vuik

December 20, 2012

Outline

Problem Formulation

Iterative Methods

- Iterative Solvers
- Preconditioning Techniques
- Multilevel Krylov Multigrid Method

Fourier Analysis

- Theory
- Analysis of the Preconditioning
- Multigrid Analysis
- Multigrid Convergence
- Numerical Experiments
 - Future Work

Helmholtz Problem

Helmholtz equation

$$-\Delta u(\mathbf{x}) - k^2 u(\mathbf{x}) = f(\mathbf{x}) \text{ in } \Omega \in \mathbb{R}^3$$

Boundary condition

Dirichlet / Neumann / Sommerfeld

Discretization

finite difference method / finite element method

Linear system

- sparse
- symmetric but non-Hermitian

Hanzhi Diao (TU Delft)

Thesis Work

Objective

spectral properties \implies convergence behaviour

Task

- Preconditioning techniques
 - shifted Laplacian preconditioner M
 - deflation operator P and Q
- Iterative solver
 - multigrid method for M^{-1}
 - Krylov subspace method for $Ax = b / AM^{-1}x = b / AM^{-1}Qx = b$

Fourier analysis

- spectrum distribution
- convergence factor
- Numerical solution

Thesis Work

Objective

spectral properties \implies convergence behaviour

Task

- Preconditioning techniques
 - shifted Laplacian preconditioner M
 - deflation operator P and Q
- Iterative solver
 - multigrid method for M^{-1}
 - Krylov subspace method for $Ax = b / AM^{-1}x = b / AM^{-1}Qx = b$
- Fourier analysis
 - spectrum distribution
 - convergence factor
 - Numerical solution

Model Problem

1D dimensionless Helmholtz problem with homogeneous Dirichlet boundary condition

$$\begin{cases} -\Delta u(x) - k^2 u(x) = f(x) \text{ for } x \in (0,1), \\ u(0) = u(1) = 0. \end{cases}$$

The resulting linear system

$$Ax = b$$
 where $A = \frac{1}{h^2} \begin{bmatrix} 2 & -1 \\ -1 & 2 & -1 \\ & \ddots & \ddots \\ & & \ddots & \ddots \\ & & & -1 & 2 & -1 \\ & & & -1 & 2 \end{bmatrix} - k^2 I$

Wave resolution

$$gw \cdot h = \frac{2\pi}{k}$$

Model Problem

Eigenvalue

$$\lambda_l = \frac{4}{h^2} \sin^2(l\pi h/2) - k^2$$
 for $l = 1, 2, \cdots, n$

Difficulty in solving Helmholtz problem

Hanzhi Diao (TU Delft)

Multigrid Method

The solver for inverting the shifted Laplacian preconditioner M

- The coarsening strategy is done by doubling the mesh size, i.e. $\Omega_h \to \Omega_{2h}$.
- The smoother is ω -Jacobi iteration operator.
 - $-\omega$ is chosen as the optimal one ω_{opt} .
- The intergrid transfer
 - restriction by full weighting operator
 - prolongation by linear interpolation operator

The failure of MG in solving Ax = b

- The coarse grid cannot cope with high wavenumber problem.
- The ω -Jacobi iteration does not converge.

< ロ > < 同 > < 回 > < 回 >

Multigrid Method

The solver for inverting the shifted Laplacian preconditioner M

- The coarsening strategy is done by doubling the mesh size, i.e. $\Omega_h \to \Omega_{2h}$.
- The smoother is ω -Jacobi iteration operator.
 - $-\omega$ is chosen as the optimal one ω_{opt} .
- The intergrid transfer
 - restriction by full weighting operator
 - prolongation by linear interpolation operator

The failure of MG in solving Ax = b

- The coarse grid cannot cope with high wavenumber problem.
- The ω -Jacobi iteration does not converge.

Krylov Subspace Methods

The solver for solving the linear system Ax = b

- GMRES, used in the thesis work
- CG
- BiCGStab
- GCR,IDR(s),...

