
Introduction Simplification Linear Algebra Block Preconditioners Research

Fast iterative methods for solving the
incompressible Navier-Stokes equations

Carlos Echeverría Serur

August 28, 2013

Carlos Echeverría Serur SIMPLE-type Preconditioners



Introduction Simplification Linear Algebra Block Preconditioners Research

Table of Contents

1 Introduction and Motivation

2 Discretization and linearization of the N-S Equations

3 Projection techniques, Krylov subspace methods,
Preconditioners, and Deflation

4 Block-type preconditioners for the incompressible N-S equations

5 Results, Conclusions and Future

Carlos Echeverría Serur SIMPLE-type Preconditioners



Introduction Simplification Linear Algebra Block Preconditioners Research

Motivation

Except for some simple cases, the analytical solution of the
(N-S) equations is impossible.
The efficient solution of the linearized system of equations is
of primary interest.
Industry: slowdown in solvers (MARIN).

Carlos Echeverría Serur SIMPLE-type Preconditioners



Introduction Simplification Linear Algebra Block Preconditioners Research

Linear systems everywhere!

Always Simplify:

−ν∇2u + u · ∇u +∇p = f in Ω
∇ · u = 0 in Ω

}
−→ Ax = b

1 Discretization done by the Finite Element Method (plus a
correct choice of finite elements).

2 Linearization performed by the Newton or Picard method.
3 Saddle-Point problem is obtained:

[
F BT

B 0

] [
u
p

]
=

[
f
g

]
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Stagnation Phase of SIMPLER

Figure: Convergence plot of SIMPLE-type peconditioners for the Stokes
problem. [Vuik et. al. 2009]

The main effort of this thesis is to investigate and, if possible, to
eliminate this stagnation behavior, thus providing a more efficient
way of solving the N-S system of equations.
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Research Questions

Why is there a stagnation phase in the iterative solution of the
SIMPLER-preconditioned Navier-Stokes Algebraic System?
How do we eliminate it?
Why does the number of iterations get worse for stretched
grids? (MARIN).
How do we avoid this?
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Discretization

The incompressible flow of a Newtonian fluid is governed by the
behavior defined by the set of equations:

−ν∇2u + u · ∇u +∇p = f,
∇ · u = 0,

posed on a two or three dimensional domain Ω, together with
boundary conditions on ∂Ω = ∂ΩD ∪ ∂ΩN given by

u = w on ∂ΩD , ν
∂u
∂n
− np = s on ∂ΩN .
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Finite Element Discretization of N-S:
Weak Formulation → Discrete Weak Formulation →
Galerkin method → Matrix formulation.

Matrix Formulation:

Adu + N(u) + BTp = f ,

Bu = g ,

Here u and p denote the vectors of unknowns.
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Linearization

Picard:
The nonlinear term is substituted by an approximation including the
velocity vector calculated at distinct time steps:

uk+1 · ∇uk+1 ≈ uk · ∇uk+1.

Newton:
The velocity field at the new time-step is the sum of the velocity
field at the previous time step plus a correction:

uk+1 = uk + δuk .

After linearizing we obtain an algebraic system of equations:
Fu + BTp = f ,

Bu = g .
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Saddle-Point Problem

Linear system:[
F BT

B 0

] [
u
p

]
=

[
f
g

]
is of the form Ax = b

Any solution (u∗, p∗) of the previous linear system is a saddle point
for the Lagrangian:

L(u, p) =
1
2
uTAu − f Tu + (Bu − g)Tp.
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Projection Techniques

Extract an approximate solution of Ax = b from a subspace of Rn:

Find x̃ ∈ x0 +Km such that b − Ax̃⊥Lm.

Krylov Subspaces
A Krylov subspace method is a projection method for which the
subspace Km is the Krylov subspace:

Km(A, r0) = span{r0,Ar0,A2r0, ...,A
m−1r0}.

The different versions of Krylov subspace methods arise from
different choices of the subspace Lm and from the ways in which
the system is preconditioned.
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Solution Methods

GMRES
The generalized minimal residual method (GMRES) is a projection
method based on taking K = Km and L = AKm, in which Km is
the m-th Krylov subspace, with ‖v1‖ = r0/‖r0‖2.
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Preconditioning

It’s all about the eigenvalues

M−1Ax = M−1b.

or

AM−1u = b, x = M−1u

1 This system, which has the same solution as the original
system, is called a preconditioned system and M is the
preconditioning matrix or preconditioner.

