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Chapter 1

Introduction

1.1 Motivation

The numerical solution of the incompressible Navier-Stokes (N-S) equations is an area of
much importance in contemporary scientific research. Except for some simple cases, the
analytical solution of the N-S equations is impossible. Therefore, in order to solve these
equations, it is necessary to apply numerical techniques (See [34], [39], [40], [48]). The
most commonly used numerical discretization techniques include finite difference methods
(FDM), finite volume methods (FVM) and finite element methods (FEM). The discretiza-
tion approach followed throughout this thesis is done by the FEM. Due to the nonlinear
character in the behavior of fluids, the solution of the N-S system of equations requires a
suitable linearization of the algebraic system arising from the FEM discretization of the
original equations. The resulting linear system of equations gives rise to a so called saddle-
point problem, an algebraic system which is non-symmetric, indefinite, and typically ill
conditioned. This process can be summarized in the next scheme, where in the left-hand
side of the arrow we have the original N-S system of equations and on the right-hand side
we have a linear system with A nonsymetric, indefinite, and ill-conditioned:

−ν∇2u + u · ∇u +∇p = f in Ω
∇ · u = 0 in Ω

 −→ Ax = b

Saddle-point problems also arise in electrical circuit problems, linear elasticity, constraint
optimization and many other fields. A survey of saddle-point problems is given by Benzi,
Golub and Liesen in [3]. The efficient solution of this type of linear algebraic problem is
a challenge (See [3], [20], [28]). The primary interest in these types of problems is due to
the fact that most of the computing time and memory of a computational implementation
is consumed by the solution of this system of equations.

The fastest way of solving such systems is done by adopting an iterative approach in the
solution process of the algebraic system, mainly by the use of a Krylov subspace method

1



2 CHAPTER 1. INTRODUCTION

combined with a preconditioned linear system of equations (See [33] ). In the case of the
Navier-Stokes problem, the most used type of preconditioners belong to a branch of block
preconditioners known as SIMPLE-type preconditioners (Semi Implicit Pressure Linked
Equations) in literature (See [23], [24], [43], [46]). These methods decouple the system
and solve separate subsystems of the velocity and pressure. The pressure subsystem arises
from an appropriate approximation of the Schur complement of the system. The use of
these preconditioners has enhanced the solution process of the N-S system and provides an
implementation which reduces the computational time needed to solve the system when
compared to the time needed to solve the un-preconditioned system.

Nevertheless, it has been found that there still exists room for improving the SIMPLE-type
preconditioners. As published in [43], we can see the existence of a stagnation behavior
in the solution process of the linearized system. This stagnation behavior is problem
dependent and is usually found when stretched grids are used in the discretization of the
system, or whenever the conditions of the problem lead to an ill conditioned spectrum of
the linearized matrix. The main effort of this thesis is to investigate and, if possible, to
eliminate this stagnation behavior, thus providing a more efficient way of solving the N-S
system of equations.

1.2 Research direction

In order to achieve the desired goal of this thesis, we present a study of the available
preconditioners used to achieve a fast solution of the saddle point problem arising from
the linearization of the N-S system of equations. We will focus our attention on the
SIMPLER preconditioner and we will present problems for which the stagnation behavior
is present. Once we have implemented the solution method and have reproduced this type
of behavior, we are interested in approaching the following questions:

• Why is there a stagnation phase in the iterative solution of the SIMPLE-preconditioned
Navier-Stokes algebraic system?

• Why does the number of iterations increase for stretched grids?

In order to address the first of these questions, an investigation of the stagnation behavior
of the initial phase of the SIMPLER preconditioner is carried out. It was found that a
detailed study of the spectrum of the SIMPLER preconditioned matrix provides insight
in the problem of identifying the reasons of such stagnation. An eigenvalue deflation ap-
proach is followed after the identification of some ”ill conditioned” eigenvectors in order
to eliminate the stagnation behavior. The approach is successful, reducing the stagnation
phase and the total number of iterations of the preconditioned GMRES method.
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Regarding the increase of iteration count for stretched grids, it was found that the reason
for this increment in the number of iterations comes as a consequence of the degeneration
of the so called inf-sup condition for finite elements. It is expected that a macroelement
construction (See [11], [26]) of the finite elements may lead to a stable computational
model for any conceivable grid. The proof of stability of this construction is included in
this thesis.

1.3 Chapter outline

In Chapter 2, the Navier Stokes equations are introduced and discretized via the Finite El-
ement Method. The resulting algebraic system is then linearized via the Newton or Picard
method. Lastly, a comment on finite element selection is given, guided by a discussion of
inf-sup stability. In Chapter 3, the main concepts of linear algebra which are used in this
thesis are presented. The theory behind Krylov subspace methods is discussed and the
general theory of preconditioners is presented. Also, a general approach to eigenvector de-
flation is explained. In Chapter 4, specific block-type preconditioners for the Navier-Stokes
equations are studied including preconditioners based on approximate commutators and
SIMPLE-type preconditioners. In Chapter 5, the numerical results of the investigations
are presented. This section includes a set of reference problems (benchmarks) that make
use of the theory presented in the previous sections. The two-dimensional Poiseuille flow
as well as the driven cavity flow and the backward facing step problems are shown. The
problems are studied by the use of the MATLAB toolbox IFISS 1 (Incompressible Flow
Iterative Solution Software) developed in the University of Manchester, UK. In Chapter
6, a discussion of the results obtained in the numerical experiments is provided. Finally,
in Chapter 7, the conclusions of this master thesis are presented, together with ideas for
future research in this topic.

1http://www.manchester.ac.uk/ifiss





Chapter 2

Discretization and linearization of the
Navier-Stokes equations

Partial differential equations in general, or the governing equations in fluid dynamics in
particular, are classified into three categories: (1) elliptic, (2) parabolic, and (3) hyper-
bolic. The physical situations these types of equations represent can be illustrated by
the flow velocity relative to the speed of sound. Consider that the flow velocity u is the
velocity of a body moving in a fluid at rest. The movement of this body disturbs the
fluid particles ahead of the body, setting off the propagation velocity equal to the speed
of sound c. The ratio of these two competing speeds is defined as Mach number:

M = u
c

For subsonic speed, M < 1, as time t increases, the body moves a distance, ut, which is
always shorter than the distance at the sound wave. If, on the other hand, the body travels
at the speed of sound, M = 1, then the observer does not hear the body approaching him
prior to the arrival of the body, as these two actions are simultaneous. For supersonic
speed, M > 1, the velocity of the body is faster than the speed of sound. The governing
equations for subsonic flow, transonic flow, and supersonic flow are classified as elliptic,
parabolic, and hyperbolic, respectively.

2.1 Discretization

In continuum mechanics, incompressible flow refers to a flow in which the material density
is constant within an infinitesimal volume that moves with the velocity of the fluid. The
Mach number can be used to determine if a flow can be treated as an incompressible flow.
If M � 1 and the flow is quasi-steady and isothermal, compressibility effects will be small
and a simplified incompressible flow model can be used. The incompressible flow of a

5
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Newtonian fluid is governed by the behavior defined by the set of equations

−ν∇2u + u · ∇u +∇p = f in Ω (2.1)

∇ · u = 0 in Ω (2.2)

Equation (2.1) represents the conservation of momentum, while equation (2.2) enforces
conservation of mass. The second equation is also referred to as the incompressibility
constraint. The boundary value problem that is considered is the system composed of
equations (2.1) and (2.2) posed on a two or three dimensional domain Ω, together with
boundary conditions on ∂Ω = ∂ΩD ∪ ∂ΩN given by

u = w on ∂ΩD, ν
∂u
∂n − np = s on ∂ΩN . (2.3)

The variable u is a vector-valued function representing the velocity of the fluid, and the
scalar function p represents the pressure. Note that the Laplacian of a vector function is
simply the vector obtained by taking the Laplacian of each component in turn. Moreover,
there is little loss of generality if f is set to zero. A conservative body force (e.g. gravity)
is the gradient of a scalar field, that is, f = −∇Φ, and thus it can be incorporated into
the system by redefining the pressure (p ← p + Φ).
To derive a weak formulation of the Navier-Stokes equations we require that for an ap-
propriate set of test functions v and q,

ν

∫
Ω

v · (−∇2u) +
∫

Ω
v · (u · ∇u) +

∫
Ω

v · ∇p = 0, (2.4)

∫
Ω

q(∇ · u) = 0, (2.5)

for all v and q in suitably chosen spaces of test functions. The continuity requirements
on the weak solution (u, p) can be reduced by ”transferring” derivatives onto the test
functions v and q:

−
∫

Ω
v · ∇2u =

∫
Ω
∇u : ∇v−

∫
Ω
∇ · (∇u · v)

=
∫

Ω
∇u : ∇v−

∫
∂Ω

(n · ∇u · v)∫
Ω

v · ∇p = −
∫

Ω
p∇ · v +

∫
Ω
∇ · (pv)

= −
∫

Ω
p∇ · v +

∫
∂Ω

pn · v.

Here ∇u : ∇v represents the componentwise scalar product, for example, in two dimen-
sions ∇ux · ∇uy +∇vx · ∇vy. Combining these results and substituting them in (2.4) we
obtain

ν

∫
Ω
∇u : ∇v +

∫
Ω

v · (u · ∇u)−
∫

Ω
p∇ · v−

∫
∂Ω

(ν ∂u
∂n − np) · v = 0,
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for all v in a suitable set of test functions. We can see that the boundary term matches
the Neumann condition in (2.3). These facts lead to the following velocity and test spaces:

H1
E := {u ∈ H1(Ω)d |u = w on ∂ΩD},

H1
E0 := {v ∈ H1(Ω)d |v = 0 on ∂ΩD},

where H1(Ω)d denotes the Sobolev space of functions whose generalized derivatives are
in L2(Ω) and where d = 2 or d = 3 is the spatial dimension. The fact that there are no
pressure derivatives means that L2(Ω) is the appropriate space for p. Moreover, choosing
the pressure test function q from L2(Ω) ensures that the left hand side of (2.5) is finite.
The end product is thus the following weak formulation:

Find u ∈ H1
E(Ω) and p ∈ L2(Ω) such that

ν

∫
Ω
∇u : ∇v +

∫
Ω

(u · ∇u) · v−
∫

Ω
p(∇ · v) =

∫
∂ΩN

s · v for all v ∈ H1
E0 (2.6)

∫
Ω

q(∇ · u) = 0 for all q ∈ L2(Ω) (2.7)

A discrete weak formulation is defined using finite dimensional spaces Xh
0 ⊂ H1

E0
and

M h ⊂ L2(Ω). Specifically, given a velocity solution space Xh
E , the discrete version of (2.6)

and (2.7) is:

Find uh ∈ Xh
E and ph ∈ M h such that:

ν

∫
Ω
∇uh : ∇vh +

∫
Ω

(uh · ∇uh) · vh −
∫

Ω
ph(∇ · vh) =

∫
∂ΩN

s · vh for all vh ∈ Xh
0 (2.8)

∫
Ω

qh(∇ · uh) = 0 for all qh ∈ M h . (2.9)

Following the steps of the Galerkin method we define two types of basis functions, ψi(x)
for the pressure and φi(x) for the velocity. So the approximation for uh and ph is defined
as

ph =
np∑

j=1
pjψj(x), np is the number of pressure unknowns (2.10)

and

uh =
nu
2∑

j=1
u1jφj1(x) + u2jφj2(x) =

nu∑
j=1

ujφj(x) (2.11)

where nu is the number of velocity unknowns, uj is defined by uj = u1j , for j = 1, ..nu
2 ,

uj+ nu
2

= u2j , for j = 1, ..nu
2 and φj in the same way. If we make the substitution v = φi(x),

q = ψi(x), we get the standard Galerkin formulation:
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Find ph and uh , such that

ν

∫
Ω
∇uh : ∇φi +

∫
Ω

(uh · ∇uh) · φi −
∫

Ω
ph(∇ · φi) =

∫
∂ΩN

s · φi for all i = 1, ..nu ,

(2.12)

∫
Ω
ψi(∇ · uh) = 0 for all i = 1, ...np. (2.13)

This system of equations can be represented in matrix form as

Adu + N (u) + BT p = f , (2.14)

Bu = g, (2.15)

where u denotes the vector of unknowns u1i and u2i , and p denotes the vector of unknowns
pi . The term Adu is the discretization of the viscous term and N (u) is the discretization
of the nonlinear convective term, Bu denotes the discretization of the negative divergence
of u and BT p is the discretization of the gradient of p. The right-hand side vectors f
and g contain all contributions of the source term, the boundary integral as well as the
contribution of the prescribed boundary conditions.

2.2 Linearization

As we can see, the Navier Stokes equations are nonlinear because of the existence of
the convective term. The usual approach in order to solve these equations is to solve
a linearized version of the equations at each time step. The linearization can be done
by Picard or Newton iteration schemes. The Picard iteration method gives rise to the
so-called Oseen problem:

−ν∆uk+1 + (uk · ∇)uk+1 +∇pk+1 = f in Ω, (2.16)

∇ · uk+1 = 0 in Ω, (2.17)

In this approach, the nonlinear term is substituted by an approximation including the
velocity vector calculated at distinct iterations, that is, the convective term at the new
time step is defined by

uk+1 · ∇uk+1 ≈ uk · ∇uk+1.

