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Abstract

Agragrians in the Dutch Wadden sea region struggles with salinizing farmlands. Acacia Water’s project Spaar-

water enabled agrarians to measure salt concentrations in the ditches of their land using their mobile phone.

All these measurements would ideally be used to evaluate the effects of salinization mitigation measures and

to predict water quality over time. This gives rise to this thesis for an inquiry into a fast and simple surface

water flow model which eventually could even be run on a mobile phone. The water model is a first neces-

sary step for developing a water quality model with salt concentrations. The main focus of this thesis is on

developing finite volume methods for the kinematic wave equation. It is a simplification of the full shallow

water equations which are the governing equations for surface water flow. Finite volume methods for the

diffusion wave equation and the full shallow water equations are also developed to serve as a comparison to

the kinematic wave. It is shown that the kinematic wave and the diffusion wave have comparable features.

Even though the kinematic wave is not the closest representation of reality, high computational gains could

be made by using the kinematic wave equation instead of the full shallow water equations. For a simple

straight ditch, the kinematic wave has shown to be 16 times faster than the full shallow water equations. For a

network, however, it is not as straightforward. When comparing a kinematic wave network with a network in

SOBEK, a software program that uses the full shallow water equations, the latter still has lower computational

times.
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1
Introduction

1.1. General
Agriculture in the Netherlands relies heavily on water management due to its polder landscape. A polder

is a low-lying piece of land enclosed by dikes that is not naturally connected to outside water. Instead, its

water surface levels are manually controlled. Particularly, the Wadden Sea coastal area has a shallow fresh

water saline water surface level. Therefore, its agriculture relies on fresh rain water lenses floating on the

saline groundwater. It is expected that these fresh water lenses will disappear in the future due to climate

change, sea-level rise and land subsidence [1]. Hence the increasing water salinity results in salinization of

the available water which can become damaging to the crops and their agricultural yield [2]. So how do we

deal with salinization and how do we ensure the availability of clean fresh water?

A straightforward approach is to investigate the exact processes underlying fresh water losses and to sub-

sequently find measures to reduce these losses. Important to note is that the effects of climate change on the

salinization of Dutch agricultural areas is a relatively new research area. Knowledge on the effects of salin-

ization on local levels is missing. Accordingly, more research is needed to predict future effects of climate

change, sea-level rise and subsidence on the ground and surface water [3, 4]. For this reason, Acacia Water

and the Waddenfonds started the project Spaarwater in 2013 to investigate mitigation measures for increas-

ing salinization. The main mitigation measures researched in the Spaarwater project are as follows [1];

1. Establishing locally self-sufficient water supplies by either artifically managing groundwater recharge

or by creating underground fresh water buffers

2. Enlarging the freshwater lenses through reducing salinization by system specific drainage

3. Implementing new irrigation methods, such as drip-irrigation, to use the available freshwater as effi-

ciently as possible

The main aim is to safeguard and improve fresh water supplies, whilst taking the mitigation measures’ tech-

nical and economic feasibility into account. The project is carried out in cooperation with multiple organiza-

tions such as provincial water authorities, provincial governments, agrarians and agricultural business orga-

nizations in the Dutch coastal Wadden Sea region. Altogether, there are four pilot locations in the Provinces

of Noord-Holland, Friesland and Groningen [1].

1



2 1. Introduction

1.2. Problem statement
The above-mentioned salinizing farmlands in the Dutch polders are the focus of this research. Acacia Water

tests the effects of mitigation measures by determining the salinity of water with an electrical conductivity

(EC) meter. Electrical conductivity easily translates to salt content. Therefore, an EC meter is a simple and

quick tool for determining salinity levels. A great advantage is that farmers can also do these measurements

themselves with a simple device connected to their mobile phone. Accordingly, they collect data about the

water’s salinity over time.

Acacia Water would like to use this data to develop a better understanding of the effects of implementing

a mitigation measure. However, the water ditches in the farmlands are part of a complex network of water

courses and it is labor intensive to check the progress of the effects of each of the mitigation measures on

the land’s salinization in space and time. Hence, there’s the ambition to develop a web application with

underlying mathematical tools to predict the local effects on salinity levels when introducing a mitigation

measure. For doing so, the first idea is to simply connect the collected datapoints by interpolating the data.

For interpolating the data, one needs to know about the water flow in the infrastructure of a ditches network.

More specifically, one needs to know about the governing mathematical laws of the water flow.

1.3. Research objective
The goal of this study is to develop a water flow model for a ditches network in a Dutch polder. A variety of

surface water models are available; think for example of SOBEK, HEC-RAS and FLOW-3D. In these programs,

methods with high computational times are applied to model water flow in a very detailed manner. In con-

trast, this research aims to develop a model which gives a general idea of the global water flow in a network,

rather than a very detailed account of local water flow in specific points of a ditch. Importantly, the model

should be simple and have small computational times so that it eventually could run on a mobile phone. This

research presents the starting point for a water flow model for a ditches network in a Dutch polder. Various

methods are compared to enable a well-grounded decision on which approach to choose for further model

development. The water flow model, in turn, serves as a starting point for a flow model which includes water

quality and sediment transport.

1.4. Methods and structure
Important for the first design of the model is that it is simple and has small computational times whilst keep-

ing in mind that complexities can be added later. Therefore, three possible approaches will be explored in

to give an overview of the modeling options and to test for their applicability in a simple and fast water flow

model. The methods have been implemented using Python 3.

The structure of this thesis report is as follows. Chapter 1 is this introductory chapter. Chapter 2 discusses

the full shallow water equations which are the equations governing surface water flows in open channels.

Chapter 3 gives the options for simplifying the shallow water equations. The three surface water modeling

approaches discussed in this thesis are the kinematic wave, the diffusion wave and the dynamic wave. The

numerical finite volume method for solving the kinematic wave equation on a straight channel is developed

in Chapter 4. Then, in Chapter 5 the method developed in Chapter 4 is applied to the diffusion wave. Subse-

quently, Chapter 6 develops the numerical finite volume method for solving the dynamic wave, which is the

same as the full shallow water equations. Chapter 7 gives an overview and comparison of the three different

approaches. Then, in Chapter 8 the kinematic wave is applied to a small hypothetical ditches network which

is accordingly compared to the same network implemented in SOBEK. Chapter 9 gives the conclusions and

further recommendations.



2
The shallow water equations

2.1. General
A variety of different hydrological transport models were developed since the increase in the computer’s com-

putational power and the rising demands for detailed numerical forecasting. Hydrological transport models

simulate stream flow and calculate water quality parameters, with varying modeling purposes; for example,

groundwater transport, surface water flow, sediment transport and so forth. The focus lies on surface water

modeling in this thesis, and more specifically, on open channel flow. Open channel flow entails the study of

water flow with a free surface, which is subject to atmospheric pressure and is driven by gravity [5, 6]. Ulti-

mately, we want to learn about the amount of water flowing past specific points in a ditch over time. Overall,

we aim to learn about the water flow in the entirety of a ditches network; thus, we are focusing on the behav-

ior of waves on large scales rather than local waves with turbulent flow. The design of a water flow model is

the first and a necessary step for eventually getting an idea of the saline and fresh water flows in the entirety

of a ditches network.

2.2. Derivation and interpretation
The shallow water equations are partial differential equations describing open channel flow, formulated as

follows: 
∂A
∂t + ∂q

∂x = I
∂q
∂t + ∂qv

∂x = g A(S0 −S f −Sp )
(2.1)

Each of the terms in the equations will be explained in the following paragraphs. These equations have been

derived from the more general Navier-Stokes equations describing the motion of viscous fluid substances.

Analytical solutions to the the shallow water equations can only be found in extremely simplified forms.

Hence, this led to the development of numerical techniques, such as the finite difference method or finite

volume methods, to approximate solutions for the governing equations [5]. The shallow water equations

consist of two partial differential equations describing the continuity and momentum principles.

3



4 2. The shallow water equations

2.2.1. Assumptions
The description of three dimensional open water waves in channels is given by :

The flow velocity field ~u(t , x, y, z)
The pressures p(t , x, y, z)
The water depths h(t , x, y)

which results in a complex system with three variables varying in three or four dimensions. Hence, these

dependencies need to be partly relaxed and simplified to enable open water flow calculations [7]. In this

section basic definitions and assumptions are discussed which are commonly made to simplify the open

water flow equations to describe the waves as one-dimensional in space. Thus, the variables mentioned

above now become

The flow velocity ~u(t , x)
The pressures p(t , x, z)
The water depths h(t , x)

Cross section For every position x along a channel, the cross section A is the unique plane perpendicular

to the flow direction along the channel. A horizontal water level is assumed in each cross section and the

geometry of each cross section is assumed to be known completely. Moreover, zb(x) denotes the lowest point

of the cross section at x. The lowest point zb is measured from an arbitrary horizontal zero fixed for the whole

channel and usually taken to be sea level.

Wetted perimeter The wetted perimeter P is defined as the cross sectional area of the channel that touches

the water, as is also illustrated in Figure 2.1. Mathematically, the wetted perimeter can be defined by

P =
∞∑

i=0
li (2.2)

where li is the length of each surface in contact with the water. Followingly, the hydraulic radius R and the

hydraulic depth D are defined by

R = A

P

D = A

B

with A being the cross sectional area and B the channel width.

Figure 2.1: Sketch of the crossectional area of a channel as illustrated in [6]. P is the wetted perimeter, A the cross sectional area and B
the channel width.

Discharge and average velocity The amount of water flowing through a particular cross section, at a given

time, is determined by the velocity field ~u(t , x, y, z). Since we are focusing on large wavelengths and large

scales, we are merely interested in the average velocity and total water flow in a cross section. To quantify
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this, the discharge q is defined as the volumetric flow rate of water through a given cross sectional area A. It

has a dimension of m3/s. Mathematically, the discharge is given by

q(t , x) =
∫ ∫

(y,z)∈A
ux (t , x, y, z)

which simplifies to

q(t , x) = A(t , x)v(t , x) (2.3)

where v(t , x) is the average velocity, over a given cross section A(t , x), given by

v(t , x) = 1

A(t , x)

∫ ∫
(y,z)∈A

ux (t , x, y, z)

[7, 8].

Hydrostatic pressure Another important simplifying assumption is that of hydrostatic pressure, i.e. the

pressure behaves the same as in still water. Again, this assumption is made because of the long waves. Hy-

drostatic pressure means that at every point in the river, the pressure equals the static pressure of the water

column above. Hence, the pressure increases linearly from the top to the bottom of the channel [7]. The

relationship between pressure p and height z is given by

p(t , x, z) = ρg (h(t , x)− z) (2.4)

where ρ is the volumetric mass density, g is the gravitational constant, h(t , x) is the depth and z is the height

of the point of consideration measured from the lowest bottom point zb . Hence, the pressures for all the

points in each cross section along the channel are known. Thus the pressure p is considered to be a given

quantity.

External inflow The inflow from external processes outside of the system of the channel is incorporated in

the source term I (t , x). Processes such as rainfall, seepage or lateral inflow can be accounted for in this source

term.

2.2.2. The continuity equation
The first partial differential equation in the shallow water equations is the continuity equation

∂A

∂t
+ ∂q

∂x
= I (2.5)

The continuity equation is based on the conservation of mass principle; the amount of water flowing into

a channel length equals the amount of water flowing out of that channel length. To illustrate this, let us

consider an open channel without lateral inflow; meaning that there is no water flowing in from the sides of

the river or from a reservoir. In this channel, consider a control volume with two cross sections 1 and 2, as

illustrated in Figure 2.2.
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Figure 2.2: Sketch of flow between channel cross sections as illustrated in [6]

For this volume it must hold that in a specific time interval,∆t , the inflow volume equals the outflow volume.

Usually, this principle is expressed in discharge q which is the volumetric flow rate of water that is transported

through a given cross sectional area [9]. Simply said, the cross sectional area in section 1 is larger than in

section 2. Therefore, the volumetric flow rate q is smaller at point 1 than at point 2.

Incorporating lateral inflow gives that the change in storage equals the sum of the lateral flow with the

difference between inflow and outflow. These terms will be discussed in the preceding paragraphs.

Change in storage The change in storage is the change in mass in the control volume from time t to time

t +∆t . With ρA(t , x)∆x being the mass in the control volume at time t , we get

change in storage =∆x(ρA(t +d t , x)−ρA(t , x))

≈ ∂ρA

∂t
(t , x)∆x∆t

Difference between inflow and outflow The difference between inflow and outflow relates to the discharge

q(t , x). At x, the discharge flowing into the control volume is q(t , x). Hence, the total amount of water entering

the control volume between times t and t +∆t equals ∆tρq(t , x). Over the control volume we get

flow in - flow out =∆t (ρq(t , x)−ρq(t , x +∆x))

≈−∂ρq(t , x)

∂x
∆x∆t

Lateral flow I (t , x) refers to the inflow or outflow of water outside of the river due events such as rainfall,

seepage or evaporation. The total lateral flow into the control volume is specified by

ρI (t , x)∆x∆t

where I (t , x) can be taken as a constant or as a function of time and/or space.

Combining above terms gives the continuity equation given by

change in storage = inflow - outflow+external flow

∂ρA

∂t
(t , x)∆x∆t =−∂ρq(t , x)

∂x
∆x∆t +ρI (t , x)∆x∆t
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which can be simplified, by taking ρ = 1 constant for the density of water, to

∂A

∂t
(t , x) =−∂q(t , x)

∂x
+ I (t , x)

hence resulting in the continuity equation (2.5).

2.2.3. Equation of motion
The second partial differential equation in the shallow water equations is the equation of motion

∂q

∂t
+ ∂qv

∂x
= g A(S0 −S f −Sp ) (2.6)

The equation of motion is based on the conservation of momentum principle. It describes the type of dis-

placement of the water. In a similar manner to the continuity equation, the first term on the left hand side

in equation (2.6) is the local acceleration, which is the change in momentum due to the change in velocity

over time, corresponds to the storage in momentum and the second term is the convective acceleration term,

which describes the change in momentum due to the change in velocity along the channel, corresponds to

the difference between momentum inflow and momentum outflow. The terms on the right hand side of the

equations relate to the external forces on the water; S0 relates to the gravitational force, S f relates to the fric-

tion force and Sp relates to the pressure force. The interpretation of each term in the equation of motion will

be further explained in the following paragraphs.

