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CHAPTER 1

INTRODUCTION

1.1 Field of interest

Structures (e.g. bridges, beams and hinges) with optimal designs are becoming more
significant in our society in which efficiency and sustainability are vital. Obtaining the
most efficient design for complex structures is a delicate task of colossal (industrial)
importance. Optimal designs lead to better performances and lighter structures and
save design materials. A drawback of optimal designs is that they may be expensive
or difficult to manufacture. Traditional design methods primarily deal with straight-
forward and basic geometries. This obviously puts a restriction on the complexity of
the structures one might want to design and optimise.
Nowadays, fortunately, there are methods which do not have this problem. Three
commonly used methods are size, shape and topology optimisation. While size and
shape optimisation methods require close-to-optimal initial designs, topology opti-
misation does not. In topology optimisation an objective function is minimised (or
maximised) under physical and geometrical constraints with the material distribution
as a problem variable. In other words, the aim of topology optimisation is to find the
optimal design under an objective and adhering a number of constraints.
A major part of this thesis focuses on a particular topology optimisation problem,
namely the minimum compliance problem. The objective is to find a design for which
the compliance is minimal under a number of constraints. In the context of linear
elasticity the compliance is equivalent to the strain energy. This energy dictates the
stiffness of a structure in the following way: if the strain energy is minimal, the stiff-
ness of the design is maximal.
Although topology optimisation yields many advantages in comparison to older meth-
ods, solving the affiliated minimum compliance problem poses some obstacles. Finding
analytical solutions turns out to be a tedious task and in most cases they do not exist.
Even solving the minimum compliance problem numerically presents us with specific
issues. Three common numerical problems are the formation of checkerboards, mesh
dependency and local minima, which amongst others will be discussed in Section 1.2.

1



2 Introduction Chapter 1

In light of these numerical problems, level-set methods (LSM) have been proposed
to circumvent them. Moreover, level-set based topology optimisation methods yield a
beneficial treatment of changes in the topology during simulation. In level-set meth-
ods, the design domain is represented implicitly by a level-set function, of which the
zero interface describes the surface of this domain.
In addition to level-set based topology optimisation, eigenvalue optimisation has
gained some interest during the beginning of this millennium. In many regards the
eigenvalue topology optimisation problem is the same as the minimum compliance
problem. However, the main difference is the objective function. There are different
types of eigenfrequency optimisation. In this thesis we want to find the optimal design
such that the first (i.e. smallest) eigenfrequency is maximised. The reason one wants
to maximise this eigenfrequency, is to minimise the vibrations of a structure when a
certain force is applied. Besides the minimum compliance problem, the fundamental
eigenfrequency maximisation problem is treated thoroughly.

1.2 Historical background

In the year 1988 two very important mathematical papers were published. The topic
of each paper plays a major role in this thesis. Bendsøe and Kikuchi [7] are the found-
ing fathers of topology optimisation and Sethian and Osher [18] the architects of the
level-set method.
In 1988 Bendsøe and Kikuchi introduced a method which generates optimal topolo-
gies utilising the homogenisation method (for more information on the homogenisa-
tion method for topology optimisation, see [34], [1]). In their paper the foundation
for topology optimisation was laid. Since then, numerous topology optimisation ap-
proaches have been developed. The basis of these approaches, however, is the same
and gives answer to the fundamental question of topology optimisation: where to
place material in a prescribed domain for the best structural performance?
For a broader review of the field of topology optimisation see the 2014 survey of
Deaton and Grandhi [10]. For a comparison of the different topology optimisation
methods see the comparative review of Sigmund and Maute [30].
A branch of topology optimisation that does not get a lot of attention, but is worth
exploring, is eigenvalue topology optimisation. Tenek and Hagiwara were the first
to compute structures for which the first eigenfrequency was maximised using ho-
mogenisation and mathematical programming [36]. Another notable work in this field
of research is the 2000 paper of Pedersen [20].
Naturally, problems occur when solving a topology optimisation problem. The 0 -1
topology optimisation problem, for example, lacks analytical solutions in general [31],
[30]. However, there are some cases for which an analytical solution is found [22],
[23], [12], [13], [14]. Furthermore, there are numerical problems. In their 1998 review
article [31] Sigmund and Petersson indicate three common numerical problems that
occur in topology optimisation. First, there is the formation of checkerboards. This
is the construction of alternating void and solid elements ordered in a checkerboard
structure caused by the non-convergence of finite-element solutions. Second, we have
mesh dependency. This refers to the problem that for different mesh-sizes or dis-
cretisations one does not obtain qualitatively the same solution. Third, there is the
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existence of local minima. This means that for the same discretisation one obtains
different solutions if algorithmic parameters are altered, e.g., different starting de-
signs. This is caused by the numerical optimisation procedures of the algorithm.
Since 1988 a number of different approaches has been developed as Sigmund and
Maute point out in their review article [30]. These include density, level-set, topo-
logical derivative, phase field and evolutionary approaches. A thorough comparison
of these different approaches and other literature reference can be found in the same
review article.
As this thesis focuses on the level-set approach, it is important to understand what
the level-set method is. In 1988 Sethian and Osher published a paper about captur-
ing fronts propagating with curvature-dependent speed [18]. Later it was named the
level-set method and is thoroughly described in the book of Osher and Fedkiw [17].
This method describes how one keeps track of a level-set (in most cases the zero level
contour) of a function. This function is called the level-set function and the contour
is also referred to as the interface, as it separates two regions.
In 2000 the level-set method was applied in topology optimisation for the first time
by Sethian and Wiegmann [26]. Since then, various level-set based topology optimi-
sation methods have arisen. These can be classified, for example, by the approach for
updating the level-set field in the optimisation process and the method for discretising
the level-set function. In their review article Van Dijk et al. pay attention to theses
different approaches and discuss the level-set approach in general [37].
The level-set method for topology optimisation was introduced because of the spe-
cial properties of the level-set function. The function is used to implicitly define the
interfaces between materials by iso-contours. This allows for a neat description of
the interfaces. Some notable works in the field of level-set topology optimisation are
that of Noël et al. [16] who use hierarchical B-splines to disretise the state variable
fields and level-set function, Yaji et al. [39] who embed the reinitialisation in the time
evolution equation utilising a convected level-set method and Allaire and Jouve [3]
who adapted the method for stress minimisation.
In the field of level-set topology optimisation, some research has been done in the
area of eigenfrequency optimisation by Osher and Santosa [19], Allaire and Jouve [2],
De Gournay [9] and Yamada et al. [40].
The reason we choose a level-set based topology optimisation over other approaches
is because it holds many advantages and it is a relatively new approach. The main
advantage is that the interface is clearly and smoothly described implicitly by the
level-set function. In addition, Allaire et al. state a number of benefits for the level-
set approach in their 2004 paper [5]. The method permits radical topological changes
during the optimisation process, the CPU time is reasonable and it can handle general
mechanical models (including nonlinear ones) and objective functionals. In the afore-
mention comparative review paper of Sigmund and Maute [30] the level-set approach
is also reviewed. They remark that the level-set method is “well suited for capturing
stochastic shape variations for robust design optimization”. In the review article of
Van Dijk et al. it is also noted that a level-set based topology optimisation treats
topological changes conveniently, unlike explicit boundary description methods. This
means that during the optimisation process holes can fuse together and new connec-
tions can be made in the design.
Unfortunately, there are drawbacks to a level-set approach for topology optimisation.
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A huge deficiency in the conventional level-set approach is that it does not allow the
nucleation of holes. This is noted by Allaire et al. and techniques to circumvent this
are briefly outlined. This lack of hole nucleation makes the optimal design heavily
dependent on the initial design as stated in plentiful works [39], [5], [37], [30]. Fur-
thermore, similar to the traditional topology optimisation method, the level-set based
method suffers from local minima according to Van Dijk et al. [37] and Allaire and
Jouve [2]. Luckily, the majority of these obstacles has been dealt with.
However, there is also a non-numerical problem in topology optimisation. This will
be part of the research problem and is discussed in the next section.

