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1 Introduction

The numerical solution of the incompressible Navier-Stokes (N-S) equations is an area
of much importance in contemporary scientific research. Except for some simple cases,
the analytical solution of the (N-S) equations is impossible. Therefore, in order to solve
these equations, it is necessary to apply numerical techniques. Due to the nonlinear char-
acter of the behavior of fluids, the solution of the (N-S) system of equations requires a
suitable linearization of the discrete formulation of the original system. The resulting
linear system of equations gives rise to a so-called saddle-point problem. The efficient
solution of this linear system of equations is of primary interest due to the fact that most
of the computing time and memory of a computational implementation is consumed by
the solution of this system of equations. In the following report we adopt an iterative
approach to solving this linear system, mainly by the use of a Krylov subspace method
combined with a preconditioned linear system of equations. In particular, the type of
preconditioners studied are known as Block-Preconditioners in literature.

In Section 2, the Navier Stokes equations are introduced and discretized via the Finite
Element Method. The resulting algebraic system is then linearized via the Newton or
Picard methods. Lastly, a brief comment on finite element selection is given. In Section
3, the main concepts of linear algebra are presented. The theory behind Krylov subspace
methods is discussed and the general theory of Preconditioners is presented. In Section 4,
specific Block-type preconditioners for the Navier Stokes equations are studied including
preconditioners based on approximate commutators and SIMPLE-type preconditioners.
In Section 5, a set of problems (benchmarks) that make use of the theory presented in the
previous sections is presented. The two-dimensional Poiseuille flow as well as the driven
cavity flow and the backward facing step problems are shown. The problems are studied
by the use of the Matlab toolbox IFISS 1 (Incompressible Flow Iterative Solution Soft-
ware) developed in the University of Manchester. Finally, in Section 6, the direction of
research for the master thesis project is given.

1http://www.manchester.ac.uk/ifiss
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2 Discretization and linearization of the N-S equations

Partial differential equations in general, or the governing equations in fluid dynamics in
particular, are classified into three categories: (1) elliptic, (2) parabolic, and (3) hyper-
bolic. The physical situations these types of equations represent can be illustrated by
the flow velocity relative to the speed of sound. Consider that the flow velocity u is the
velocity of a body moving in a fluid at rest. The movement of this body disturbs the
fluid particles ahead of the body, setting off the propagation velocity equal to the speed
of sound c. The ratio of these two competing speeds is defined as Mach number:

M =
u

c

For subsonic speed, M < 1, as time t increases, the body moves a distance, ut, which is
always shorter than the distance at of the sound wave. If, on the other hand, the body
travels at the speed of sound, M = 1, then the observer does not hear the body ap-
proaching him prior to the arrival of the body, as these two actions are simultaneous. For
supersonic speed, M > 1, the velocity of the body is faster than the speed of sound. The
governing equations for subsonic flow, transonic flow, and supersonic flow are classified
as elliptic, parabolic, and hyperbolic, respectively.

2.1 Discretization

In continuum mechanics, incompressible flow refers to a flow in which the material density
is constant within an infinitesimal volume that moves with the velocity of the fluid. The
Mach number can be used to determine if a flow can be treated as an incompressible
flow. If M � 1 and the flow is quasi-steady and isothermal, compressibility effects will
be small and a simplified incompressible flow model can be used. The incompressible flow
of a Newtonian fluid is governed by the behavior defined by the set of equations

−ν∇2u + u · ∇u +∇p = f in Ω (1)

∇ · u = 0 in Ω (2)

Equation (1) represents the conservation of momentum, while equation (2) represents
the incompressibility condition, or mass conservation. The boundary value problem that
is considered is the system composed of equations (1) and (2) posed on a two or three
dimensional domain Ω, together with boundary conditions on ∂Ω = ∂ΩD ∪ ∂ΩN given by

u = w on ∂ΩD, ν
∂u

∂n
− np = s on ∂ΩN . (3)

The weak formulation of the Navier-Stokes equations is given by:

ν

∫
Ω

(∇2u) · v +

∫
Ω

(u · ∇u) · v −
∫

Ω
∇p · v) =

∫
Ω

f · v (4)

∫
Ω

(∇ · u) · q = 0 (5)
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where v and q are test functions in velocity and pressure space, respectively. After apply-
ing the Gauss divergence theorem and substitution of the boundary conditions, we obtain
the equivalent problem:

Find u ∈ H1
E(Ω) and p ∈ L2(Ω) such that

ν

∫
Ω
∇u⊗∇v +

∫
Ω

(u · ∇u) · v −
∫

Ω
p(∇ · v) =

∫
∂ΩN

s · v (6)

∫
Ω
q · (∇ · u) = 0 (7)

where H1
E denotes the Sobolev space of functions whose generalized derivatives are in

L2(Ω). The symbol ⊗ denotes the outer product. The discrete version of equations (6)
and (7) is formulated as:

Given the finite dimensional subspaces Xh
0 ⊂ H1

E0
,Xh ⊂ H1

E and Mh ⊂ L2(Ω), find

uh ∈ Xh
E and ph ∈Mh such that:

ν

∫
Ω
∇uh ⊗∇vh +

∫
Ω

(uh · ∇uh) · vh −
∫

Ω
ph(∇ · vh) =

∫
∂ΩN

s · vh for allvh ∈ Xh
0 (8)

∫
Ω
qh · (∇ · uh) = 0 for all qh ∈Mh (9)

Following the steps of the Galerkin method we define two types of basis functions, ψi(x)
for the pressure and φi(x) for the velocity. So the approximation for uh and ph is defined
as

ph =

np∑
j=1

pjψj(x), np is the number of pressure unknowns (10)

and

uh =

nu
2∑
j=1

u1jφj1(x) + u2jφj2(x) =

nu∑
j=1

ujφj(x) (11)

where nu is the number of velocity unknowns, uj is defined by uj = u1j , for j = 1, ..nu
2 ,

uj+nu
2

= u2j , for j = 1, ..nu
2 and φj in the same way. If we make the substitution

v = φi(x), q = ψi(x), we get the standard Galerkin formulation:
Find ph and uh, such that

ν

∫
Ω
∇uh ⊗∇φi +

∫
Ω

(uh · ∇uh) · φi −
∫

Ω
ph(∇ · φi) =

∫
∂ΩN

s · φi for alli = 1, ..nu, (12)

∫
Ω
φi · (∇ · uh) = 0 for all i = 1, ...np. (13)
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This system of equations can be represented in matrix form as

Adu+N(u) +BT p = f, (14)

Bu = g, (15)

where u denotes the vector of unknowns u1i and u2i, and p denotes the vector of unknowns
pi. The term Adu is the discretization of the viscous term and N(u) is the discretization
of the nonlinear convective term, Bu denotes the discretization of the negative divergence
of u and BT p is the discretization of the gradient of p. The right-hand side vectors f
and g contain all contributions of the source term, the boundary integral as well as the
contribution of the prescribed boundary conditions.