< ロ > < 同 > < 回 > < 回 >

Approximated Inversion

Given the iteration operator G, there is the approximated inversion

$$\mathbb{A}^{-1} = (I - G)A^{-1}$$

For the stationary iteration, there is

$$\mathbb{A}_m^{-1} = (I - G^m) A^{-1}.$$

For the multigrid iteration, there is

$$\mathbb{A}_{\rm MG}^{-1} = (I - T_1^m) A^{-1}.$$

A D M A A A M M

Shifted Laplacian Preconditioner

$$M := -\Delta_h - (\underbrace{\beta_1 + \iota\beta_2}_{\text{shift}})k^2 I$$

preconditioned system

 $\hat{A} := AM^{-1} = M^{-1}A$ and $\sigma(AM^{-1}) = \sigma(M^{-1}A)$

preservation of symmetry

$$(AM^{-1})^T = AM^{-1}$$

circular spectrum distribution

$$(\lambda_r - \frac{1}{2})^2 + (\lambda_i - \frac{\beta_1 - 1}{2\beta_2})^2 = \frac{\beta_2^2 + (1 - \beta_1)^2}{(2\beta_2)^2}$$

< ロ > < 同 > < 回 > < 回 >

Shifted Laplacian Preconditioner

$$M := -\Delta_h - (\underbrace{\beta_1 + \iota\beta_2}_{\text{shift}})k^2 I$$

preconditioned system

$$\hat{A} := AM^{-1} = M^{-1}A \quad \text{and} \quad \sigma(AM^{-1}) = \sigma(M^{-1}A)$$

preservation of symmetry

$$(AM^{-1})^T = AM^{-1}$$

circular spectrum distribution

$$(\lambda_r - \frac{1}{2})^2 + (\lambda_i - \frac{\beta_1 - 1}{2\beta_2})^2 = \frac{\beta_2^2 + (1 - \beta_1)^2}{(2\beta_2)^2}$$

< A >

Shifted Laplacian Preconditioner

$\beta_1 = 1 \Longrightarrow$ the most compact distribution

The spectrum distributions of the preconditioned matrix AM^{-1} with respect to several typical shifts when k = 100

Deflation Operator

For an invertible \hat{A} , take any $n \times r$ full rank matrices Y and Z

$$\begin{cases} \text{left} \quad P := I - \hat{A} Z \hat{E}^{-1} Y^T + \lambda_d Z \hat{E}^{-1} Y^T, \\ \text{right} \quad Q := I - Z \hat{E}^{-1} Y^T \hat{A} + \lambda_d Z \hat{E}^{-1} Y^T, \end{cases} \text{ where } \hat{E} = Y^T \hat{A} Z.$$

The spectrum distributions of the deflated matrix $\hat{A}Q$ towards $\lambda_d = 0.2$ where k = 100, shift $= 1 - \iota 1, A Z = Z \Lambda_r$ and $Y^T \hat{A} = \Lambda_r Y^T$ Deflation Operator

 $\sigma(\hat{A}) = \{\lambda_1, \cdots, \lambda_n\} \text{ with } |\lambda_1| \leqslant \cdots \leqslant |\lambda_n|$

• Projector in case of $\lambda_d = 0$

$$P_D \cdot P_D = P_D$$
 and $Q_D \cdot Q_D = Q_D$.

- Preservation of symmetry in case of $\lambda_d = 0$,
- Spectrum distribution

$$\sigma(P\hat{A}) = \sigma(\hat{A}Q) = \{\lambda_d, \cdots, \lambda_d, \ \mu_{r+1}, \cdots, \mu_n\}.$$

Condition number

$$\kappa(P\hat{A}) = \frac{|\mu_n|}{\min\{|\lambda_d|, |\mu_{r+1}|\}} \quad \text{in case of } \lambda_d \neq 0,$$

Deflation Operator Inaccuracy in \hat{E}^{-1}

Assume $A Z = Z \Lambda_r$ and $Y^T \hat{A} = \Lambda_r Y^T$, then $\hat{E} = Y^T \hat{A} Z = \Lambda_r$.

$$\hat{\mathbb{E}}^{-1} = diag(\frac{1-\epsilon_1}{\lambda_1}, \cdots, \frac{1-\epsilon_r}{\lambda_r})$$