1.3 Research problem

The use of standard benchmark problems for topology optimisation methods is briefly
addressed in the 2013 comparative review article of Sigmund and Maute [30]. While
the MBB beam and cantilever are typical benchmark problems in literature, there is
a lack of challenging standard test cases. Moreover, they mention a specifically “chal-
lenging but still simple to implement compliant mechanism benchmark”: the inverter.
It was first proposed by Sigmund in 1997 [27] and used as a ‘standard’ benchmark
problem in later works of him and co-writers [28], [29]. In Section 4.4 the inverter
benchmark problem will be thoroughly described.
Sigmund and Maute recommend in their review article that the inverter example
should be chosen as a standard benchmark problem in future works regarding topol-
ogy optimisation and in particular level-set based topology optimisation. The heavy
influence of the initial design is a substantial burden for boundary control methods
(e.g. level-set methods).
Another problem Sioux wishes to take on concerns eigenfrequency topology opti-
misation using a level-set method. They want an algorithm which maximises the
fundamental eigenfrequency to reduce vibrations and increase the overall precision.
Moreover, there is ‘a lack of knowledge’ in this field of research. Though stated as a
“fundamental engineering design problem” by Deaton and Grandhi [10], there only is
a modest amount of papers dedicated to this problem.

1.4 Thesis objectives

The first step of this thesis is to find out how a level-set embedded minimum com-
pliance problem can be solved numerically. This means developing a topology op-
timisation algorithm based on the level-set method that is able to interact with a
finite-element model and using it to find optimal designs. In view of this we set the
following objectives:

• Derive a level-set embedded minimum compliance problem.

• Solve this problem numerically, which leads to an algorithm.

• Compare the results of this algorithm to known benchmarks: cantilever, MBB
beam and inverter.
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At the hand of these objectives we want to contribute to the solution for standardised
benchmark problems.
Once the these objectives have been accomplished, we move on to the eigenfrequency
problem. In respect to this problem we have the following problems:

• Derive a level-set embedded maximum fundamental eigenfrequency problem.

• Solve this problem numerically, which leads to an algorithm.

• Compare the results of this algorithm to known benchmarks.

The aim of these objectives is to make a contribution to the small-scaled field of
level-set eigenvalue topology optimisation.

1.5 The reader’s guide to the literature report

Now that a background of the main topic has been presented and the research problem
of the thesis along with the corresponding objectives has been established, a concise
overview of the outline of this literature report is provided.

Chapter 2 (Preliminaries)
Essential physical and material constraints as well clarifying mathematical no-
tations are treated in this chapter.

Chapter 3 (Problem derivation)
Some elemental definitions of linear elasticity along with the principle of mini-
mum potential energy are introduced at first. The main topic of this chapter is
the derivation and formulation of the minimum compliance problem. In addi-
tion, the eigenfrequency maximisation topology optimisation problem is posed.
Finally, the level-set method is presented and incorporated into both problems.

Chapter 4 (Benchmark problems)
Three benchmark problems regarding the minimum compliance problem are
introduced and discussed thoroughly. Besides this, a topology optimisation
method is briefly addressed and used to show some results of these benchmarks.

Chapter 5 (Conclusive summary)
The literature report is concluded with a concise summary and ends with a
suggestion for the approach of the research problem.





CHAPTER 2

PRELIMINARIES

The physical and mathematical framework in which the problem of this thesis is
presented is treated in this chapter. It begins with the physical aspects of the design
material. Those aspects are then translated into a mathematical model.