2.2 Linearization

As we can see, the Navier Stokes equations are nonlinear because of the existence of
the convective term. The usual approach in order to solve these equations is to solve
a linearized version of the equations at each time step. The linearization can be done
by Picard or Newton iteration schemes. The Picard iteration method gives rise to the
so-called Oseen problem:

−ν∆uk+1 + (uk · ∇)uk+1 +∇pk+1 = f in Ω, (16)

∇ · uk+1 = 0 in Ω, (17)

In this approach, the nonlinear term is substituted by an approximation including the
velocity vector calculated at distinct time steps, that is, the convective term at the new
time step is defined by

uk+1 · ∇uk+1 ≈ uk · ∇uk+1.

We have to use an initial guess u0 for the velocity field in order to construct the approx-
imate solutions (uk+1, pk+1). If we use u0 = 0 we obtain the Stokes problem in the first
iteration.

Another approach is the Newton linearization scheme which is characterized by assuming
that the velocity field at the new time-step is the sum of the velocity field at the previous
time step plus a correction, that is:

uk+1 = uk + δuk. (18)

If we neglect quadratic terms in δu arising in the convective term, we obtain the Newton
Linearization of the Navier-Stokes equations:

−ν∆uk + uk · ∇uk−1 + uk−1 · ∇uk +∇pk = f − uk−1 · ∇uk−1 in Ω, (19)

∇ · uk = 0 in Ω. (20)

After using any type of linearization, the Navier-Stokes system of equations can be written
as a linear algebraic system of equations:

Fu+BT p = f, (21)
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Bu = g, (22)

where F = Ad + N(uk) is the linearized operator and uk is the solution of the velocity
one iteration before.

The linear system arising from the linearization can be written as:[
F BT

B 0

] [
u
p

]
=

[
f
g

]
(23)

In general optimization theory, systems of these type arise as the first-order optimality
conditions for the following equality-constrained quadratic programming problem:

min : J(x) =
1

2
uTAu− fTu

subject to: Bu = g.

In this case the variable p represents the vector of Lagrange multipliers. Any solution
(u∗, p∗) of (23) is a saddle point for the Lagrangian

L(u, p) =
1

2
uTAu− fTu+ (Bu− g)T p,

hence the name saddle-point problem given to (23). The zero block reflects the absence
of the pressure in the continuity equation. As a consequence the system of equations may
be underdetermined for an arbitrary combination of pressure and velocity unknowns [2].

2.3 Finite element selection

The continuity equation, discretized as Bu = g, does contain only velocity unknowns.
However, the number of rows in this equation is completely determined by the number
of pressure unknowns. Suppose that there are more pressure unknowns than velocity un-
knowns. In that case equations (22) and (21) contain more rows than unknowns and we
end up with an inconsistent system of equations, that is, the matrix to be solved is singu-
lar. Therefore, we have to demand that the number of pressure unknowns never exceeds
the number of velocity unknowns. Since we want to solve the Navier-Stokes equations by
finite element methods for various grid sizes, this demand should be valid independently
of the number of elements. This demand restricts the number of applicable elements
considerably.
In order to satisfy this criterion, a general accepted rule is that the order of approximation
of the pressure must be one lower than the order of approximation of the velocity. So if
the velocity is approximated by a linear polynomial, then the pressure is approximated
by a constant per element and so on. Unfortunately this rule is not sufficient to guar-
antee that the number of pressure unknowns is not larger than the number of velocity
unknowns independently of the number of elements. In the literature, an exact admis-
sibility condition is derived. This condition is known under the name Brezzi-Babuŝka
condition (BB condition). However, the BB condition is rather abstract and in practice
it is very difficult to verify whether the BB condition is satisfied or not. Fortin (1981) has
given a simple method to check the BB condition on a number of elements based on the
following statement:
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An element satisfies the BB condition, whenever, given a continuous differentiable vector
field u, one can explicitly build a discrete vector field û such that:∫

Ω
Ψi(∇ · û)dΩ =

∫
Ω

Ψi(∇ · u)dΩ for all basis functions Ψi

With respect to the types of elements that are applied we make a subdivision into two
groups: elements with continuous pressure known as The Taylor-Hood family and elements
with discontinuous pressure which form The Crouzeix-Raviart family.
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3 Projection techniques, Krylov subspace methods, and
Preconditioners

As we have seen in the previous section, the discretization of the Navier-Stokes equations
by the Finite Element Method leads to a nonlinear system of equations. The solution
process of these equations therefore involves the linearization of such a nonlinear system.
If we consider the most general form of (23), the resulting matrix equation is in the form:

Ax = b, (24)

where A is an n× n real matrix.

3.1 Projection techniques

The idea of projection techniques is to extract an approximate solution to the above
problem from a subspace of Rn. If Km is this subspace, usually referred to as the search
subspace or ansatz subspace with dimension m, then, in general, m constraints must
be imposed to be able to extract such an approximation. Usually, these constraints
are m independent orthogonality conditions. Specifically, the residual vector b − Ax is
constrained to be orthogonal to m linearly independent vectors. This defines the so-called
constraints space Lm of dimension m. This framework is known as the Petrov-Galerkin
conditions [19]. A projection technique onto the subspace Km and orthogonal to Lm is a
process that finds an approximate solution x̃ to (24) by imposing the conditions that x̃
belong to Km and that the new residual vector be orthogonal to Lm. If we can exploit
the knowledge of an initial guess x0 to the solution, then the approximation must be in
the affine space x0 +Km instead of the homogeneous vector space Km:

Find x̃ ∈ x0 +Km such that b−Ax̃⊥Lm.

Note that if x̃ is written in the form x̃ = x0 +δ and the initial residual vector r0 is defined
as r0 = b−Ax0, then the projection process can be defines as:

x̃ = x0 + δ, δ ∈ Km, (25)

(r0 −Aδ,w) = 0 ∀w ∈ Lm. (26)

Let V = [v1, ..., vm] be an n ×m matrix whose column vectors form a basis of Km and
similarly, W = [w1, ..., wm] be an n×m matrix whose column vectors form a basis of Lm.
If the approximate solution is written as

x̃ = x0 + V y, (27)

then the orthogonality condition leads to the following system of equations for the vector
y:

W TAV y = W T r0. (28)

If the assumption is made that the m ×m matrix W TAV is nonsingular, the following
expression for the approximate solution x̃ results:

x̃ = x0 + V (W TAV )−1W T r0. (29)
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It is important to note that the approximate solution is defined only when the matrix
W TAV is nonsingular, a property that is not guaranteed to be true even when A is non-
singular. Nevertheless, it can be verified that the projection method is well defined, that
is, W TAV is nonsingular in three particular cases.