We have to use an initial guess u0 for the velocity field in order to construct the approx-
imate solutions (uk+1, pk+1). If we use u0 = 0 we obtain the Stokes problem in the first
iteration.

Another approach is the Newton linearization scheme which is characterized by assuming
that the velocity field at the new iteration is the sum of the velocity field at the previous
iteration plus a correction, that is:

uk+1 = uk + δuk .
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If we neglect quadratic terms in δu arising in the convective term, we obtain the Newton
Linearization of the Navier-Stokes equations:

−ν∆uk + uk · ∇uk−1 + uk−1 · ∇uk +∇pk = f − uk−1 · ∇uk−1 in Ω, (2.18)

∇ · uk = 0 in Ω. (2.19)

After using any type of linearization, the Navier-Stokes system of equations can be written
as a linear algebraic system of equations:

Fu + BT p = f , (2.20)

Bu = g, (2.21)

where F = Ad + N (uk) is the linearized operator and uk is the solution of the velocity one
iteration before. In matrix notation, this system is written as:

 F BT

B 0

 u
p

 =

 f
g

 (2.22)

In general optimization theory, systems of this type arise as the first-order optimality
conditions for the following equality-constrained quadratic programming problem:

min : J (x) = 1
2uT Au − f T u

subject to: Bu = g.

In this case the variable p represents the vector of Lagrange multipliers. Any solution
(u∗, p∗) of (2.22) is a saddle point for the Lagrangian

L(u, p) = 1
2uT Au − f T u + (Bu − g)T p,

hence the name saddle-point problem given to (2.22). The zero block reflects the absence
of the pressure in the continuity equation. As a consequence the system of equations may
be under determined for an arbitrary combination of pressure and velocity unknowns [3].

2.3 Finite element selection

The continuity equation, discretized as Bu = g, does contain only velocity unknowns.
However, the number of rows in this equation is completely determined by the number
of pressure unknowns. Suppose that there are more pressure unknowns than velocity un-
knowns. In that case equations (2.20) and (2.21) contain more rows than columns and we
end up with an inconsistent system of equations, that is, the matrix to be solved is singu-
lar. Therefore, we have to demand that the number of pressure unknowns never exceeds
the number of velocity unknowns. Since we want to solve the Navier-Stokes equations by
finite element methods for various grid sizes, this demand should be valid independently
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of the number of elements. This demand restricts the number of applicable elements con-
siderably.
In order to satisfy this criterion, a general accepted rule is that the order of approximation
of the pressure must be one lower than the order of approximation of the velocity. So if the
velocity is approximated by a linear polynomial, then the pressure is approximated by a
constant per element and so on. Unfortunately this rule is not sufficient to guarantee that
the number of pressure unknowns is not larger than the number of velocity unknowns in-
dependently of the number of elements. In the literature, an exact admissibility condition
that the finite elements must satisfy is known as the Ladyženskaja-Babuška-Brezzi (LBB)
condition. This condition states that, for BBT in (2.22) to be invertible it is necessary
that ker(BT ) = 0, where BT is a nu × np matrix. The condition ker(BT ) = 0 means that
BT has rank np, and is equivalent to requiring that

max
v

(Bv, p) = max
v

(v,BT p) > 0,∀p.

This relation in the framework of the finite element method is cast as:

max
v 6=0

|(q,∇ · v)|
‖v‖1,Ω‖q‖0,Ω

> 0 (2.23)

Nevertheless, this condition allows the family of matrices to degenerate towards a singular
system as h → 0. This calls for a stricter version of the LBB condition which takes the
form,

inf
q 6=constant

sup
v 6=0

|(q,∇ · v)|
‖v‖1,Ω‖q‖0,Ω

≥ γ > 0. (2.24)

However, the LBB condition is rather abstract and in practice it is very difficult to verify
whether it is satisfied or not. Fortin in [17] has given a simple method to check the LBB
condition on a number of elements based on the following statement:

An element satisfies the BB condition, whenever, given a continuous differentiable
vector field u, one can explicitly build a discrete vector field û such that:∫

Ω
Ψi(∇ · û)dΩ =

∫
Ω

Ψi(∇ · u)dΩ for all basis functions Ψi .

With respect to the types of elements that are applied we make a subdivision into two
groups: elements with continuous pressure known as The Taylor-Hood family and elements
with discontinuous pressure which form The Crouzeix-Raviart family.



Chapter 3

Projection techniques, Krylov subspace
methods, Preconditioners, and Deflation

The discretization of the Navier-Stokes equations by the Finite Element Method leads to a
nonlinear system of equations. The solution process of these equations therefore involves
the linearization of such a nonlinear system. Once this linearization is performed, the
most general form of the resulting saddle-point problem (2.22) is a matrix equation of the
form:

Ax = b, (3.1)

where A is an n × n, real, nonsymetric, indefinite and typically ill-conditioned matrix. In
the present chapter, we present a collection notions in linear algebra which we need to
have present while solving such systems.

3.1 Projection techniques

The idea of projection techniques is to extract an approximate solution to the above
problem from a subspace of Rn . If Km is this subspace, usually referred to as the search
subspace or ansatz subspace with dimension m, then, in general, m constraints must be
imposed to be able to extract such an approximation. Usually, these constraints are m
independent orthogonality conditions. Specifically, the residual vector b−Ax is constrained
to be orthogonal to m linearly independent vectors. This defines the so-called constraints
space Lm of dimension m. This framework is known as the Petrov-Galerkin conditions
[33]. A projection technique onto the subspace Km and orthogonal to Lm is a process that
finds an approximate solution x̃ to (3.1) by imposing the conditions that x̃ belong to Km

and that the new residual vector be orthogonal to Lm . If we can exploit the knowledge
of an initial guess x0 to the solution, then the approximation must be in the affine space

11
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x0 +Km instead of the homogeneous vector space Km :

Find x̃ ∈ x0 +Km such that b −Ax̃⊥Lm .

Note that if x̃ is written in the form x̃ = x0 + δ and the initial residual vector r0 is defined
as r0 = b −Ax0, then the projection process can be defines as:

x̃ = x0 + δ, δ ∈ Km , (3.2)

(r0 −Aδ,w) = 0 ∀w ∈ Lm . (3.3)

Let V = [v1, ..., vm ] be an n × m matrix whose column vectors form a basis of Km and
similarly, W = [w1, ...,wm ] be an n×m matrix whose column vectors form a basis of Lm .
If the approximate solution is written as

x̃ = x0 + Vy, (3.4)

then the orthogonality condition leads to the following system of equations for the vector
y:

W T AVy = W T r0. (3.5)

If the assumption is made that the m × m matrix W T AV is nonsingular, the following
expression for the approximate solution x̃ results:

x̃ = x0 + V (W T AV )−1W T r0. (3.6)

It is important to note that the approximate solution is defined only when the matrix
W T AV is nonsingular, a property that is not guaranteed to be true even when A is non-
singular. Nevertheless, it can be verified that the projection method is well defined, that
is, W T AV is nonsingular in three particular cases.

Theorem: Let A, L, and K satisfy either of the following three conditions:

1. A is Hermitian positive definite (HPD) and L = K, or

2. A is Hermitian and invertible and L = AK, or

3. A is invertible and L = AK.

The proof can be found in [33]. Moreover, in these cases, the result of the projection
process can be interpreted easily in terms of actions of orthogonal projectors on the initial
residual or the initial error. If we consider the cases in which L = AK, and let r0 be the
initial residual r0 = b − Ax0 and r̃ = b − Ax̃ the residual obtained after the projection
process. Then

r̃ = b −A(x0 − δ) = r0 −A− δ. (3.7)
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In addition, δ is obtained by enforcing the condition that r0 − Aδ be orthogonal to AK.
Therefore, the vector Aδ is the orthogonal projection of the vector r0 onto the subspace
AK. Hence the following proposition can be stated.

Proposition: Let x̃, be the approximate solution obtained from a projection method onto
K orthogonally to L = AK and let r̃ = b −Ax̃ be the associated residual. Then

r̃ = (I − P)r0, (3.8)

where P denotes the orthogonal projector onto the subspace AK.

From this proposition it follows that the 2-norm of the residual vector obtained after
one projection step will not exceed the initial 2-norm of the residual; i.e.,

‖r̃‖2 ≤ ‖r0‖2.

This class of methods are known as residual projection methods.
Now, if we consider the case where L = K and A is HPD and let the initial error be
denoted by d0 = x∗−x0, where x∗ denotes the exact solution to the system, and, similarly,
let d̃ = x∗− x̃, where x̃ = x0 + δ is the approximate solution resulting from the projection
step. Then (3.7) yields the relation

Ad̃ = r̃ = A(d0 − δ),

where δ is now obtained by constraining the residual vector r0 − Aδ to be orthogonal to
K:

(r0 −Aδ,w) = 0 ∀w ∈ K.

The above condition is equivalent to

(A(d0 − δ),w) = 0 ∀w ∈ K.

Since A is SPD, it defines an inner product, which is usually denoted by (·, ·)A, and the
above condition becomes

(d0 − δ,w)A = 0 ∀w ∈ K.

The above condition is now easy to interpret: The vector δ is the A-orthogonal projection
of the initial error d0 onto the subspace K.

Proposition: Let x̃, be the approximate solution obtained from a projection method onto
K and let d̃ = x∗ − x̃ be the associated error vector. Then

d̃ = (I − PA)d0, (3.9)
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where PA denotes the projector onto the subspace K, which is orthogonal with respect to
the A inner product.

A result of the proposition is that the A-norm of the error vector obtained after one
projection step does not exceed the initial A-norm of the error; i.e.,

‖d̃‖A ≤ ‖d0‖A,

which is expected because it is known that the A-norm of the error is minimized in x0 +K.
This class of methods are known as error projection methods.

3.2 Krylov subspace methods

A Krylov subspace method is a projection method for which the subspace Km is the Krylov
subspace:

Km(A, r0) = span{r0,Ar0,A2r0, ...,Am−1r0}. (3.10)

The different versions of Krylov subspace methods arise from different choices of the
subspace Lm and from the ways in which the system is preconditioned. Arnoldi’s procedure
is an algorithm for building an orthogonal basis of the Krylov subspace Km . One variant
of the algorithm known as the Modified Gram-Schmidt (MGS) algorithm is as follows:

Algorithm 3.1 Arnoldi with Modified Gram Schmidt
1: Chose a vector v1 such that ‖v1‖2 = 1
2: for j = 1 to m do
3: Compute wj := Avj

4: for i = 1 to j do
5: hij = (wj , vi)
6: wj := wj − hijvi

7: end for
8: hj+1,j = ‖wj‖2. If hj+1,j = 0 Stop
9: vj+1 = wj/hj+1,j

10: end for

The general procedure to form the orthonormal basis is as follows: assume we have an
orthonormal basis [v1, ..., vj ] for Kj(A, r0). This basis is expanded by computing w = Avj

and orthonormalized with respect to the previous basis. Let the matrix Vj be given as

Vj = [v1, ..., vj ], where span(v1, ..., vj) = Kj

Since the columns of Vj are orthogonal to each other. It follows that

AVj = VjHj + wjeT
j (3.11)

= Vj+1H̄j , (3.12)

V T
j AVj = Hj (3.13)
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The j×j matrix Hj is upper Hessenberg, and its elements hi,j are defined by the algorithm.
If A is symmetric, then Hj = V T

j AVj is also symmetric and thus tridiagonal. This
leads to a three term recurrence in the Arnoldi process. Each new vector has only to be
orthogonalized with respect to two previous vectors. This process is called the Lanczos
algorithm.

3.2.1 Using Arnoldi’s Method for solving Linear Systems

Given an initial guess x0 to the original linear system Ax = b, we now consider an or-
thogonal projection method, which takes L = K = Km(A, r0), with Km(A, r0) given by
(3.10) in which r0 = b − Ax0. This method seeks an approximate solution xm from the
affine space x0 +Km of dimension m by imposing the Galerkin condition b −Axm ⊥ Km .
If v1 = r0/‖r0‖2 in Arnoldi’s method and we set β = ‖r0‖2, then

V T
m AVm = Hm (3.14)

as a consequence of equation (3.13), and

V T
m r0 = V T

m (βv1) = βe1. (3.15)

As a result, the approximate solution using the above m-dimensional subspace is given by

xm = x0 + Vmym (3.16)

ym = H−1
m (βe1). (3.17)

A method based on this approach is called the full orthogonalization method (FOM),
presented in [33].

The generalized minimal residual method (GMRES) is a projection method based on taking
K = Km and L = AKm , in which Km is the m-th Krylov subspace, with ‖v1‖ = r0/‖r0‖2.
As seen previously, such a technique minimizes the residual norm over all vectors in
x0 + Km . The implementation of an algorithm based on this approach is similar to that
of the FOM algorithm.
We will derive the algorithm exploiting the optimality condition as well as relation (3.12).
Any vector x in x0 +Km can be written as

x = x0 + Vmy, (3.18)

where y is an m-vector. Defining

J (y) = ‖b −Ax‖2 = ‖b −A(x0 + Vmy)‖2, (3.19)
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the relation (3.12) results in

b −Ax = b −A(x0 + Vmy)

= r0 −AVmy

= βv1 −Vm+1H̄my

= Vm+1(βe1 − H̄my).