2 Clustered Spectrum = Fast Convergence.
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Deflation

Definition:

Let A be an SPSD matrix. Suppose that Z ∈ Rn×k with full rank is
given. Then we define the invertible Galerkin matrix, E ∈ Rk×k ,
the correction matrix, Q ∈ Rn×n, and the deflation matrix
P ∈ Rn×n, as follows:

P = I − AQ, Q = ZE−1ZT , E = ZTAZ (1)

In the previous equations, Z is the so-called ’deflation subspace
matrix’ whose k columns are called the ’deflation vectors’ or
’projection vectors’. These vectors remain unspecified for the
moment, but they are chosen in such a way that E is nonsingular.
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Block-type Preconditioners

Block preconditioners are based on a block factorization of the
coefficient matrix:[

F BT

B 0

]
= LDU =

[
I 0

BF−1 I

] [
F 0
0 S

] [
I F−1BT

0 I

]
.

Pt = DU =

[
F BT

0 S

]

Algorithm: Preconditioner Pt

1. Solve Szp = rp
2. Update ru = ru − BT zp
3. Solve Fzu = ru
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By investigating the following generalized eigenvalue problem, we
can determine the eigenvalues of the preconditioned system:[

F BT

B 0

] [
u
p

]
= λ

[
F BT

0 S

] [
u
p

]

−BF−1BTp = λSp.

This shows that whenever S = −BF−1BT we have λ = 1 with
multiplicity np. From this equation, we can see that a good
approximation of the Schur complement matrix will dictate the
convergence behavior of the preconditioned system with Pt .
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SIMPLE preconditioner

The algorithms follows from a block LU decomposition of the
original coefficient matrix:[

F BT

B 0

] [
u
p

]
=

[
F 0
B −BF−1BT

] [
I F−1BT

0 I

] [
u
p

]
=

[
f
g

]
,

The approximation F−1 = D−1 = diag(F )−1 in the (2, 2) and
(1, 2) block of the L and U block matrices, respectively, leads to
the SIMPLE algorithm. Solve recursively the following systems:[

F 0
B −BD−1BT

] [
u∗

p∗

]
=

[
f
g

]
,

and [
I D−1BT

0 I

] [
u
p

]
=

[
u∗

δp

]
.
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SIMPLER preconditioner

A variant of SIMPLE, known as SIMPLER, is supposed to provide
Reynolds-independent convergence. Instead of estimating the
pressure p∗ in the SIMPLE algorithm, p∗ is obtained from solving a
subsystem

Ŝp∗ = rp − BD−1((D − F )uk + ru), (2)

where uk is obtained from the prior iteration. In case SIMPLER is
used as a preconditioner, uk is taken equal to zero, therefore:

Ŝp∗ = rp − BD−1ru. (3)
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Algorithm

Algorithm: SIMPLER Preconditioner
1. Solve Ŝp∗ = rp − BD−1ru.
2. Solve Fu∗ = ru − BTp∗.
3. Solve Ŝδp = rp − Bu∗ − Cp∗.
4. Update zu = u∗ − D−1BT δp.
5. Update zp = p∗ + δp.

The SIMPLER and other SIMPLE-type algorithms were
implemented as preconditioners and numerical simulations were
carried out.
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How?

IFISS: is a graphical Matlab package for the interactive
numerical study of incompressible flow problems. It includes
algorithms for discretization by mixed finite element methods
and a posteriori error estimation of the computed solutions.
The package can also be used as a computational laboratory
for experimenting with state-of-the-art preconditioned iterative
solvers for the discrete linear equation systems that arise in
incompressible flow modeling
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Numerical Experiments

In all simulations, the linearization of the nonlinear system of
equations was performed via the Picard method. The tolerance of
the linear approximation was set to 1e − 8. At each nonlinear
iteration, we accept an iterate xk of the GMRES method with right
preconditioning as a valid solution when,

‖M−1(B − Axk)‖
‖M−1(B − Ax0)‖

≤ 1e−6. (4)

The convergence grpahs show log10(‖M
−1(B−Axk )‖

‖M−1(B−Ax0)‖) Vs. k where k

is the iteration number.
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Backward Facing Step

This example represents the flow over a step of length L.
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0.1

Pressure field

Streamlines: uniform

Figure: Solution to the backward facing step withQ2 −Q1 elements.

Carlos Echeverría Serur SIMPLE-type Preconditioners



Introduction Simplification Linear Algebra Block Preconditioners Research

Results

ν 0.1 0.01 0.005
16 × 48 20 (7) 34 (25) 50 (64)
32 × 96 29 (7) 38 (23) 56 (70)
64 × 192 45 (6) 47 (21) 57 (63)
128 × 384 70 (6) 74 (19) 77 (54)

Table: Iteration numbers for the
backward facing step flow using the
FGMRES method preconditioned
with SIMPLER(WBC). The
number of Picard iterations
appears in parenthesis.
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Figure: Convergence plot of
FGMRES method preconditioned
with SIMPLER(WBC) for the
backwards facing step flow.
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Driven Cavity Flow