Note that only the conservation of momentum in the x direction is considered, which is the direction of

flow. Momentum is defined by mass times velocity; mv . Hence, the change in momentum is defined by

∂mv

∂t
= m

∂v

∂t
= ma = F

where a is the acceleration and F the sum of the external forces in the x direction.

Change in storage of momentum In a similar manner as was discussed in the previous section, the mass

in the control volume is defined as ρA(t , x)∆x. Hence, the momentum is given by ρA(t , x)v(t , x) = ρq(t , x)

which gives a change in storage of momentum given by

change in storage of momentum = ρ ∂q(t , x)

∂t

Difference between momentum inflow and momentum outflow In addition, the total amount of momen-

tum in the control volume between t and t +∆t equals ∆t q(t , x)v(t , x). Thus, we get

momentum inflow−momentum outflow =
=∆t [ρq(t , x)v(t , x)−ρq(t , x +∆x)v(t , x +∆x)]

≈−ρ ∂Q(t , x)v(t , x)

∂x
∆x∆t

Accordingly, using ρ = 1, the equation of motion is written as

∂q

∂t
+ ∂qv

∂x
= F (2.7)

where F = Fg r avi t y +Fpr essur e +F f r i ct i on is the sum of the external forces.
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Gravitational force The total gravitational force Fg points down to the center of the earth and for the control

volume it is given by

Fg =−g mẑ

=−gρA∆xẑ

where ẑ denotes that the force is along the z axis which is the axis pointing up. Only the forces in the direction

of flow are needed for the equation of motion. Hence, Fg is decomposed into two force components; namely,

one in the direction of flow and one pointing down while being perpendicular to the direction of flow. The

decomposition of the gravitational force is shown in Figure 2.3.

Figure 2.3: Decomposition of the gravitational force as illustrated in Figure 3.5 in [7]

Accordingly, by geometrical arguments using the angle αb and the channel bed slope S0 the force in the flow

direction is derived, called F0 for convenience

F0 =
sin(αb)Fg

∆x
= gρAS0

where for small αb it holds that S0 = tan(αb) ≈ sin(αb) ≈αb [7].

Pressure force Pressure force can generate flow momentum even if the channel bed slope is zero. Hy-

drostatic pressure is assumed, hence pressure increases linearly with depth. Thus, all pressure forces are

generated by the differences in depths between the left and right of the control volume.
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Figure 2.4: Graphical representation of the pressure forces on a control volume as illustrated in Figure 3.7 in [7]

As is shown in Figure 2.4, triangular pressure force fields exist due to hydrostatic pressure. Accordingly, the

pressure force per unit length is calculated by evaluating the pressure differences between the cross sectional

areas at x and x +∆x. Here, the y axis corresponds to the channel width.

Fp = ρg

∆x

∫
dy

h2(x +∆x, y)−h2(x, y)

2

≈ ρg

−2∆x

∫
dy

∂h2(x, y)

∂x

=− ρg

2∆x

∫
dy∆x[−2h(x, y)

∂h(x, y)

∂x
]

=−ρg
∫

dy
∂h(x)

∂x

=−ρg
∂h(x)

∂x
A =−ρg ASp

where ∂h(x)
∂x , the depth slope, is defined as the pressure slope Sp [7].

Friction force Flow loses momentum due to friction with the channel bed, plants, geographical structures,

and so forth. Here, it is impossible to calculate the friction losses exactly because of the many different factors

involved. Hence, the expressions for the friction force are highly empirical. Frictional forces created by the

shear stress along the bottom and the sides of the control volume are given by −τ0Pdx as derived by Chow

[8], where τ0 is the bed shear stress and P is the wetted perimeter. With τ0 = ρg A
P S f . Hence, similarly to the

gravitational and the pressure forces, the friction force also takes the form

Ff =−ρg AS f

As will be discussed in Section 3.2.1, S f is the total energy gradient and can be determined empirically using

Manning’s Equation. Hence, plugging in each of these force terms into (2.7) results in the full equation of

motion (2.6). Equation (2.6) can be simplified to the other, simpler types of flow by leaving out specific terms

which will be discussed in Chapter 3.
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2.3. A note on incorporating densities
The above-mentioned continuity equation and equation of motion have been simplified assuming that the

densities are ρ = 1. Incorporating the density variable ρ as an unknown variable gives a system of equations


∂ρq
∂x + ∂ρA

∂t = ρI
∂ρq
∂t + ∂ρqv

∂x = ρg A(S0 −S f −Sp )
(2.8)

Intuitively, incorporating the unknown density variable is desirable in order to add water salinity to the sys-

tem of equations. However, this adds a complexity to the system of equations since it yields a system with

three unknown variables q , A and ρ. Accordingly, both flow velocity, water depths and water salinity would be

updated simultaneously yielding complex computational systems with high computational times. Therefore,

we will neglect the density variable in the equation of motion. Water salinity is to be incorporated by calcu-

lating it in series through adding a third equation to the system; the advection-diffusion equation. Adding

this third equation and calculating water salinity is, however, beyond the scope of this thesis.



3
Possible simplifications of the shallow

water equations

3.1. General
The full one dimensional shallow water equations describe unsteady nonuniform flow. It describes the water

flow in a very detailed manner. Therefore solving the full equations generates high computational costs re-

sulting in an account of turbulent flows on local scales. Instead, for this report we are interested in the general

water flow on larger scales. Hence, we wish to look at simplifications of the one dimensional shallow water

equations with low computational costs.

In this chapter, possible simplifications of the shallow water equations are outlined. This is done through

first introducing different types of flow and subsequently connecting these with a version of the shallow water

equations.

3.2. Steady and unsteady flow

Figure 3.1: Classification of type of flow as illustrated in Fig 1-7 of [6]

Open channel flow is categorized according to steadiness, a condition related to time, and uniformity, a con-

dition related to space. In steady open channel flow, the water flow velocity at any point of observation does

not change with time, hence it is a stationary process; whereas flow is unsteady when the water flow velocity

at a specific point changes from moment to moment, which is an instationary process. Open channel flow is

11
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uniform if flow velocity is constant at all points along the channel at all times; whereas flow in nonuniform,

also called varied, if the flow velocity changes with water moving along the channel. Varied flow is usually

subcategorized into gradually varied flow and rapidly varied flow, where the flow varies gradually if the flow

velocity varies slowly with respect to distance and the flow varies rapidly if the flow velocity varies signifi-

cantly over a short distance [5, 6]. More specifically, rapidly varied flow refers to a situation in which changes

in depth and velocity occur over short lenghts; considering a scale of a maximum of a couple of meters. Think

of flows beneath sluice gates or over weirs. Gradually varied flow refers to a situation in which flow changes

in depth and velocity occur over long distances; considering a scale of tens of kilometers [7]. The classifi-

cation of open channel flow is shown in Figure 3.1 and a graphical representation of the difference between

gradually and rapidly varied flow is shown in Figure 3.2.

Figure 3.2: Difference in wave behavior around a weir between small and large scales as illustrated in Figure 2.3 and Figure 2.4 in [7]

3.2.1. Steady flow

Uniform flow

Steady flow represents a stationary process, which is a function varying in space and not in time. Thus, for

steady flows the time derivative equals zero:
dv

dt
= 0

In open channel hydraulics, one usually first considers the stationary process in order to get a general idea

of the direction of flow, the variation in flow rate and flow depth along a channel. More specifically, here we

start with considering steady uniform flow in which also the spatial derivative equals zero:

dv

dx
= 0
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Hence, uniform flow in a channel represents a state of dynamic equilibrium. It occurs when the depth of the

water, the wetted channel surface area (wetted perimeter) and the flow velocity remain constant in both time

and in space, along the channel. Naturally, open channel flow is governed by gravity. The water flow in en-

counters resistance as it flows down the sloped channel bottom. In a dynamic equilibrium, the gravitational

force causing the downflow is equal and opposite to the resistance forces obstructing the flow [10, 11].

Manning’s equation describes the relation between friction and flow velocity for steady uniform open

channel flow. More specifically, it relates the flow velocity to the hydraulic radius, R, and slope of the channel

bed, S0. It is formulated as

v = 1

nm
R

2
3 S

1
2
0 (3.1)

where

v is the average velocity of the water flow (ms−1)

nm is Manning’s n, a factor quantifying boundary roughness (sm− 1
3 )

R is the hydraulic radius (m) which is defined by A
P ; wetted area, A, divided by wetted perimeter, P

S0 is the channel bed slope or hydraulic gradient (dimensionless)

The nm in Manning’s Equation (3.1) is referred to as the Manning factor nm or the Gauckler-Manning coef-

ficient, a factor relating the resistance to the roughness of the channel boundaries. It is to be determined

empirically. Various studies have been done to provide guidance in choosing appropriate values for nm . It

is common practice to assume that the Gauckler-Manning coefficient nm is not a function of depth, hence a

constant value nm is considered for a given channel reach [10]. Figure 3.3 shows steady, uniform flow which

is an equilibrium situation.

Figure 3.3: As illustrated and stated in Fig 3 of [11]: "Uniform flow considers the water depth, wetted area and velocity constant at each
section through the channel. This means that energy line, water surface and channel bed run parallel."

The shallow water equations for steady uniform flow are derived by considering that there is no change

in time nor space in the equation of motion (2.6), hence yielding the so-called kinematic wave model:


∂A
∂t + ∂q

∂x = I

S0 = S f

(3.2)
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Nonuniform flow

Similarly, Manning’s equation holds for steady nonuniform flow. The only difference being the slope term;

namely, S f is considered instead of S0. S f is the total energy gradient which is the the slope of the total

energy line. In uniform flow the energy gradient equals the channel bed slope. However, this is not the case in

nonuniform flow since the flow velocity changes along the channel [6, 10]. Accordingly, Manning’s equation

becomes

v = 1

nm
R

2
3 S

1
2
f (3.3)

which can also be rewritten, using A = qv , as

S f =
n2q |q |
A2R2/3

(3.4)

Two possible simplifications of the shallow water equations for steady nonuniform flow are the steady

dynamic wave model and the diffusion wave model. The latter has been found to be a more accurate approx-

imation of the full shallow water equations [9]. The steady dynamic wave model is given by


∂q
∂x + ∂A

∂t = I
∂qv
∂x = g A(S0 −S f −Sp )

(3.5)

and the diffusion wave model is given by 
∂q
∂x + ∂A

∂t = I

Sp = S0 −S f

(3.6)

The diffusion wave type of flow is illustrated in the second picture in Figure 3.2.

3.2.2. Unsteady flow
In unsteady open channel flow, flow velocities and depths change with time at any fixed spatial position in the

channel. Naturally, open channel flow in channels is unsteady and nonuniform because of the free surface.

Mathematically, this means that the two dependent flow variables, velocity and depth, are functions of both

distance x along the channel and time t . Mathematical problem formulation requires two partial differential

equations representing the continuity and momentum principles in the two unknown dependent variables

[5]. Hence, this is modeled by the full shallow water equations 2.1 which are also referred to as the dynamic

wave model.

3.3. Our model requirements
In this thesis report, three of the above-mentioned models will be explored; namely, the kinematic wave

model, the diffusion wave model and the dynamic wave model. The kinematic wave is a logical starting

point as a main focus of this research for a fast and simple water flow model. It models steady and uniform

flow. Hence, it neglects the short and local waves occurring around weirs and sluice gates. The diffusion and

dynamic wave models will also be explored to enable a comparison with the kinematic wave.
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Testing the kinematic wave model

4.1. The kinematic wave model
As a starting point for this research, we have chosen to focus on the kinematic wave model which is a simpli-

fied version of the shallow water equations. The kinematic wave model is given by


∂A
∂t + ∂q

∂x = I

S0 = S f

(4.1)

where q is discharge, A is the cross sectional area, I is the external in- or outflow, S0 is the channel bed slope

and S f is the friction slope. The following paragraphs will discuss the interpretation and solution methods

for the kinematic wave equation.

4.1.1. Interpretation and assumptions
Similarly to the shallow water equations, we assume hydrostatic pressure in the kinematic wave model. Also,

the friction slope S f is determined with the empirical equations formulated by Manning, as discussed in

Section 3.2.1.

Specifically in the kinematic wave model, the water wave is assumed to be long and flat so that S f almost

equals the channel bed slope S0. Hence the local acceleration term ∂q
∂t , the convective acceleration term ∂A

∂x

term and the pressure force term Sp in the equation of motion (2.6) all disappear. Thus, the channel bed

slope S0 is assumed to be large enough and the water wave long and flat enough so that all the other terms in

the equation of motion are negligible. Accordingly, a kinematic wave is described by the continuity equation

together with a uniform flow equation, such as Manning’s equation. It describes a steady and uniform flow

within each differential length [8].

In addition, the discharge q is assumed to be a function of the water depth alone; so each wave travels

with constant wave speed along the channel. This wave speed, also called wave celerity, is given by c = ∂q
∂A . As

a result, kinematic waves only propagate downstream and do not attenuate as they propagate downstream

[9]

15
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4.1.2. The kinematic wave equation
The kinematic wave model (4.1) consists of the continuity equation

B
∂h

∂t
+ ∂q

∂x
= I (4.2)

together with the equation of motion in its simplified version of steady uniform flow; namely,

S0 = S f (4.3)

With Manning’s equation (3.1), assuming a perpendicular channel such that the cross sectional area is given

by A = Bh with fixed B , using the definition of discharge q = Av and the definition of the hydraulic radius

R = A/P which in this case is R = Bh/(2h +B), equation (4.3) can be expressed in the form

q = 1

nm
S1/2

0
(Bh)5/3

(2h +B)2/3
(4.4)

By differentiating (4.4) with respect to x

∂q

∂x
= 1

nm
S1/2

0 B 5/3 ∂

∂x

(
h5/3

(2h +B)2/3

)
(4.5)

and plugging the resulting expression (4.5) into equation (4.2) whilst setting the coefficient α = 1
nm

S1/2
0 B 2/3,

one arrives at the kinematic wave equation in terms of the water depth h

∂h

∂t
+α ∂

∂x

(
h5/3

(2h +B)2/3

)
= 1

B
I (4.6)

4.2. Analytical solution of the kinematic wave equation
The kinematic wave equation is a first-order nonlinear hyperbolic partial differential equation (PDE). The

solution can be obtained analytically in simple cases. Although the main focus of this thesis is on obtaining

the numerical solution, the analytical solution is given as well to set the framework.