Theorem: Let A, L, and K satisfy either of the following three conditions:

1. A is Hermitian positive definite (HPD) and L = K, or

2. A is Hermitian and invertible and L = AK, or

3. A is invertible and L = AK.

The proof can be found in [19]. Moreover, in these cases, the result of the projection
process can be interpreted easily in terms of actions of orthogonal projectors on the
initial residual or the initial error. If we consider the cases in which L = AK, and let
r0 be the initial residual r0 = b − Ax0 and r̃ = b − Ax̃ the residual obtained after the
projection process. Then

r̃ = b−A(x0 − δ) = r0 −A− δ. (30)

In addition, δ is obtained by enforcing the condition that r0 − Aδ be orthogonal to AK.
Therefore, the vector Aδ is the orthogonal projection of the vector r0 onto the subspace
AK. Hence the following proposition can be stated.

Proposition: Let x̃, be the approximate solution obtained from a projection method onto
K orthogonally to L = AK and let r̃ = b−Ax̃ be the associated residual. Then

r̃ = (I − P )r0, (31)

where P denotes the orthogonal projector onto the subspace AK. From this proposition it
follows that the 2-norm of the residual vector obtained after one projection step will not
exceed the initial 2-norm of the residual; i.e.,

‖r̃‖2 ≤ ‖r0‖2.

This class of methods are known as residual projection methods.
Now, if we consider the case where L = K and A is HPD and let the initial error be denoted
by d0 = x∗ − x0, where x∗ denotes the exact solution to the system, and, similarly, let
d̃ = x∗ − x̃, where x̃ = x0 + δ is the approximate solution resulting from the projection
step. Then (30) yields the relation

Ad̃ = r̃ = A(d0 − δ),

where δ is now obtained by constraining the residual vector r0 − Aδ to be orthogonal to
K:

(ro −Aδ,w) = 0 ∀w ∈ K.

The above condition is equivalent to

(A(d0 − δ), w) = 0 ∀w ∈ K.
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Since A is SPD, it defines an inner product, which is usually denoted by (·, ·)A, and the
above condition becomes

(d0 − δ, w)A = 0 ∀w ∈ K.

The above condition is now easy to interpret: The vector δ is the A-orthogonal projection
of the initial error d0 onto the subspace K.

Proposition: Let x̃, be the approximate solution obtained from a projection method onto
K and let d̃ = x∗ − x̃ be the associated error vector. Then

d̃ = (I − PA)d0, (32)

where PA denotes the projector onto the subspace K, which is orthogonal with respect to
the A inner product. As a result of the proposition is that the A-norm of the error vector
obtained after one projection step does not exceed the initial A-norm of the error; i.e.,

‖d̃‖A ≤ ‖d0‖A,

which is expected because it is known that the A-norm of the error is minimized in x0 +K.
This class of methods are known as error projection methods.

3.2 Krylov subspace methods

A Krylov subspace method is a projection method for which the subspace Km is the
Krylov subspace

Km(A, r0) = span{r0, Ar0, A
2r0, ..., A

m−1r0}. (33)

The different versions of Krylov subspace methods arise from different choices of the sub-
space Lm and from the ways in which the system is preconditioned. Arnoldi’s procedure
is an algorithm for building an orthogonal basis of the Krylov subspace Km. One variant
of the algorithm known as the Modified Gramm-Schmidt (MGS) algorithm is as follows:

Algorithm: Arnoldi with MGS

1. Chose a vector v1 such that ‖v1‖2 = 1
2. For j = 1, 2, ...,m, Do
3. Compute wj := Avj
4. For i = 1, ..., j, Do
5. hij = (wj , vi)
6. wj := wj − hijvi
7. End Do
8. hj+1,j = ‖wj‖2. If hj+1,j = 0 Stop
9. vj+1 = wj/hj+1,j

10. End Do

The general procedure to form the orthonormal basis is as follows: assume we have an
orthonormal basis [v1, ..., vj ] for Kj(A, r0). This basis is expanded by computing w = Avj
and orthonormalized with respect to the previous basis. Let the matrix Vj be given as

Vj = [v1, ..., vj ], where span(v1, ..., vj) = Kj

9



Since the columns of Vj are orthogonal to each other. It follows that

AVj = VjHj + wje
T
j (34)

= Vj+1H̄j , (35)

V T
j AVj = Hj (36)

The j×j matrixHj is upper Hessenberg, and its elements hi,j are defined by the algorithm.
If A is symmetric, then Hj = V T

j AVj is also symmetric and thus tridiagonal. This leads
to a three term recurrence in the Arnoldi process. Each new vector has only to be
orthogonalized with respect to two previous vectors. This process is called the Lanczos
algorithm.

3.2.1 Using Arnoldi’s Method for solving Linear Systems

Given an initial guess x0 to the original linear system Ax = b, we now consider an
orthogonal projection method, which takes L = K = Km(A, r0), with Km(A, r0) given by
(33) in which r0 = b − Ax0. This method seeks an approximate solution xm from the
affine space x0 +Km of dimension m by imposing the Galerkin condition b−Axm ⊥ Km.
If v1 = r0/‖r0‖2 in Arnoldi’s method and we set β = ‖r0‖2, then

V T
mAVm = Hm (37)

as a consecuence of equation (36), and

V T
m r0 = V T

m (βv1) = βe1. (38)

As a result, the approximate solution using the above m-dimensional subspace is given
by

xm = x0 + Vmym ym = h−1
m (βe1). (39)

A method based on this approach is called the full orthogonalization method (FOM),
presented in [19].

The generalized minimal residual method (GMRES) is a projection method based on
taking K = Km and L = AKm, in which Km is the mth Krylov subspace, with ‖v1‖ =
r0/‖r0‖2. As seen previously, such a technique minimizes the residual norm over all vec-
tors in x0 + Km. The implementation of an algorithm based on this approach is similar
to that of the FOM algorithm.
We will derive the algorithm exploiting the optimality condition as well as relation (35).
Any vector x in x0 +Km can be written as

x = x0 + Vmy, (40)

where y is an m-vector. Defining

J(y) = ‖b−Ax‖2 = ‖b−A(x0 + Vmy)‖2, (41)

10



the relation (35) results in

b−Ax = b−A(x0 + Vmy)

= r0 −AVmy
= βv1 − Vm+1H̄my

= Vm+1(βe1 − H̄my).

Since the column vectors of Vm+1 are ortonormal, then

J(y) ≡ ‖b−A(x0 + Vmy)‖2 = ‖βe1 − H̄my‖2. (42)

The GMRES approximation is the unique vector of x0 +Km that minimizes (41). By (40)
and (42), this approximation can be obtained quite simply as xm = x0 + Vmym, where
ym minimizes the function J(y) = ‖βe1 − H̄my‖2; i.e.

xm = x0 + Vmym, where (43)

ym = min
y
‖βe1 − H̄my‖2. (44)

The minimizer ym is inexpensive to compute since it requires the solution of an (m+1)×m
least-squares problem, where m is typically small. This gives the following algorithm.