This is the model of flow inside a square cavity.
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Figure: Solution to the Driven cavity problem with a watertight cavity.
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Results

ν 0.1 0.01 0.005
h = 1

32 16 (6) 18 (13) 21 (14)
h = 1

64 24 (5) 23 (12) 24 (13)
h = 1

128 37 (5) 40 (11) 36 (11)
h = 1

256 58 (4) 66 (10) 67 (10)

Table: Iteration numbers for the
driven cavity flow using the
FGMRES method preconditioned
with SIMPLER(WBC). The
number of Picard iterations
appears in parenthesis.
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Figure: Convergence plot of
FGMRES method preconditioned
with SIMPLER(WBC) for the
driven cavity flow.
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Poiseuille Flow

This example represents the flow inside a channel.
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Figure: Solution to the Poiseuille flow problem.
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Results

ν 0.1 0.01 0.005
h = 1

32 17 (1) 22 (1) 30 (1)
h = 1

64 27 (1) 24 (1) 29 (1)
h = 1

128 44 (1) 34 (1) 33 (1)
h = 1

256 72 (1) 66 (1) 54 (1)

Table: Iteration numbers for the
Poiseuille flow using the FGMRES
method preconditioned with
SIMPLER(WBC). The number of
Picard iterations appears in
parenthesis.
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Figure: Convergence plot of
FGMRES method preconditioned
with SIMPLER(WBC) for the
Poiseuille flow.
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Side result:

The SIMPLE(R) preconditioner was implemented to work with
IFISS. A new version is proposed SIMPLER(WOBC). Stagnation
disappears but increases number of iterations.
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Figure: Convergence plot of FGMRES method preconditioned with
SIMPLER(WOBC) for the Poiseuille flow.
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Eigenvalue Exploration

An analysis of the spectrum of the preconditioned matrix was
carried out in order to find patterns in the eigenvalue positions.
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Figure: Spectrum of eigenvalues of the Navier-Stokes system (A) and
preconditioned with SIMPLER (M−1A) for the Poiseuille flow
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The eigenvalue exploration gives the idea of deflating the undesired
eigenvalues.
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Figure: Comparison of eigenvalues of the Navier-Stokes system
preconditioned with SIMPLER (M−1A) [red] and of the deflated system
[blue] for the Poiseuille flow for different sizes of the deflation matrix
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Results after Deflation
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Figure: Convergence History of the SIMPLER(WBC) preconditioned
Navier-Stokes system (M−1A) and deflated (PM−1A) for the Poiseuille
Flow for different sizes of the deflation matrix.

It is clear that the stagnation behavior of the GMRES preconditioned
from the right with the SIMPLER(WBC) preconditioner decreases
as the size of the deflation matrix increases. The total iteration
count also decreases with this approach.
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Results on stretched grids

It was found that, when SIMPLER(WBC) is used as a preconditioner, the number of

iterations for the stretched and un-stretched girds remains constant. This can not be

said when SIMPLER(WOBC) is used:
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Figure: Backward Facing Step (stretched) convergence plot of FGMRES
method.
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Figure: Convergence History of the SIMPLER(WBC) preconditioned
Navier-Stokes system (M−1A) and deflated (PM−1A) for the Backward
Facing Step for different sizes of the deflation matrix with stretched grid
factor of 3

Once again, we find a positive reduction of the stagnation behavior
when a large deflation matrix is used.
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Ongoing Research (Silvester, Liao 2013)

Single element construction:

Figure: Q2 −Q1 element (• velocity, ◦ pressure).

Macroelement construction:

Figure: Q2 −Q1 macroelement numbering for two-element patch
�k

⋃
�m.
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Research Questions (revisited)-Conclusions

Why is there a stagnation phase in the iterative solution of the
SIMPLER-preconditioned Navier-Stokes Algebraic System?
Due to the complicated nature of the NS matrix, there exist
unfavorable eigenvalues which compromise the performance of
the iterative solver (GMRES).
Why does the number of iterations get worse for stretched
grids?
The LBB condition is no longer satisfied.

A deflation approach is successful in treating the ill-conditioned
eigenvalues in both cases (stretched/unstretched).
The success of this approach allows us to suggest the construction
of a two-level preconditioned GMRES method for solving the
Navier-Stokes equations.
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Future Research

A direct continuation of the direction of research of this thesis
would focus on the next points:

Formalize the concepts presented in this thesis and construct a
two-level preconditioned SIMPLER algorithm.
Investigate the effect of using different deflation techniques
(different approaches of constructing the deflation matrix)
applied to the SIMPLER-preconditioned Navier-Stokes matrix
for stretched and non-stretched grids in the efficiency of the
solution.
Implement the macroelement construction in the FEM
discretization of the Navier-Stokes system of equations.
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