The analytical solution of the kinematic wave equation is obtained by the method of characteristics. Char-

acteristic curves for a PDE are curves along which the equation simplifies [12]. The characteristic equations

for the kinematic wave are two ordinary differential equations which are mathematically equivalent to the

continuity and momentum equation [8, 13], given by


dh
dt = I

c = 1
B

dq
dh

(4.7)

where the second equation in (4.7) for the wave celerity can be rewritten as follows

dx

dt
= 1

B

dq

dh
=α d

dh

(
h5/3

(2h +B)2/3

)
=αh2/3(6h +5B)

3(2h +B)5/3
(4.8)

Along these curves the solution is constant and traveling with finite propagation speed. Hence, solving these
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gives the analytical solution, with h = ∫ t
t0

I dt +h0 following from the first equation in (4.7),

x −x0 =α
∫ t

t0

[
5h2/3

(2h +B)2/3
− 4h5/3

(2h +B)5/3

]
dt (4.9)

4.3. Numerical solution of the kinematic wave equation
The solution of the kinematic wave can be obtained numerically using finite difference or finite volume meth-

ods. In this thesis, the focus will be on solving the PDEs using finite volume methods since these are exactly

conservative and also more robust in presence of discontinuities [12]. In this section, the build up to the

numerical method is outlined. Firstly, the numerical solution method to a scalar linear hyperbolic PDE is

derived so that the numerical solution methods for the nonlinear kinematic wave equation follow easily.

4.3.1. Initial solution and boundary conditions
Before diving into the derivation of numerical approximation methods, it is important to make two remarks.

First of all, in order to apply any numerical approximation method to solve an equation, an initial guess of

the solution has to be made. This initial guess represents the values of the solution at the first time step t0.

From there, the solution of the equation can be approximated numerically for the following time steps.

Second of all, the boundary values of a numerical method always need some special care. The bound-

aries of a numerical method are the beginning and end points. Estimating the values for these boundaries is

tricky because there is only one neighboring point, instead of two neighboring points, to which the numer-

ical method can be applied. Therefore, the boundary values are defined separately. For testing numerical

methods, the easiest approach to defining these boundary values is by using periodic boundary conditions.

In periodic boundary conditions, the end points values are again used as the beginning points values. Clearly,

periodic boundary conditions are not applicable for water flow in a ditch in a Dutch polder network. There-

fore, Dirichlet boundary conditions are used for the test cases. How these periodic and the Dirichlet boundary

conditions were defined precisely will be explained later.

4.3.2. Numerical approximation of the advection equation
The kinematic wave equation is a scalar nonlinear hyperbolic equation which belongs to the class of conser-

vation laws. A conservation law takes the form

wt (x, t )+ f (w(x, t ))x =Ψ(w(x, t ), x, t ) (4.10)

where f (w) is the flux function which governs the fluxes in and out of the finite volumes and Ψ(w(x, t ), x, t )

is the source function which accounts for external effects that change the quantity of interest. First, a linear

equation is considered; namely, the advection equation in scalar form. The advection equation describes

a substance being carried along by fluid motion at constant velocity ū in which the concentration w of the

substance is given by

wt (x, t )+ ūwx (t , x) = 0 (4.11)

This is a linear hyperbolic equation, also belonging to the class of conservation laws. Here, a numerical ap-

proximation method for the advection equation is derived and verified so that subsequently a numerical

approximation method for the nonlinear kinematic wave equation can be developed. The nonlinear method

is build further upon the linear approximation method.

Finite volume methods are based on the integral form of the conservation law. The spatial domain is
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divided into intervals, the finite volumes. For each of these finite volumes, the average of w over the volume

is approximated. In each time step, these values are updated using approximations to the fluxes in and out of

each finite volume. Obtaining the solution requires an initial condition of concentrations w(x,0) specified at

all points in the domain. In addition, an upstream boundary condition w(0, t ) needs to be specified.

The finite volume method as illustrated in Léveque will be employed to derive a numerical approximation

method for the advection equation [12]. Let’s first consider a channel of length L and assume that the external

in- and outflows are negligible, so the source termΨ(w(x, t ), x, t ) = 0. Accordingly, the channel is subdivided

into N finite volumes, in this case simply N intervals. Define the i th interval by

Ci = (xi−1/2, xi+1/2)

for i = 1, ..., N . Consider the well known finite difference approach to the general conservation law (4.10) with

Ψ= 0 given by
W n+1

i −W n
i

∆t
+ F n

i+1/2 −F n
i−1/2

∆x
= 0 (4.12)

where ∆x is the length of the finite volume interval, ∆t the length of the time step, W n
i corresponds to the

average value of the concentration w in the interval Ci for i ∈ 1, ..., N at time n ∈ 1, ..., tend , F n
i−1/2 to the flux on

the right hand side of interval Ci and F n
i+1/2 to the flux on the left hand side of interval Ci as shown in Figure

4.1.

Figure 4.1: Finite volume grid adapted from [12]

In the finite volume method, the value W n
i at the interval Ci is obtained by integrating over the concentration

w for each interval as given by

W n
i ≈ 1

∆x

∫ xi+1/2

xi−1/2

w(x, tn)dx (4.13)

Therefore, the finite volume method averages the concentration function w(x, t ). Hence resulting in a con-

servative numerical method. In comparison, for a finite difference method one would choose to consider the

pointwise value

wn
i = w(xi , tn) (4.14)

at the interval Ci instead of the average value W n
i as in equation (4.13).

Note that the pointwise value (4.14) at the cell center xi agrees with the cell average (4.13) up to an ac-

curacy of order O(∆x2) for sufficiently smooth functions w(x, t ). The finite volume methods applied in this

thesis are either of order O(∆x) or order O(∆x2). Thus, the error resulting from taking the pointwise value,

instead of the average value, is negligible. Accordingly, in this thesis the pointwise values will be used for

simplicity.
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In addition, F n
i−1/2 in equation (4.12) is an approximation of the average flux at point xi−1/2

F n
i−1/2 ≈

1

∆t

∫ tn+1

tn

f (w(xi−1/2, t ))dt (4.15)

where the above integral can be approximated using different possible numerical flux functions F such that

F n
i−1/2 =F (W n

i−1,W n
i )

Accordingly, the finite volume method for conservation laws, and in this case for the kinematic wave equa-

tion, can be rewritten in the finite volume form as

W n+1
i =W n

i − ∆t

∆x

[
F (W n

i ,W n
i+1)−F (W n

i−1,W n
i )

]
(4.16)

In this thesis, two different flux methods are considered that define the average fluxes F n
i−1/2 in different

ways; namely, the Upwind method and the Lax-Wendroff method.

Upwind method The Upwind method is of first order accuracy and introduces the most numerical diffusion

yielding smeared results compared to the Lax-Wendroff method. However, it is the easiest to compute. The

flux functions determine the fluxes in and out of a finite volume cell. Therefore, the cell average is affected by

the net change in flux in a cell.

To quantify this flux, think of the jump Wi−1/2 = W n
i −W n

i−1 as a wave traveling into cell Ci with positive

velocity λ+ and Wi+1/2 =W n
i+1 −W n

i with negative velocity λ− where

λ+ = max(λ,0), λ− = min(λ,0) (4.17)

In this scalar advection case, λ is the eigenvalue that results from the constant coefficient ū in the flux term

ūwx (x, t )

in the conservation equation (4.11). Trivially, the eigenvalue of ū equals λ= ū. In the case of a linear system

of two equations, there is a constant coefficient matrix A ∈ R2×2 with two eigenvalues corresponding to two

different wave velocities.

Now, the cell average in cell Ci is affected by all the right-going waves from xi−1/2 and all the left-going

waves from xi+1/2. In case of a scalar equation, there is simply one wave either traveling to the right or to the

left. Accordingly, the Upwind fluxes are given by

F n
i+1/2 =λ−(W n

i+1 −W n
i )

F n
i−1/2 =λ+(W n

i −W n
i−1)

Note that in the scalar advection case, one of these fluxes disappears since there is only one wave velocity λ

which is either positive or negative. The procedure described above is illustrated in Figure 4.2.

With above expressions for the Upwind fluxes, the Upwind method for the scalar advection equation,

resulting from equation (4.16), is given by

W n+1
i =W n

i − ∆t

∆x
(λ−(W n

i+1 −W n
i )−λ+(W n

i −W n
i−1)) (4.18)
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Figure 4.2: The Upwind method for the scalar advection equation illustrated by a wave-propagation interpretation, adapted from [12].
The top graphs show the data at time tn . The discontinuities at xi−1/2 and xi+1/2 are seen as the waves Wi−1/2 and Wi+1/2 respectively.
Over time ∆t , these waves propagate with speed ū, hence shifting a distance of ū∆t which is shown in the middle graphs where ū > 0 in
graphs (a) and ū < 0 in graphs (b). The new positions of the waves at time tn+1 are shown in the bottom graphs. The new cell averages
are then computed by averaging the function in each cell.

The Upwind method for the advection equation was implemented and tested on initial data given in the

book by Leveque [12]. In order to do so, periodic boundary conditions were considered and the CFL condition

was taken to be 0.8. Periodic boundary conditions means that

W n
0 =W n

N , W n
N+1 =W n

1

at each time step. The CFL condition will be discussed in Section 4.3.4. Figure 4.3 shows the result.
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Figure 4.3: The Upwind method for the advection equation implemented and verified using the results in the book by LeVeque [12]. The
blue function is showing the initial data and the orange dots correspond to the upwind computed solution.

Lax-Wendroff method The Lax-Wendroff method is a centered three point method. It is based on the Tay-

lor series expansion and is of second order accuracy. This method is able to capture wave behavior better in

comparison to the Upwind method. However, the error in the Lax-Wendroff method results from the disper-

sive term, wt t t = −ū3wxxx , which causes oscillatory behavior in the solution, see pages 100-102 and 154 in

[12].

The Upwind method yielded the formula (4.16), which is the simplest finite volume method. In order to

gain more accuracy in the finite volume method, the following general formula is introduced;

W n+1
i =W n

i − ∆t

∆x
(λ−(W n

i+1 −W n
i )−λ+(W n

i −W n
i−1))− ∆t

∆x
(F̃i+1/2 − F̃i−1/2) (4.19)

in which F̃i+1/2 and F̃i−1/2 are correction terms which are defined depending on the method. For the linear

Lax-Wendroff method in scalar form, F̃i−1/2 is defined as

F̃i−1/2 = 1

2
|λ|(1− ∆t

∆x
|λ|)(W n

i −W n
i−1) (4.20)

The Lax-Wendroff method for the advection equation was implemented in a similar manner as was done for

the Upwind method. The result is shown in Figure 4.4.

Figure 4.4: The Lax-Wendroff method for the advection equation implemented and verified using the results in the book by LeVeque
[12]. The blue function is showing the initial data and the orange dots correspond to the Lax-Wendroff computed solution.
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4.3.3. Numerical approximation of the kinematic wave equation
The kinematic wave equation (4.1) is a nonlinear conservation law of the form

ht (x, t )+ f (h(x, t ))x =Ψ(h(x, t ), x, t ) (4.21)

where f (h) is the flux function which governs the fluxes in and out of the finite volumes andΨ(h(x, t ), x, t ) is

the source function which accounts for external effects that change the quantity of interest in addition to the

fluxes. Specifically, the flux function for the kinematic wave equation is f (h(x, t )) = h5/3

(2h+B)2/3 and the source

functionΨ(h(x, t ), x, t ) = I (h(x, t ), x, t ) accounts for external in- or outflows. The nonlinearity results from the

nonlinear flux function f . The finite volume solution method for scalar nonlinear equations is an extension

of the finite volume method for linear equations described for the advection equation in the previous section.

Note that obtaining a solution requires an initial condition of depths h(x,0) specified at all points of the water

channel, which can also be rewritten into discharge q(x,0) using equation (4.4). In addition, an upstream

boundary condition h(0, t ) or q(0, t ) needs to be specified.

For the nonlinear case, the solution again yields a set of waves Wi−1/2 ∈ R for i ∈ 1, ..., N , but now with

wavespeeds si−1/2 ∈Rwhich are varying per grid cell Ci . The wavespeeds si−1/2 are defined using the Rankine-

Hugoniot shock speed

si−1/2 =
[ f (Hi )− f (Hi−1)]/(Hi −Hi−1)

f ′(Hi )
(4.22)

where Hi ≈ 1
∆x

∫ xi+1/2
xi−1/2

h(x, tn)dx. The nonlinear flux functions become

F n
i+1/2 = (si+1/2)−(H n

i+1 −H n
i )

F n
i−1/2 = (si−1/2)+(H n

i −H n
i−1)

Accordingly, the Upwind method becomes

H n+1
i = H n

i − ∆t

∆x
[(si+1/2)−(H n

i+1 −H n
i )− (si−1/2)+(H n

i −H n
i−1)] (4.23)

which can be expanded with the Lax-Wendroff flux correction terms, written as

F̃i−1/2 = 1

2
|si−1/2|(1− ∆t

∆x
|si−1/2|)(H n

i −H n
i−1) (4.24)

Finally, the source term Ψ(h(x, t ), x, t ) = 1
B I (x, t ) is to be implemented in the finite volume method. For

this, the fractional step method is employed. The kinematic wave equation is separated into two problems

Problem A: ht +
(

h5/3

(2h +B)2/3

)
x
= 0 (4.25)

Problem B: ht = I (h(x, t ), x, t ) (4.26)

resulting in the following procedure. In the first step, the Upwind method or the Lax-Wendroff method is

applied. The Upwind method is considered in the example below. In the second step, the forward Euler for
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the ODE of problem B is applied. Accordingly,

A-step: H∗
i = H n

i − ∆t

∆x
[(si+1/2)−(H n

i+1 −H n
i )− (si−1/2)+(H n

i −H n
i−1)] (4.27)

B-step: H n+1
i = H∗

i +∆t
1

B
I (4.28)

which can be rewritten by eliminating H∗
i as follows

H n+1
i = H n

i − ∆t

∆x
[(si+1/2)−(H n

i+1 −H n
i )− (si−1/2)+(H n

i −H n
i−1)]+∆t

1

B
I (4.29)

4.3.4. Necessary and sufficient conditions for convergence
An important requirement for a numerical method is convergence, meaning that the numerical solution

should converge to the true solution of the differential equation as the grid is refined when∆x → 0 and∆t → 0.