3

Deflation Operator Inaccuracy in \hat{E}^{-1}

Assume $A Z = Z \Lambda_r$ and $Y^T \hat{A} = \Lambda_r Y^T$, then $\hat{E} = Y^T \hat{A} Z = \Lambda_r$.

$$\hat{\mathbb{E}}^{-1} = diag(\frac{1-\epsilon_1}{\lambda_1}, \cdots, \frac{1-\epsilon_r}{\lambda_r})$$

$$\Downarrow$$

 $\sigma(\mathbb{P}\hat{A}) = \{(1-\epsilon_1)\lambda_d + \lambda_1\epsilon_1, \cdots, (1-\epsilon_r)\lambda_d + \lambda_r\epsilon_r, \ \lambda_{r+1}, \cdots, \lambda_n\}$

3

Deflation Operator Inaccuracy in \hat{E}^{-1}

Assume $A Z = Z \Lambda_r$ and $Y^T \hat{A} = \Lambda_r Y^T$, then $\hat{E} = Y^T \hat{A} Z = \Lambda_r$.

$$\hat{\mathbb{E}}^{-1} = diag(\frac{1-\epsilon_1}{\lambda_1}, \cdots, \frac{1-\epsilon_r}{\lambda_r})$$

$$\Downarrow$$

 $\sigma(\mathbb{P}\hat{A}) = \{(1-\epsilon_1)\lambda_d + \lambda_1\epsilon_1, \cdots, (1-\epsilon_r)\lambda_d + \lambda_r\epsilon_r, \ \lambda_{r+1}, \cdots, \lambda_n\}$ \Downarrow

$$\begin{cases} \lambda_d = 0 \quad \Rightarrow \sigma(\mathbb{P}\hat{A}) = \{\underbrace{\lambda_1 \epsilon_1}_{\neq 0}, \cdots, \underbrace{\lambda_r \epsilon_r}_{\neq 0}, \lambda_{r+1}, \cdots, \lambda_n\},\\ \lambda_d = \lambda_n \quad \Rightarrow \sigma(\mathbb{P}\hat{A}) \approx \{\lambda_n, \cdots, \lambda_n, \lambda_{r+1}, \cdots, \lambda_n\}. \end{cases}$$

Hanzhi Diao (TU Delft)

э

Multilevel Krylov Multigrid Method

A recursive Krylov solution of \hat{E}^{-1}

Use the approximation

$$M^{-1} \approx Z(Y^T M Z)^{-1} Y^T.$$

2 Take the replacement

$$\hat{E} := Y^T \hat{A} Z = Y^T A M^{-1} Z \approx \underbrace{Y^T A Z}_{A_{(2)}} (\underbrace{Y^T M Z}_{M_{(2)}})^{-1} \underbrace{Y^T Z}_{B_{(2)}}$$
$$\hat{E}^{-1} \approx \left(A_{(2)} M_{(2)}^{-1} B_{(2)}\right)^{-1}$$

Solve $A_{(2)}^{-1}$ in the same way as A^{-1}

Multilevel Krylov Multigrid Method

The illustration of multilevel Krylov multigrid method in a five-level grid

< A

Principles of Fourier Analysis

Find out a subspace $E = \text{span}\{\phi_1, \cdots, \phi_m\}$ such that

$$KE \subset E \Longrightarrow K\Phi = \Phi \tilde{K}.$$

For any $v = \Phi c \in E$, there is

$$Kv = K\Phi c = \Phi \tilde{K} c$$
 where \tilde{K} amplifies c .

Principles of Fourier Analysis

Find out a subspace $E = \text{span}\{\phi_1, \cdots, \phi_m\}$ such that

$$KE \subset E \Longrightarrow K\Phi = \Phi \tilde{K}.$$

For any $v = \Phi c \in E$, there is

$$Kv = K\Phi c = \Phi \tilde{K} c$$
 where \tilde{K} amplifies c .

Assume E is the union of several disjoint subspaces. Then, there is a diagonal block matrix

$$K :\stackrel{\wedge}{=} [\tilde{K}^l]$$
 with l as the block index.