2.1 The physical design

First and foremost, it must be noted that all physical designs are three-dimensional.
However, as will be stated later, the mathematical problem can be two-dimensional
as well. This is due to the fact that a two-dimensional mathematical shapes can be
constructed as three-dimensional structures. In engineering this procedure is known
as extrusion.
To start off, it is important to specify the properties we want our material to have.

2.1.1 Material properties

The material that will be used for the design is isotropic and homogeneous. A material
is said to be isotropic if its properties are the same in all directions. Homogeneous
means that a material has the same properties everywhere in the domain.
In Table 2.1 the parameter values of the design material are given. In this case the
material is steel. These values are used in all codes and benchmark test cases.

Notation Definition Value in SI units
ρ Density 7.750 kg · m−3

E Young’s modulus 190 · 109 Pa
ν Poisson ratio 0.28

Table 2.1: Table of the parameter values of steel.

7
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2.1.2 Physical constraints

Naturally, the design does have a number of physical constraints. One of the most
important constraints we pose on the design is a volume limit. This limit is defined
as Vmax and is a volume fraction. That is, it denotes a fraction of the total volume
available to construct the design.
An essential element of designing is design constraints. These design constraints can
be translated into physical constraints. Two of these are material constraints and two
mechanical constraints. The material constraints dictate in which regions material
must be present and in which no material is allowed.
The first mechanical constraint relates to the boundary conditions. The second states
that the design structure must be connected. To be more specific we want the design
structure to be path connected. In the next section these constraints are explained
in more detail and expressed in mathematical terms.

2.2 Mathematical domain

It is imperative to define the mathematical domain in which we work. This can
be either R2 or R3 in the case of topology optimisation. For the sake of generality,
however, we shall refer to Rd where d is the dimension of the space. The domain
we focus on is defined as the reference domain Ω. This domain is a subset of whole
domain, i.e., Ω ⊆ Rd. We refer to the design material/structure as the design domain
and assign it the letter D. This design domain is always ‘inside’ the reference domain,
i.e., D ⊆ Ω. The boundary of the design domain ∂D is denoted by Γ. All space within
the reference domain that is not material is called the void.
To make a clear distinction between a volume integral (area or length integral in R2 or
R, respectively) and a surface integral (line or point integral in R2 or R, respectively)
we also use the capital Greek letters omega and gamma to denote these integrals,
respectively. So, a volume integral has the differential dΩ and a surface integral dΓ.
Promptly, more specific information about the reference and design domain is given.

Reference domain

The reference domain can have any fixed form. So, it does not necessarily need to
be a square (or cube) or circle (or sphere). Due to this definition of the reference
domain, we give the design domain a predefined space in which we want it to be
optimised. It also puts a limit on the available space for the design domain. That
is to say, the aforementioned volume fraction Vmax is a fraction of the volume of the
reference domain. Thus, the reference domain is the space in which the design can
attain its optimal structure. A pleasant fortuity is that we can create holes in the
reference domain which serve as regions where no material is allowed. Furthermore,
the boundary of the reference domain, ∂Ω, is significant too, as it is needed to define
the boundary conditions of the level-set function. However, this will be accounted for
after the level-set method is introduced and implemented in the minimum compliance
problem (see Section 3.6).
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Figure 2.1: Two-dimensional visualisation of the mathematical
domain. Ω is the reference domain and ∂Ω its boundary. The
design domain is D and Γ its boundary. Material is always present
in A

Design domain

The objective of topology optimisation is to find the optimal design. Therefore, we
must be clear on what the design domain D is. It is crucial to keep in mind that the
design domain will be updated during the optimisation process. This means that we
start with an initial design and end up with an optimal one.
The design domain D is the set of coordinates where material is present. It is con-
tained in the reference domain and cannot exist outside of it. Due to possible design
constraints we allow the initial design domain to have predefined holes. Moreover, it
is even possible that new holes are created as a consequence of the topology optimi-
sation. Another crucial property of the design domain is that it must always be path
connected, even after topology optimisation is applied. That is, one can follow a path
from an arbitrary point in D to any other point in D, without crossing its boundary.
We must also take into account that there may be parts of the design domain where
material must be present. Therefor we define the domain A ⊆ D. That it is, A is the
subset of D where there is always material. A simple visualisation of all this is given
in Figure 2.1.

Boundary conditions on Γ

In this thesis only two types of boundary conditions are considered: Dirichlet bound-
ary conditions (named after Peter Gustav Lejeune Dirichlet) and Neumann boundary
conditions (named after Carl Neumann). Therefore we define ΓD, the part of the
boundary which has Dirichlet boundary conditions, and ΓN, the part which has Neu-
mann boundary conditions, such that Γ = ΓD∪ΓN. These boundary conditions apply
to the displacement u (which is explained in Chapter 3). Moreover, some parts of
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the boundary can have both boundary conditions. However, a single displacement
component can only have one boundary condition. Dirichlet boundary conditions are
denoted with u0. If no explicit boundary condition is stated for a certain part of the
boundary it is assumed to have a homogeneous Neumann boundary condition.

Place-dependency of parameters and constants

Because we make a clear difference between material and void, the parameters and
constants we encounter are place-dependent in a certain way. Inside the design do-
main, i.e., in the material, the parameters and constants exist. As the material is
isotropic and homogeneous the parameters and constants remain the same every-
where inside the design domain. On the other hand, in the void, those parameters
and constants do not exist. So, the parameters and constants could be expressed with
the use of an indicator function, but that would only be necessary in computational
cases. Thus, we will refrain from denoting parameters and constants as functions of
place.



CHAPTER 3

PROBLEM DERIVATION

In this chapter we compose the topology optimisation problem after a brief intro-
duction to linear elasticity and the principle of minimum potential energy in physics.
Then, the minimum compliance problem is derived and the fundamental eigenfre-
quency maximisation problem is posed. Finally, we implement the level-set method
into both problems. First, we look at the physics of linear elasticity.