Convergence of a method requires it to be both consistent and stable. In addition, we require positive water

depths h everywhere on the grid to prevent breaking of the flux functions.

Consistence A numerical method is consistent with the differential equation if it approximates the true

solution well locally. More specifically, it is consistent if the local truncation error vanishes as ∆x,∆t → 0 for

all smooth functions satisfying the differential equation under consideration. The local truncation error is

defined by

τn = 1

∆t
[N (hn)−hn+1] (4.30)

in which N (·) is the numerical operator mapping the approximate solution at time n to the approximate

solution at time n +1 for n = 1, ..., tend so that the one-step-error is defined by

N (hn)−hn+1

and from which the definition of the truncation error follows naturally. For scalar linear methods, such as the

advection equation, the truncation error indeed vanishes with ∆x,∆t → 0 for the Upwind and Lax-Wendroff

method, see page 142-143 in Leveque [12]. For nonlinear scalar methods, such as the kinematic wave equa-

tion, it is more complicated as there is no constant wavespeed and the local truncation error needs to be

checked for every wavespeed s−i+1/2 and s−i−1/2.

Stability Stability of a method requires local truncation errors to not grow rapidly. Hence, to show stability,

a bound on the global error can be obtained using the local truncation errors. Leveque outlines the approach

of showing stability for the Upwind and Lax-Wendroff method for the advection equation on pages 145-148

[12].

The CFL condition: a necessary condition for stability Very important is the notion of the Courant-Friedrichs-

Lewy (CFL) condition as a necessary condition condition for stability and thus convergence. It is, however,

not a sufficient condition. The CFL condition is stated by Leveque [12]: "A numerical method can be conver-

gent only if its numerical domain of dependence contains the true domain of dependence of the PDE, at least

in the limit as ∆t and ∆x go to zero". To illustrate this, consider Figure 4.5
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Figure 4.5: The CFL condition

Figure 4.5 shows the characteristic curves of the advection equation for two different time step lengths. Con-

sidering explicit methods, such as the Upwind method or the Lax-Wendroff method, the computation of H n+1
i

depends on the values in three grid cells H n
i−1, H n

i and H n
i+1. For the small time step shown in Figure 4.5.a

this works well; namely, the characteristic curves at time n +1 in cell Hi only depend on cells Hi−1 and Hi

from time step n. However, it is going wrong in 4.5.b; the characteristic curves at time n+1 in cell Hi now also

depend on cells Hi−2. This gives a problem because the explicit methods discussed here do not incorporate

Hi−2 in computation of the value for Hi in the next time step n + 1. Thus, there is some missing informa-

tion. This problem causes for instability issues. Therefore, it is very important to choose the spatial and time

discretization steps properly.

For the linear advection equation, this means that the following bound holds:

| ū∆t

∆x
| ≤ 1 (4.31)

For the nonlinear kinematic wave equation, this leads to the following bound:

∆t

∆x
max| f ′(h)| ≤ 1

2
(4.32)

for every value of h = Hi arising in the computations.

4.4. Verification of the developed numerical methods
The developed numerical methods for the advection equation in Section 4.3.2 and for the kinematic wave

equation in Section 4.3.3 need to be verified. Verification can be done by comparison to analytical solutions

or to the solutions found in the literature. This is possible for the advection equation by comparing it to

Leveques results [12]. However, analytical results or literature results for these numerical methods for the

kinematic wave equation are not available. Therefore, the method of manufactured solutions is applied to

both the advection equation and the kinematic wave equation.

4.4.1. Method of manufactured solutions (MMS)
The method of manufactured solutions works as follows: first, a feasible solution to the equation is assumed

and plugged into the equation. Accordingly, the source term, boundary term and the initial value term can

be derived. Then the numerical method is applied using these three terms. If all is well, the assumed solution

should result from the application of the in Sections 4.3.2 and 4.3.3 developed numerical methods.
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4.4.2. MMS for the advection equation
Consider the advection equation assuming the wave speed ū = 1

wt +wx = 0 (4.33)

and assuming the solution w(x, t ) =−sin(t −x). Accordingly, the boundary x = 0 has the value

w(0, t ) = −sin(t ) and the initial condition at t = 0 has the value w(x,0) = sin(x). Comparing the solution

w(x, t ) =−sin(t − x) with the numerical results when the Upwind method and the Lax-Wendroff method are

applied with the boundary condition w(0, t ) = −sin(t ) and initial condition w(x,0) = sin(x), results in small

differences between the real solution and the numerically computed solution as is shown in Table A.1 and

Table A.2. Thus, the developed Upwind and Lax-Wendroff numerical methods are verified.

4.4.3. MMS for the kinematic wave equation
For the kinematic wave equation, the method of manufactured solutions works similarly as described above

for the advection equation. Additionally, there is a source term Ψ(x, t ) = I (t , x). Suppose the solution is

h(x, t ) = sin(x − t )+ 3
2 which has to be positive everywhere because depths h cannot be negative. Plugging

this assumed solution into the kinematic wave equation (4.1), assuming that the channel width B = 1 and the

constant α = 1, yields the boundary condition h(0, t ) = −sin(t )+ 3
2 , the initial condition h(x,0) = sin(x)+ 3

2

and a source term defined by

I (x, t ) =−cos(t −x)+ 5

3

cos(t −x)( 3
2 − sin(t −x))2/3

(1+2( 3
2 − sin(t −x))2/3

− 4

3

cos(t −x)( 3
2 − sin(t −x))5/3

(1+2( 3
2 − sin(t −x)))5/3

To test the numerical methods, the number of intervals was set to nx = 24, with the interval distance

∆x = 2π
24 ≈ 0.26 and the time step ∆t = 1

2∆x ≈ 0.19 which gives that d t ≈ 0.8d x so that the CFL number is

approximately 0.467 which is close to the CFL number limit of 1
2 . Finding the accuracy of the kinematic wave

equation was done by applying the Richardson extrapolation method mentioned on page 34 in [14]. Thus,
∆x
2 , ∆t

2 and ∆x
4 , ∆t

4 were evaluated to find the behavior of the error between the assumed solution h(x, t ) and

the computed solution H(x, t ) for both the Upwind and the Lax-Wendroff method. For this, an end time of 60

minutes was considered.

Theoretically, the error between the assumed solution h(x, t ) = sin(x − t )+ 3
2 and the Upwind numerical

solution is of the order O(∆x). For the Lax-Wendroff method, the error is of the order O((∆x)2) theoretically.

To test this in practice, a method is of first order accuracy if the error is halved when both the spatial dis-

cretization step and the time step are halved. It is of second order accuracy when the error becomes a quarter

for halving the discretization step and time step. Tables A.3 and A.4 in the Appendix show the results of these

computations. They both show that the errors are roughly halving for halving discretization steps, hence both

methods seem to be of first order accuracy as implemented in this thesis.

4.5. Implementation
The developed finite volume methods for the kinematic wave are applied to the scenario of a straight ditch in

a Dutch polder network. A ditch of length 1 km, width 1 m and a downstream depth of 1 m is considered. The

value for the Gauckler-Manning coefficient is set to nm = 0.04 which represents a channel with some friction

caused by weeds and stones.
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4.5.1. Initial solution and boundary conditions
Initial solution To be able to apply the numerical method, an initial solution needs to be specified every-

where in the computational domain. Here, the computational domain is simply the straight ditch. Generally,

the initial solution h(x,0) is specified everywhere in the ditch to equal the downstream water depth, imitating

a flat water level along the ditch [15]. However, various initial solutions are implemented in this section to

test and show the results of the finite volume methods for the kinematic wave.

Boundary conditions The finite volume method is in practice applied to a finite domain. Hence, there

is no information for the values of the neighboring cells in the first and the last interval. Therefore, one

needs boundary conditions specifying the necessary information for applying the finite volume method on

the boundary intervals. Depending on the chosen flux method, one either needs one or two ghost cells on

the boundaries. A ghost cell is an interval outside of the computational domain to which hypothetical values

are assigned to enable the computation of the numerical method on the boundary intervals. Let’s consider

the interval [a,b] where x = a is the left boundary and x = b the right boundary.

Inflow boundary
The inflow ghost cell values could be assigned using knowledge of the characteristic equations [12]. How-

ever, the kinematic wave equation is a nonlinear equation for which the characteristic equations are not

immediately known. Instead, a Dirichlet boundary condition is implemented on the inflow boundary which

specifies a given value or function at the location x = a, for example q(a, t ) = 50 which can be transformed

into a depth H n
0 for all time steps n using equation (4.4). It follows that there are no ghost cells needed on the

inflow boundary.

Outflow boundary
The outflow boundary values do not always need to be specified depending on the chosen flux method. Only

if the flux method needs the next interval for computation, such as in the Lax-Wendroff method, then the

outflow boundary should be specified and either one or two ghost cells are necessary. The simplest way

of assigning these ghost values is to use zero-order extrapolation, which is simply assigning the ghost cells

values of a constant function [12]. Hence,

H n
N+1 = H n

N , H n
N+2 = H n

N (4.34)

4.5.2. Results
No external inflow The flow behavior of a water pulse was investigated for the case of zero external inflows.

The results of the tests on the pulse behavior showed that when there is no channel bed slope, the kinematic

wave model does not model any water flow. This is because kinematic wave motion is solely based on grav-

itational forces resulting from the difference in channel bed heights. To illustrate this, three different cases

were implemented for the pulse. In all these test cases the ditch is set to be of length 1 km, width 1 m, with a

Gauckler-Manning coefficient of nm = 0.04. The Dirichlet upstream boundary condition is in all cases set to

a depth of 1 meter, corresponding to a fixed inflow discharge depending on the channel bed slope.

Firstly, a zero channel bed slope ditch was assumed. Figure 4.6 shows the resulting water depths along the

ditch for both the Upwind and the Lax-Wendroff method. Clearly, in this case the water pulse does not move

due to the zero channel bed slope. Here the inflow discharge is q = 0 m3/s.
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Figure 4.6: A pulse in a ditch with zero channel bed slope, so S0 = 0. Hence, resulting in zero water flow at all times.

Secondly, the Upwind method was applied to the pulse in a ditch with a channel bed slope of 1 meter per

kilometer. The inflow discharge is q(0, t ) = 0.38 m3/s. The water starts moving. Figure 4.7 shows the pulse at

the initial time and two later times. It was not plotted that he final situation, for times t ≥ 30, is a ditch with a

water depth of 1 meter everywhere.

Figure 4.7: The Upwind method applied to a pulse in a ditch with a channel bed slope of 1 meter per kilometer ( S0 = 1
1000 ), shown for

the initial time and two later times. The final water depths in the ditch for t ≥ 30 are 1 meter everywhere.

Thirdly, the Lax-Wendroff method was applied to the pulse in a ditch with a channel bed slope of 1 meter

per kilometer. Figure 4.8 shows the pulse at the initial time and two later times. The Lax-Wendroff method

produces results with a higher accuracy than the Upwind method. However, it also produces more oscilla-

tions in the result which can be seen in the roughness of the pulse at a time of 15 minutes. Similarly as above,

it was not plotted that he final situation, for times t ≥ 30, is a ditch with a water depth of 1 meter everywhere.

Figure 4.8: The Lax-Wendroff method applied to a pulse in a ditch with a channel bed slope of 1 meter per kilometer (S0 = 1
1000 ), shown

for the initial time and two later times. The final water depths in the ditch for t ≥ 30 are 1 meter everywhere.
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External inflow Here, external inflow is considered. Imagine a big bucket of water being emptied in the

middle of the ditch during the first minute. Let’s see what happens to the water flow.

Firstly, the ditch with zero channel bed slope is considered again with q(0, t ) = 0m3/s. Figure 4.9 illustrates

this. It shows the water depth along the channel at the initial time, at half the time of emptying the bucket

and at the time that the bucket is fully emptied. Similarly to the case of the pulse discussed above, the bucket

of water does not move.

Figure 4.9: A bucket of water being emptied in a ditch with zero channel bed slope, so S0 = 0. Hence, there is zero water flow at all times
which results in a static bucket of water in a ditch.

Secondly, the Upwind method was applied to bucket of water case in a ditch with a channel bed slope of

1 meter per kilometer and q(0, t ) = 0.38 m3/s. The bucket of water starts moving now. Figure 4.10 shows this

movement starting at a time of 1 minute, which is the time at which the bucket has been fully emptied. The

initial situation and the first minute were not plotted because they are similar to the case of a ditch with zero

channel bed slope.

Figure 4.10: The Upwind method applied to a bucket of water being emptied in a ditch with a channel bed slope of 1 meter per kilometer
(S0 = 1

1000 ), shown from a time onwards from which the bucket was fully emptied. The initial situation and the first minute is similar to
the situations shown in Figure 4.9.

Thirdly, the Lax-Wendroff method was applied to a bucket of water being emptied in a ditch with a chan-

nel bed slope of 1 meter per kilometer and q(0, t ) = 0.38 m3/s. Figure 4.11 shows the pulse at the initial time

and two later times. Again, the Lax-Wendroff method produces more oscillations in the result which can be

seen in the plots at all three times.
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Figure 4.11: The Lax-Wendroff method applied to a bucket of water being emptied in a ditch with a channel bed slope of 1 meter per
kilometer (S0 = 1

1000 ), shown from a time onwards from which the bucket was fully emptied. The initial situation and the first minute is
similar to the situations shown in Figure 4.9.