Since the column vectors of Vm+1 are orthonormal, then

J (y) ≡ ‖b −A(x0 + Vmy)‖2 = ‖βe1 − H̄my‖2. (3.20)

The GMRES approximation is the unique vector of x0 +Km that minimizes (3.19). By (3.18)
and (3.20), this approximation can be obtained quite simply as xm = x0 + Vmym , where
ym minimizes the function J (y) = ‖βe1 − H̄my‖2; i.e.

xm = x0 + Vmym , where (3.21)

ym = min
y
‖βe1 − H̄my‖2. (3.22)

The minimizer ym is inexpensive to compute since it requires the solution of an (m+1)×m
least-squares problem, where m is typically small. This gives the following algorithm.

Algorithm 3.2 GMRES
1: Compute r0 = b −Ax0, β := ‖r0‖2, and v1 := r0/β

2: for j = 1 to m do
3: Compute wj := Avj

4: for i = 1 to j do
5: hij = (wj , vi)
6: wj := wj − hijvi

7: end for
8: hj+1,j = ‖wj‖2. If hj+1,j = 0 set m := j and go to 11
9: vj+1 = wj/hj+1,j

10: end for
11: Define the (m + 1)×m Hessenberg matrix Ĥm = {hij}1≤i≤m+1,1≤j≤m

12: Compute ym, the minimizer of ‖βe1 − Ĥmy‖2, and xm = x0 + Vmym

All Krylov subspace methods are related to, as well as defined by, the choice of a basis
of the Krylov subspace. The GMRES algorithm uses an orthonormal basis. In the CG algo-
rithm, the p’s are A orthogonal, i.e. conjugate, and so forth. A number of algorithms can
be developed using a basis of this form in the nonsymetric case as well. The main result
that is exploited in all these algorithms is the following lemma.

Lemma: Let p0, p1, ..., pm−1 be a sequence of orthonormal vectors such that each set
{p0, p1, ..., pj−1} for j ≤ m is a basis of the Krylov subspace Kj(A, r0), which is AT A-
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orthogonal, i.e., such that

(Api ,Apk) = 0, for i 6= k. (3.23)

Then the approximate solution xm that has the smallest residual norm in the affine space
x0 +Km(A, r0)is given by

xm = x0 +
m−1∑
i=0

(r0,Api)
(Api ,Api)

pi . (3.24)

In addition, xm can be computed from xm−1 by

xm = xm−1 + (rm−1,Apm−1)
(Apm−1,Apm−1)pm−1. (3.25)

This lemma opens up many different ways to obtain algorithms that are mathematically
equivalent to full GMRES. The simplest option computes the next basis vector pm+1 as
a linear combination of the current residual rm and all previous pi ’s. The approximate
solution is updated by using (3.25). This is called the generalized conjugate residual (GCR)
algorithm.

Algorithm 3.3 GCR
1: Compute r0 = b −Ax0. Set s1 = r0

2: for i = 1... until convergence do
3: Set si = ri−1

4: Compute vi = Asi

5: for j = 1 to i − 1 do
6: α = (vj , vi)
7: si := si − αsj , vi := vi − αvj

8: end for
9: si = si

‖si‖2
, vi = vi

‖vi‖2

10: β = (vi , ri−1)
11: ui := ui−1 + βsi

12: ri := ri−1 − βvi

13: end for

Both the set of si ’s and the set of vi ’s need to be saved. This doubles the storage require-
ment compared to GMRES. The number of arithmetic operations per step is also roughly
50% higher than that with GMRES [33].

3.3 Preconditioners

Preconditioning is a key ingredient for the success of Krylov subspace methods. Precon-
ditioning is a means of transforming the original linear system into one with the same
solution, but that is cheaper to solve with an iterative solver. In general, the reliability of
iterative techniques depends much more on the quality of the preconditioner than on the
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particular Krylov subspace accelerators used [33].

The first step in preconditioning is to find a preconditioning matrix M . The matrix M
should satisfy a few requirements, the most important being that it must be inexpensive
to solve linear systems Mx = b. This is because the preconditioned algorithms require a
linear system solution with the matrix M at each iteration. Also, M should be close to A
in some sense and it should clearly be nonsingular. Given the matrix splitting

A = M −N , (3.26)

where A is associated with the linear system (3.1). A linear fixed-point iteration can be
defined by the recurrence

xk+1 = M−1Nxk + M−1b, (3.27)

which at the same time is of the form

xk+1 = Gxk + f , (3.28)

with

G = M−1N = M−1(M −A) = I −M−1A, f = M−1b

The iteration (3.28) can be viewed as a technique for solving the system

(I −G)x = f . (3.29)

Since G has the form G = I −M−1A, this system can be rewritten as

M−1Ax = M−1b. (3.30)

This system, which has the same solution as the original system, is called a preconditioned
system and M is the preconditioning matrix or preconditioner. In other words, a relax-
ation scheme is equivalent to a fixed-point iteration on a preconditioned system. Once a
preconditioning matrix M is available there are three known ways of applying it. The
preconditioner can be applied from the left, leading to the preconditioned system

M−1Ax = M−1b. (3.31)

Alternatively, it can also be applied to the right:

AM−1u = b, x ≡ M−1u. (3.32)

Note that the above formulation amounts to making the change of variables u = Mx and
solving the system with respect to the unknown u. Finally, a common situation is when
the preconditioner is available is the factored form

M = MLMR
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where, typically, ML and MR come from an ILU factorization. In this situation, the
preconditioning can be split:

M−1
L AM−1

R u = M−1
L b, x ≡ M−1

R u. (3.33)

It is of utmost importance to preserve symmetry whenever the original matrix is symmet-
ric. The straightforward way of preserving symmetry is by applying the method described
by (3.33) however symmetry can also be preserved even when the preconditioned matrix
is not available in factored form. If we observe that M−1A is self-adjoint for the M -inner
product:

(x, y)M ≡ (Mx, y) = (x,My),

since

(M−1Ax, y)M = (Ax, y) = (x,Ay) = (x,M (M−1A)y) = (x,M−1Ay)M . (3.34)

We can exploit this fact in order to precondition Algorithm 3.2. An alternative is to replace
the usual Euclidean inner product in the GMRES algorithm with the M inner product.
In this particular case of nonsymetric iterative solvers, the three options for applying
the preconditioning operation are available, namely left, split, and right preconditioning.
However, the right preconditioning versions can give rise to what is called a flexible variant
- a variant in which the preconditioner can change at each step. The right-preconditioned
GMRES algorithm is based on solving

AM−1u = b, u = Mx. (3.35)

As we now show, the new variable u never needs to be invoked explicitly. Indeed, once
the initial residual b − Ax0 = b − AM−1u0 is computed, all subsequent vectors of the
Krylov subspace can be obtained without any reference to the u variables. Note that u0

is not needed at all. The initial residual for the preconditioned system can be computed
from r0 = b − Ax0, which is the same as b − AM−1u0. In practice, it is usually x0 that is
available, not u0. At the end, the u variable approximate solution to (3.35) is given by

um = u0 +
m∑

i=1
viηi ,

with u0 = Mx0. Multiplying through by M−1 yields the desired approximation in terms
of the x variable:

xm = x0 + M−1
[ m∑

i=1
viηi

]
.

Thus, one preconditioning operation is needed at the end of the outer loop, instead of at
the beginning which is the case for the left-preconditioned version.
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Algorithm 3.4 GMRES with Right Preconditioning
1: Compute r0 = b −Ax0, β := ‖r0‖2, and v1 := r0/β

2: for j = 1 to m do
3: Compute w := AM−1vj

4: for i = 1 to j do
5: hij = (wj , vi)
6: wj := wj − hijvi

7: end for
8: Compute hj+1,j = ‖wj‖2 and vj+1 = w/hj+1,j

9: Define Vm := [v1, ..., vm], H̄m = {hi,j}1≤i≤m+1,1≤j≤m

10: end for
11: Compute ym = miny ‖βe1 − Ĥmy‖2, and xm = x0 + M−1Vmym

12: If satisfied Stop, else set x0 := xm and go to 1.

This time, the Arnoldi loop builds an orthogonal basis of the right-preconditioned Krylov
subspace

span{r0,AM−1r0, ..., (AM−1)m−1r0}.

Note that the residual norm is now relative to the initial system, i.e., b − Axm , since the
algorithm obtains the residual b −Axm = b −AM−1um implicitly.

So far, it has been implicitly assumed that the preconditioning matrix M is constant;
i.e., it does not change from step to step. However, in some cases no matrix M is avail-
able. Instead, the operation M−1x is the result of some unspecified computation, possibly
another iterative process. In such cases, it may happen that M−1 is not a constant op-
erator. The previous preconditioned iterative procedures will not converge if M is not
constant. There are a number of variants that allow variations in the preconditioner from
iteration to iteration. One of these variants of the GMRES algorithm is described next.
In line 11 of the GMRES with Right Preconditioning algorithm the approximate solution xm

is expressed as a linear combination of the preconditioned vectors zi = M−1vi , i = 1, ...,m.
These vectors are also computed in line 3, prior to their multiplication by A to obtain the
vector w. They are all obtained by applying the same preconditioning matrix M−1 to the
vi ’s. As a result it is not necessary to save them. Instead, we only need to apply M−1 to
the linear combination of the vi ’s, that is to Vmym in line 11.
Suppose now that the preconditioner could change at every step, i.e., that zj is given by

zj = M−1
j vj .

Then it would be natural to compute the approximate solution as

xm = x0 + Zmym ,
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in which Zm = [z1, ..., zm ] and ym is computed as before, as the solution to the least-squares
problem in line 11. These are the only changes that lead from the right-preconditioned
algorithm to the flexible variant, described below.

Algorithm 3.5 Flexible GMRES
1: Compute r0 = b −Ax0, β := ‖r0‖2, and v1 := r0/β

2: for j = 1 to m do
3: Compute zj := M−1

j vj

4: Compute w := Azj

5: for i = 1 to j do
6: hi,j = (w, vi)
7: w := w − hi,jvi

8: end for
9: Compute hj+1,j = ‖w‖2 and vj+1 = w/hj+1,j

10: Define Zm := [z1, ..., zm], H̄m = {hi,j}1≤i≤m+1,1≤j≤m

11: end for
12: Compute ym = miny ‖βe1 − Ĥmy‖2, and xm = x0 + Zmym

13: If satisfied Stop, else set x0 ← xm and go to 1..

As can be seen, the main difference with the right-preconditioned version is that the
preconditioned vectors zj = M−1

j vj must be saved and the solution updated using these
vectors. It is clear that when Mj = M for j = 1, ...,m, then this method is equivalent
mathematically to GMRES with right preconditioning. It is important to observe that zj

can be defined in line 3 without reference to any preconditioner. That is, any given new
vector zj can be chosen. This added flexibility may cause the algorithm some problems.
Indeed, zj may be so poorly chosen that a breakdown may occur, as in the worst case
scenario when zj is zero.

3.4 Deflation

After preconditioning, the resulting linear system to be considered is

AM−1u = b, x = M−1u, (3.36)

where M−1 is a preconditioner. the spectrum of the preconditioned matrix, σ(AM−1),
often contains unfavorable eigenvalues that deteriorate the convergence of the iterative
solver. The so-called deflation method effectively treats these eigenvalues so that the con-
vergence of the iterative method can be significantly improved. (See [37], [18]) In order to
describe the deflation method we start with some preliminaries:

Definition: Let A be an SPSD matrix. Suppose that Z ∈ Rn×k with full rank is given.
Then we define the invertible Galerkin matrix, E ∈ Rk×k , the correction matrix, Q ∈
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Rn×n, and the deflation matrix P ∈ Rn×n, as follows:

P = I −AQ, Q = ZE−1Z T , E = Z T AZ (3.37)

In Equation (3.37), Z is the so-called ’deflation subspace matrix’ whose k columns are
called the ’deflation vectors’ or ’projection vectors’. These vectors remain unspecified for
the moment, but they are chosen in such a way that E is nonsingular. Using (3.37) we
next state some useful results:

Lemma: Let A, Z, E, Q, and P be given as before. Let x and b be the solution and
right-hand side of (3.36), respectively. Then the following equalities hold:

(a) ET = E

(b) QT = Q = QAQ

(c) QAZ = Z

(d) PAQ = 0

(e) P2 = P

(f) APT = PA

(g) (I − PT )x = Qb

These results, specifically result (e) shows that P is a projector. This means that it divides
the space Rn in a direct sum of two subspaces. This tells us that the original linear system
Ax = b can be solved by employing the splitting

x = (I − PT )x + PT x. (3.38)

In Equation (3.38), (I − PT )x can be computed immediately from the Lemma of this
section part (g). Hence only PT x should be computed in (3.38) in order to find x. We
can write

x = (I − PT )x + PT x ⇔ x = Qb + PT x (3.39)

⇔ Ax = AQb + APT x (3.40)

⇔ b = AQb + PAx (3.41)

⇔ Pb = PAx (3.42)

where we have used part (f) of the Lemma. Note that x at the end of Equation (3.39)
is not necessarily a solution of the original linear system Ax = b, since it may consists
of components of the null space of PA. Therefore, this ’deflated’ solution is denoted as x̂
rather than x. We can now solve the deflated system

PAx̂ = Pb, (3.43)
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using an iterative solver. The relation between the solutions x and x̂ can be obtained from
the following Corollary:

Corollary: Let P and Q be given as before. Let b be the right-hand side of Ax = b. Then,
the solution x of Ax = b can be expressed as:

x = Qb + PT x̂, (3.44)

where x̂ is a solution of (3.43).