3.1 Linear elasticity

Elasticity involves a change of shape, so we define the displacement vector u(x) as a
function of the location x ∈ Rd. As stated by Sadd [25] the (Cauchy) strain consists
of normal strain, which is “the change in length per unit length of fibers oriented
in the normal direction”, and shear strain, which is “the change in angle between
two originally orthogonal directions in the continuum material’. According to Sadd
[25] there is a relation between the displacement and the strain, which is called the
strain-displacement relation

ε(u) :=
1

2

(
∇u + (∇u)T

)
, εij =

1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
. (3.1)

Note that ε(u) is a symmetric by definition. Be aware of the fact that the strain-
displacement relation is linearised. Ergo linear elasticity. For more information re-
garding the theory of nonlinear elasticity see Antman’s book [6] (in the context of
mathematics) or Rushchitsky’s book [24] (in the context of physics). If one is inter-
ested in nonlinear elasticity in relation to topology optimisation, the 2004 paper of
Allaire et al. [5] is recommended.
Another very important physical quantity is stress. In order to express the stress in
terms of the strain we utilise the generalised Hooke’s law (named after Robert Hooke)
for linear isotropic elastic materials [32]:

ε =
1

E

[
(1 + ν)σ − νtr(σ)I

]
, (3.2)

11
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where E is Young’s modulus, ν the Poisson ratio (named after Thomas Young and
Siméon Poisson, respectively), σ the stress tensor and I the identity matrix. In index

notation this becomes εij = 1
E [(1 + ν)σij − νδijσkk], where σkk =

∑d
i=1 σii and δij

is the Kronecker delta function (named after Leopold Kronecker). Remark that

εkk =
1

E
[(1 + ν)σ11 − νσkk + (1 + ν)σ22 − νσkk + (1 + ν)σ33 − νσkk]

=
1

E
[(1 + ν)σkk − 3νσkk] =

1 − 2ν

E
σkk.

This gives σkk = E
1−2ν εkk. Now we can express the stress tensor in terms of the linear

strain tensor.

σij =
E

1 + ν
εij +

νE

(1 + ν)(1 − 2ν)
δijεkk.

If we introduce the Lamé constants, λ = νE
(1+ν)(1−2ν) and µ = E

2(1+ν) (named after

Gabriel Lamé), we can give the constitutive equation for isotropic materials (Hooke’s
law) as described in [32].

σ(u) = 2µε(u) + λtr(ε(u))I. (3.3)

It should be mentioned that µ is also known as the shear modulus in the context of
elasticity.

3.1.1 Stiffness tensor

As we are dealing with linear elasticity, the stress components are assumed to be linear
functions of the strain components. So, following Equation (3.3) we can express the
stress as

σij(u) = Eijklεkl(u), with Eijkl = µ(δikδjl + δilδjk) + λδijδkl. (3.4)

The term Eijkl is called the stiffness tensor and for an isotropic homogeneous material
has the following symmetry properties:

Eijkl = Ejikl, Eijkl = Eijlk, Eijkl = Eklij . (3.5)

The first two symmetries are a consequence of the symmetry of the strain in Equation
(3.1). Due to the third symmetry we can define the following symmetric bilinear
function in Einstein notation (named after Albert Einstein):

a(u,v) :=

∫
D

Eijklεkl(u)εij(v) dΩ, (3.6)

where D is the aforementioned design domain. Definition (3.6) is loosely based on an
inner product introduced by Eremeyev and Lebedev in [11]. Later, we will see that
Definition (3.6) is the energy bilinear form as described by Bendsøe and Sigmund
in [8] and used in the formulation of the minimum compliance problem. Using the
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stiffness tensor expression of the stress (see Equation (3.4)), Definition (3.6) can be
written as

a(u,v) =

∫
D

σ(u) : ε(v) dΩ. (3.7)

Here the Frobenius inner product (named after Ferdinand Georg Frobenius) is used.
The Frobenius inner product for two complex-valued n × m matrices A and B is
defined as follows:

A : B := ⟨A,B⟩F =
∑
i,j

AijBij , (3.8)

where the overline denotes the complex conjugate. It follows from its definition that
the Frobenius inner product is sesquilinear.

3.2 The principle of minimum potential energy

From the principle of minimum potential energy we can derive the weak form of
linear elasticity, which is called the the principle of virtual work in stress analysis.
The minimum potential energy problem of an elastic body, based on [32] and [11], is
defined as Find u ∈ U such that P (u) ≤ P (v) ∀v ∈ U, for

P (u) = 1
2

∫
D

σ(u) : ε(u) dΩ −
∫
Γ

t · udΓ −
∫
D

f · udΩ, (3.9)

where t is the (external) traction, f the (internal) body forces and U the set of all
accessible displacements. Traction forces only act on the boundary of the design do-
main. Traction can be seen as the force which makes an object move over a surface
by overcoming all resisting forces. In our case we regard externally applied traction
forces. Body force is a force that acts on the entire design domain, that is, it acts
throughout the volume of a structure. Examples of body forces are gravity and mag-
netism.
Now, we want to find weak extrema of the functional P (u) which denotes the total
strain energy for an elastic body. Therefore we look at the calculus of variations. This
tells us that a necessary condition for finding weak extrema for Problem (3.9) is the
Euler-Lagrange equation

d

dβ
P (u + βv)

∣∣∣
β=0

= 0 (3.10)

for any fixed virtual displacement v ∈ U0 := {w ∈ U : w = 0 on ΓD} and u the op-
timal solution of Problem (3.9). Here, U0 denotes the set of admissible displacements
with homogeneous boundary conditions.
Before we express the Euler-Lagrange equation, note that the functional P (u) can
be expressed with the aforementioned symmetric bilinear function a, see Definition
(3.6).

P (u) =
1

2
a(u,u) −

∫
Γ

t · u dΓ −
∫
D

f · u dΩ.
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Using this expression for the functional, we first look at P (u + βv) and express it
using the symmetric and bilinear properties of a(u,v).