4.5.3. Discussion
The results of the tests on the kinematic wave show that the kinematic wave successfully models the bulk

movement of water flow in one direction when the ditch is sloped. However, ditches in a polder network are

generally not designed with sloped channel beds so these slopes might be zero or very small. In addition,

the water is only flowing in one direction and not spreading across the ditch. In the example of the external

inflow of a bucket of water, this is against the intuition of the water spreading equally and flowing into two

directions. Therefore, the kinematic wave equation does not seem to be the most realistic representation of

water flow in a ditches network. However, it is a fast and simple method for computing the bulk of water flow

when implemented with a small channel bed slope. One can think of applying the kinematic wave with an

educated choice for a channel bed slope such that it models realistic water depths, velocities and discharges.
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Testing the diffusion wave model

5.1. The diffusion wave model
The diffusion wave model is the next step towards a model that is closer to a realistic representation of the

water flow. Although this thesis focuses on solving the kinematic wave, the option of extending the kinematic

wave solution method to a diffusion wave solution method is investigated in this chapter. The diffusion wave

model is formulated by 
∂q
∂x + ∂A

∂t = I

∂h
∂x = S0 −S f

(5.1)

where q is discharge, h is the water depth above the channel bottom, A is the cross sectional area, I is the

external in- or outflow, S0 is the channel bed slope and S f is the friction slope. The following paragraphs will

discuss the interpretation and solution methods for the diffusion wave equation.

5.1.1. Interpretation and assumptions
First of all, hydrostatic pressure is assumed and the friction slope S f is determined with Manning’s equation

as discussed in Section 3.2.1.

Kinematic waves do not attenuate as they move downstream, as was shown in the previous chapter. Dif-

fusion waves also move downstream only, but attenuate as they move downstream. Accordingly, diffusion

waves can model the so-called backwater effects. A backwater effect is the effect which a dam has in raising

the water depths of the surface water upstream from it.

Similar to the kinematic wave model, for the diffusion wave model the water waves are also assumed to

be long and traveling over relatively flat slopes. The local acceleration term ∂q
∂t and the convective acceleration

term ∂A
∂x term are neglected in the equation of momentum. The pressure force term Sp = ∂h

∂x is included,

which explains the attenuation of waves in the diffusion wave model.

31
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5.1.2. The diffusion wave equation
The diffusion wave model (5.1) consists of the continuity equation

B
∂h

∂t
+ ∂q

∂x
= I (5.2)

together with a simplified form of the equation of motion; namely,

S f = S0 −Sp (5.3)

With Manning’s equation (3.1), assuming a perpendicular channel such that the cross sectional area is given

by A = Bh with fixed B , using the definition of discharge q = Av , Sp = ∂h
∂x and the definition of the hydraulic

radius R = A/P which in this case is R = Bh/(2h +B), equation (5.3) can be expressed in the form

q = 1

nm

(Bh)5/3

(2h +B)2/3

(
S0 − ∂h

∂x

)1/2

(5.4)

By differentiating (5.4) with respect to x

∂q

∂x
= 1

nm

∂

∂x

(Bh)5/3

(2h +B)2/3

(
S0 − ∂h

∂x

)1/2

(5.5)

and plugging the resulting expression (5.5) into equation (5.2) one arrives at the diffusion wave equation in

terms of the water depth h

∂h

∂t
+ 1

nm

∂

∂x

(Bh)5/3

(2h +B)2/3

(
S0 − ∂h

∂x

)1/2

= 1

B
I (5.6)

5.2. Analytical solution of the diffusion wave model
The diffusion wave equation is a first-order nonlinear hyperbolic partial differential equation (PDE) to which

the solution can be obtained in simple cases using the method of characteristics. The characteristic curves

for the diffusion equation take the form


dh
dt = I

c = 1
B

dq
dh

(5.7)

where the second equation in (5.7) for the wave celerity can be rewritten as follows

dx

dt
= 1

B

dq

dh
= 1

nm

d

dh

(Bh)5/3

(2h +B)2/3

(
S0 − ∂h

∂x

)1/2

(5.8)

Solving these equations gives the solution which is constant along the characteristic curves.

5.3. Numerical solution of the diffusion wave model
Solving the diffusion wave equation resembles the process of solving the kinematic wave equation which was

thoroughly discussed in Section 4.3. The only difference is the flux function. The solution method to the

diffusion wave equation will be outlined in the following paragraph.
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5.3.1. Numerical approximation of the diffusion wave equation
The diffusion wave equation (5.1) is a nonlinear conservation law of the form

ht (x, t )+ f (h(x, t ))x =Ψ(h(x, t ), x, t ) (5.9)

where f (h) is the flux function which governs the fluxes in and out of the finite volumes and Ψ(h(x, t ), x, t )

is the source function which accounts for external effects that change the quantity of interest in addition to

the fluxes. In the case of the diffusion wave, the flux function is f (h(x, t )) = 1
nm

(Bh)5/3

(2h+B)2/3

(
S0 − ∂h

∂x

)1/2
and the

source functionΨ(h(x, t ), x, t ) = I (h(x, t ), x, t ) accounts for external in- or outflows.

The numerical approximation of the solution to the diffusion wave equation works in a similar way as the

approximation of the kinematic wave equation described in Section 4.3.3, with the flux function being the

only difference. Hence, formulated as in the fractional step method, the problem reads

Problem A: ht +
(

1

nm

(Bh)5/3

(2h +B)2/3

(
S0 − ∂h

∂x

)1/2
)

x

= 0 (5.10)

Problem B: ht = I (h(x, t ), x, t ) (5.11)

to which the solution method is formulated as

H n+1
i = H n

i − ∆t

∆x
[(si+1/2)−(H n

i+1 −H n
i )− (si−1/2)+(H n

i −H n
i−1)]+∆t

1

B
I (5.12)

The flux function is trickier for the diffusion wave since firstly, it contains the derivative ∂h
∂x and secondly,

it contains a square root of S0−Sp which only gives reasonable results if S0 ≥ Sp . When S0 ≤ Sp , Equation (5.6)

becomes parabolic instead of hyperbolic. Therefore, the developed methods for solving the kinematic wave

equation cannot simply be extended to the diffusion wave equation. This extension only works provided that

S0 ≥ Sp .

In the following sections, results of the application of Equation (5.12) to the diffusion wave are given for

examples in which S0 ≥ Sp holds in the entire domain for every time step. Herein, the wavespeeds si−1/2 are

defined as, similarly to Equation (4.22),

si−1/2 =
[ f (Hi−1, Hi )− f (Hi−2, Hi−1)]/(Hi −Hi−1)

f ′(Hi−1, Hi )
(5.13)

Here, the flux function depends on two grid cells because of the pressure term Sp = ∂h
∂x in the flux function.

The numerically discretized flux function is given by

f (Hi−1, Hi ) = 1

nm

(B Hi )5/3

(2Hi +B)2/3

(
S0 − Hi −Hi−1

∆x

)1/2

(5.14)

and its derivative is given by

f ′(Hi−1, Hi ) = B 5/3

nm

5(S0 − (Hi −Hi−1)/∆x)1/2H 2/3
i

3(2Hi +B)2/3
− B 5/3

nm

4(S0 − (Hi −Hi−1)/∆x)1/2H 5/3
i

3(2Hi +B)5/3
(5.15)

5.4. Verification of the developed numerical methods
The method of manufactured solutions is applied to the method developed in the previous Section 5.3.1.

Similarly to what was done for the kinematic wave, the solution h(x, t ) = 3
2 −sin(t−x) is assumed and plugged
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into the diffusion equation (5.6). It gives a boundary condition of h(0, t ) = 3
2 − sin(t ), an initial condition of

h(x,0) = 3
2 + sin(x) and a source function of

1

B
I = B 5/3

nm
[

5(S0 −cos(t −x))1/2cos(t −x)(3/2− sin(t −x))2/3

3(B +2(3/2− sin(t −x)))2/3
(5.16)

− 4(S0 −cos(t −x))1/2cos(t −x)(3/2− sin(t −x))5/3

3(B +2(3/2− sin(t −x)))5/3
(5.17)

− (3/2− sint −x))5/3sin(t −x)

2(S0 −cos(t −x))1/2(B +2(3/2− sin(t −x)))2/3
] (5.18)

Implementing these conditions with the developed numerical method should result in the assumed solution

h(x, t ) = 3
2 − sin(t −x). The results are given in Figure 5.1

Figure 5.1: The results for the method of manufactured solutions to the diffusion wave Upwind numerical method. Clearly, the results
do not match the assumed solution. Therefore, the numerical methods were not developed successfully yet and adjustments need to be
made.

Clearly, the assumed solutions breaks immediately in the first minute. Therefore, the developed methods

are not working properly. This can be due to incorrect implementation of the Dirichlet boundary conditions

or unjust discretization of the derivative term Sp = ∂h
∂x in the flux term. How to improve the results of this

numerical method is a point for further research.

5.5. Application to a straight ditch
The developed method for the diffusion wave model was not successfully verified. Therefore, the results from

the model are not easily comparable to the kinematic wave results. However, the developed solution method

for the diffusion wave works in a few cases. These cases were implemented to give the reader an idea of the

possibilities with the diffusion wave model.

To illustrate the impossible comparison between the tests of the kinematic wave with the diffusion wave,

the case of channel bed slope S0 = 1
1000 and Gauckler-Manning coefficient of nm = 0.04 is implemented for a

ditch of width 1 meter and length 1000 meter. Figure 5.2 shows the results. Clearly, the wave does not seem

to move as smoothly as the kinematic wave applied to the same case shown in Figure 4.7. The wave shows

breaking results due to negative values in the square root
√

S0 − ∂h
∂x in the flux function.
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Figure 5.2: The results of the Upwind method for the diffusion wave with channel bed slope S0 = 1
1000 and Gauckler-Manning coefficient

nm = 0.04.

Now, to give the reader an idea of what results the diffusion wave model should give, the method was

implemented for very large channel bed slopes of S0 = 1. This causes the square root in the flux function to

attain positive values only. Figure 5.3 shows the results for the Upwind method, Figure 5.4 shows the results

of the Lax-Wendroff method. These results are very similar to the results for the kinematic waves. The main

difference is that the diffusion waves travel much slower.

Figure 5.3: The Upwind method for the diffusion wave with large channel bed slope S0 = 1 and Gauckler-Manning nm = 0.04.

Figure 5.4: The Lax-Wendroff method for the diffusion wave with large channel bed slope S0 = 1 and Gauckler-Manning nm = 0.04.
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Interestingly, in the case of a pulse with zero initial depths around it, the backwater effects are better

visible. See Figure 5.5.

Figure 5.5: The Upwind method for the diffusion wave with large channel bed slope S0 = 1 and Gauckler-Manning nm = 0.04.

5.5.1. Discussion
The diffusion wave model was only successfully implemented for a few cases with high channel bed slopes.

The behavior of the wave flows seem very similar to the behavior shown by the kinematic wave movement.

Breaking of the solutions as was visible in Figure 5.1 shows that the numerical methods developed for the

kinematic wave equation cannot simply be applied to the diffusion wave equation as well. The issue may

be with the discretization of the derivative ∂h
∂x . It might also be a stability issue. The flux function (5.14)

takes complex values for small channel bed slopes, hence the equation becomes non-hyperbolic according

to Leveques hyperbolicity properties given on page 1-3 of [12] . Therefore, the developed explicit methods

work well for the hyperbolic kinematic wave equation. Different explicit or even implicit numerical solution

methods may be necessary to take care of stability issues when solving the diffusion wave equation. More

research needs to be done into suitable numerical solution methods such that the diffusion wave equation

works well for small channel bed slopes and such that the backwater effects are incorporated sufficiently. A

variety of different approaches on how to implement the diffusion wave model are discussed in for example

[16–19].
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Testing the dynamic wave model

6.1. The dynamic wave model
In this chapter, a finite volume method for a system of two equations is developed to model water flow using

the full shallow water equations 
∂A
∂t + ∂q

∂x = I
∂q
∂t + ∂qv

∂x = g A(S0 −S f −Sp )
(6.1)

This model is often referred to as the dynamic wave model. It produces the most theoretically accurate results

because it models the full shallow water equations. Whereas the kinematic wave models water flow driven

by gravity into one flow direction, the dynamic wave model is driven by local and convective acceleration

plus friction, pressure and gravity forces. Therefore, dynamic waves attenuate as they travel in both upstream

and downstream directions as is illustrated in Figure 6.1. Accordingly, the dynamic wave model accounts for

backwater effects, flow reversal and zero-slope water flow [20].

Figure 6.1: The nature of dynamic waves as is illustrated in Figure 9.3.2 in Chow [8]

6.2. Solution of the shallow water equations
The full shallow water equations form a system of two nonlinear hyperbolic equations. Analytical solutions

to this system can be found for simple cases with the method of characteristics. When external inflows are

37
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negligible, the characteristic equations are given by


d x
d t = v ± cd

d
d t (v ±2cd ) = g (S0 −S f )

(6.2)

in which cd =√
g h is the dynamic wave celerity for a rectangular channel [8].

Instead of solving these characteristic equations analytically, the focus of this research is on the numerical

approximation of the solution of the shallow water equations. Hence, the following sections outline the build

up to the numerical method. First, the case of a system of two linear equations is discussed followed by the

method for the full shallow water equations.

6.2.1. Numerical approximation of a system of two linear equations
Before going on to the numerical approximation of the shallow water equations, a system of two equations

for a multicomponent advection equation will be discussed. Subsequently, the developed solution methods

can be applied to the more complex case of the shallow water equations.

Here, the methods are similar to those discussed in Section 4.3.2. The advection equation takes the form

wt (x, t )+ Awx (x, t ) = 0 (6.3)

with the vector w ∈R2 and matrix A ∈R2×2. The finite volume method, as also given in Equation (4.16), is

W n+1
i =W n

i − ∆t

∆x

[
F (W n

i ,W n
i+1)−F (W n

i−1,W n
i )

]
(6.4)

in which F n
i−1/2 = F (Wi−1,Wi ) is the average flux at point xi−1/2 defined by the flux function F . These flux

functions can take different forms, depending on the finite volume method. The Upwind and Lax-Wendroff

methods will be considered.