Fourier Analysis for Multigrid Analysis

In a two-level grid, the invariance subspace is given by

$$\begin{split} E_h^l &:= \operatorname{span}\{\phi_h^l, \phi_h^{n-l}\} \text{ in } \Omega_h \implies E_{2h}^l := \operatorname{span}\{\phi_{2h}^l\} \text{ in } \Omega_{2h}. \\ A_1, M_1, S : E_h^l \to E_h^l \\ A_2, M_2 : E_{2h}^l \to E_{2h}^l \\ R_1^2 : E_h^l \to E_{2h}^l \\ R_1^2 : E_h^l \to E_{2h}^l \\ P_2^1 : E_{2h}^l \to E_h^l \end{split} \Longrightarrow T_1^2 : E_h^l \to E_h^l \end{split}$$

In a multilevel grid, there is

 $\tilde{T}_k^m = \tilde{S}_k^{\nu_2} \left(I - \tilde{P}_{k+1}^k \left(I - \tilde{T}_{k+1}^m\right) \tilde{M}_{k+1}^{-1} \tilde{R}_k^{k+1} \tilde{M}_k \right) \tilde{S}_k^{\nu_1} \quad \text{with } \tilde{T}_m^m = 0,$

Fourier Analysis for Multigrid Analysis

In a two-level grid, the invariance subspace is given by

$$\begin{split} E_h^l &:= \operatorname{span}\{\phi_h^l, \phi_h^{n-l}\} \text{ in } \Omega_h \implies E_{2h}^l := \operatorname{span}\{\phi_{2h}^l\} \text{ in } \Omega_{2h}. \\ A_1, M_1, S : E_h^l \to E_h^l \\ A_2, M_2 : E_{2h}^l \to E_{2h}^l \\ R_1^2 : E_h^l \to E_{2h}^l \\ R_1^2 : E_h^l \to E_{2h}^l \\ P_2^1 : E_{2h}^l \to E_h^l \end{split} \Longrightarrow T_1^2 : E_h^l \to E_h^l \end{split}$$

In a multilevel grid, there is

$$\tilde{T}_{k}^{m} = \tilde{S}_{k}^{\nu_{2}} \left(I - \tilde{P}_{k+1}^{k} \left(I - \tilde{T}_{k+1}^{m} \right) \tilde{M}_{k+1}^{-1} \tilde{R}_{k}^{k+1} \tilde{M}_{k} \right) \tilde{S}_{k}^{\nu_{1}} \quad \text{with } \tilde{T}_{m}^{m} = 0,$$

- N

A D M A A A M M

Application to Preconditioning

Shifted Laplacian preconditioner

$$\tilde{\hat{A}} = \tilde{A}\tilde{M}^{-1}$$

Deflation operator

$$\tilde{Q} = I - \tilde{P}_2^1 \tilde{\tilde{E}}_2 \tilde{R}_2^1 (\lambda_n I - \tilde{\hat{A}}) \quad \text{with } \tilde{\tilde{E}}_2 = \tilde{R}_1^2 \tilde{\hat{A}} \tilde{P}_2^1$$

Advantage of Fourier analysis

- computational time
- memory requirement
- accuracy

Application to Preconditioning

Shifted Laplacian preconditioner

$$\tilde{\hat{A}} = \tilde{A}\tilde{M}^{-1}$$

Deflation operator

$$\tilde{Q} = I - \tilde{P}_2^1 \tilde{\tilde{E}}_2 \tilde{R}_2^1 (\lambda_n I - \tilde{\hat{A}}) \quad \text{with } \tilde{\tilde{E}}_2 = \tilde{R}_1^2 \tilde{\hat{A}} \tilde{P}_2^1$$

Advantage of Fourier analysis

- computational time
- memory requirement
- accuracy

Basic Preconditioning Effect

• The spectrum of AM^{-1} is restricted to a circular distribution.

• The spectrum of $AM^{-1}Q$ is clustered around (1,0).

Choice of Shift $\beta_1 + \iota \beta_2$

• β_2 determines the length of arc on which the eigenvalues of AM^{-1} are located.