P (u+βv) =
1

2
a(u,u)+βa(u,v)+

1

2
β2a(v,v)−

∫
Γ

t·u dΓ−β

∫
Γ

t·v dΓ−
∫
D

f·u dΩ−β

∫
D

f·v dΩ.

We take the derivative with respect to β.

d

dβ
P (u + βv) = a(u,v) + βa(v,v) −

∫
Γ

t · v dΓ −
∫
D

f · v dΩ.

Now we set β = 0 and equate the result to zero.

a(u,v) −
∫
Γ

t · v dΓ −
∫
D

f · v dΩ = 0.

So, the weak form of linear elasticity is∫
D

σ(u) : ε(v) dΩ =

∫
D

f · v dΩ +

∫
Γ

t · v dΓ ∀v ∈ U0. (3.11)

From Equation (3.11) the equation of motion for elastostatics can be derived. For this
derivation look at Appendix A.

3.3 Minimum compliance problem

As mentioned before, the integral in Definition (3.6) is used in the minimum com-
pliance problem as the internal virtual work. The integral on the right-hand side of
Equation (3.11) is called the load linear form [8]. We define the functional

l(u) :=

∫
D

f · u dΩ +

∫
Γ

t · u dΓ. (3.12)

The way we define the minimum compliance problem is roughly based on the same
problem defined by Bendsøe and Sigmund in their book [8].

min
D

a(u,u)

s.t. a(u,v) = l(v), ∀v ∈ U0,

u
∣∣
ΓD

= u0,

D is path connected,∫
D

1 dΩ ≤ Vmax

∫
Ω

1 dΩ.

(3.13)

Here D and ΓD are as described in Section 2.2.
The objective of our problem is to find the optimal design domain for which the
compliance is minimal. This is equivalent to minimising the strain energy ( 1

2a(u,u))
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over D. Note that this is the same as minimising a(u,u) over D. What is more,
we need to minimise over D and not over u. That is because u is a function of the
design domain D for u is determined by the principle of minimum potential energy
which depends on D. Furthermore, we have the physical constraint regarding that
principle, a boundary condition and the volume constraint, in that order. Because
the eigenfrequency topology optimisation problem is based on comparable physical
constraints, we introduce it forthwith.

3.4 Fundamental eigenfrequency maximisation prob-
lem

In the context of eigenvalues, it is common to order eigenvalues from smallest to
biggest, i.e., η1 ≤ η2 ≤ ... ≤ ηn. So, the first eigenvalue, η1, is the smallest and
also referred to as the fundamental eigenvalue. In the context of vibrations we have
eigenfrequencies, i.e. the square root of the eigenvalue. Then, [15] uses the following
equation as the weak form of the equation of motion for the k-th eigenfrequency:

a
(
u(k),v

)
= ω2

kb
(
u(k),v

)
, ∀v ∈ U0, (3.14)

where

b(u,v) :=

∫
D

ρu · v dΩ. (3.15)

The functional b is known as the structural mass form. Note that the term l(v)
is left out, because the body and traction forces are neglected for the eigenvalue
problem. Furthermore, ωk is the k-th eigenfrequency corresponding to the k-th eigen-
function u(k). Our curiosity for the fundamental eigenfrequency is connected to the
phenomenon known as resonance. If resonance occurs, the structure would be vi-
brating heavily and we want to prevent that. In nature lower frequencies are more
common than higher frequencies. So, the first eigenfrequency is more susceptive to
resonance than the other frequencies. To that end we want to maximise the funda-
mental eigenfrequency which can be expressed as the minimum value of the Rayleigh
quotient (named after John William Strutt, 3rd Baron Rayleigh) according to Allaire
and Jouve [2].

ω2
1 = min

v∈U0 ∧ v̸=0

a(v,v)

b(v,v)
. (3.16)

The fundamental eigenfrequency maximisation problem is defined as follows

max
D

ω2
1

s.t. a
(
u(1),v

)
= ω2

1b
(
u(1),v

)
, ∀v ∈ U0,

u(1)
∣∣
ΓD

= u
(1)
0 ,∫

D

1 dΩ ≤ Vmax

∫
Ω

1 dΩ.

(3.17)

Remark the resemblance to the minimum compliance problem, Problem (3.13). The
main difference is obviously the objective, which is to find the optimal design for which
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the fundamental eigenfrequency is maximal. Further, the first physical constraint is
only considered for the first eigenfunction, i.e., the eigenfunction corresponding with
the first eigenfrequency.
One of the goals of this thesis is to embed the level-set method into our minimum
compliance problem, Problem (3.13), and fundamental eigenfrequency maximisation
problem, Problem 3.17). Therefore, we digress and take a look at what a level-set
function and the level-set method are.

3.5 The level-set method

The level-set method was introduced in 1988 by Sethian and Osher [18] in order to
keep track of the motion of an arbitrary interface. The method involves using a
level-set function 

ϕ(x) > 0 ∀x ∈ Ω \D,

ϕ(x) = 0 ∀x ∈ Γ ∩ Ω,

ϕ(x) < 0 ∀x ∈ D \ Γ.

(3.18)

A visualisation of this scalar function is provided by Figure 3.1.

Figure 3.1: Graphical representation of the level-set function.

3.5.1 Properties of the level-set function

Some convenient and interesting properties follow from Definition (3.18).

Unit normal

The gradient, ∇ϕ, is perpendicular to the iso-contours of ϕ and points in the direction
of increasing ϕ (that is, from the material to the void). Let x0 be a point on the zero
isocontour of ϕ, i.e., a point on the interface, then ∇ϕ(x0) is a vector that points in
the same direction as the local unit normal vector, n̂, to the interface. Thus, we can
express this normal vector in terms of the level-set function for points on the interface.

n̂(x) =
∇ϕ(x)

∥∇ϕ(x)∥2
. (3.19)
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Note that this holds for any interface ϕ = a with a ∈ R.