Upwind flux In the scalar case in Section 4.3.2, there is one wave traveling into cell Ci ; either a wave Wi−1/2

with positive velocity λ+ or a wave Wi+1/2 with negative velocity λ−. Now, in the case of a linear system of two

equations, there are two waves (W1 and W2) traveling into cell Ci with distinct wave velocities corresponding

to the eigenvalues of matrix A. The waves are defined slightly differently in case of the constant-coefficient

linear system; namely,

Wp,i−1/2 =αp,i−1/2rp (6.5)

for p ∈ {1,2} where rp is the p-th eigenvector of A. αp,i−1/2, p ∈ {1,2}, is defined as follows.The wave W =
Wi −Wi−1 in a cell Ci is decomposed into the eigenvectors of A

Wi −Wi−1 =α1,i−1/2r1 +α2,i−1/2r2

Hence, the vector is αi−1/2 = R−1(Wi −Wi−1) ∈R2, where R = [r1 r2] is the matrix composed of the eigenvec-

tors of A. Hence, adding up the effects of the two waves W1 and W2 results in the flux functions

F n
i+1/2 =λ−

1 W1,i+1/2 +λ−
2 W2,i+1/2 =λ−

1α1,i+1/2r1 +λ−
2α2,i+1/2r2

F n
i−1/2 =λ+

1 W1,i−1/2 +λ+
2 W2,i−1/2 =λ+

1α1,i−1/2r1 +λ+
2α2,i−1/2r2
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where λ1 is the wave speed corresponding to wave W1 and λ2 is the wave speed corresponding to wave W2.

λ+
p and λ−

p for p ∈ {1,2} are defined according to Equation (4.17). Again, note that either λ+
p or λ−

p , p ∈ {1,2}, is

zero according to this definition. The upwind finite volume method (6.4) becomes

W n+1
i =W n

i − ∆t

∆x

[
(λ−

1α1,i+1/2r1 +λ−
2α2,i+1/2r2)− (λ+

1α1,i−1/2r1 +λ+
2α2,i−1/2r2)

]
(6.6)

To verify above equation, it was implemented for the case of Equation (6.3) with the matrix

A =
(
−1 0

0 2

)

which gives λ1 =−1, λ2 = 2, r1 = [1 0]T and r2 = [0 1]T . Thus, Equation (6.4) takes the form

W n+1
i =W n

i − ∆t

∆x

[
λ1α1,i+1/2r1 −λ2α2,i−1/2r2

]
in which λ−

1 = λ1 and λ+
2 = λ2. Periodic boundary conditions were used for this test implementation. Figure

6.2 shows the solution for this system of equations with a CFL condition of d t = 0.4d x at time t = 1.

Figure 6.2: Solution of the upwind method for the system of the multicomponent advection equation for a CFL condition of d t = .4d x

Lax-Wendroff flux The Lax-Wendroff method incorporates flux correction terms F̃ . It is given by

W n+1
i =W n

i − ∆t

∆x

[
(λ−

1α1,i+1/2r1 +λ−
2α2,i+1/2r2)− (λ+

1α1,i−1/2r1 +λ+
2α2,i−1/2r2)

]
(6.7)

− ∆t

∆x
(F̃i+1/2 − F̃i−1/2) (6.8)

In the Lax-Wendroff method for linear systems, F̃i−1/2 is defined as

F̃i−1/2 = 1

2

(
|λ1|(1− ∆t

∆x
|λ1|)α1,i−1/2r1 +|λ2|(1− ∆t

∆x
|λ2|)α2,i−1/2r2

)
(6.9)

Implementing above equation to the same system as applied for the Upwind method, gives the solutions

shown in Figure 6.3 for time t = 1.
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Figure 6.3: Solution of the Lax-Wendroff method for the multicomponent advection equation for a CFL condition of d t = .4d x

6.2.2. Numerical approximation of the shallow water equations
Equation (6.1) can be rewritten, using that A = Bh, q = v A and Sp = ∂h

∂x , as


∂h
∂t + ∂hv

∂x = 1
B I

∂(hv)
∂t + ∂(hv)2

∂x + g h ∂h
∂x = g h(S0 −S f )

(6.10)

For simplicity, let us first consider the case where I = 0 and S0−S f = 0 so that the source terms in (6.10) vanish

yielding the system of equations 
∂h
∂t + ∂hv

∂x = 0

∂(hv)
∂t + ∂

∂x (hv2 + 1
2 g h2) = 0

(6.11)

The system of equations becomes [
h

hv

]
t

+
[

hv
1
2 v2 + g h

]
x

= 0 (6.12)

Let’s define w(x, t ) =
[

h

hv

]
=

[
w1

w2

]
, f (w) =

[
hv

1
2 v2 + g h

]
=

[
w2

(w2)2/w1 + 1
2 (w1)2

]
. Hence, for smooth solutions

this system of equations can be formulated in the quasilinear form

wt + f ′(w)wx = 0

with the Jacobian matrix f ′(w)

f ′(w) =
[

0 1

−(w2/w1)2 + g w1 2w2/w1

]
=

[
0 1

−v2 + g h 2v

]
(6.13)

which results in the eigenvalues

λ1 = v −
√

g h, λ2 = v +
√

g h (6.14)

and eigenvectors

r1 =
[

1

v −√
g h

]
, r2 =

[
1

v +√
g h

]
(6.15)
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which can be implemented with the Upwind or Lax-Wendroff finite volume methods (6.6) and (6.7) discussed

in the previous paragraphs. Hence, this is the linearized system of the shallow water equations.

Now, the fractional step method is used to add the source term Ψ(h(x, t ), v(x, t ), x, t ) =
[

1
B I

g h(S0 −S f )

]
to

the system of equations. Finding the solution of the shallow water equations is separated into two problems:

Problem A:

[
h

hv

]
t

+
[

hv
1
2 v2 + g h

]
x

= 0 (6.16)

Problem B:

[
h

hv

]
t

=
[

1
B I

g h(S0 −S f )

]
(6.17)

The method is similar to what was done for adding the source term in the kinematic wave equation. In the

first step, the upwind method, or any other method, is applied. In the second step, the forward Euler for the

ODE of problem B is applied. Accordingly, considering the Upwind method,

A-step: H∗
i = H n

i − ∆t

∆x

[
(λ−

1α1,i+1/2r1 +λ−
2α2,i+1/2r2)− (λ+

1α1,i−1/2r1 +λ+
2α2,i−1/2r2)

]
(6.18)

B-step: H n+1
i = H∗

i +∆t

[
1
B I

g h(S0 −S f )

]
(6.19)

which is rewritten by eliminating H∗
i as follows

H n+1
i = H n

i − ∆t

∆x

[
(λ−

1α1,i+1/2r1 +λ−
2α2,i+1/2r2)− (λ+

1α1,i−1/2r1 +λ+
2α2,i−1/2r2)

]+∆t

[
1
B I

g h(S0 −S f )

]
(6.20)

6.3. Necessary and sufficient conditions
Proving theoretical convergence for the methods of approximating nonlinear systems of equations is not

proven yet, and beyond the scope of this thesis. However, the methods used here are generally successful in

practice [12]. Importantly, the CFL condition should hold for both equations of the shallow water equations.

The condition
∆t

∆x
max| f ′(h)| ≤ 1

2
(6.21)

is to be satisfied for every value of h = Hi in the computations.

6.4. Verification of the developed numerical methods
Verifying the Upwind method and the Lax-Wendroff method for the shallow water equations is done by using

the results given in Leveque, on page 257 [12]. The evolution of a hump of water is considered in a zero

channel bed sloped ditch, with zero initial velocity in which the source term of the shallow water equations

is set to zero as wellΨ(h(x, t ), v(x, t ), x, t ) = 0.
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Figure 6.4: The results of the developed method for the shallow water equations for a hump of water with zero initial velocity and with
zero source terms. The same initial data was considered as in [12] and the results turn out similar to those given on page 257 [12].
The figure on the left show the water depths and the figures on the right show the depths times the water velocities, which equals the
discharges when the width is B = 1.

Important to mention is that the verification above was done for the case without external inflows. There-

fore, the method is still to be verified for the case of non-zero external inflows. The results when implementing

the fractional step methods seemed reasonable. Therefore, the case of emptying a water bucket in a ditch is

implemented and included in the next section. Verification of the numerical method with nonzero inflows is

a point for further research.

6.5. Implementation

6.5.1. Initial solution and boundary conditions
Initial solution Just as before, an initial solution needs to be specified and two different initial solutions will

be considered; namely, a pulse without external inflow and a flat water level with external inflow. The cases

of a zero channel bed slope and a small channel bed slope will be compared again.
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Boundary conditions In the case of the full shallow water equations, both the inflow and the outflow

boundary need to have assigned values. Generally, a discharge for the upstream boundary is set and a wa-

ter depth for the downstream boundary is set. Accordingly, the upstream water depth and the downstream

discharge are calculated from these values.

Inflow boundary
The inflow boundary in the following test cases was set to a value of vh = 0. Hence, there is no water inflow.

To enable the numerical computation, a ghost cell was assigned on the left of the first grid cell. The ghost

cell’s value was set by zero order extrapolation

H n
−1 = H n

0

.

Outflow boundary
The outflow boundary in the following test cases was set to a water depth of 1 meter. Similarly to the inflow

boundary, a ghost cell was placed on the right of the outflow boundary cell. Its value was also set by zero

order extrapolation

H n
N = H n

N+1

6.5.2. Results
No external inflow The flow behavior of a water pulse was investigated for the case of zero external inflows.

In all these test cases the ditch is set to be of length 1 km, width 1 m, with a Gauckler-Manning coefficient

of nm = 0.04. The Dirichlet upstream boundary condition is set to a value of vh = 0 and the downstream

boundary condition is set to a water depth of 1 meter. A zero channel bed slope is assumed since since

ditches in a Dutch polder network generally have zero channel bed slopes.

Firstly, in Figure 6.5 the Upwind method for the shallow water equations is considered. The initial solution

is the same pulse as was applied in Section 4.5.2. The boundary conditions were implemented as outlined

in Section 6.5.1. The Upwind method produces a smooth solution. It shows that the pulse dissipates in both

directions and stabilizes around 60 minutes time.
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Figure 6.5: The Upwind method of the shallow water equations applied to a pulse in a zero channel bed sloped ditch. The data for the
initial pulse is the same as was used for the kinematic and diffusive wave test results.

Secondly, in Figure 6.6 the Lax-Wendroff method for the shallow water equations is considered applied

to the pulse with the same boundary conditions mentioned above. The Lax-Wendroff method shows results

with an accuracy of O(∆x2) but with oscillatory behavior. A so-called flux-limiter method could be applied

to the finite volume method to smoothen its oscillatory behavior [12]. However, this is a point for further

research.
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Figure 6.6: The Lax-Wendroff method of the shallow water equations applied to a pulse in a zero channel bed sloped ditch. The data for
the initial pulse is the same as was used for the kinematic and diffusive wave test results.
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External inflow Here, external inflow is considered. Again, a big bucket of water is emptied in the middle

of the ditch during the first minute. Firstly, the Upwind method for the shallow water equations applied to a

ditch with zero channel bed slope is considered again. Figure 6.7 illustrates this.

Figure 6.7: The Upwind method of the shallow water equations applied to a bucket of water being emptied in a zero channel bed sloped
ditch.

Secondly, the Lax-Wendroff method for the shallow water equations applied to a ditch with zero channel

bed slope is considered. Figure 6.8 illustrates this.
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Figure 6.8: The Lax-Wendroff method of the shallow water equations applied to a bucket of water being emptied in a zero channel bed
sloped ditch.

6.5.3. Discussion
Upwind and Lax-Wendroff finite volume methods were developed for solving the system of the full shallow

water equations. This is a more complicated, computationally demanding solution method in comparison

to the methods for the kinematic and the diffusion waves because of the nonlinearity of both shallow water

equations. However, the full shallow water equations model waves that propagate and dissipate into both

directions of a ditch. Therefore, the type of water flow that is modeled is as close as one can get to reality for

a ditches network in a Dutch polder.
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Comparison of the various methods

7.1. General
Three different approaches to modeling water flow were discussed in Chapters 4, 5 and 6; namely, the kine-

matic wave equation, the diffusion wave equation and the dynamic wave equations. In this section, the

performance of each of the approaches and their potential applicability to a Dutch polder network will be

discussed.

7.2. Computational time
For making a comparison in computational times, each method was applied to the pulse mentioned before

and computed at ten different end times; namely, tend ∈ {6,12,18,24,30,36,42,48,54,60} minutes. For every

time tend each method was applied a hundred times for which the computational time was measured. Then,

the average was calculated from all the hundred computational times. These averages are plotted in the

figures below. Figure 7.1 shows the computational times for the Upwind method and Figure 7.2 shows the

computational times for the Lax-Wendroff method. The average ratios of the computational times of the

Dynamic wave model versus the Diffusion wave and the Kinematic wave model are given in Table 7.1.

For both the Upwind method and the Lax-Wendroff method, the computational times of the kinematic

and the diffusion wave are comparable. The computational times of the dynamic wave, however, are signif-

icantly larger. Note that the computational times of the Upwind method and the Lax-Wendroff method are

very similar.

Method \\ Ratio Dynamic : Kinematic Dynamic : Diffusion

Upwind 16 15

Lax-Wendroff 16 15

Table 7.1: The average ratios between the computational times of the Dynamic wave versus the Diffusion wave and the Kinematic wave.
The Kinematic wave is 16 times faster than the Dynamic wave and the Diffusion wave is 15 times faster than the Dynamic wave.

49
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Figure 7.1: The computational times in seconds of the Upwind method applied to the kinematic wave, the diffusion wave and the dy-
namic wave.

Figure 7.2: The computational times in seconds of the Lax-Wendroff method applied to the kinematic wave, the diffusion wave and the
dynamic wave.
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7.3. Representation of reality
Kinematic wave The kinematic wave model assumes long and flat waves. The model produces waves flow-

ing downstream only in which the flow is steady and uniform within each differential length. As a result, each

wave travels downstream with a constant speed and does not attenuate as it flows.

The kinematic wave needs a channel bed slope to model water movement. The water flow velocity is

therefore dependent on the slope steepness. To imitate the water flow in Dutch polders using the kinematic

wave, an artificial channel bed slope is to be implemented. A channel bed slope of 1 meter per kilometer

is applied which seems to give reasonable water flow velocities. It is a point for further research to examine

further whether this choice of slope is a feasible decision.

Diffusion wave The diffusion wave is very similar to the kinematic wave. It assumes long and flat waves

which also flow downstream only. The diffusion wave also needs a channel bed slope to model wave move-

ment. The diffusion wave attenuates as it moves downstream. Accordingly, it can model backwater effects.