2 β_2 has the indirect influence on the tightness of spectrum distribution of $AM^{-1}Q$.

Influence of Wave resolution gw

High resolution exerts little negative influence on the spectrum distribution of AM^{-1} .

In the second of $AM^{-1}Q$.

Hanzhi Diao (TU Delft)

Approximated Shifted Laplacian Preconditioning $A\mathbb{M}^{-1} = A(I - T_1^m)M^{-1}$

The multigrid introduces disturbance to the preconditioning effect.

 The disturbance can be easily corrected by several iterations at a cheap cost.

Hanzhi Diao (TU Delft)

Approximated Deflation Preconditioning $A \mathbb{M}^{-1} \mathbb{Q}$ where the construction of \mathbb{Q} is based on the \mathbb{M}^{-1}

• The preconditioning $AM^{-1}Q$ is much more sensitive to the accuracy in the approximation of M^{-1} .

Multigrid Convergence Factor

- independence of k
- independence of the sign of β_2

High resolution is favourable for the convergence.

Hanzhi Diao (TU Delft)

Optimal Shift for the Preconditioner

- A small shift is favourable for the Krylov convergence of AM^{-1} .
- A large shift is favourable for the multigrid convergence of M^{-1} .

To find out

()

$$\beta_1 + \iota \beta_2)_{\text{opt}} := \arg \min\{|\beta_1 + \iota \beta_2| : \max_{1 \le l \le n-1} \mathcal{G}(l, \beta_1, \beta_2) \le c < 1\}.$$

	gw = 10	gw = 30	gw = 60	gw = 120	gw = 240
m = 2	0.1096	0.0126	0	0	0
m = 3	0.3228	0.0616	0.0150	0	0
m = 4	0.3931	0.2002	0.0632	0.0155	0
m = 5	0.3931	0.2886	0.2012	0.0636	0.0156

The optimal β_2 in the shift $1 + \iota \beta_2$ for $\rho(T_1^m) \leqslant c = 0.9$

Basic Convergence Behaviour

Overview of the convergence behaviour by different preconditioning

- verify
 - the different preconditioning effect
 - the advantage of $AM^{-1}Q$ over AM^{-1}
 - the influence of wavenumber and wave resolution

Influence of Orthogonalization

- Householder reflection outperforms modified Gram-Schmidt in convergence behaviour.
- GMRES using modified Gram-Schmidt fails to converge in the very small system.

Influence of Approximated Preconditioning

- The inaccuracy in ${\rm I\!M}^{-1}$ has little influence on the convergence behaviour

gw	k = 10	k = 50	k = 100	k = 200	k = 300	k = 400	k = 500
10	11/11	36/36	60/60	108/105	153/149	193/188	265/258
30	12/12	36/36	60/58	114/108	161/152	209/196	255/240
60	12/12	36/36	63/62	113/111	161/158	207/204	255/250

Number of iterations with respect to different degrees of approximations i.e. AM^{-1} / AM^{-1}

• The inaccuracy in Q slows down the convergence.

gw	k = 10	k = 50	k = 100	k = 200	k = 300	k = 400	k = 500
10	6/9/9	11/18/18	14/26/27	21/43/44	28/59/61	33/71/70	39/98/111
30	4/5/5	6/13/13	6/15/17	8/36/37	9/54/55	10/73/75	11/92/ 94
60	3/4/4	4/ 5/ 8	4/ 7/ 9	5/12/16	6/18/22	6/24/27	6/32/ 34

Number of iterations with respect to different degrees of approximations i.e. $AM^{-1}Q / AM^{-1}Q / AM^{-1}Q$

Internal Iteration in MKMG $(\diamond, \#_2, \cdots, \#_{m-1}, \diamond)$

- It is worth doing more iterations on the higher levels.
- The convergence behaviour will be slowed by more iterations on the lower levels.

Number of iterations with respect to different MKMG setup in a six-level grid

Suggestion on Future Work

- higher dimensional problems
- local Fourier analysis
- different Krylov solvers

Thank you for watching !

Hanzhi Diao (TU Delft)

Helmholtz problem

December 20, 2012 32 / 32