Since PA preserves the properties of the original matrix, this can be interpreted as the
new coefficient matrix of the linear system.

The deflated system (3.43) can also be solved using a preconditioner, M−1. In this case,
we solve:

P̃Ãˆ̃x = P̃b̃ (3.45)

with

Ã = AM−1, ˆ̃x = x̂M−1, b̃ = b,

and

P̃ = I − ÃQ̃, Q̃ = Z̃ Ẽ−1Z̃ T , Ẽ = Z̃ T ÃZ̃ ,

where Z̃ ∈ Rn×k can be interpreted as a preconditioned deflation-subspace matrix. The
resulting method will be a deflated and preconditioned iterative method.
Eigenvectors corresponding to the smallest nonzero eigenvalues of A are usually used as
deflation vectors since M−1 often treats the largest eigenvalues of A effectively. In this
case, the deflation method is fast in convergence if P acts as a complementary part of
the preconditioning by projecting the smallest eigenvalues to zero. However, in general,
eigenvectors associated with the largest eigenvalues of A, or a combination of these two
approaches, can also be used as deflation vectors in order to reduce κ(M−1PA). This
approach is called ’eigenvector deflation’ and can be very effective, but, unfortunately,
eigenvectors are usually expensive to compute in practice. In addition, eigenvectors are
often dense, leading to a possibly expensive deflation matrix P. Ideally, Z should consist
of sparse and good approximations of eigenvectors.





Chapter 4

Block-type preconditioners for the
incompressible Navier-Stokes equations

Lack of robustness is a widely recognized weakness of iterative solvers relative to direct
solvers. This drawback hampers the acceptance of iterative methods in industrial appli-
cations despite their intrinsic appeal for very large linear systems. Both the efficiency
and robustness of iterative techniques can be improved by using preconditioning. A term
introduced in Chapter 3, preconditioning is simply a means of transforming the original
linear system into one which has the same solution, but which is likely to be cheaper
to solve with an iterative solver. In general, the reliability of iterative techniques, when
dealing with various applications, depends much more on the quality of the preconditioner
than on the particular Krylov subspace accelerators used.

4.1 Block preconditioners

One particular class of preconditioners is known as Block Preconditioners. These type of
preconditioners are based on a block factorization of the coefficient matrix (2.22). After
the factorization is performed, two subsystems for the velocity and pressure are solved
separately during each iteration. The general approach of such separation is known as the
Schur Complement method, which can be given as follows.
Consider a block factorized linear system written in the form: A11 A12

A21 A22

 x
y

 =

 f
g

 , (4.1)

in which A11 is assumed to be nonsingular. From the first equation the unknown x can
be expressed as

x = A−1
11 (f −A12y). (4.2)

25
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If we substitute this into the second equation, the following reduced system is obtained:

(A22 −A21A−1
11 A12)y = g −A21A−1

11 f . (4.3)

The matrix

S = A22 −A21A−1
11 A12 (4.4)

is called the Schur complement matrix associated with the y variable. If this matrix can
be formed and the linear system (4.1) can be solved, all the interface variables y, that is
the variables that couple both systems, will become available. Once these variables are
known, the remaining unknowns can be computed via (4.2). Due to this particular fact,
an important aspect of Block preconditioners is to have a good approximation of the Schur
complement matrix.
In the context of the Navier-Stokes equations, Block preconditioners are based on a block
factorization of the coefficient matrix (2.22). They are mostly based on a block LDU
factorization of (2.22): F BT

B 0

 = LDU =

 I 0
BF−1 I

 F 0
0 S

 I F−1BT

0 I

 , (4.5)

where S is the Schur complement matrix discussed above. Similarly, Block triangular
preconditioners (Pt) are based on the block DU factorization of (2.22) given by:

DU =

 F 0
0 S

 I F−1BT

0 I

 = Pt =

 F BT

0 S

 (4.6)

By investigating the following generalized eigenvalue problem, we can determine the eigen-
values of the preconditioned system: F BT

B 0

 u
p

 = λ

 F BT

0 S

 u
p

 (4.7)

We can see by inspecting the first row of (4.7) that,

(1− λ)
(

Fu + BT p
)

= 0.

This is only possible if (1− λ) = 0 or
(

Fu + BT p
)

= 0.
In the case (1−λ) = 0 we thus have λ = 1 signifying that we have nu eigenvalues equal to
one, that is we have eigenvalues equal to 1 of multiplicity nu . For the case

(
Fu + BT p

)
= 0

we obtain: (
Fu + BT p

)
= 0⇒ u = −F−1BT p (4.8)

From the second row of (4.7) we obtain:

Bu − λSp = 0,
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If we now substitute u = −F−1BT p on the previous equation, we obtain:

−BF−1BT p = λSp. (4.9)

This shows that whenever S = −BF−1BT we have λ = 1 with multiplicity np. From
this equation, we can see that a good approximation of the Schur complement matrix
will dictate the convergence behavior of the preconditioned system with Pt . A better
approximation of the Schur complement matrix will cluster the eigenvalues close to one
thus causing a faster convergence. Moreover, the use of F−1 and S−1 is not practical due
to the expensive calculation and storage of such matrices. In general, F−1 is approximated
by a matrix F̂−1 obtained by a small number of iterations with an iterative method. Thus,
the use of Block triangular preconditioners (4.6) involves the solution of Ptz = r , where

z =

 zu

zp

 and r =

 ru

rp

 as given by the next Algorithm:

Algorithm 4.1 Preconditioner Pt

1: Solve Szp = rp

2: Update ru = ru − BT zp

3: Solve Fzu = ru

We can see that the preconditioner involves the solution of two subproblems, one associated
with the pressure part and the other with the velocity part of the problem. As we have
mentioned before, the Schur complement matrix is not formed, but approximated by a
simple matrix Ŝ . The approximate inverse Ŝ−1 is replaced by a simple spectral equivalent
matrix such that the preconditioned matrix has a tightly clustered spectrum. How this
approximation is done defines the various block preconditioners.

4.2 Block preconditioners based on approximate commutators

Two popular preconditioners are based on approximating the commutator of the convec-
tion diffusion operator with the gradient operator. The commutator of two operators x
and y is defined as

[x, y] = xy − yx.

And whenever [x, y] = 0 it is said that the operator x commutes with the operator y, that
is xy = yx. The convection diffusion operator (See [21]) defined on the velocity space can
be expressed as:

L = −ν∇2 + wh · ∇ (4.10)

where wh is the computed approximation to the discrete velocity at the most recent
iteration.
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4.2.1 Pressure convection-diffusion preconditioner

Based on the idea presented by Kay et al. [21] that the commutator of the convection
diffusion operator acting on the gradient operator, on the velocity space, and the gradient
operator acting on the convection diffusion operator on the pressure space (Lp) is small,
that is:

ε = L∇−∇Lp � 1, (4.11)

then the discrete commutator in terms of finite element matrices given as:

εh = (Q−1
v F)(Q−1

v BT )− (Q−1
v BT )(Q−1

p Fp) (4.12)

might also be small. Qv denotes the velocity mass matrix and Qp the pressure mass ma-
trix (scaling matrices). Fp is a discrete convection diffusion operator on pressure space.
The multiplication by Q−1

u and Q−1
p transforms quantities from integrated values to nodal

values. If we now pre-multiply (4.12) by BF−1Qv , and post-multiplicate by F−1
p Qp and as-

suming that the commutator is small, leads to an approximation to the Schur complement
matrix:

BF−1BT ≈ BQ−1
v BT F−1

p Qp. (4.13)

in which the expensive part BQ−1
v BT is replaced by its spectral equivalent matrix Ap

known as the pressure Laplacian matrix, that is:

S = −BF−1BT ≈ −ApF−1
p Qp (4.14)

The preconditioner (4.6) with the approximation given in (4.14) is known as the so called
pressure convection-diffusion (PCD) preconditioner.
The convergence of this preconditioner combined with a Krylov method is very good for
enclosed flows if the equations are linearized by the Picard method [35]. The precon-
ditioner gives rise to many iterations in inflow/outflow problems, the reason could be
that an approximation of BQ−1

v BT by Ap is well-defined only for enclosed flow problems
[39]. Boundary conditions are treated such that Ap and Fp are computed with Neumann
boundary conditions for an enclosed flow problem. However in inflow/outflow problems,
rows and columns of Ap and Fp corresponding to pressure nodes on an inflow boundary
are treated as though they are associated with Dirichlet boundary conditions [39]. One of
the main disadvantages of PCD is the necessity to construct the matrices Ap and Fp and
the definition of boundary conditions for the pressure matrix. This makes implementation
in standard finite element codes less obvious [35].

4.2.2 Least squares commutator preconditioner

Instead of building two extra operators Fp and Ap in PCD, Elman et al. devised another
approach for approximating the Schur complement matrix known as the least squares
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commutator (LSC) preconditioner [12].
The idea is to approximate the matrix operator Fp in (4.13) such that the discrete com-
mutator (4.12) becomes small. This is done by solving a least squares problem. For the
j-th column of the matrix Fp, the least squares problem has the form:

min ‖[Q−1
v FQ−1

v BT ]j −Q−1
v BT Q−1

p [Fp]j‖Qv , (4.15)

where ‖ · ‖Qv is the
√

xT Qvx norm. The normal equations associated with this problem
are:

Q−1
p BQ−1

v BT Q−1
p [Fp]j = [Q−1

p BQ−1
v FQ−1

v BT ]j , (4.16)

which leads to the following definition of Fp:

Fp = Qp(BQ−1
v BT )−1(BQ−1

v FQ−1
v BT ). (4.17)

Substituting this expression into (4.13) provides an approximation to the Schur comple-
ment matrix:

S = BF−1BT ≈ (BQ−1
v BT )(BQ−1

v FQ−1
v BT )−1(BQ−1

v BT ). (4.18)

The preconditioner based on this approximation is known as the LSC preconditioner.
Generally, the inverse of the velocity mass matrix Q−1

v is dense. The preconditioner is
expensive if the full velocity mass matrix is used in the preconditioner. Therefore, Qv

is replaced by Q̂v , the diagonal of the velocity mass matrix. In the LSC preconditioner,
the first three steps are used to solve the approximate Schur complement (4.18). If we
denote the residual of a Krylov subspace method by r =

[
rv

rp

]
, where rv and rp refer

to the velocity and pressure part, respectively. The preconditioning steps with the LSC
preconditioner are given by:

Algorithm 4.2 Least Squares Commutator Preconditioner

1: Solve Sf zp = rp where Sf = BQ̂−1
v BT

2: Update rp = BQ̂−1
v FQ̂−1

v BT zp

3: Solve Sf zp = −rp

4: Update ru = ru − BT zp

5: Solve Fzu = ru

The LSC preconditioner is built from readily available matrices and no extra boundary
conditions are needed, however, per iteration LSC is more expensive than PCD since it
requires two Poisson solves instead of one, whereas PCD requires two extra operators
Fp and Ap on the pressure space including some boundary conditions. Nevertheless, its
convergence is better provoking that in the literature it is concluded that LSC is faster
than PCD [43].



30
CHAPTER 4. BLOCK-TYPE PRECONDITIONERS FOR THE INCOMPRESSIBLE

NAVIER-STOKES EQUATIONS

4.3 Augmented Lagrangian approach

A completely different approach has been published by Benzi and Olshanskii [?]. In this
method, it is necessary to augment the velocity matrix in the original equation by a
penalty-like term γBT W−1B with γ relatively small and W a scaling matrix, usually the
diagonal of the pressure matrix [35].
The system of equations (2.22) is replaced by Fγ BT

B 0

 u
p

 =

 f
0

 , (4.19)

With Fγ = F + γBT W−1B. Since Bu = 0, we can add the term γBT W−1Bu to the
first row in (4.19) without modifying the right hand side. This technique suggests a
preconditioner of the form:

PAL =

 Fγ B
0 Ŝ

 , (4.20)

with the inverse of the Schur complement approximated by

Ŝ−1 = −(νQ̂−1
p + γW−1). (4.21)

Q̂p denotes the approximate pressure matrix, ν is the viscosity and γ > 0 is a parameter.
A good choice of the parameter γ is essential. Usually, W is also replaced by Q̂p. For
constant pressure approximation, Qp is a diagonal matrix. For a linear pressure approxi-
mation, Qp is replaced by a spectrally equivalent diagonal matrix. For a diagonal matrix
Q̂p, the computation of the inverse approximate Schur complement is very cheap. The
preconditioner is known as augmented Lagrangian preconditioner (PAL).