Algorithm: GMRES

1. Compute r0 = b−Ax0, β := ‖r0‖2, and v1 := r0/β
2. For j = 1, 2, ...,m, Do
3. Compute wj := Avj
4. For i = 1, ..., j, Do
5. hij = (wj , vi)
6. wj := wj − hijvi
7. End Do
8. hj+1,j = ‖wj‖2. If hj+1,j = 0 set m := j and go to 11
9. vj+1 = wj/hj+1,j

10. End Do

11. Define the (m+ 1)×m Hessenberg matrix Ĥm = {hij}1≤i≤m+1,1≤j≤m
12. Compute ym, the minimizer of ‖βe1 − Ĥmy‖2, and xm = x0 + Vmym

All Krylov subspace methods are related to, as well as defined by, the choice of a basis
of the Krylov subspace. The GMRES algorithm uses an orthonormal basis. In the CG
algorithm, the p’s are A orthogonal, i.e. conjugate, and so forth. A umber of algorithms
can be developed using a basis of this form in the nonsymetric case as well. THe main
result that is exploited in all these algorithms is the following lemma.

Lemma: Let p0, p1, ..., pm−1 be a sequence of orthonormal vectors such that each set
{p0, p1, ..., pj−1} for j ≤ m is a basis of the Krylov subspace Kj(A, r0), which is ATA-
orthogonal, i.e., such that

(Api, Apk) = 0, for i 6= k. (45)
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Then the approximate solution xm that has the smallest residual norm in the affine space
x0 +Km(A, r0)is given by

xm = x0 +

m−1∑
i=0

(r0, Api)

(Api, Api)
pi. (46)

In addition, xm can be computed from xm−1 by

xm = xm−1 +
(rm−1, Apm−1)

(Apm−1, Apm−1)
pm−1. (47)

This lemma opens up many different ways to obtain algorithms that are mathematically
equivalent to the full GMRES. The simplest option computes the next basis vector pm+1

as a linear combination of the current residual rm and all previous pi’s. The approximate
solution is updated by using (47). This is called the generalized CR (GCR) algorithm.

Algorithm: GCR

1. Compute r0 = b−Ax0. Set p0 = r0

2. For j = 0, 1, ..., until convergence, Do

3. Compute αj =
rj ,Apj

(Apj ,Apj)

4. xj+1 = xj + αjpj
5. rj+1 = rj − αjApj
6. Compute βij =

(Arj+1,Api)
(Api,Api)

for i = 0, 1, ..., j

7. pj+1 = rj+1 +
∑j

i=0 βijpi
8. End Do

To compute the scalars βij in the above algorithm, the vector Arj and the previous
Api’s are required. In order to limit the number of matrix-by-vector products per step
to one, we can proceed as follows. Follow line 5 with a computation of Arj+1 and then
compute Apj+1 after line 7 from the relation

Apj+1 = Arj+1 +

j∑
i=0

βijApi.

Both the set of pi’s and the set of Api’s need to be saved. This doubles the storage
requirement compared to GMRES. The number of arithmetic operations per step is also
roughly 50% higher that with GMRES [19].

3.3 Preconditioners

Preconditioning is a key ingredient for the success of Krylov subspace methods. Precon-
ditioning is a means of transforming the original linear system into one with the same
solution, but that is easier to solve with an iterative solver. In general, the reliability of
iterative techniques depends much more on the quality of the preconditioner than on the
particular Krylov subspace accelerators used [19].

The first step in preconditioning is to find a preconditioning matrix M . The matrix M
should satisfy a few requirements, the most important being that it must be inexpensive
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to solve linear systems Mx = b. This is because the preconditioned algorithms require a
linear system solution with the matrix M at each iteration. Also, M should be close to
A in some sense and it should clearly be nonsingular. Given the matrix splitting

A = M −N, (48)

where A is associated with the linear system (24). A linear fixed-point iteration can be
defined by the recurrence

xk+1 = M−1Nxk +M−1b, (49)

which at the same time is of the form

xk+1 = Gxk + f, (50)

with

G = M−1N = M−1(M −A) = I −M−1A, f = M−1b

The iteration (50) can be viewed as a technique for solving the system

(I −G)x = f. (51)

Since G has the form G = I −M−1A, this system can be rewritten as

M−1Ax = M−1b. (52)

This system, which has the same solution as the original system, is called a preconditioned
system and M is the preconditioning matrix or preconditioner. In other words, a relax-
ation scheme is equivalent to a fixed-point iteration on a preconditioned system. Once a
preconditioning matrix M is available there are three known ways of applying it. The
preconditioner can be applied from the left, leading to the preconditioned system

M−1Ax = M−1b. (53)

Alternatively, it can also be applied to the right:

AM−1u = b, x ≡M−1u. (54)

Note that the above formulation amounts to making the change of variables u = Mx and
solving the system with respect to the unknown u. Finally, a common situation is when
the preconditioner is available is the factored form

M = MLMR

where, typically, ML and MR come from an incomplete Cholesky factorization. In this
situation, the preconditioning can be split:

M−1
L AM−1

R u = M−1
L b, x ≡M−1

R u. (55)

It is of utmost importance to preserve symmetry whenever the original matrix is sym-
metric. The straight forward way of preserving symmetry is by applying the method
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described by (55) however symmetry can also be preserved even when the preconditioned
matrix is not available in factored form. If we observe that M−1A is self-adjoint for the
M -inner product:

(x, y)M ≡ (Mx, y) = (x,My),

since

(M−1Ax, y)M = (Ax, y) = (x,Ay) = (x,M(M−1A)y) = (x,M−1Ay)M . (56)

We can exploit this fact in order to precondition Algorithm 3.3. An alternative is to replace
the usual Euclidean inner product in the CG algorithm with the M inner product. If the
CG algorithm is rewritten for this new inner product, denoting the original residual by
rj = b−Axj and the residual for the preconditioned system by zj = M−1rj , the following
algorithm is obtained:

Algorithm: Preconditioned CG

1. Compute r0 = b−Ax0, z0 = M−1r0, and p0 := z0

2. For j = 0, 1, ..., until convergence, Do
3. αj := (rj , zj)/(Apj , pj)
4. xj+1 := xj + αjpj
5. rj+1 := rj − αjApj
6. zj+1 := M−1rj+1

7. βj := (rj+1, zj+1)/(rj , zj)
8. pj+1 := zj+1 + βpj
9. End Do

It is interesting to note that since (zj , zj)M = (rj , zj) and (M−1Apj , pj)M = (Apj , pj),
the M inner products do not have to be formed explicitly. It is also interesting to observe
that M−1A is also self-adjoint with respect to the A inner product:

(M−1Ax, y)A = (AM−1Ax, y) = (x,AM−1Ay) = (x,M−1Ay)A. (57)

In the case of generalized minimal residual (GMRES) or the nonsymetric iterative solvers,
the same three options for applying the preconditioning operation as for the CG are avail-
able, namely left, split, and right preconditioning. However, the right preconditioning
versions will give rise to what is called a flexible variant - a variant in which the precon-
ditioner can change at each step. The right-preconditioned GMRES algorithm is based
on solving

AM−1u = b, u = Mx. (58)

AS we now show, the new variable u never needs to be invoked explicitly. Indeed, once
the initial residual b − Ax0 = b − AM−1u0 is computed, all subsequent vectors of the
Krylov subspace can be obtained without any reference to the u variables. Note that u0

is not needed at all. The initial residual for the preconditioned system can be computed
from r0 = b−Ax0, which is the same as b−AM−1u0. In practice, it is usually x0 that is
available, not u0. Atthe end, the u variable approximate solution to (58) is given by

um = u0 +

m∑
i=1

viηi,
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with u0 = Mx0. Multiplying through by M−1 yields the desired approximation in terms
of the x variable:

xm = x0 +M−1

[
m∑
i=1

viηi

]
.