Mean curvature

When we want to know whether a region is convex or concave, we take a look at the
mean curvature of the interface, that is, the divergence of the normal vector,

κ :=
1

d− 1
∇ · n̂, (3.20)

where d is the spatial dimension. Note that we can express the mean curvature in
terms of the level-set function as well by using the expression of the unit normal
vector in Equation (3.19). Substituting this expression into the definition of the mean
curvature, Definition (3.20), results in

κ(x) =
1

d− 1
∇ ·

(
∇ϕ(x)

∥∇ϕ(x)∥2

)
. (3.21)

So, for convex regions we have κ > 0, for concave regions κ < 0 and for a plane κ = 0.

Volume and surface integrals

Using the Heaviside function, Dirac delta function and a level-set function one can
compose a volume integral (area or length integral in R2 or R, respectively) and
surface integral (line or point integral in R2 or R, respectively) over the entire reference
domain Ω.
The Heaviside function (named after Oliver Heaviside) is defined as follows using the
(one-dimensional) variable ϕ:

H(ϕ) :=

{
1 if ϕ > 0,

0 if ϕ ≤ 0.
(3.22)

For convenience purposes we define the Dirac delta function (named after Paul Dirac)
as the derivative of the Heaviside function

δ(ϕ) := H ′(ϕ). (3.23)

As the level-set function is place-dependent, the volume integral of a function f(x)
over the interior D is defined as∫

D

f(x) dΩ :=

∫
Ω

f(x) (1 −H(ϕ(x))) dΩ. (3.24)

Before we move on to the surface integral, we have to show some equalities. Osher
and Fedkiw [17] state that the directional derivative of the Heaviside function in the
normal direction is a Dirac delta function which depends on the multidimensional
variable x

δ̃(x) := ∇H(ϕ(x)) · n̂. (3.25)

It is important to remark that this definition differs from the definition used by
physicists: δ̂(x) := δ(x1) · · · δ(xd).
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Due to how the level-set function is defined, the function δ̃(x) is only non-zero on the
interface Γ. With this definition of the Dirac delta function the surface integral of a
function f(x) over the boundary Γ is defined as

∫
Γ

f(x) dΓ :=

∫
Ω

f(x)δ̃(x) dΩ. (3.26)

Notice how we go from a boundary integral to an integral over the entire reference
domain.
In order for us to implement the level-set function into this surface integral we rewrite
Definition (3.25) using the chain rule.

δ̃(x) = ∇H(ϕ(x)) · n̂

= H ′(ϕ(x))∇ϕ(x) · ∇ϕ(x)

∥∇ϕ(x)∥2

= H ′(ϕ(x))
∥∇ϕ(x)∥22
∥∇ϕ(x)∥2

= H ′(ϕ(x))∥∇ϕ(x)∥2.

Substituting Definition (3.23) into the last line gives

δ̃(x) = δ(ϕ(x))∥∇ϕ(x)∥2. (3.27)

By substituting Equation (3.27) into the surface integral, Definition (3.26), we get

∫
Γ

f(x) dΓ =

∫
Ω

f(x)δ(ϕ(x))∥∇ϕ(x)∥2 dΩ. (3.28)

The reason we rather use Equations (3.24) and (3.28) is to avoid identifying the
interior, exterior and boundary regions for the calculation of the integrals. Instead,
both integrals are taken over the entire reference domain Ω.

3.6 Implementing the level-set method

Finally, we have the knowledge to implement the level-set method into the minimum
compliance problem, Problem (3.13), and fundamental eigenfrequency maximisation
problem, Problem (3.17). From the definitions of the volume integral, Definition
(3.24), and surface integral, Definition (3.28), we know how to implement the level-
function into the integrals of both problems.
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3.6.1 Level-set embedded minimum compliance problem

Combining all this together results in the level-set embedded minimum compliance
problem 

min
ϕ

ã(u,u, ϕ)

s.t. ã(u,v, ϕ) = l̃(v, ϕ) ∀v ∈ U0,

u
∣∣
ΓD

= u0,

ϕ
∣∣
A

= ϕ0,

Ṽ (ϕ) ≤ Vmax

∫
Ω

1 dΩ,

(3.29)

where

ã(u,v, ϕ) :=

∫
Ω

Eijklεkl(u)εij(v)(1 −H(ϕ)) dΩ, (3.30)

l̃(u, ϕ) :=

∫
Ω

(f · u)(1 −H(ϕ)) dΩ +

∫
Ω

(t · u)δ(ϕ)∥∇ϕ∥2 dΩ, (3.31)

Ṽ (ϕ) :=

∫
Ω

(1 −H(ϕ)) dΩ. (3.32)

Note that we no longer minimise over the design domain but over the level-set func-
tion. That is, because the level-set function describes the design domain. By the same
token, we also have a Dirichlet ‘boundary’ condition for the level-set function on the
domain A.

3.6.2 Level-set embedded fundamental eigenfrequency max-
imisation problem

In the same way we derive the level-set embedded fundamental eigenfrequency max-
imisation problem

max
ϕ

ω2
1

s.t. ã(u(1),v, ϕ) = ω2
1 b̃

(
u(1),v, ϕ

)
, ∀v ∈ U0,

u
∣∣
ΓD

= u0,

ϕ
∣∣
A

= ϕ0,

Ṽ (ϕ) ≤ Vmax

∫
Ω

1 dΩ,

(3.33)

where

b̃(u,v, ϕ) :=

∫
Ω

ρ(u · v)(1 −H(ϕ)) dΩ. (3.34)

Unlike in Definition (3.16), no literature has yet been encounter in which the fun-
damental eigenfrequency is expressed in terms of the level-set function. We should,
however, expect that it is

ω2
1 = min

v∈U0 ∧ v̸=0

ã(v,v, ϕ)

b̃(v,v, ϕ)
.
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The next step is choosing methods to solve Problems (3.29) and (3.33). Yet, that is
out of the scope of this literature report and left to the final part of the research.