4.4 SIMPLE-type preconditioners

One family of block preconditioners is the semi implicit method for pressure-linked equations-
type preconditioners or SIMPLE-type preconditioners. SIMPLE is used by Patanker as
an iterative method used to solve the Navier-Stokes problem. The algorithm is based on
the following steps:

1. The pressure is assumed to be known from the previous iteration.

2. The velocity is solved from the momentum equations.

3. Since the pressure is only a guess, the newly obtained velocities do not satisfy the
continuity equation. In the subsequent substeps the velocities and pressures are
corrected in order to satisfy the discrete continuity equation.
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In the following, we will present a SIMPLE-type preconditioner for the Navier stokes
equations discretized by the Finite Element Method according to Rehman, Vuik and Segal
in [43]. The algorithms follows from a block LU decomposition of the coefficient matrix
(2.22): F BT

B 0

 u
p

 =

 F 0
B −BF−1BT

 I F−1BT

0 I

 u
p

 =

 f
g

 , (4.22)

The approximation F−1 = D−1 = diag(F)−1 in the (2, 2) and (1, 2) block of the L and
U block matrices, respectively, leads to the SIMPLE algorithm. Solve recursively the
following systems:  F 0

B −BD−1BT

 u∗

δp

 =

 f
g

 , (4.23)

and  I D−1BT

0 I

 u
p

 =

 u∗

δp

 . (4.24)

This method leads to the following Algorithm for the SIMPLE method:

Algorithm 4.3 SIMPLE Preconditioner
1: p∗ is given
2: Solve Fu∗ = ru

3: Solve Ŝδp = rp − Bu∗

4: Update zu = u∗ −D−1BTδp
5: Update zp = p∗ + δp.
6: If not converged go to 2

Vuik et al. in [46] have used SIMPLE and it’s variants as a preconditioner to solve the
Navier-Stokes problem. One iteration of the SIMPLE algorithm is used as a precondi-
tioner. The preconditioner consists of one velocity solve and one pressure solve. Since
the systems of equations in the previous algorithm are solved to a certain accuracy, the
preconditioner can not be considered constant in subsequent iterations. For that reason
the Krylov subspace method GCR, which allows variable preconditioners, as outer iteration.
Nevertheless, the convergence rate suffers from an increase in the number of grid elements
and Reynolds number. It can be proven that the SIMPLE preconditioner improves the
overall spectrum of the preconditioned system. Some of the eigenvalues are clustered
around 1. The other ones depend on the approximation of the Schur complement matrix.

Proposition: For the SIMPLE preconditioned matrix Ã, 1 is an eigenvalue with mul-
tiplicity nu , and the remaining eigenvalues are defined by the generalized eigenvalue prob-
lem Sp = λŜp,

with Ŝ = −BF−1BT . The proof can be found in [42].
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4.4.1 SIMPLE(R)

A variant of SIMPLE, known as SIMPLER, is supposed to provide Reynolds-independent
convergence. Instead of estimating the pressure p∗ in the SIMPLE algorithm, p∗ is ob-
tained from solving a subsystem

Ŝp∗ = rp − BD−1((D − F)uk + ru), (4.25)

where uk is obtained from the prior iteration. In case SIMPLER is used as a precondi-
tioner, uk is taken equal to zero, therefore:

Ŝp∗ = rp − BD−1ru . (4.26)

The classical SIMPLER algorithm proposed by Patanker consists of two pressure solves
and one velocity solve. The complete SIMPLER algorithm is given next:

Algorithm 4.4 SIMPLE(R) Preconditioner

1: Solve Ŝp∗ = rp − BD−1ru

2: Solve Fu∗ = ru − BT p∗

3: Solve Ŝδp = rp − Bu∗ − Cp∗

4: Update zu = u∗ −D−1BTδp
5: Update zp = p∗ + δp

Unfortunately, if SIMPLER preconditioned GCR is used for finite element discretizations,
the convergence may be poor or even divergence may occur, especially in case of low
accuracy for the inner systems and in case of fine grids [35].

4.4.2 hSIMPLE(R)

Vuik et al. have observed that in the Stokes problem, the SIMPLER preconditioner shows
a phase of stagnation at the start of the iterative method. This behavior is not seen in
the SIMPLE preconditioner. This is shown in Figure 1 taken from [43]. A better conver-
gence can be achieved if the first iteration is carried out with the SIMPLE preconditioner
and after that SIMPLER is employed. The authors of [43] have named this combination
hybrid-SIMPLER (hSIMPLER). This implementation gives a fair reduction in the num-
ber of iterations if the Stokes problem is solved. However, in the Navier-Stokes problem,
SIMPLER performs better than hSIMPLER.
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Figure 4.1: Convergence plot of SIMPLE-type peconditioners for the Stokes problem [43]

We can see from Figure 4.1 that there exists a clear stagnation behavior in the initial
solution phase of the SIMPLER preconditioner.

4.4.3 M-SIMPLE(R)

Elman et al. in [12] discussed the relation between SIMPLE and approximate commutator
preconditioners, which is presented next. The more general form of (4.18) is given by

(BF−1BT )−1 ≈ Fp(BM−1
1 BT )−1, (4.27)

where

Fp = (BM−1
2 BT )−1(BM−1

2 FM−1
1 BT ), (4.28)

where M1 and M2 are scaling matrices. If we now consider a block factorization precondi-
tioner in which the Schur complement is based on a commutator approximation but built
on SIMPLE’s approximate block factorization written as:

P =

 F 0
B −BM−1

1 BT

 I D−1BT

0 I

 I 0
0 F−1

p

 . (4.29)

where M1 = D and Fp is the identity matrix, then the preconditioner formulation (4.29)
corresponds to SIMPLE. The formulation given in (4.29) is equivalent to the SIMPLE
algorithm if the subsystem for the pressure part in step 3 in the SIMPLE algorithm is
solved with the approximation given in (4.27),

Ŝδp = rp − Bu∗ (4.30)

where

Ŝ = −(BM−1
1 BT )F−1

p . (4.31)

When FD−1 is close to identity, Fp will also be close to identity. This is true in a time
dependent problem with small time steps where the diagonal of F has significantly larger
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entries than the off-diagonal entries.
Now, we use the observation made by Elman et al. regarding time dependent problems.
We know that in time dependent problems

Ft = 1
∆t Qv + F , (4.32)

where Ft represents the velocity matrix for the time dependent problem and ∆t represents
the time step. For small time step Ft ≈ 1

∆t Qv . This kind of approximation has been used
in fractional step methods for solving the unsteady Navier-Stokes problem. We use this
idea in solving the steady Navier-Stokes problem. Therefore, we choose M1 = M2 = Q̂v

in (4.27) resulting in:

Fp = (BQ̂−1
v BT )−1(BQ̂−1

v FQ̂−1
v BT ). (4.33)

If we assume that the factor FQ̂−1
v in Fp is close to identity, then

Fp = (BQ̂−1
v BT )−1(BQ̂−1

v BT ) ≈ I , (4.34)

and the approximation (4.27) becomes

BF−1BT ≈ −BQ̂−1
v BT . (4.35)

Based on this result, we replace D−1 in the SIMPLER algorithm by Q̂−1
v . This method is

referred to as MSIMPLER (Modified SIMPLER).

Algorithm 4.5 M-SIMPLER Preconditioner

1: Solve Ŝp∗ = rp − BQ̂−1
v ru

2: Solve Fu∗ = ru − BT p∗

3: Solve Ŝδp = rp − Bu∗

4: Update zu = u∗ − Q̂−1
v BTδp

5: Update zp = p∗ + δp

It is clear from the previous algorithm that the cost of MSIMPLER is equal to the cost
of the SIMPLER preconditioner. However, in solving the Navier-Stokes problem, at each
nonlinear iteration, the Schur complement approximation in the MSIMPLER does not to
be built again because the operators used in the Schur complement approximation are
independent of any change that may take place at each nonlinear iteration.



Chapter 5

Numerical Experiments

In search for an answer to the research questions posed in the introduction of this thesis,
a collection of MATLAB programs was developed and a set of numerical experiments was
performed. Mainly, the SIMPLE(R) and M-SIMPLER preconditioners were implemented
as algorithms to solve the Navier-Stokes saddle-point algebraic problem. A routine to
use deflation techniques was also implemented. Programs to investigate the spectrum
of eigenvalues of the resulting preconditioned and deflated matrices were also developed,
allowing for a clear comparison of the respective spectrums. The algorithms were imple-
mented under the IFISS environment, making use of the data matrices generated by its
discretization routines. IFISS is a graphical MATLAB package for the interactive numerical
study of incompressible flow problems [11], [13]. It includes algorithms for discretization
by mixed finite element methods and a posteriori error estimation of the computed so-
lutions. The package can also be used as a computational laboratory for experimenting
with preconditioned iterative solvers for the discrete linear equation systems that arise
in incompressible flow modeling. For each problem addressed, the package allows for the
study of the discretization and the iterative solution algorithms as well as the interaction
between the two and the resulting effect on overall efficiency. In the following section,
we present a series of numerical experiments that was carried out using the developed
programs.

5.1 Reference problems

Three solutions of the Navier-Stokes problem (2.1) and (2.2) are presented here as reference
problems. These solutions will work as a framework in which we can investigate the
performance of the preconditioned and deflated GMRES method. The solutions have been
calculated using the IFISS package.

35
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2D Poiseuille Flow

This problem represents steady horizontal flow in a channel driven by a pressure difference
between the two ends, more commonly known as Poiseuille flow. The domain is given by:

Ω1 : the square (−1, 1)× (−1, 1).

Here, a solution is computed numerically on Ω1 using the velocity u = (1−y2, 0) to define
a Dirichlet condition on the inflow boundary x = −1. The no-flow Dirichlet condition
u = 0 is applied on the characteristic boundaries y = −1 and y = 1. At the outflow
boundary (x = 1,−1 < y < 1), there is a choice of applying a Neumann or a Dirichlet
condition. The Poiseuille channel flow solution is an analytic solution of the Navier-Stokes
equations and it is only obtainable since the convection term is identically zero. In the
solution, the pressure gradient is proportional to the viscosity parameter. The solution is
given next.
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Streamlines: uniform

Figure 5.1: Solution to the Poiseuille flow problem.

Driven Cavity Flow

This is a classical test problem used in fluid dynamics, known as driven-cavity flow. It is
a model of the flow in a square cavity, that is, the domain is Ω1 with the lid moving from
left to right. A Dirichlet no-flow condition is applied on the side and bottom boundaries.
Different choices of the nonzero horizontal velocity on the lid give rise to different compu-
tational models:

{y = 1;−1 ≤ x ≤ 1|ux = 1}, a leaky cavity;

{y = 1;−1 < x < 1|ux = 1}, a watertight cavity;

{y = 1;−1 ≤ x ≤ 1|ux = 1− x4}, a regularised cavity;

The solution of the driven cavity problem is presented next.
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Figure 5.2: Solution to the Driven cavity problem with a watertight cavity.

Backward facing step Flow

This example represents the flow over a step of length L. The domain is given by:

Ω2 : the L-shaped region generated by taking the complement in (−1,L)× (−1, 1)

of the quadrant (−1, 0]× (−1, 0].

A Poiseuille flow is imposed on the inflow boundary (x = 0; 0 ≤ y ≤ 1), and a no-flow
(zero velocity) condition is imposed on the top and bottom walls. A Neumann condition
is applied at the outflow boundary which automatically sets the mean outflow pressure to
zero. The solution of this problem is presented next:

−1 0 1 2 3 4 5 −1

0

1
−0.1
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0.1
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Streamlines: uniform

Figure 5.3: Solution to the backward facing step with stabilized Q1 −P0 approximation.

The performance of iterative Krylov subspace methods and preconditioners can be studied
using the built in functions of IFISS. As an example, we present the convergence history
of the GMRES method with different methods of preconditioning. The convergence behavior
is presented next.
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Figure 5.4: Convergence plot of GMRES.

Using these three solutions of the Navier-Stokes equations as a reference, we can test
the performance of the implemented algorithms. The following sections focus on the
results obtained by implementing the SIMPLER preconditioner.