Thus, one preconditioning operation is needed at the end of the outer loop, instead of at
the beginning which is the case for the left-preconditioned version.

Algorithm: GMRES with Right Preconditioning

1. Compute r0 = b−Ax0, β := ‖r0‖2, and v1 := r0/β
2. For j = 1, 2, ...,m, Do
3. Compute w := AM−1vj
4. For i = 1, ..., j, Do
5. hi,j = (w, vi)
6. w := w − hi,jvi
7. End Do
8. Compute hj+1,j = ‖w‖2 and vj+1 = w/hj+1,j

9. Define Vm := [v1, ..., vm], H̄m = {hi,j}1≤i≤m+1,1≤j≤m
10. End Do

11. Compute ym = miny ‖βe1 − Ĥmy‖2, and xm = x0 +M−1Vmym
12. If satisfied Stop, else set x0 := xm and go to 1.

This time, the Arnoldi loop builds an orthogonal basis of the right-preconditioned Krylov
subspace

span{r0, AM
−1r0, ..., (AM

−1)m−1r0}.

Note that the residual norm is now relative to the initial system, i.e., b−Axm, since the
algorithm obtains the residual b−Axm = b−AM−1um implicitly.

So far, it has been implicitly assumed that the preconditioning matrix M is constant;
i.e., it does not change from step to step. However, in some cases no matrix M is avail-
able. Instead, the operation M−1x is the result of some unspecified computation, possibly
another iterative process. In such cases, it may happen that M−1 is not a constant op-
erator. The previous preconditioned iterative procedures will not converge if M is not
constant. There are a number of variants that allow variations in the preconditioner from
iteration to iteration. One of these variants of the GMRES algorithm is described next.
In line 11 of the GMRES with Right Preconditioning algorithm the approximate solu-
tion xm is expressed as a linear combination of the preconditioned vectors zi = M−1vi,
i = 1, ...,m. These vectors are also computed in line 3, prior to their multiplication by
A to obtain the vector w. They are all obtained by applying the same preconditionning
matrix M−1 to the vi’s. As a result it is not necessary to save them. Instead, we only
need to apply M−1 to the linear combination of the vi’s, that is to Vmym in line 11.
Suppose now that the preconditioner could change at every step, i.e., that zj is given by

zj = M−1
j vj .
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Then it would be natural to compute the approximate solution as

xm = x0 + Zmym,

in which Zm = [z1, ..., zm] and ym is computed as before, as the solution to the least-
squares problem in line 11. These are the only changes that lead from the right-preconditioned
algorthm to the flexible variant, described below.

Algorithm: GMRES with Right Preconditioning

1. Compute r0 = b−Ax0, β := ‖r0‖2, and v1 := r0/β
2. For j = 1, 2, ...,m, Do

3. Compute zj := M−1
j vj

4. Compute w := Azj
5. For i = 1, ..., j, Do
6. hi,j = (w, vi)
7. w := w − hi,jvi
8. End Do
9. Compute hj+1,j = ‖w‖2 and vj+1 = w/hj+1,j

10. Define Zm := [z1, ..., zm], H̄m = {hi,j}1≤i≤m+1,1≤j≤m
11. End Do

12. Compute ym = miny ‖βe1 − Ĥmy‖2, and xm = x0 + Zmym
13. If satisfied Stop, else set x0 ← xm and go to 1.

As can be seen, the main difference with the right-preconditioned version is that the
preconditioned vectors zj = M−1

j vj must be saved and the solution updated using these
vectors. It is clear that when Mj = M for j = 1, ...,m, then this method is equivalent
mathematically to GMRES with right preconditionning. It is important to observe that
zj can be defined in line 3 without reference to any preconditioner. That is, any given new
vector zj can be chosen. This added flexibility may cause the algorithm some problems.
Indeed, zj may be so poorly chosen that a breakdown may occur, as in the worst case
scenario when zj is zero.
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4 Block-type preconditioners for the incompressible N-S
equations

Lack of robustness is a widely recognized weakness of iterative solvers, relative to direct
solvers. This drawback hampers the acceptance of iterative methods in industrial appli-
cations despite their intrinsic appeal for very large linear systems. Both the efficiency
and robustness of iterative techniques can be improved by using preconditioning. A term
introduced in Section 4, preconditioning is simply a means of transforming the original
linear system into one which has the same solution, but which is likely to be easier to solve
with an iterative solver. In general, the reliability of iterative techniques, when dealing
with various applications, depends much more on the quality of the preconditioner than
on the particular Krylov subspace accelerators used.

4.1 Block preconditioners

One particular class of preconditioners is known as Block Preconditioners. These type of
preconditioners are based on a block factorization of the coefficient matrix (23). After
the factorization is performed, two subsystems for the velocity and pressure are solved
separately during each iteration. The general approach of such separation is known as
the Schur Complement method, which can be given as follows.
Consider a block factorized linear system written in the form:[

A11 A12

A21 A22

] [
x
y

]
=

[
f
g

]
, (59)

in which B is assumed to be nonsingular. From the first equation the unknown x can be
expressed as

x = A−1
11 (f −A12y). (60)

If we substitute this into the second equation, the following reduced system is obtained:

(A22 −A21A
−1
11 A12)y = g −A21A

−1
11 f. (61)

The matrix

S = A22 −A21A
−1
11 A12 (62)

is called the Schur complement matrix associated with the y variable. If this matrix can
be formed and the linear system (59) can be solved, all the interface variables y, that is
the variables that couple both systems, will become available. Once these variables are
known, the remaining unknowns can be computed via (60). Due to this particular fact, an
important aspect of Block preconditioners is to have a good approximation of the Schur
complement matrix.
In the context of the Navier-Stokes equations, Block preconditioners are based on a block
factorization of the coefficient matrix (23). They are mostly based on a block LDU
factorization of (23):[

F BT

B 0

]
= LDU =

[
I 0

BF−1 I

] [
F 0
0 S

] [
I F−1BT

0 I

]
, (63)
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where S is the Schur complement matrix discussed above. Similarly, Block triangular
preconditioners (Pt) are based on the block DU factorization of (23) given by:

DU =

[
F 0
0 S

] [
I F−1BT

0 I

]
= Pt =

[
F BT

0 S

]
(64)

By investigating the following generalized eigenvalue problem, we can determine the eigen-
values of the preconditioned system:[

F BT

B 0

] [
u
p

]
= λ

[
F BT

0 S

] [
u
p

]
(65)

We can see by inspecting the first row of (65) that,

(1− λ)
(
Fu+BT p

)
= 0.