Therefore it resembles water movement in a Dutch ditches network more closely than the kinematic wave

model. In this thesis, the diffusion wave was not applied successfully to all cases yet. This is also a point for

further research.

Dynamic wave Naturally, the dynamic wave models water flow as close to reality as possible since it uses

the full shallow water equations. Waves move in both directions and attenuate as they move. The equations

model water flow in a very detailed manner, with turbulent flows as well. It models the water flow more

precisely than may be necessary for this purpose.

7.4. Modeling difficulty
Fool-proof modeling Successful implementation of the full shallow water equations is a fool-proof type of

modeling water flow because of its realistic representation. It does not take many interpretation steps. The

kinematic and the diffusion waves, however, are easier to implement but require the modeler to take more

care with interpretation.

Difficulty of the numerical methods The kinematic and the diffusion wave equations are conservation laws

to which a one dimensional nonlinear numerical solution method is applied. The nonlinearity in the solution

method is expressed in different wave speeds for every grid cell.

The diffusion wave is trickier to model than the kinematic wave. The numerical methods are the same,

however, the flux function is different. The flux function in the diffusion wave equation involves a square

root. The value inside the square root can easily take negative values which results in non-real solutions and

breaking numerical method. For implementing the diffusion wave, linearization of the square root could be

considered to prevent these negative values in the square root.

The full shallow water equations are modeled with a method for nonlinear systems of equations. Natu-

rally, this complicates the numerical methods because the operations now have to be done on a system of

two equations. In addition, two boundary conditions need to be specified; one on either side. Stability issues

appear easily when these boundary conditions are not implemented correctly.
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7.5. Accuracy
The accuracy of the numerical solutions depends on the type of numerical method that is used. Here, the

Upwind method and the Lax-Wendroff were implemented. The Upwind method has an accuracy of the order

∆t . It smooths the solution visibly. The Lax-Wendroff method has a higher accuracy of the order O(∆t )2 but

produces oscillation in the results. Here, implementation of both methods turn out to have similar accuracies

overall. This is likely because the Upwind method smooths the data and the Lax-Wendroff method produces

oscillatory behavior which makes them comparable overall. Also, rounding errors may have come into play.

One could think of applying high resolution methods to achieve more accurate results without the os-

cillations. A high resolution method uses a second order accurate method for the smooth parts of the data

and it uses a first order accurate method for the non smooths parts of the data. Accordingly, a high-resolution

limiter defines when to use which linear method depending on the smoothness of the data [12]. Various high-

resolution limiters could be explored, such as the minmod or the van Leer limiter. This was beyond the scope

of this research for which the focus was more on exploring the different wave modeling approaches available.



8
Modeling kinematic wave networks

8.1. General
The next step toward a water flow model for a ditches network is to create a simple network and test the

developed numerical methods. In order to do so, confluence conditions need to be determined for junctions

of waterways. These conditions are simple for the kinematic wave equation, however, they become more

complex for the full shallow water equations. Here, the focus will be on a simple kinematic wave network. The

comparison will be made with SOBEK, which is a program that implements the full shallow water equations

for water networks.

8.2. Implementation of a kinematic wave network
A simple waterway network is considered consisting of six ditches and two junctions, as illustrated in Figure

8.1.

Figure 8.1: The test network which is the network under consideration for this chapter.
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8.2.1. Initial conditions and boundary conditions
As was discussed in the earlier chapters, an initial solution needs to be defined at all grid cells in order to

apply any numerical approximation method. Therefore, all points in the network in Figure 8.1 are assigned

the downstream depth at the network’s outlet.

The boundary conditions are defined similarly to what was discussed for the kinematic wave in a straight

ditch in Chapter 4. The values of the network’s inlet and outlet are the boundary conditions. The inlet bound-

ary condition is assigned a value for the discharge, which can be calculated into a water depth value which is

needed for the approximation method. The outlet boundary condition is assigned a fixed depth value.

8.2.2. Confluence conditions
Two confluence conditions are implemented. First of all, the water depths should be equal in the waterway

junctions. For example, the downstream water depth of ditch 1 equals the upstream water depths of ditch

2 and ditch 4 in Figure 8.1. This is implemented by taking the downstream boundary values of ditch 1 and

using them as the upstream boundary values for ditch 2 and ditch 4. A similar method is applied to all the

other connections in the network.

Additionally, the sum of the discharge values in junctions should be constant in order to satisfy the con-

tinuity principle. The discharge flowing into the junction should equal the discharge flowing out of the junc-

tion. This means for the example above that Q1,out =Q2,in +Q4,in.

8.2.3. Results
The kinematic wave model is tested on the ditches network shown in Figure 8.1 with equal widths of the

ditches; namely, a width of 1 meter. The surface water gradient in a polder ditches network from the inlet to

the outlet is generally 1 cm per 1 kilometer. Therefore, in the kinematic wave network model, a channel bed

slope of 1 centimeter per kilometer is assumed to begin with.

Equal cross sections The kinematic wave is governed by gravity, hence the water flow is fully dependent

on the channel bed slopes. Therefore, an average slope of S0 = 0.01 m
1000 m is implemented to imitate the water

flow in the zero sloped ditches in a Dutch polder network. This means that the difference in water bed height

between the water inlet point and the water outlet point is 0.01 m
1000 m times the total length that the water travels.

The lengths of the ditches are displayed in Table 8.1.

Ditch number Length (m)

1 1000

2 1414

3 1414

4 1414

5 1414

6 1000

Table 8.1: The lengths of the ditches in the network shown in Figure 8.1

Therefore, the water travels a total length of 4828 meters from the inlet to the outlet. Thus the channel bed

height differs in 4.828 cm between the inlet and the outlet. Now, given that the total channel bed slope is 4.828

cm over the total 4828 meters, the channel bed slopes for each ditch are engineered such that discharges in

the junctions satisfy the confluence conditions. Because of the waterway separation from ditch 1 to ditch 2

and 3, the discharges in ditch 2 and 3 are different from the discharge in ditch 1. Hence, the channel bed
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slopes are also different. The following paragraphs discuss how these channel bed slopes are engineered.

Table 8.2 show these resulting slopes for this network.

The discharge is defined and calculated by

q = 1

nm
S1/2

0
(A)5/3

(R)2/3
(8.1)

= 1

nm
S1/2

0
(Bh)5/3

(2h +B)2/3
(8.2)

For waterway junctions, the cross sections A, the hydraulic radii R and the Gauckler-Manning coefficient

nm of the three connected ditches are equal. The channel bed slope S0 is the only non-fixed variable. In

the waterway separation in the network, the discharges in ditch 2 and 4 equal half the discharge in ditch 1

because of the specified confluence conditions. Hence, resulting in a slope in ditch 2 and 3 of one fourth of

the slope in ditch 1 as is illustrated in the calculation below

1

2
×q = 1

2
×constant×S1/2

0 (8.3)

= constant× (
1

4
S0)1/2 (8.4)

Applying the kinematic wave to the network requires to set the artificial channel bed slopes according to the

expected discharge values in the ditches using the confluence conditions. Using the ditches lengths given in

Table 8.1 and the assumption that the total slope over the total length is 4.828 cm, one attains to the following

channel bed slope values

Ditch number Slope

1,6 1.784 cm
1000 m

2,3,4,5 0.446 cm
1000 m

Table 8.2: The artificial slopes for the ditches given in 8.1.

Figures 8.2, 8.3 and 8.4 show the results for the water levels and the discharges computed for a total time

of 2,5 days so 60 hours. Here, the inflow discharge at the inlet is set to Q1,in = 0.05376 m3/s which equals

a water depth of 1.04828 meters. The initial water levels above a given horizontal datum are set to 1 meter

everywhere, meaning that the water depths are determined by subtraction of the channel bed slope from

these water levels. The spatial calculation points are placed at every 100 meters. The time step was set to 12

minutes. This time step was manually optimized such that the CFL number has a value of 0.4467 in ditch 1

and ditch 6 which have the highest slopes and reach the CFL limit faster. 0.4467 is close to the CFL number’s

limiting value for stability; namely, the CFL number should be smaller than 1
2 as was discussed in Section

4.3.4. Note that it is important to satisfy the CFL limit for every value along the entire computations. Hence,

the Python scripts check this CFL limit for every computation and break when the CFL limit is exceeded.
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Figure 8.2: The results for water levels of the left branch of the network including ditches 1, 2, 3 and 6.
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To zoom into the water behavior and its depths, Figure 8.3 shows the same as in the previous figure but

now zoomed in and at slightly different times. This simplifies the comparison with SOBEK later on in this

section.

Figure 8.3: The results for water levels of the left branch of the network including ditches 1, 2, 3 and 6.
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Figure 8.4: The results for the discharges of the left branch of the network including ditches 1, 2, 3 and 6.

Clearly, the water flow is very slow for a channel bed slope of 1 centimeter per kilometer. It takes 60 hours for

the wave to travel through the entire ditches network. Let us compare with the results when doing the same

simulation in SOBEK.

Non-equal cross sections When the widths of the ditches vary, (8.3) does not simply hold. Depending on

the widths, new discharge-slope relations need to be found for the separating ditches. This is a point for

further research.

8.3. Implementation with SOBEK
SOBEK is a water modeling tool used for many applications such as flood forecasting, salt intrusion and sur-

face water quality. It has a wide variety of features which makes it possible to model a water system’s behavior

in a very detailed manner [15]. These detailed features add complexity and computational time. Naturally, it

is possible to implement simple systems such as the case discussed above as well. This application is made

in this section to compare the performance of the kinematic wave network with SOBEK’s full shallow water

equations network.

8.3.1. Confluence conditions
The confluence conditions for the full shallow water equations are more complex than those for the kinematic

wave equation. A confluence condition should be implemented for both equations; a continuity of flow

condition and a conservation of momentum condition. The latter brings the difficulties, since momentum

cannot be simply added up since the momentum direction needs to be taken into account. The SOBEK suite

technical reference manual explains how this is done [15].
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8.3.2. Results
Similar to the kinematic wave network case above, the spatial calculation points are placed at every 100 me-

ters and the time step is set to 1 minute. The channel bed slope S0 = 0 is implemented. After 12 hours a stable

and fixed water depth and discharge situation is obtained. To enable comparison with the kinematic wave

network, the time of 60 hours is considered. The values are shown in Figure 8.5, Figure 8.6 and Figure 8.7.

Figure 8.5: The water depths computed by SOBEK for the left branch of the network, showing values for the ditches 1,2,3 and 6 after 3
hours time.

Figure 8.6: The water depths computed by SOBEK for the left branch of the network, showing values for the ditches 1,2,3 and 6 after 60
hours time.
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Figure 8.7: The discharges computed by SOBEK for the left branch of the network, showing values for the ditches 1,2,3 and 6 at the
equilibrium state after 12 hours.

8.4. A comparison
The water flow in the network was computed by the kinematic wave and SOBEK’s full shallow water equa-

tions. A simple comparison between the results will be made in the following paragraphs. For both methods,

a total tieme of 60 hours was computed in the previous sections. First of all, the end values for the water

depths and discharges are compared. See Tables 8.3 and 8.4 for the values of the water depths above datum

and the discharges at the time 60 hours.

Inlet Inflow point ditch 2 Inflow point ditch 3 Inflow point ditch 6 Outlet

Kinematic 1.048 1.030 1.024 1.018 1.000

SOBEK 1.049 1.033 1.026 1.020 1.000

Table 8.3: Comparison between the water depths (in meters) above datum between the kinematic wave network and SOBEK’s full shallow
water equations at time = 60 hours.

Inlet Inflow point ditch 2 Inflow point ditch 3 Inflow point ditch 6 Outlet

Kinematic 0.0508 0.0254 0.0254 0.0508 0.0508

SOBEK 0.0538 0.0269 0.0269 0.0538 0.0538

Table 8.4: Comparison between the discharge values (in cubed meters per second) above datum between the kinematic wave network
and SOBEK’s full shallow water equations at time = 60 hours.

The end water depths are comparable. Assuming that SOBEK is very accurate, the kinematic wave values

are off by a maximum of 3 millimeters. The discharges are slightly different. This is due to the artificial

channel bed slopes which decrease the kinematic wave water depths above the channel bed in comparison

with SOBEK. When the water depths are smaller, the discharges are also smaller.

Computational time For the kinematic wave, the Lax-Wendroff numerical finite volume method was ap-

plied. Table 8.5 shows the computational times for the kinematic wave network and SOBEK’s full shallow
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water equations network.

The kinematic wave computational times increase with computing longer periods of times. SOBEK takes

a constant time to compute the results. This is because it runs many additional processes around the actual

wave computations. These additional processes require a constant amount of time. The wave computations

increase in computational speed, however this is not significant yet for computing these periods of time.

SOBEK’s computational times will likely increase for more than 5 days. Unsurprisingly, SOBEK is fast when

computing a simple network. It is a program which has been under development and computational speed

optimization for many years.

12 hrs 24 hrs 1.5 day 2 day 2.5 days 3 days 3.5 days 4 days 4.5 days 5 days

Kinematic 0.75 s 1.50 s 2.25 s 3.00 s 3.78 s 4.49 s 5.25 s 5.99 s 6.74 s 7.48 s

SOBEK 5 s 5 s 5 s 5 s 5 s 5 s 5 s 5 s 5 s 5 s

Table 8.5: The computational times for the two network programs applied to the simple waterway network with various times tend . Both
methods were implemented using time steps of 1 minute. Note that SOBEK only gives the computational time in seconds accuracy.

Accuracy SOBEK is known for its highly accurate results due to its implementation of the full shallow water

equations and optimization of the numerical methods. How does the kinematic wave compare to this? First

of all, the kinematic wave results in a less realistic representation of water flow than the full shallow water

equations. The kinematic wave is governed by the channel bed slope and only flows in one direction. The

full shallow water equations also model water flow with zero slopes and produce waves in both directions,

which is a more realistic representation of the water flow situation in a ditches network. However, the kine-

matic wave can still be useful when implemented with care. The kinematic wave yields a simple and suitable

algorithm, if the necessary parameters are chosen with care.