5.2 Results of SIMPLE(R) preconditioner

First, we present the performance results of the GMRES method when SIMPLER is used
as a preconditioner and is used to solve the backwards facing step flow, the Poiseuille
flow and the driven cavity flow. Two sets of experiments were carried out for each of
the distinct reference problems; the first set involves the construction of the SIMPLER
preconditioner using the matrix operators with imposed boundary conditions and will be
referred to as SIMPLER(WBC). In the second set, the preconditioners were constructed
using the matrices without the boundary conditions imposed on them and we will call this
variation the SIMPLER(WOBC) preconditioner. The difference between implementations
is mainly how the Schur complement matrix is built and the precise matrices which are
used are explained in the following subsections. In the first case, the divergence oper-
ator with the imposed boundary conditions is used to construct the Schur complement
approximation matrix; the second one involves the construction of the Schur complement
matrix without applying the boundary conditions. A stagnation behavior in the initial
phase of the solution of the resulting linear system of equations using the GMRES method
with right preconditioning as the iterative solver was found when the Schur complement
approximation was constructed with the boundary conditions already applied to the ma-
trix operators in the the SIMPLER algorithm. This stagnation behavior was found to
be in accordance with the results presented by [39]. This stagnation behavior was absent
when the preconditioner was built without the imposed boundary conditions.
Second, we present a series of experiments which was carried out using stretched grids.
When SIMPLER(WBC) was used, the stagnation phase seemed to be independent of the
stretch factor, yielding the same solution behavior and total number of iterations for the
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different stretch factors applied to the same test problem. This is not the case for SIM-
PLER(WOBC). Here, a tendency towards stagnation is found when the grid is stretched
throughout the whole solution process.
As a third set of results and due to the diversity of behaviors found, the eigenvalues of the
preconditioned matrices were explored. We present the comparison of spectrums of the
original matrix, the preconditioned matrix and the preconditioned and deflated matrix.
The visualization of the spectrums helped in the construction of the deflation matrix in or-
der to identify the eigenvalues and corresponding eigenvectors which represent a problem
for the iterative solver.

5.2.1 Operators with B.C.

In this subsection we present the results obtained while using the SIMPLER(WBC) as a
preconditioner. The preconditioner was obtained by constructing the Schur complement
matrix needed in the SIMPLER preconditioner with the prescribed boundary conditions
applied to them. That is, in the LU-decomposition of the coefficient matrix: F BT

B 0

 =

 F 0
B −BF−1BT

 I F−1BT

0 I

 , (5.1)

The matrix B in the (2, 2) block of the first matrix was identified as the matrix with
imposed boundary conditions.
In the performed simulations, the discretization of the domains was obtained with the
use of Q2 −Q1 finite elements in every case. The linearization of the nonlinear system of
equations was performed via the Picard method. The tolerance of the linear approximation
was set to 1e − 8, The number of iterations in order to achieve this accuracy are given
in parenthesis in the table of results. In the solution of the resulting linear system of
equations, the criteria used to measure the relative error of the residual norm was 1e− 6.
That is, we accept an iterate xk of the GMRES method with right preconditioning as a valid
solution when,

‖M−1(B −Axk)‖
‖M−1(B −Ax0)‖ ≤ 1e−6. (5.2)

For each of the three distinct reference problems, the Number of iterations of the solution
method were measured for varying viscosity as well as for different grid sizes. A conver-
gence plot of the GMRES method was also explored for a system with a fixed number of grid
points. The graph shows the logarithm of the relative residual norm with respect to the
number of iterations. That is, log10(‖M

−1(B−Axk)‖
‖M−1(B−Ax0)‖) Vs. k where k is the iteration number.



40 CHAPTER 5. NUMERICAL EXPERIMENTS

For the Poiseuille flow the following table was obtained while measuring the iteration
count for varying Reynold’s number and system size, in this case, the convergence plot
shown is for a system of 128× 128 grid points:

ν 0.1 0.01 0.005
h = 1

32 17 (1) 22 (1) 30 (1)
h = 1

64 27 (1) 24 (1) 29 (1)
h = 1

128 44 (1) 34 (1) 33 (1)
h = 1

256 72 (1) 66 (1) 54 (1)

Table 5.1: Iteration numbers for the Poiseuille
flow using the FGMRES method precondi-
tioned with SIMPLER(WBC). The number of
Picard iterations appears in parenthesis.
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Figure 5.5: Convergence plot of FGMRES
method preconditioned with SIMPLER(WBC)
for the Poiseuille flow.

For the Driven Cavity problem the following iteration count table was obtained, the con-
vergence plot presented is of a system of 128× 128 regular grid points:

ν 0.1 0.01 0.005
h = 1

32 16 (6) 18 (13) 21 (14)
h = 1

64 24 (5) 23 (12) 24 (13)
h = 1

128 37 (5) 40 (11) 36 (11)
h = 1

256 58 (4) 66 (10) 67 (10)

Table 5.2: Iteration numbers for the driven cav-
ity flow using the FGMRES method precondi-
tioned with SIMPLER(WBC). The number of
Picard iterations appears in parenthesis.
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Figure 5.6: Convergence plot of FGMRES
method preconditioned with SIMPLER(WBC)
for the driven cavity flow.

For the backward facing step flow the following data was obtained, the convergence plot
for this reference problem is of a system of 64× 128 grid points:
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ν 0.1 0.01 0.005
16× 48 20 (7) 34 (25) 50 (64)
32× 96 29 (7) 38 (23) 56 (70)
64× 192 45 (6) 47 (21) 57 (63)
128× 384 70 (6) 74 (19) 77 (54)

Table 5.3: Iteration numbers for the back-
ward facing step flow using the FGMRES
method preconditioned with SIMPLER(WBC).
The number of Picard iterations appears in
parenthesis.
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Figure 5.7: Convergence plot of FGMRES
method preconditioned with SIMPLER(WBC)
for the backwards facing step flow.

This set of results shows that in all of the different test problems, a stagnation behavior
was found in the initial phase of the solution algorithm of the SIMPLE(R) preconditioner.
The stagnation behavior seems to be somewhat absent in the driven cavity flow problem.
The iteration count seems to increase with an increase of system size, except for the back-
wards facing step problem, in which the iteration count stays relatively constant for an
increase in system size. For a change in the viscosity of the flow, the iteration count is
relatively constant and in some cases it decreases for problems with lower viscosity. The
spectrum of the preconditioned system will be analyzed in detail in further sections. First,
we present the results of the alternative way of constructing the SIMPLER preconditioner.

5.2.2 Operators without BC

The results encountered in the previous subsection suggest a difference in the convergence
behavior between problems with imposed Dirichlet boundary conditions and problems
with imposed Neumann boundary conditions. A set of simulations was repeated for the
same test problems following a different construction of the SIMPLER preconditioner.
The difference being that the Schur complement matrix was constructed with the matrix
operators before the boundary conditions were imposed to them. That is, the matrix
B and BT in the Schur complement approximation are identified as the matrices before
the boundary conditions are imposed on them. We call the resulting algorithm the SIM-
PLER(WOBC). The simulations were performed with the same finite element choice and
tolerance bounds as the previous section. The number of iterations for the relative resid-
ual to attain a value below the tolerance bound was measured for varying viscosity and
system size. The number of Picard iterations measured to achieve the desired tolerance
appear in parenthesis.
Now we present the results obtained from simulating the three different types of flow.
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For the Poiseuille flow, the measured iteration counts are presented in the following table.
For a visual representation of the convergence history of the iterative method, we present
a convergence plot of a system of 256 × 256 nodes. Once again, the graph shows the
logarithm of the relative residual norm with respect to the number of iterations.

ν 0.1 0.01 0.005
h = 1

32 33 (1) 30 (1) 38 (1)
h = 1

64 46 (1) 36 (1) 37 (1)
h = 1

128 69 (1) 57 (1) 50 (1)
h = 1

256 100 (1) 102 (1) 84 (1)

Table 5.4: Iteration count for the Poiseuille
flow using the FGMRES method precondi-
tioned with SIMPLER(WOBC).
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Figure 5.8: Convergence plot of FGM-
RES method preconditioned with SIM-
PLER(WOBC) for the Poiseuille flow.

In the case of the Driven cavity problem, the following iteration counts were measured,
also, the convergence plot of the largest simulation with a size of 256× 256 nodes is pre-
sented next:

ν 0.1 0.01 0.005
h = 1

32 36 (6) 28 (13) 31 (14)
h = 1

64 50 (5) 42 (12) 38 (13)
h = 1

128 71 (5) 68 (11) 62 (11)
h = 1

256 98 (4) 113 (10) 109 (10)

Table 5.5: Iteration count for the driven cav-
ity flow using the FGMRES method precondi-
tioned with SIMPLER(WOBC).
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Figure 5.9: Convergence plot of FGM-
RES method preconditioned with SIM-
PLER(WOBC) for the driven cavity flow.
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In the case of the backwards facing step flow, the following measurements were obtained,
the convergence plot for a system of 64× 192 nodes is also presented:

ν 0.1 0.01 0.005
16× 48 40 (7) 44 (25) 56 (64)
32× 96 55 (7) 51 (23) 62 (70)
64× 192 80 (6) 70 (21) 70 (63)
128× 384 113 (6) 115(19) 103(54)

Table 5.6: Iteration numbers for the backwards
facing step flow using the FGMRES method
preconditioned with SIMPLER(WOBC).
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Figure 5.10: Convergence plot of FGM-
RES method preconditioned with SIM-
PLER(WOBC) for the backwards facing
step flow.

We can see that for every simulation, the iteration number increased with respect to
the simulations performed in the previous section. Nevertheless, a clear stagnation behav-
ior is not found in the initial phase of the solution process. For the driven cavity flow, an
initial phase of super-convergence is found. The iteration count decreases for an increase
in viscosity of the flow, while there is an increase in iteration count for systems of a greater
number of elements.
The combination of the results obtained in the preceding two subsections suggest that
for enclosed flow problems, that is for problems without homogeneous Neumann bound-
ary conditions, SIMPLER(WOBC) provides a better convergence behavior in the initial
phase of the solver. Although SIMPLER(WOBC) results in more iterations of the it-
erative solver, it can be used in combination with SIMPLER(WBC) to achieve better
convergence results. As a suggestion, one could implement a solver for which the first
steps are performed using SIMPLER(WOBC) while the remaining solution steps may be
performed using SIMPLER(WBC).

5.3 Eigenvalue Exploration

An eigenvalue exploration was carried out for problems where a stagnation behavior was
found in the initial phase of the solver. This is the case for all the test problems when
using SIMPLER(WBC) except maybe for some cases of the driven cavity flow. In the
following section, a distinction is made for cases with and without stretching.
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5.3.1 Stagnation without stretching

A clear stagnation behavior in the initial phase of the solver is found, for example, in the
Poiseuille flow simulation with a system size of 32 × 32 nodes and a viscosity of ν = 0.1
where the initial stagnation behavior is clear. The spectrum of eigenvalues for this problem
is plotted in the next figures for the matrices with and without preconditioning.
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Figure 5.11: Spectrum of eigenvalues of the Navier-Stokes system (A) and preconditioned with
SIMPLER (M−1A) for the Poiseuille flow

Indeed, a shifting of the eigenvalues towards the value one is found for the preconditioned
matrix. Before the preconditioning, all the real parts of the eigenvalues are distributed
between [−0.05, 1] on the real axis. After the preconditioning, most of the eigenvalues are
clustered around one, however, the range of distinct values of the real part of the eigen-
values extends to [0.9, 54.9] on the real axis. This shows a change in the properties of the
matrix. It can be seen that after the preconditioning, the matrix becomes positive definite.
Krylov-type iterative solvers such as GMRES have proved to be particularly efficient for
systems with a Hermitian positive definite matrix, or more generally, for systems with a
matrix with all eigenvalues in the right half of the complex plane. Navier-Stokes-type sys-
tems, however, are highly indefinite, which means that the system matrix has eigenvalues
with both negative and positive real parts, a characteristic that can result in a very slow
convergence. It can be seen that most of the eigenvalues situate themselves around the
value one with the exception of a few eigenvalues with a relatively large norm. This ob-
servation encouraged the exploration of the spectrum of eigenvalues of the preconditioned
matrix for varying grid sizes. The results are plotted next:
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Figure 5.12: Spectrum of eigenvalues of the Navier-Stokes system (A) and preconditioned with
SIMPLER (M−1A) for the Poiseuille flow for different system size.

A clear pattern in the spectrum of eigenvalues for the different system sizes is not directly
apparent. This apparent ”lack of pattern” suggests that an investigation of the Ritz
values should be done at different steps of the solution phase. If the iterative method
is first trying to approximate the eigenvalues which are the ones far away from 1, this
may cause the stagnation behavior and a deflation approach might be useful in order to
eliminate the stagnation. Such a study of the Ritz values is presented next.
If we look at the convergence history of the Poiseuille flow for a system of 32× 32 nodes,
we can observe a ”stagnation behavior”, this is shown in the next figure:
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Figure 5.13: Convergence plot of FGMRES method preconditioned with SIMPLER(WOBC) for
the Poiseuille flow.