This is only possible if (1− λ) = 0 or
(
Fu+BT p

)
= 0.

In the case (1−λ) = 0 we thus have λ = 1 signifying that we have nu eigenvalues equal to
one, that is we have eigenvalues equal to 1 of multiplicity nu. For the case

(
Fu+BT p

)
= 0

we obtain: (
Fu+BT p

)
= 0⇒ u = −F−1BT p (66)

From the second row of (65) we obtain:

Bu− λSp = 0,

If we now substitute u = −F−1BT p on the previous equation, we obtain:

−BF−1BT p = λSp. (67)

This shows that whenever S = −BF−1BT we have λ = 1 with multiplicity np. From
this equation, we can see that a good approximation of the Schur complement matrix
will dictate the convergence behavior of the preconditioned system with Pt. A better
approximation of the Schur complement matrix will cluster the eigenvalues close to zero
thus causing a faster convergence. Moreover, the use of F−1 and S−1 is not practical due
to the expensive calculation and storage of such matrices. In general, F−1 is approximated
by a matrix F̂−1 obtained by a small number of iterations with an iterative method. Thus,
the use of Block triangular preconditioners (64) involves the solution of Ptz = r, where

z =

[
zu
zp

]
and r =

[
ru
rp

]
as given by the next Algorithm:

Algorithm: Preconditioner Pt
1. Solve Szp = rp
2. Update ru = ru −BT zp
3. Solve Fzu = ru

We can see that the preconditioner involves the solution of two subproblems, one associ-
ated with the pressure part and the other with the velocity part of the problem. As we
have mentioned before, the Schur complement matrix is not formed, but approximated
by a simple matrix Ŝ. The approximate inverse Ŝ−1 is replaced by a simple spectral
equivalent matrix such that the preconditioned matrix has a tightly clustered spectrum.
How this approximation is done defines the various block preconditioners.
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4.2 Block preconditioners based on approximate commutators

Two popular preconditioners are based on approximating the commutator of the convec-
tion diffusion operator with the gradient operator. The commutator of two operators x
and y is defined as

[x, y] = xy − yx.

And whenever [x, y] = 0 it is said that the operator x commutes with the operator y, that
is xy = yx. The convection diffusion operator [13] defined on the velocity space can be
expressed as:

L = −ν∇2 + wh · ∇ (68)

where wh is the computed approximation to the discrete velocity at the most recent
iteration.

4.2.1 Pressure convection-diffusion preconditioner

Based on the idea presented by Kay et al. [13] that the commutator of the convection
diffusion operator acting on the gradient operator, on the velocity space, and the gradient
operator acting on the convection diffusion operator on the pressure space (Lp) is small,
that is:

ε = L∇−∇Lp � 1, (69)

then the discrete commutator in terms of finite element matrices given as:

εh = (Q−1
v F )(Q−1

v BT )− (Q−1
v BT )(Q−1

p Fp) (70)

might also be small. Qv denotes the velocity mass matrix and Qp the pressure mass matrix
(scaling matrices). Fp is a discrete convection diffusion operator on pressure space. The
multiplication by Q−1

u and Q−1
p transforms quantities from integrated values to nodal

values. If we now pre-multiplicate (70) by BF−1Qv, and post-multiplicate by F−1
p Qp

and assuming that the commutator is small, leads to an approximation to the Schur
complement matrix:

BF−1BT ≈ BQ−1
v BTF−1

p Qp. (71)

in which the expensive part BQ−1
v BT is replaced by its spectral equivalent matrix Ap

known as the pressure Laplacian matrix, that is:

S = −BF−1BT ≈ −ApF−1
p Qp (72)

The preconditioner (64) with the approximation given in (72) is known as the so called
pressure convection-diffusion (PCD) preconditioner.
The convergence of this preconditioner combined with a Krylov method is very good for
enclosed flows if the equations are linearized by the Picard method [21]. The precondi-
tioner gives rise to many iterations in inflow/outflow problems, the reason could be that
an approximation of BQ−1

v BT by Ap is well-defined only for enclosed flow problems [?
]. Boundary conditions are treated such that Ap and Fp are computed with Neumann
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boundary conditions for an enclosed flow problem. However in inflow/outflow problems,
rows and columns of Ap and Fp corresponding to pressure nodes on an inflow boundary
are treated as though they are associated with Dirichlet boundary conditions [? ]. One of
the main disadvantages of PCD is the necessity to construct the matrices Ap and Fp and
the definition of boundary conditions for the pressure matrix. This makes implementation
in standard finite element codes less obvious [21].

4.2.2 Least squares commutator preconditioner

Instead of building two extra operators Fp and Ap in PCD, Elman et al. devised another
approach for approximating the Schur complement matrix known as the least squares
commutator (LSC) preconditioner [7].
The idea is to approximate the matrix operator Fp in (71) such that the discrete commu-
tator (70) becomes small. This is done by solving a least squares problem. For the j-th
column of the matrix Fp, the least squares problem has the form:

min ‖[Q−1
v FQ−1

v BT ]j −Q−1
v BTQ−1

p [Fp]j‖Qv , (73)

where ‖ · ‖Qv is the
√
xTQvx norm. The normal equations associated with this problem

are:

Q−1
p BQ−1

v BTQ−1
p [Fp]j = [Q−1

p BQ−1
v FQ−1

v BT ]j , (74)

which leads to the following definition of Fp:

Fp = Qp(BQ
−1
v BT )−1(BQ−1

v FQ−1
v BT ). (75)

Substituting this expression into (71) provides an approximation to the Schur complement
matrix:

S = BF−1BT ≈ (BQ−1
v BT )(BQ−1

v FQ−1
v BT )−1(BQ−1

v BT ). (76)

The preconditioner based on this approximation is known as the LSC preconditioner.
Generally, the inverse of the velocity mass matrix Q−1

v is dense. The preconditioner is
expensive if the full velocity mass matrix is used in the preconditioner. Therefore, Qv
is replaced by Q̂v, the diagonal of the velocity mass matrix. In the LSC preconditioner,
the first three steps are used to solve the approximate Schur complement (76). If we

denote the residual of a Krylov subspace method by r =
[
rv
rp

]
, where rv and rp refer

to the velocity and pressure part, respectively. The preconditioning steps with the LSC
preconditioner are given by:

Algorithm: LSC Preconditioner

1. Solve Sfzp = rp where Sf = BQ̂−1
v BT

2. Update rp = BQ̂−1
v FQ̂−1

v BT zp
3. Solve Sfzp = −rp
4. Update ru = ru −BT zp
5. Solve Fzu = ru

The LSC preconditioner is built from readily available matrices and no extra boundary
conditions are needed, however, per iteration LSC is more expensive than PCD since it
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requires two Poisson solves instead of one, whereas PCD requires two extra operators
Fp and Ap on the pressure space including some boundary conditions. Nevertheless, its
convergence is better provoking that in the literature it is concluded that LSC is faster
than PCD [27].