As was seen in the computed networks, the water flows significantly slower in the kinematic wave network

compared to SOBEK’s network. This is due to the very small values for the channel bed slopes which are set to

an average of 1 cm per kilometer giving a value of S0 = 0.01
1000 . Now, when searching for a similar water velocity

to the velocities in SOBEK’s network, one can experimentally set the average channel bed slope to 1 meter

per kilometer and arrive at similar results. However, adjusting the channel bed slopes in this way should be

tested or theorized properly before it can be implemented appropriately.

The Upwind and the Lax-Wendroff methods are also limited in their accuracy. The numerical methods

used for approximating the kinematic wave equation could be improved upon yielding more computational

speed and higher accuracies. As was mentioned in Section 7.4, high resolution methods could be imple-

mented to develop a numerical solution method which combines first-order and second-order methods to

optimize accuracies.
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Conclusion

9.1. Conclusion
The aim of this thesis was to develop a simple and fast model for surface water flow in a ditches network

of a Dutch polder. The model would preferably be fast enough to eventually run on a mobile phone. The

available modeling programs for this purpose generally model water flow using the detailed shallow water

equations which quickly lead to high computational times. Instead of the full shallow water equations, the

simpler kinematic wave equation was chosen as the main focus of this research. Would the kinematic wave

still give a general idea of the water flow in a ditches network while reducing computational times drastically?

In order to find out, two finite volume numerical solutions methods were developed to solve the hyper-

bolic kinematic wave equation on a straight ditch. The Upwind method is the simplest method with a theo-

retical accuracy of the order O(∆t ). It gives smooth and smeared results. The Lax-Wendroff method is more

accurate with a theoretical accuracy of the order O(∆t 2). It gives accurate results but also causes oscillatory

behavior in the solutions. Both methods were implemented with first order accuracies because the Upwind

method smooths solutions and the Lax-Wendroff method causes oscillatory behavior. Both methods worked

successfully for the kinematic wave equation resulting in comparable computational times.

Additionally, finite volume numerical methods were developed to solve the diffusion wave equation and

the full shallow water equations, also known as the dynamic wave model. Hence, a comparison was made

between the kinematic wave and the two other modeling approaches. The kinematic wave flow is generated

by the channel bed slope and its waves move downstream only. Since the channel bed slopes are generally

zero in a ditches network in a Dutch polder, artificial channel bed slope were used. The kinematic wave yields

similar computational times and modeling results as the diffusion wave equation. The only difference is that

the diffusion wave could include backwater effects. Unfortunately, the numerical methods for the diffusion

wave were not successfully implemented for all possible cases. On the other hand, the dynamic wave was

implemented successfully with zero channel bed slopes. It yields significantly higher computational times

compared to the kinematic and the diffusion wave; namely, the dynamic waves requires 15 to 16 times longer

computational times in comparison with the diffusion wave and the kinematic wave respectively. Thus, the

dynamic wave is the most realistic representation of surface water flow while requiring higher computational

times. Therefore, implementing the developed methods for the dynamic wave may not be feasible for the fast

water flow model on a mobile phone.
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A further step was made by computing the kinematic wave in a simple hypothetical ditches network with

equal cross sections. The artificial channel bed slope of 1 centimeter per kilometer was chosen to imitate

the stream gradient in a ditches network in a Dutch polder. The water moves very slowly with this slope.

Therefore, a higher artificial channel bed slope is needed for a more accurate representation of the water

flow. A comparison with SOBEK was made which shows that SOBEK is very fast and compares well to the

computational times of the implementation of the kinematic wave. This is unsurprisingly so since SOBEK

has been under development and numerical speed optimization for many years.

In summary, the kinematic wave and the diffusion wave require much smaller computational times when

comparing the developed numerical methods for a straight ditch. In comparison to the dynamic wave, the

kinematic wave and the diffusion wave take care in choosing an appropriate channel bed slope and with

interpreting the results. When comparing the developed kinematic wave network with SOBEK, the kinematic

wave is not necessarily faster than SOBEK which implements the dynamic wave model.

9.2. Recommendations for future research
In order to successfully apply the kinematic wave to ditches networks in Dutch polders, more testing needs to

be done to find an appropriate channel bed slope. Additionally, how to connect ditches with different cross

sections is a point for further research in the networks.

The kinematic wave network may be extended to a diffusion wave network which incorporates backwater

effects. This may be desirable once structures, such as dams, will be included in the water flow model. More

research needs to be done to applying the diffusion wave without breaking of the solutions. Some literature

is available on how to model diffusion wave networks which can be explored further, see [16–19].

With regard to computational speeds and accuracies, only two simple and straightforward numerical

methods were implemented. Higher accuracies and lower computational times may be achieved by imple-

menting high-resolution numerical methods.

Finally, SOBEK seems to model very accurate water flow behavior with low computational times for the

simple network under consideration. It may be worth exploring the applicability of SOBEK for modeling the

water flow, and even water quality parameters for saline water, for the desired web and phone application.
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A
Results of the method of manufactured

solutions

A.1. MMS for the advection equation
As was previously discussed in Section 4.4.2, consider the advection equation assuming the wave speed ū = 1

wt +wx = 0 (A.1)

and assuming the solution w(x, t ) = −sin(t − x). Comparing the solution w(x, t ) = −sin(t − x) with the nu-

merical results when the upwind scheme and the Lax-Wendroff results in small differences between the real

solution and the numerically computed solution as is shown in Table A.1 and Table A.2. Thus, the developed

Upwind and Lax-Wendroff numerical methods are verified.
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Table A.1: Error between manufactured analytical solution and the upwind numerical solution for the advection equation, measured by
the distance function d(x, y) = |y − x| where y is the assumed solution and x the numerical solution. The number of intervals was set to
nx = 24, with the interval distance ∆x = 2π

24 ≈ 0.26 and the time step ∆t =∆x ≈ 0.26.

Interval \\ Time Time = 10 s Time = 60 s Time = 10 mins Time = 60 mins

C1 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00

C2 0.00000000e+00 4.63943333e-18 1.09801057e-13 3.93796107e-13

C3 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00

C4 1.72084569e-15 6.21724894e-15 8.03801470e-14 0.00000000e+00

C5 1.75517282e-15 0.00000000e+00 0.00000000e+00 0.00000000e+00

C6 0.00000000e+00 0.00000000e+00 2.94209102e-14 0.00000000e+00

C7 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.17683641e-13

C8 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00

C9 0.00000000e+00 1.77635684e-15 5.68434189e-14 0.00000000e+00

C10 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00

C11 0.00000000e+00 0.00000000e+00 9.84212711e-14 0.00000000e+00

C12 2.22044605e-16 0.00000000e+00 0.00000000e+00 4.54748241e-13

C13 4.44089210e-16 6.88338275e-15 1.13677721e-13 0.00000000e+00

C14 0.00000000e+00 7.12150917e-15 0.00000000e+00 0.00000000e+00

C15 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00

C16 0.00000000e+00 0.00000000e+00 8.03801470e-14 0.00000000e+00

C17 9.11063175e-16 0.00000000e+00 0.00000000e+00 0.00000000e+00

C18 0.00000000e+00 3.55271368e-15 2.94209102e-14 0.00000000e+00

C19 0.00000000e+00 1.88737914e-15 0.00000000e+00 0.00000000e+00

C20 0.00000000e+00 0.00000000e+00 2.94209102e-14 2.27373675e-13

C21 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00

C22 2.22044605e-16 0.00000000e+00 5.68434189e-14 0.00000000e+00

C23 0.00000000e+00 5.10702591e-15 0.00000000e+00 0.00000000e+00

C24 0.00000000e+00 0.00000000e+00 9.84767823e-14 1.05518852e-17
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Table A.2: Error between manufactured analytical solution and the Lax-Wendroff numerical solution for the advection equation, mea-
sured by the distance function d(x, y) = |y − x| where y is the assumed solution and x the numerical solution. The number of intervals
was set to nx = 24, with the interval distance ∆x = 2π

24 ≈ 0.26 and the time step ∆t =∆x ≈ 0.26.

Interval \\ Time Time = 10 s Time = 60 s Time = 10 mins Time = 60 mins

C1 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00

C2 1.11022302e-16 5.55111512e-17 1.09801057e-13 3.93685085e-13

C3 5.55111512e-17 3.43271324e-17 1.11022302e-16 1.11022302e-16

C4 5.55111512e-17 0.00000000e+00 8.03801470e-14 -1.11022302e-16

C5 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.11022302e-16

C6 5.55111512e-17 0.00000000e+00 2.95319325e-14 0.00000000e+00

C7 0.00000000e+00 1.11022302e-16 0.00000000e+00 1.17683641e-13

C8 1.11022302e-16 2.22044605e-16 0.00000000e+00 0.00000000e+00

C9 0.00000000e+00 0.00000000e+00 5.68434189e-14 0.00000000e+00

C10 1.11022302e-16 1.11022302e-16 0.00000000e+00 5.55111512e-17

C11 0.00000000e+00 0.00000000e+00 9.85878046e-14 0.00000000e+00

C12 0.00000000e+00 1.11022302e-16 5.55111512e-17 4.54748241e-13

C13 0.00000000e+00 1.11022302e-16 1.13733232e-13 5.55111512e-17

C14 1.11022302e-16 5.55111512e-17 5.55111512e-17 1.11022302e-16

C15 1.11022302e-16 2.28847549e-17 1.11022302e-16 1.11022302e-16

C16 4.99600361e-16 9.43689571e-16 8.04911693e-14 0.00000000e+00

C17 1.14423775e-17 0.00000000e+00 0.00000000e+00 2.22044605e-16

C18 5.55111512e-17 0.00000000e+00 2.91988655e-14 2.22044605e-16

C19 3.33066907e-16 0.00000000e+00 0.00000000e+00 0.00000000e+00

C20 4.44089210e-16 0.00000000e+00 2.94209102e-14 2.27373675e-13

C21 0.00000000e+00 0.00000000e+00 5.69544412e-14 0.00000000e+00

C22 2.22044605e-16 1.11022302e-16 0.00000000e+00 0.00000000e+00

C23 0.00000000e+00 0.00000000e+00 9.84767823e-14 0.00000000e+00

C24 0.00000000e+00 2.22044605e-16 0.00000000e+00 1.05518852e-17
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A.2. MMS and Richardson extrapolation for the kinematic wave equation
For the numerical solutions methods of the kinematic wave equation, the solution h(x, t ) = 3

2 −sin(t −x) was

assumed and tested using the method of manufactured solutions. The number of intervals was set to nx = 24,

with the interval distance ∆x = 2π
24 ≈ 0.26 and the time step ∆t = 1

2∆x ≈ 0.19 which gives that d t ≈ 0.8d x so

that the CFL number is approximately 0.467 which is close to the CFL number limit of 1
2 . Finding the accuracy

of the kinematic wave equation was done by applying the Richardson extrapolation method mentioned on

page 34 in [14]. Thus,∆x/2 and∆x/4 were used for calculating the error decreasing when the time and spatial

discretization steps are halved. The end time was set to tend = 60 minutes. For a first order method, the error

is halved when the discretization steps are halved. Both the Upwind and the Lax-Wendroff error results show

the trend of halving errors. Therefore, they both seem to be first order accurate with the implementation in

discussed in this report.

Table A.3: The errors between the assumed solution and the Upwind computed solution for various sizes of discretization steps.

Interval \\ Discretization step 4*dx, 4*dt 2*dx, 2*dt dx, dt

C1 0. 0. 0.

C2 0.17369475 0.08499694 0.04199028

C3 0.13892861 0.06646339 0.03245277

C4 0.09372526 0.04266917 0.02026978

C5 0.0425915 0.01598825 0.00665761

C6 -0.0096362 -0.0110356 -0.00707655

C7 -0.05820829 -0.03590286 -0.01967886

C8 -0.09884965 -0.05621173 -0.02997175

C9 -0.12824089 -0.06974228 -0.03667034

C10 -0.14461412 -0.07507699 -0.03850854

C11 -0.1482038 -0.07270915 -0.03563874

C12 -0.14112019 -0.06527868 -0.03053773

C13 -0.12646008 -0.05593389 -0.02564782

C14 -0.10704485 -0.04631733 -0.02126209

C15 -0.08456088 -0.03632977 -0.01666567

C16 -0.05963832 -0.02536961 -0.01147911

C17 -0.03264976 -0.01330161 -0.00574815

C18 -0.00434449 -0.00050588 0.00029176

C19 0.02430966 0.01249486 0.0063663

C20 0.05244841 0.02521862 0.01220361

C21 0.07899467 0.03715073 0.01754476

C22 0.10235509 0.04775322 0.02223065

C23 0.12071304 0.05655167 0.02627789

C24 0.13243535 0.0630699 0.02977102
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Table A.4: The errors between the assumed solution and the Lax-Wendroff computed solution for various sizes of discretization steps.

Interval \\ Discretization step 4*dx, 4*dt 2*dx, 2*dt dx, dt

C1 0. 0. 0.

C2 0.16339566 0.08000215 0.0394534

C3 0.10824812 0.05176241 0.02512597

C4 0.03906401 0.01623646 0.00720653

C5 -0.03446838 -0.02108135 -0.01147674

C6 -0.10362214 -0.05386576 -0.02798459

C7 -0.15511937 -0.07702111 -0.03973067

C8 -0.17106449 -0.08955727 -0.04474303

C9 -0.14093435 -0.08352196 -0.04217669

C10 -0.07393109 -0.05060554 -0.02818864

C11 0.003544 -0.00403032 -0.00334939

C12 0.06414476 0.03355772 0.01700393

C13 0.09433795 0.05231431 0.02674497

C14 0.09629468 0.05449647 0.02827321

C15 0.07969156 0.04611005 0.02439817

C16 0.05328202 0.03246175 0.01761174

C17 0.02142281 0.01687424 0.00996235

C18 -0.01494438 0.00133963 0.00229545

C19 -0.05674435 -0.01371411 -0.00573005

C20 -0.09628702 -0.02981864 -0.01441895

C21 -0.1238853 -0.04807316 -0.02276719

C22 -0.1227471 -0.06326988 -0.02810947

C23 -0.07377536 -0.06241208 -0.03002378

C24 -0.06927864 -0.03045867 -0.02338367
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