If we now look at the Ritz values at different iteration steps, we can see that not until the
eigenvalues situated in (44.9,6.75) and (44.9,-6.75) in the complex plane are approximated
correctly in iteration 7, then the iterative solver continues with a linear convergence:
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(b) iteration 4
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(c) iteration 5
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(d) iteration 6
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(e) iteration 7
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(f) iteration 8
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(g) iteration 9
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Figure 5.14: Comparison of eigenvalues and Ritz values of the Navier-Stokes matrix preconditioned
with SIMPLER (M−1A) for the Poiseuille flow for different iteration numbers.
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This suggest that a deflation of the eigenvectors corresponding to these ”ill conditioned”
eigenvalues may cause the iterative solver to converge linearly. By following the deflation
framework presented in Chapter 3, we can construct a deflation matrix which includes the
desired eigenvectors as columns, in this case, the identified ”ill conditioned” vectors which
correspond to the vectors with the largest real part. The spectrum of the deflated system
is given next:
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Figure 5.15: Comparison of eigenvalues of the Navier-Stokes system preconditioned with SIMPLER
(M−1A) [red] and of the deflated system [blue] for the Poiseuille flow for different sizes of the
deflation matrix

It can be seen that, after the projection, the desired eigenvalues are eliminated from
the original spectrum of the Navier-Stokes matrix. In this case, the deflation matrix has
complex vectors due to the wish of eliminating some eigenvalues with complex components.
In the following chapter, we provide a deeper discussion of the overall impact of deflation
with respect to the performance of the GMRES method.

5.3.2 Stretched Grids

A set of simulations with stretched grids was performed in order to look for stagnation
behavior in the initial phase of the iterative solver. The backward facing step was the
problem of choice for the simulations. A system of 32×96 nodes is chosen with a viscosity
of ν = 0.1. The convergence history of this problem with a stretched grid was investigated
for both types of constructed preconditioners mentioned above (with and without imposed
boundary conditions). The following graph was obtained:
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Figure 5.16: Convergence plot of FGMRES with preconditioning for a stretched grid for the
backward facing step flow.

It was found that, when SIMPLER(WBC) is used as a preconditioner, the number of
iterations for the stretched and un-stretched grids remains constant. Moreover, the stag-
nation phase at the beginning of the solution process remains unchanged regardless of the
stretching. This can not be said when SIMPLER(WOBC) is used. In this case, we see
that the stretch factor greatly influences the solution process creating stagnation behav-
iors, not at the beginning, but throughout the whole solution process. For a stretch factor
of 3, as many as 100 iterations were not enough to achieve the desired tolerance value.

5.3.3 Stagnation with stretching

As mentioned before, the stagnation behavior was found in the simulation of the backward
facing step used for the stretched grid exploration in the previous chapter. In this case,
the eigenvalues were plotted for both types of preconditioners, SIMPLER(WBC) and
SIMPLER(WOBC).
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Figure 5.17: Spectrum of eigenvalues of the Navier-Stokes system (A) and preconditioned with
SIMPLER(WBC) (M−1A) for the Backward facing step with stretching.
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Figure 5.18: Spectrum of eigenvalues of the Navier-Stokes system (A) and preconditioned with
SIMPLER(WOBC) (M−1A) for the Backward facing step with stretching.

It was found that the clustering of the eigenvalues around one was a much more visible in
the case of SIMPLER(WBC). The largest eigenvalue of SIMPLER(WBC) has a norm of
roughly 7000 while the largest eigenvalue found for SIMPLER(WOBC) has a norm of 41.
Moreover, many eigenvalues were found between [0, 1] for SIMPLER(WOBC). This may
cause the tendency for a general stagnation characteristic of the convergence history of the
method. However, the stagnation phase at the initial solution of SIMPLER(WBC) is not
clearly explained by an overlook of the eigenvalues neither for stretched or non-stretched
grids.

Once again, the Arnoldi algorithm allows us to find some ”ill conditioned” eigenvalues,
however, there was not a clear pattern in the eigenvalues for stretched grids. It was
found that depending on the problem and depending on the stretch factor there was a
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large gamma of structures for the spectrum of eigenvalues. Nevertheless, the deflation
approach was carried out. As we have seen in the case of un-stretched grids, the deflation
approach works better with a large quantity of eigenvalues, including, but not only, those
identified with the Arnoldi algorithm. Once again, we include a plot of the deflated system
for SIMPLER(WBC) in the following figure:
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Figure 5.19: Comparison of eigenvalues of the Navier-Stokes system preconditioned with SIM-
PLER(WOBC) (M−1A) [red] and of the deflated system [blue] for the Backward Facing Step
flow.

It is clear that after the deflation scheme, a clustering of eigenvalues is pronounced. By
getting rid of the eigenvalues of highest norm we obtain a decrease in the stagnation be-
havior of GMRES for SIMPLER(WBC) while the opposite is true for SIMPLER(WOBC),
where, even though the spectrum is clustered together, the overall distribution of eigen-
values covers a larger area of the imaginary plane than that of SIMPLER(WBC). The
convergence plots as well as a discussion on the convergence behavior of problems with
stretched grids can be found in the Chapter 6 where we will discuss in greater detail the
results obtained in the performed simulations as well as introduce a discussion on the
stability of Finite Elements when dealing with stretched grids.



Chapter 6

Discussion

6.1 Stagnation Behavior

In this section, we present a discussion on the results obtained in the performed numerical
experiments. We provide a discussion on the deflation approach to eliminate the stagnation
behavior as well as a theoretical discussion on a possible way of constructing finite elements
that which are stable when stretched grids are used.

6.1.1 Un-Stretched grids

In the previous chapter, a stagnation behavior was found in the initial phase of the GMRES

method with right preconditioning when the SIMPLER(WBC) preconditioner was used.
The performed simulations suggest that this behavior is dependent on the Reynolds num-
ber of the flow, or more precisely, on the viscosity of the fluid. For the Poiseuille flow, the
following plot exemplifies this phenomenon:
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Figure 6.1: Spectrum of eigenvalues of the Navier-Stokes system preconditioned with SIMPLER
(M−1A) for the Poiseuille flow for varying viscosity.
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These results point out the fact that for different viscosities (ν’s) we can observe different
behaviors of the GMRES method. The initial stagnation behavior can be observed when the
viscosity ν ≈ 1. However, when the viscosity decreases, the stagnation behavior is absent
but an increase in total iterations of the iterative solver can be observed. This may be
due to the use of upwinding schemes in the IFISS environment. Whenever the viscosity
decreases, a boundary layer is formed in order for the computations to be accurate. Due to
this fact, we focus our attention on the regime of viscosity for which a stagnation behavior
is clear (ν ≈ 1).
In order to apply the deflation scheme, it is necessary to identify the ”ill conditioned”
eigenvectors. In the previous chapter, we identified these vectors with the eigenvectors
corresponding to the eigenvalues with largest real part. This identification was made
by analyzing the Arnoldi iterations and following the behavior of the Ritz values as the
number of iterations increased. In order to construct the deflation matrix, the exact
eigenvectors were used. In practice, this way of constructing the deflation matrix may be
too costly or merely impossible. Nevertheless, in order to show the impact of deflation
with respect to the GMRES method, we present the following convergence behavior of the
method for different sizes of the deflation matrix:
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Figure 6.2: Convergence History of the SIMPLER(WBC) preconditioned Navier-Stokes system
(M−1A) and deflated (PM−1A) for the Poiseuille Flow for different sizes of the deflation matrix.

It is clear that the stagnation behavior of the GMRES preconditioned from the right with the
SIMPLER(WBC) preconditioner decreases as the size of the deflation matrix increases.
The total iteration count also decreases with this approach. This shows that not only
the first three eigenvectors corresponding to the eigenvalues with largest real part are the
cause of the stagnation behavior, but the fault lies in most of the eigenvalues which are
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not closely clustered together. The stagnation behavior does not completely vanish due to
the fact that the deflation approach sends the ill conditioned eigenvalues to zero, however,
due to round-off errors, they are not exactly zero. This is shown in Figure 6.3. This
causes the iterative solver to assume that there are still small eigenvalues different from
zero which need to be approximated, giving rise to a larger number of iterations and a
stagnation behavior.
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Figure 6.3: Deflated eigenvalues of the Navier-Stokes system preconditioned with SIMPLER
(M−1A) for the Poiseuille flow wich are not identically zero.

Now, the deflation approach used was that of first identifying the ”ill conditioned” eigen-
values from the spectrum of the preconditioned matrix. Once this is done, we proceed
to build the deflation matrix with the corresponding eigenvectors as its columns. Once
the deflation matrix is constructed, the original matrix A is projected via the matrix
multiplication PA. After the desired components are projected, we proceed to implement
the preconditioned GMRES algorithm to solve the matrix PA. This approach is known as
DEF1. It is important to emphasize the fact that the deflation matrix is composed of
complex-valued eigenvectors. This is due to the fact that the ”ill-conditioned” eigenvalues
are complex. The usual deflation approach found in [37] focuses on real-valued deflation
schemes, however, in the case of the Navier-Stokes linearized operator, this is not the case.
Experiments were carried out in which the deflation matrix was chosen to consist of purely
real eigenvalues, however, this apporach did not bring forward positive results due to the
fact that the most ”ill conditioned” eigenvalues are the complex ones. A variation of this
approach, known as ADEF1 helps in this problem. This variation projects the deflated
eigenvalues to the value one instead of zero. This avoids the ”close to zero” round off
errors and lets the iterative solver work with values close to one. A convergence plot of
this approach is presented next:
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Figure 6.4: Convergence history of the SIMPLER(WBC) preconditioned Navier-Stokes system
(M−1A) and deflated (PM−1A) for the Poiseuille Flow for a 20-vector ADEF1 deflation matrix.

We can see from the figure that the ADEF1 approach also decreases the stagnation behav-
ior and obtains a lower number of total iterations compared to the SIMPLE-preconditioned
system. This fact is the main ingredient for the construction of a new two-level precondi-
tioner for the Navier-Stokes equations. In [37], Tang proves a theorem which states that
the deflation projector P is defined by the space spanned by the columns of the deflation
matrix Z rather than the actual columns. This is reflected in the construction of the
deflation matrix Z . In the ideal case, Z should consists of eigenvectors associated with
the most unfavorable eigenvalues of M−1A. These eigenvalues do not play a role on the
convergence behavior of the iterative method so that a faster convergence of the iterative
method can be expected. However, the computations of these eigenvectors can be very
expensive, and, in addition, these dense vectors may be inefficient is use due to the stor-
age capability and the expensive computations with P. Therefore various techniques have
been investigated to find sparse eigenvectors that span the unfavorable eigenspace.

Another deflation approach, referred to as DEF2, would be to apply the projection matrix
to the preconditioned matrix M−1A. This however is not possible in our case. Since the
SIMPLER(WBC) is implemented as an algorithm, the application of the projection matrix
would change the structure of the matrix, breaking the structure needed for the SIMPLER
algorithm to function properly. A convergence plot of this approach is presented next:
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Figure 6.5: Convergence History of the SIMPLER(WBC) preconditioned Navier-Stokes system
(M−1A) and deflated (PM−1A) for the Poiseuille Flow.

This approach needs to be investigated in more detail in order to fully understand its
drawbacks and benefits. It seems as if the stagnation behavior is ”cured” for the first
few iterations, however a greater stagnation phase is encountered shortly afterwards. The
previous image reminds of the qualitative behavior of the iterative solver when used to
solve matrices generated by stretched finite elements. On the next subsection we will
discuss the stability of finite elements on such non-uniform meshes.



56 CHAPTER 6. DISCUSSION

6.1.2 Stretched grids

The stagnation behavior was also clearly found in the case of stretched grids. As it
was done in the last chapter, the backward facing step simulations with stretched grids
was investigated for both SIMPLER(WBC) and SIMPLER(WOBC). Just as in the case
for unstretched grids, if we apply the deflation scheme on the stretched grid problems
preconditioned with SIMPLER(WBC) we obtain a reduction of the initial stagnation
phase of the iterative solver, the following convergence graph exemplifies this results:
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Figure 6.6: Convergence History of the SIMPLER(WBC) preconditioned Navier-Stokes system
(M−1A) and deflated (PM−1A) for the Backward Facing Step for different sizes of the deflation
matrix with stretched grid factor of 3

Once again, we find a positive reduction of the stagnation behavior when a large deflation
matrix is used. However, when using SIMPLER(WOBC) the result of applying deflation
is counterproductive. The following graph shows the comparison for a problem with
stretch factor of 3. Most unintuitively, even though the conditions for fast convergence of
the iterative method are met, that is a clustered spectrum and positive eigenvalues, the
method fails absolutely. The results are shown next:
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Figure 6.7: Convergence History of the SIMPLER(WOBC) preconditioned Navier-Stokes system
(M−1A) and deflated (PM−1A) for the Backward Facing Step with stretched grid factor of 3.

The previous plot shows that even after deflating the system with 30 eigenvectors, choos-
ing the ones that have the highest norm, the stagnation behavior becomes dominant, and
the results resemble the solution of an un-preconditioned matrix. The next section gives
an alternative, a theoretical way of approaching the elimination of the stagnation behavior
for stretched grids.

From the collection of all results obtained in order to have a better understanding of the
initial stagnation behavior of the SIMPLER preconditioner, it is clear that a deflation
approach tackles the problem. However, the results also show that the approach should
be ”selective”. The ”ill conditioned” eigenvalues that can be identified by analyzing how
the Arnoldi algorithm approximates the eigenvalues of the system are not enough for the
deflation scheme to be completely successful.