4.3 Augmented Lagrangian approach

A completely different approach has been published by Benzi and Olshanskii [3]. In this
method, it is necessary to augment the velocity matrix in the original equation by a
penalty-like term γBTW−1B with γ relatively small and W a scaling matrix, usually the
diagonal of the pressure matrix [21].
The system of equations (23) is replaced by[

Fγ BT

B 0

] [
u
p

]
=

[
f
0

]
, (77)

With Fγ = F + γBTW−1B. Since Bu = 0, we can add the term γBTW−1Bu to the first
row in (77) without modifying the right hand side. This technique suggests a precondi-
tioner of the form:

PAL =

[
Fγ B

0 Ŝ

]
, (78)

with the inverse of the Schur complement approximated by

Ŝ−1 = −(νQ̂−1
p + γW−1). (79)

Q̂p denotes the approximate pressure matrix, ν is the viscosity and γ > 0 is a parameter.
A good choice of the parameter γ is essential. Usually, W is also replaced by Q̂p. For
constant pressure approximation, Qp is a diagonal matrix. For a linear pressure approxi-
mation, Qp is replaced by a spectrally equivalent diagonal matrix. For a diagonal matrix
Q̂p, the computation of the inverse approximate Schur complement is very cheap. The
preconditioner is known as augmented lagrangian preconditioner (PAL).
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4.4 SIMPLE-type preconditioners

One family of block preconditioners is the semi implicit method for pressure-linked equations-
type preconditioners or SIMPLE-type preconditioners. SIMPLE is used by Patanker as
an iterative method used to solve the Navier-Stokes problem. The algorithm is based on
the following steps:

1. The pressure is assumed to be known from the previous iteration.

2. The velocity is solved from the momentum equations.

3. Since the pressure is only a guess, the newly obtained velocities do not satisfy the
continuity equation. In the subsequent substeps the velocities and pressures are
corrected in order to satisfy the discrete continuity equation.

In the following, we will present a SIMPLE-type preconditioner for the Navier stokes
equations discretized by the Finite Element Method according to Rehman, Vuik and
Segal in [27]. The algorithms follows from a block LU decomposition of the coefficient
matrix (23):[

F BT

B 0

] [
u
p

]
=

[
F 0
B −BF−1BT

] [
I F−1BT

0 I

] [
u
p

]
=

[
f
g

]
, (80)

The approximation F−1 = D−1 = diag(F )−1 in the (2, 2) and (1, 2) block of the L and
U block matrices, respectively, leads to the SIMPLE algorithm. Solve recursively the
following systems: [

F 0
B −BF−1BT

] [
u∗

δp

]
=

[
f
g

]
, (81)

and [
I D−1BT

0 I

] [
u
p

]
=

[
u∗

δp

]
. (82)

This method leads to the following Algorithm for the SIMPLE method:

Algorithm: SIMPLE Preconditioner

1. p∗ is given.
2. Solve Fu∗ = ru −BT p∗.

3. Solve Ŝδp = rp −Bu∗.
4. Update zu = u∗ −D−1BT δp.
5. Update zp = p∗ + δp.
6. If not converged go to 2.

Vuik et al. have used SIMPLE and it’s variants as a preconditioner to solve the Navier-
Stokes problem. One iteration of the SIMPLE algorithm is used as a preconditioner. The
preconditioner consists of one velocity solve and one pressure solve. Since the systems of
equations in the previous algorithm are solved to a certain accuracy, the preconditioner
can not be considered constant in subsequent iterations. For that reason the Krylov
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subspace method GCR, which allows variable preconditioners, as outer iteration. Never-
theless, the convergence rate suffers from an increase in the number of grid elements and
Reynolds number. It can be proven that the SIMPLE preconditioner improves the overall
spectrum of the preconditioned system. Some of the eigenvalues are clustered around 1.
The other ones depend on the approximation of the Schur complement matrix.

Proposition: For the SIMPLE preconditioned matrix Ã, 1 is an eigenvalue with multi-
plicity nu, and the remaining eigenvalues are defined by the generalized eigenvalue problem
Sp = λŜp,

with Ŝ = −BF−1BT . The proof can be found in [? ].

4.4.1 SIMPLER

A variant of SIMPLE, known as SIMPLER, is supposed to provide Reynolds-independent
convergence. Instead of estimating the pressure p∗ in the SIMPLE algorithm, p∗ is ob-
tained from solving a subsystem

Ŝp∗ = rp −BD−1((D − F )uk + ru), (83)

where uk is obtained from the prior iteration. In case SIMPLER is used as a precondi-
tioner, uk is then equal to zero, therefore:

Ŝp∗ = rp −BD−1ru. (84)

The classical SIMPLER algorithm proposed by Patanker consists of two pressure solves
and one velocity solve. The complete SIMPLER algorithm is given next:

Algorithm: SIMPLER Preconditioner

1. Solve Ŝp∗ = rp −BD−1ru.
2. Solve Fu∗ = ru −BT p∗.

3. Solve Ŝδp = rp −Bu∗ − Cp∗.
4. Update zu = u∗ −D−1BT δp.
5. Update zp = p∗ + δp.

Unfortunately, if SIMPLER preconditioned GCR is used for finite element discretizations,
the convergence may be poor or even divergence may occur, especially in case of low
accuracy for the inner systems and in case of fine grids [21].

4.4.2 hSIMPLER

Vuik et al. have observed that in the Stokes problem, the SIMPLER preconditioner
shows a phase of stagnation at the start of the iterative method. This behavior is not
seen in the SIMPLE preconditioner. This is shown in Figure 1 taken from [27]. A
better convergence can b e achieved if the first iteration is carried out with the SIMPLE
preconditioner and after that SIMPLER is employed. The authors of [27] have named this
combination hybrid-SIMPLER (hSIMPLER). This implementation gives a fair reduction
in the number of iterations if the Stokes problem is solved. However, in the Navier-Stokes
problem, SIMPLER performs better than hSIMPLER.
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Figure 1: Convergence plot of SIMPLE-type peconditioners for the Stokes problem [27]

4.4.3 MSIMPLER

Elman et al. [7] discussed the relation between SIMPLE and approximate commutator
preconditioners, which is presented next. The more general form of (76) is given by

(BF−1BT )−1 ≈ Fp(BM−1
1 BT )−1, (85)

where

Fp = (BM−1
2 BT )−1(BM−1

2 FM−1
1 BT ), (86)

where M1 and M2 are scaling matrices. If we now consider a block factorization precon-
ditioner in which the Schur complement is based on a commutator approximation but
built on SIMPLE’s approximate block factorization written as:

P =

[
F 0

B −BM−1
1 BT

] [
I D−1BT

0 I

] [
I 0
0 F−1

p

]
. (87)

where M1 = D and Fp is the identity matrix, then the preconditioner formulation (87)
corresponds to SIMPLE. The formulation given in (87) is equivalent to the SIMPLE
algorithm if the subsystem for the pressure part in step 3 in the SIMPLE algorithm is
solved with the approximation given in (85),

Ŝδp = rp −Bu∗ (88)

where

Ŝ = −(BM−1
1 BT )F−1

p . (89)
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When FD−1 is close to identity, Fp will also be close to identity. This is true in a time
dependent problem with small time steps where the diagonal of F has significantly larger
entries than the off-diagonal entries.
Now, we use the observation made by Elman et al. regarding time dependent problems.
We know that in time dependent problems

Ft =
1

∆t
Qv + F, (90)

where Ft represents the velocity matrix for the time dependent problem and ∆t represents
the time step. For small time step Ft ≈ 1

∆tQv. This kind of approximation has been used
in fractional step methods for solving the unsteady Navier-Stokes problem. We use this
idea in solving the steady Navier-Stokes problem. Therefore, we choose M1 = M2 = Q̂v
in (85) resulting in:

Fp = (BQ̂−1
v BT )−1(BQ̂−1

v FQ̂−1
v BT ). (91)

If we assume that the factor FQ̂−1
v in Fp is close to identity, then

Fp = (BQ̂−1
v BT )−1(BQ̂−1

v BT ) ≈ I, (92)

and the approximation (85) becomes

BF−1BT ≈ −BQ̂−1
v BT . (93)

Based on this result, we replace D−1 in the SIMPLER algorithm by Q̂−1
v . This method

is referred to as MSIMPLER (Modified SIMPLER).

Algorithm: MSIMPLER Preconditioner

1. Solve Ŝp∗ = rp −BQ̂−1
v ru.

2. Solve Fu∗ = ru −BT p∗.

3. Solve Ŝδp = rp −Bu∗.
4. Update zu = u∗ − Q̂−1

v BT δp.
5. Update zp = p∗ + δp.

It is clear from the previous algorithm that the cost of MSIMPLER is equal to the cost
of the SIMPLER preconditioner. However, in solving the Navier-Stokes problem, at each
nonlinear iteration, the Schur complement approximation in the MSIMPLER does not to
be built again because the operators used in the Schur complement approximation are
independent of any change that may take place at each nonlinear iteration.
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5 Test problems

A set of benchmarks is presented here for solving the Navier-Stokes problem (1) and
(2). The following test problems have been solved using the IFISS package. IFISS is
a graphical Matlab package for the interactive numerical study of incompressible flow
problems. It includes algorithms for discretization by mixed finite element methods and a
posteriori error estimation of the computed solutions. The package can also be used as a
computational laboratory for experimenting with state-of-the-art preconditioned iterative
solvers for the discrete linear equation systems that arise in incompressible flow modeling.
A unique feature of the package is its comprehensive nature; for each problem addressed,
it enables the study of both discretization and iterative solution algorithms as well as the
interaction between the two and the resulting effect on overall efficiency.

5.1 2D Poiseuille Flow

This problem represents steady horizontal flow in a channel driven by a pressure difference
between the two ends, more commonly known as Poiseuille flow. The domain is given by:

Ω1 : the square (−1, 1)× (−1, 1).

Here a solution is computed numerically on Ω using the velocity u = (1−y2, 0) to define a
Dirichlet condition on the inflow boundary x = 1. The no-flow Dirichlet condition u = 0
is applied on the characteristic boundaries y = 1 and y = 1. At the outflow boundary
(x = 1, 1 < y < 1), there is a choice of applying a Neumann or a Dirichlet condition. The
Poiseuille channel flow solution is an analytic solution of the Navier-Stokes equations and
it is only obtainable since the convection term is identically zero. In the solution, pressure
gradient is proportional to the viscosity parameter. The solution is given next.
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pressure field

Streamlines: uniform

Figure 2: Solution to the Poiseuille flow problem.
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5.2 Driven Cavity Flow

This is a classical test problem used in fluid dynamics, known as driven-cavity flow. It is
a model of the flow in a square cavity, that is, the domain is Ω1 with the lid moving from
left to right. A Dirichlet no-flow condition is applied on the side and bottom boundaries.
Different choices of the nonzero horizontal velocity on the lid give rise to different com-
putational models:

{y = 1; 1 ≤ x ≤ 1|ux = 1}, a leak cavity;

{y = 1; 1 < x < 1|ux = 1}, a watertight cavity;

{y = 1; 1 ≤ x ≤ 1|ux = 1− x4}, a regularised cavity;

The solution of the driven cavity problem is presented next.
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Figure 3: Solution to the Driven cavity problem with a watertight cavity.

The performance of a specific preconditioner applied to the Krylov subspace method can
be studied via the built in functions of IFISS. The convergence plot of the bicgstab(2)
method preconditioned with different preconditioners is presented next:
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Figure 4: Convergence plot of BICGSTAB(2).

5.3 Backward facing step Flow

This example represents the flow over a step of length L. The domain is given by:

Ω2 : the L-shaped region generated by taking the complement in (−1, L)× (−1, 1)

of the quadrant (−1, 0]× (−1, 0].

A Poiseuille flow is imposed on the inflow boundary (x = 0; 0 ≤ y ≤ 1), and a no-flow
(zero velocity) condition is imposed on the top and bottom walls. A Neumann condition
is applied at the outflow boundary which automatically sets the mean outflow pressure
to zero. The solution of this problem is presented next:
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Figure 5: Solution to the backward facing step with stabilized Q1 −P0 approximation.
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The performance of iterative solution methods and preconditioners can be explored using
the driver it solve. Here, the chosen iterative method is GMRES with different methods
of preconditioning. The convergence behavior of the GMRES method is presented next.

0 20 40 60 80 100
10

−18

10
−16

10
−14

10
−12

10
−10

iterations

 l
o
g

1
0
(r

e
s
id

u
a
l)

GMRES convergence

 

 

PCD

LSC

mPCD

none

Figure 6: Convergence plot of GMRES.
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6 Research questions

Iterative methods generate a sequence of approximate solutions x(k) and essentially involve
the matrix A only in the context of matrix-vector multiplication. The evaluation of an
iterative method invariably focuses on how quickly the iterates x(k) converge. The study
of round-off errors is in general not very well developed. A reason for this is that the
iterates are only approximations of the exact solution, so round-off errors in general only
influence the speed of convergence but not the quality of the final approximation.

• Investigation of the stagnation behavior of the initial phase of SIMPLER.

• Why does the number of iterations get worse for stretched grids?
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