CHAPTER 4

BENCHMARK PROBLEMS

This chapter studies the three benchmarks which will be used in the final report of the
thesis to test our level-set based topology optimisation algorithm for the minimum
compliance problem. For now, it is there to show the results of another topology
optimisation algorithm. Later, these results will serve as benchmarks to compare the
results of the level-set approach to.
Benchmarks regarding eigenvalue optimisation are absent, as comprehensive research
of this subject has yet to be done. We start this chapter with a brief description of
the comparative algorithm.

4.1 Comparative topology optimisation method

The topology optimisation method used for the minimum compliance problem has
a few important elements worth mentioning. It uses a density approach known as
SIMP (Simple Isotropic Material with Penalisation). It forces the continuous (which
is a result of this approach) design variables towards a solid or void solution. Our
algorithm has a penalisation factor of p = 3. For more information about SIMP
see [31], [30] and [8]. The well-known finite-element method (FEM) is used for the
discretisation and utilises rectangular elements. Moreover, a Helmholtz filter is used
to prevent the checkerboard paterns. The iterative updating is done by the optimality
criteria method (OC). The volume constraint is Vmax = 0.4 and the maximum number
of iterations is 50. The stopping criterium could be either one of the following two:
the relative change of the objective function is below 10−4 or the infinity norm of the
solution is below 10−2.

4.2 MBB beam

The Messerschmitt-Bölkow-Blohm (MBB) beam is a well-known standard benchmark
problem in the field of topology optimisation (see [29] and [16]). It consists of a

21
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beam for which the bottom left and right points are fixed. So, these two points have
homogeneous Dirichlet conditions in the horizontal and vertical direction. On the
middle top point a force is exerted as shown in Figure 4.1.

Figure 4.1: Reference domain of the MBB beam and the boundary
conditions.

Due to symmetry, we merely have to model half of the design. In that case we set the
horizontal displacement in the middle of the beam to zero (homogeneous Dirichlet
condition). This results in a smaller reference domain, which is computationally more
efficient (see Figure 4.2). The rest of the boundary, except the bottom right point,
has a homogeneous Neumann condition. For results in other literature see the 2007
paper [28] of Sigmund and 2010 paper [35] of Takewaza et al. (the latter refers to it
as a bridge).

Figure 4.2: Reference domain of the right-hand side of the MBB
beam and the boundary conditions.

For our MBB beam benchmark problem we consider a length to height ratio of 6:1
(entire beam).
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4.2.1 Numerical example MBB beam

For this numerical example 60 elements in the x direction and 20 in the y direction
were used. In Figure 4.3 we see three stages of the topology optimisation process of
the right-hand side of the MBB beam. Note how the fixed point in the bottom right
corner has a different colour than the rest of the initial design (zero iterations). A
substantial part of the final structure is already visible after 7 iteration. After 50
iteration there is not yet convergence, as some parts are still green. It should be
expected that convergence would be reached if more iterations were allowed.

Figure 4.3: From left to right: 0, 7 and 50 iterations of the MBB
beam.

4.3 Cantilever

If one benchmark problem is required to be present, then it must be the cantilever
benchmark problem. In all fields of topology optimisation it is used, as it is a quite
simple to implement and solve problem. Some examples of the cantilever in literature
are found in [34], [35] and [4].
The cantilever is a rectangle of which the left edge is fixed (as if to a wall). So, we have
homogeneous Dirichlet conditions on the entire left-hand side of the rectangle. The
other edges of the rectangle have homogeneous Neumann conditions. Furthermore,
there is a concentrated force vertically loaded at the centre point of the right-hand
side (see figure 4.4). We examine a cantilever with a 2:1 length to height ratio.

Figure 4.4: Reference domain of the cantilever and the boundary
conditions.
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4.3.1 Numerical example cantilever

For this numerical example 50 elements in the x direction and 25 in the y direction
were used. In Figure 4.5 we see three stages of the topology optimisation process of
the cantilever. The material constraint of predefined material at the left-hand side is
visible in the initial design. It is interesting to see how the material density of this
part of the structure decreases, but is still above 0.5. This is the results of the filter.
Similar to the MBB beam, the optimal design of the cantilever is becoming plainly
noticeable.

Figure 4.5: From left to right: 0, 7 and 50 iterations of the can-
tilever.

4.4 Inverter

The inverter is to a certain extend different from the MBB beam and cantilever. While
the first two benchmark problems have the objective of minimising the compliance, in
the inverter problem the objective is to minimise the displacement in a certain point
in one direction. On account of this, the inverter benchmark will be dismissed as a
compliant mechanism problem and treated as a minimum compliance problem. We
do this because of two reasons. First, a compliant mechanism problem would mean
a third problem, besides the minimum compliance and eigenfrequency maximisation
problems. That would be outside the scope of this thesis. Second, treating it as a min-
imum compliance problem means that we have three benchmarks. This contributes
to a more general applicability of the model and method of solving. It has yet to
be decided if all three minimum compliance benchmark problems will be used for
the eigenvalue topology optimisation as well. Nonetheless, a short description of the
original inverter problem will be provided. The inverter is a “force or displacement-
inverting mechanism and is used to change the direction of actuating displacement
or force” according to Vegueŕıa et al. [38]. The reference domain is a square where
the left-hand side top and bottom corners are fixed (homogeneous Dirichlet). A force
is exerted on the middle of the same side in the horizontal direction. This force can
point to the left of or to the right. A displacement occurs on the right-hand side in the
middle of the square and is directed in the opposite direction (see Figure 4.6). This
point can only be displaced in the horizontal direction. So, we have a homogeneous
Dirichlet condition for the vertical component of this point.
Like the MBB beam, the inverter also has a symmetry property and is illustrated in
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Figure 4.6: Reference domain of the inverter and the boundary
conditions.