6.2 Stability of Finite Elements

In order to understand the stagnation behavior more commonly present in problems with
stretched grids, we turn the discussion towards an analysis of the inf-sup stability condition
of finite elements. The approach followed in this subsection is completely assimilated from
the investigations done by Elman, Silvester and Liao in [25], [26], [12]. The stability of
such elements has been only in literature for some months, and implementation is needed
to corroborate the assumptions taken. As we have seen in Section 2, the so-called LBB
condition, better known as the inf-sup condition is given by:

inf
q 6=constant

sup
v 6=0

|(q,∇·)v|
‖v‖1,Ω‖q‖0,Ω

≥ γ > 0 (6.1)

where ‖v‖1,Ω = (
∫
Ω v · v + ∇v : ∇v)1/2 is a norm of functions in H1

E0
, and ‖q‖0,Ω =

‖q − (1/|Ω|)
∫

Ω q‖ is a quotient space norm. This condition can be viewed as a coercivity
estimate for the bilinear form b(v, q) :=

∫
Ω q∇ · v on the spaces L2(Ω) and H1

E0
, and it
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is used to establish the existence of a pressure solution. (A bilinear form is said to be
coercive if there is a constant c such that for all u b(u,u) ≥ c‖u‖2). The inf-sup condition
can be used to ensure:∫

Ω
p∇ · v = 0 for all v ∈ H1

E0 ⇒ {p = constant if ∂Ω = ∂ΩD; p = 0 otherwise}. (6.2)

In other words, the inf-sup condition is a sufficient condition for the pressure to be unique
up to a constant in enclosed flow. The discrete analog of the inf-sup condition, referred
to as uniform inf-sup stability or the inf-sup condition, requires the existence of a positive
constant γ independent of h such that, for any conceivable grid,

inf
qh 6=constant

sup
vh 6=0

|(qh ,∇·)vh |
‖vh‖1,Ω‖qh‖0,Ω

≥ γ. (6.3)

This condition provides a guarantee that the discrete solvability condition:∫
Ω

ph∇ · vh = 0 for all vh ∈ Xh
0 ⇒ ph = constant, (6.4)

holds is a delicate matter. In general, care must be taken to make the velocity space
rich enough compared to the pressure space, otherwise the discrete solution will be ”over-
constrained”.
One of the most elegant ways of establishing inf-sup stability is to use a macroelement
construction. The idea is to consider ”local enclosed-flow Stokes problems (Oseen prob-
lems)” posed on a subdomainM of Ω consisting of a small patch of elements arranged in
a simple topology. This subdomain is referred to as a macroelement, and if the discrete
solvability condition (6.4) is satisfied on it, it is called a stable macroelement. Theoretical
results show that for any grid that can be constructed by ”patching together” such sta-
ble macroelements, the inf-sup condition (6.3) is satisfied. The method of analysis is to
establish the discrete solvability condition (6.4) on macroelements, and then to establish
a connectivity condition showing that (6.3) holds on the union of macroelement patches.
We first address the question of weather a macroelement consisting of a single rectangular
element of the Taylor-Hood Q2 −Q1 approximation is stable.

Figure 6.8: Q2 −Q1 element (• velocity, ◦ pressure).

LetM = �k denote such an element, with the local numbering as illustrated in Figure
6.9. For an enclosed flow problem posed over M, there is one interior velocity node(9,
marked with •), and four pressure nodes namely 1,2,3, and 4.
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Figure 6.9: Numbering for a single element macroelement

To investigate the stability of the macroelement, we need to construct the matrix
B = [BxBy] using its definitions and then, in light of (6.4), check to see if null(BT ) = {1}.
In this particular case, v has dimension 2 for the two velocity components defined on node
9, and p has dimension 4. In this case, BT

x and BT
y are 1× 4 vectors,

BT
x = [bx,j ], bx,j = −

∫
�k
ψj
∂φ9
∂x , (6.5)

BT
y = [by,j ], by,j = −

∫
�k
ψj
∂φ9
∂y , (6.6)

where φ9 is the standard biquadratic basis function (ax2 + bx + c)(dy2 + ey + f ). This
function takes the value one at node 9 and is zero at the other eight nodes. Similarly
ψj : j = 1, 2, 3, 4 are the standard bilinear basis functions defined on �k , we can evaluate
the previous integrals by first integrating by parts, and then using the tensor product form
of Simpson’s rule:∫

�k
f (x, y) = |�k |

36 (f1 + f2 + f3 + f4 + 4f5 + 4f6 + 4f7 + 4f8 + 16f9),

with fi representing f (xi). This gives:

bx,j = −
∫
�k
φ9
∂ψj
∂x = 4

9 |�k |
∂ψj
∂x (x9), (6.7)

by,j = −
∫
�k
φ9
∂ψj
∂y = 4

9 |�k |
∂ψj
∂y (x9). (6.8)

Evaluating the linear functions∂ψj
∂x , ∂ψj

∂y : j = 1, 2, 3, 4 at the centroid, for example

∂ψj
∂x (x9) = − hy

2|�k |
,

gives

BT =

 BT
x

BT
y

 =

 −2/9hy 2/9hy 2/9hy −2/9hy

−2/9hx −2/9hx 2/9hx 2/9hx

 . (6.9)

Note that the discrete operator BT
x represents a scaled central difference approximation

of the pressure x-derivative at the node x9:

0 = 2
9hy(−p1 + p2 + p3 − p4) (6.10)

= 4
9 |�k | (p3+p2)/2−(p1+p4/2)

hx
≈ 4

9 |�k |∂p
∂x (x9). (6.11)
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Finally, the linear system BTp = 0 is equivalent to

−p1 + p2 + p3 − p4 = 0 (6.12)

−p1 − p2 + p3 + p4 = 0 (6.13)

which is satisfied whenever p1 = p3 and p2 = p4. That is, BT has a two dimensional null
space and the macroelement M in Figure 6.9 is not stable.
This derivation shows that the macroelement test fails when it is applied to a single element
of the Q2−Q1 discretization, so that the single element is not a macroelement. This does
not mean that the discretization itself is unstable. Consider now the two element patch
M = �k

⋃
�m , illustrated in Figure 6.10.

Figure 6.10: Q2 −Q1 macroelement numbering for two-element patch �k
⋃

�m.

For an enclosed flow problem posed overM, there are three interior velocity nodes (7,
8, and 9), and six pressure nodes (1, 2, 3, 4, 5, and 6). In this case, the matrix BT is a
6× 6 matrix, which offers the hope that the macroelement may be stable. To check this,
we first note that the one-element patch matrix (6.9) gives the four rows of the stability
system BTp = 0 that correspond to the velocity nodes 7 and 9. Specifically, the node
7 equations imply that p1 = p5 and p2 = p6, whereas the node 9 equations imply that
p2 = p4 and p3 = p5. Combining these four equations implies that

p1 = p3 = p5 = ξ, (6.14)

p2 = p4 = p6 = η. (6.15)

To establish stability, we have to show that ξ = η using one of the two equations associated
with velocity node 8.
We first consider the vertical velocity component since it represents a discrete approxima-
tion of ∂p/∂y = 0 at the node x8. This suggests that the column entries corresponding to
nodes 1, 3, 4, and 6 will be zero. To see this, consider the coefficients of p1,

BT
y,k1 = −

∫
M ψ1

∂φ8
∂y (6.16)

= −
∫
�k
ψ1

∂φ8
∂y (ψ1 = 0 in �m) (6.17)

= −
∫
�k
φ8

∂ψ1
∂y (since φ8ny = 0 on the boundary) (6.18)

= 1
9 |�k |∂ψ1

∂y (x8) (using Simpson’s rule) (6.19)

= 0, (6.20)
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since ψ1 = 0 on the vertical edge between nodes 2 and 5. By evaluating the other
coefficients in the same way, it can be shown that

(BT
y )k = [ 0 −2

9hx 0 0 2
9 0]. (6.21)

In the system BTp = 0, the equation corresponding to (6.21) implies that p2 = p5. This
means that ξ = η, and null(BT ) = 1 as required.
The analysis above shows that two-element patches of Q2−Q1 elements are stable. Once
stability has been established on a reference macroelement, it holds for all patches of
elements with the same topology. Moreover, any grid consisting of an even number of
elements can be decomposed into two-element patches. This means that Q2−Q1 approx-
imation is stable on every possible grid with an even number of grid points.





Chapter 7

Conclusions and future Research

7.1 Conclusion

The study of preconditioners for the Navier-Stokes equations is still a field of intensive
research in contemporary computational fluid dynamics (CFD). The main goal of this
area of research is to develop solvers that are both fast and robust, however, in the case
of Navier-Stokes problems, the ultimate goal is to develop preconditioners that provides
mesh and Reynolds number independent convergence. Towards achieving this goal, this
thesis is devoted to the study of block-preconditioners with special attention to SIMPLE-
type preconditioners. We focus our attention on building preconditioners to accelerate
Krylov subspace methods, and two questions related to previously established problems
in literature were the main points of research, mainly:

• Why is there a stagnation phase in the iterative solution of the SIMPLE-preconditioned
Navier-Stokes algebraic system?

• Why does the number of iterations increase for stretched grids?

In the first three chapters, the theoretical bases of this field of research are laid out. The
FEM discretization of the N-S system of equations is presented in the first chapter together
with appropriate linearization techniques. In Chapter 2, a collection of concepts in linear
algebra are presented. The theory behind Krylov subspace methods as well as a brief ex-
planation of preconditioning and deflation techniques is explained. In the fourth chapter,
a review of block-type preconditioners for the N-S equations is reviewed, and the setting
of the main problems of this thesis is shown. In Chapter 5, a collection of numerical exper-
iments in order to answer the main questions of this research project is presented. In the
second to last chapter, a discussion on the results obtained in the numerical simulations
is put forth. A theoretical answer to the main research questions was provided in both
cases, and a practical answer was found in one case. The answer of the question regard-
ing the stagnation behavior in the solution phase of the GMRES method when solving the
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SIMPLE-preconditioned N-S system of equations lies in the investigation of the spectrum
of eigenvalues of the preconditioned system. By looking at the Ritz-value approximation
at each Arnoldi iteration step of the GMRES algorithm, it was found that the innermost
eigenvalues, are the ones which are approximates last, while the eigenvalues with largest
real part are the first to be approximated. This observation helped in the construction
of a deflation matrix for which these eigenvalues are projected out of the spectrum of the
preconditioned matrix. The deflation approach was followed and the stagnation behavior
was eliminated in its majority. The remaining stagnation behavior was found to be caused
by the round off error approximation of the ”close to zero” deflated eigenvalues. In order
to circumvent this problem, the ADEF1 deflation strategy was implemented in order to
project the undesired eigenvalues towards the value one, hence eliminating the problems
of ”close to zero” round off errors. This approach was also successful.
The success of this approach allows us to suggest the construction of a two-level precondi-
tioned GMRES method for solving the Navier-Stokes equations. Since the deflation approach
DEF1, which projects the undesired eigenvalues to the value zero, is substituted by the
ADEF1 approach, who projects the undesired eigenvalues to the value one, we can view
the approach followed in this thesis as an algorithm to construct a two-level preconditioner
for the solution of the linearized version of the N-S system of equations which provides
Reynolds independent convergence but which is mesh-size dependent.
Also, as a side result originating from the numerical experiments and by observing the dif-
ference in in the behavior of the iterative solver when dealing with Neumann or Dirichlet
problems, an educated way of constructing the Schur complement depending on the prob-
lem type is presented which eliminates the qualitative stagnation behavior but increases
the total number of iterations in the solution process.

When dealing with stretched grids, the deflation approach is also successful. We can
observe a decrease in the total number of iterations when a reasonable deflation matrix
is constructed. However, a theoretical answer to the question regarding the increase in
iterations when using stretched grids was found in present year literature. The answer is
found when studying the theoretical effects of applying a stretching to the grid. It was
found that the inf-sup condition of the elements is no longer satisfied in this case. How-
ever, it was also found that if a macroelement construction is used in the discretization of
the problem, the inf-sup condition holds for any type of conceivable grid. This macroele-
ment construction suggested by Elman, Silvester and Wathen in [11] and tested by Liao
in [26] allows the element discretization to remain stable even in the case of extreme mesh
stretching.
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7.2 Future Research

The work done in this master thesis project reveals some issues which need to be examined
in greater detail in order to obtain a full understanding of the answers to the research
questions. A direct continuation of the direction of research of this thesis would focus on
the next points:

• Formalize the concepts presented in this thesis and construct a two-level precondi-
tioned SIMPLER algorithm.

• Investigate the effect of using different deflation techniques (different approaches of
constructing the deflation matrix) applied to the SIMPLER-preconditioned Navier-
Stokes matrix for stretched and non-stretched grids in the efficiency of the solution.

• Investigate the theory of deflation techniques in order to find the optimal way of
choosing the deflation vectors and construct a more efficient deflation matrix.

• Implement the macroelement construction in the FEM discretization of the Navier-
Stokes system of equations.

• Investigate the possibilities of parallel implementation of the SIMPLE-type precon-
ditioners together with a deflation approach.

The study and solution of these issues would be of great importance for the creation of
a better preconditioner for the Navier Stokes system of equations. A fast and efficient
method of solving this system of equations would benefit not only the scientific knowledge
but it may bring advances to any industry who performs computer fluid dynamics (CFD)
simulations.
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