Figure 4.7.
In the setting of minimum compliance we do not alter the physical model of the
inverter. The difference is the objective, which is now finding the optimal design
wherefore the compliance is minimal.

Figure 4.7: Reference domain of the right-hand side of the inverter
and the boundary conditions.

4.4.1 Numerical example inverter

This numerical example is particularly fascinating as shows one of the numerical
problems of the model of the inverter. In Figure 4.8 we see four iterations of inverter
with 50 elements in the x direction and in the y direction. After 19 iterations we must
conclude that the design is not optimal as it is not path connected. The point in the
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top right corner is not connected to the big yellow structure on the left. The initial
design as well as the first and second iterations are also depicted in Figure 4.8. After
one iteration there are no problems. After the second iteration, however, we see that
a structure on the left is forming and is ‘disconnecting’ from the point in the top
right corner. This is could be due to the strong local minimum Sigmund and Maute
mention in their review article [30]. It is, however, more likely that this is simply the
optimal design, as the used algorithm does not guarantee ‘path connectedness’. In
this regard, the inverter is not suitable as a minimum compliance problem.

Figure 4.8: Top left 0, top right 1, bottom left 2 and bottom right
19 iterations of the inverter.



CHAPTER 5

CONCLUSIVE SUMMARY

After some important clarifications in Chapter 2, the minimum compliance problem
was derived. This was done with the use of a weak form (principle of virtual work)
acquired from the principle of minimum potential energy. Basic quantities and laws
of linear elasticity were introduced to give this report an important foundation in
the context of physics. Unlike the minimum compliance problem, the fundamental
eigenfrequency maximisation problem was merely put forward without any deriva-
tion. During the literature research no derivation of this eigenfrequency problem has
been encounter yet. This is one of the objectives of the thesis and might be achieved
by more thorough literature research and by asking professors of other departments
(e.g. mathematical physics) for advice.
Then the level-set method was introduced as a topology optimisation approach and
the level-set function was incorporated in both problems. The next step of the the
thesis is solving the level-set embedded minimum compliance problem. In light of
this the convected level-set method approach of Yaji et al. [39] is very suitable. They
use a sinus filter to obtain a smooth truncation away from the structural boundaries
and apply a convected level-set method in order to bypass the need for reinitialisation
of the level-set function. After this, we tackle the level-set embedded fundamental
eigenfrequency maximisation problem.
Another compelling problem we came across was the absence of ‘path connected-
ness’ in the simulation of the inverter problem. This was a result of treating the
inverter as a minimum compliance problem. Therefore, the inverter is no longer used
as a benchmark in the final report of this thesis.
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APPENDIX A

DERIVATION OF THE
EQUATION OF MOTION

To derive the equilibrium equation of motion for linear elasticity, we have to alter the
right hand side of Equation (3.11).

σ : ε(v) = σ :

[
1

2

(
∇v + (∇v)

T
)]

=
1

2

[
σ : ∇(v)

]
+

1

2

[
σ : (∇v)

T
]

=
1

2

[
σ : ∇(v)

]
+

1

2

[
σT : (∇v)

T
]

=
1

2

[
σ : ∇(v)

]
+

1

2

[
σ : ∇v

]
= σ : ∇(v).

So we have

σ : ε(v) = σ : ∇(v).

Now Equation (3.11) becomes∫
Ω

σ(u) : ∇v dΩ =

∫
Ω

f · v dΩ +

∫
Γ

t · v dΓ. (A.1)

We introduce the traction-stress relation [32] for all u on the boundary ΓN:

t = n̂ · σ(u), ti = n̂jσji(u), (A.2)

where n̂ is the unit normal vector. This gives

t · v = (n̂ · σ(u)) · v = σT (u)n̂ · v = σ(u)v · n̂.
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We substitute this into Equation (A.1) and bring the boundary integral to the left
hand side. ∫

Ω

σ(u) : ∇v dΩ −
∫
Γ

σ(u)v · n̂ dΓ =

∫
Ω

f · v dΩ. (A.3)

Now we apply Gauß’ divergence theorem [33].∫
Ω

σ(u) : ∇v dΩ −
∫
Ω

∇ · (σ(u)v) dΩ =

∫
Ω

f · v dΩ

We take a look at the integrand of the second integral on the left hand side and work
it out.

∇ · (σv) =

d∑
i,j=1

∂

∂xi

(
σijvj

)

=

d∑
i,j=1

vj
∂σij

∂xi
+

d∑
i,j=1

σji
∂vi
∂xj

= (∇ · σT ) · v + σT : ∇v = (∇ · σ) · v + σ : ∇v

This gives the weak form of the equilibrium equation∫
Ω

[
∇ · σ(u) + f

]
· v dΩ = 0. (A.4)

From the Du Bois-Reymond lemma (named after Paul du Bois-Reymond and also
know as the Fundamental Lemma of the calculus of variations see [21]) it follows that

−∇ · σT (u) = f, −σji,j = fi. (A.5)

Now, together with the traction-stress relation (A.2) and boundary conditions we find
that the displacement u in the field D is the solution of the following boundary value
problem: 

−∇ · σT (u) = f, ∀u ∈ D,

u = u0 ∀u ∈ ΓD,

n̂ · σ(u) = t, ∀u ∈ ΓN.

(A.6)



APPENDIX B

NOMENCLATURE

Notation Definition SI unit
x Place vector m
u Displacement vector m
ε Strain-displacement tensor -
σ Stress tensor Pa
E Young’s modulus Pa
ν Poisson ratio -
λ Lamé’s first constant Pa
µ Lamé’s second constant Pa

Eijkl Stiffness tensor element Pa
ω Eigenfrequency Hz
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