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1 Introduction

In this work we look at the implementation of a numerical solution of a linear Partial
Differential Equation(PDE), resulting from the mathematical modeling of physical systems
and in particular bubbly flows. The PDEs have been discretized through the use of finite
elements. The linear systems we are interested in are of the form

Ar=b,Ae R neN (1)

that arise from such discretizations, where n is the number of degrees of freedom and is
also called the dimension of A. Also A is symmetric positive definite(SPD), i.e.,

A=AT yTAy> 0Vy e Ry £0. 2)

The linear system given by (1) is usually sparse and ill-conditioned. This means that
there are few non-zero elements per row of A and also that the condition number k is
usually large. Put in other words, the ratio of the largest eigenvalue to the smallest is
large and this leads to slow convergence of an iterative method.

_

k{A}: = N

(3)
where 0 < A\ < Ay < ... < A\, are eigenvalues of matrix A.

Solving the system (1) by direct methods is also an option but it is usually not memory-
wise or computationally efficient. Though these methods are robust and generally appli-
cable but they also tend to be prohibhitively expensive. The sparsity of the matrix A
necessitates the use of efficient storage methods and computation with ’iterative meth-
ods’. The term ’iterative method’ refers to a wide range of techniques that use iterates,
or successive approximations to obtain more accurate solutions to a linear system at each
iteration step.

Krylov subspace methods, especially the Conjugate Gradient Method is the prominent
choice for solving such systems. However the convergence of these methods depends heavily
on k(A). In order to avoid more and more iterations, as x(A) rises with increasing problem
sizes, the matrix A is preconditioned to bring down the condition number form x(A) to
k(M 3 AM %) which is equivalent to x(M~'A). The coefficient matrix A is multiplied by
M. The original system (1) then looks like,

M~ Az = M1, (4)

where M is symmetric and positive definite just like A. M~! is chosen in such a way
that the cost of the operation M ~ly with a vector y is computationally cheap. However,
sometimes preconditioing might also not be enough. In that case we use second level of
preconditioning or Deflation in order to reduce x(A).

In this work some previous results [Tang, 2008] are used for implementation. The focus
is to implement these methods on the Graphical Processing Unit (GPU).

Recently Scientific Computing has largely benefitted from the data parallel architecture
of graphical processors. Many interesting problems which are computationally intensive
are ideally suited to the GPU. Especially matrix calculations. It is only intuitive to use
them for solution of discretized partial equations. With the advent of the Compoenent
Unified Device Architecture (CUDA) paradigm of computing available on NVIDIA GPU
devices, it has become easier to write such applications. More time can be spent in explor-
ing the "What If?’ scenarios that are of scientific importance rather than understading
device specifics. We briefly define the problem of Bubbly flows followed by a background
on Iterative Methods. Subsequently we introduce the Parallelization of Iterative methods



that are used on cluster machines and coded in MPI, HPF and such technologies. Af-
ter introducing some of the Architectural details of the GPU and and a glimpse of the
programming techniques we disuss the recent work that has been done on the GPU with
respect to solving iteratively the linear systems emerging from discretizationsof PDEs. We
conclude this document by presenting the research questions that the implementation will
explore and try to answer.

2 Problem Definition

Computations of Bubbly flows is the main application for this implementation. Under-
standing the dynamics and interaction of bubbles and droplets in a large variety of pro-
cesses in nature, engineering, and industry are crucial for economically and ecologically
optimized design. Bubbly flow occur, for example, in chemical reactors, boiling, fuel
injectors, coating and volcanic eruptions.

Two phase flows are complicated to simulate, because the geometry of the problem
typically varies with time, and the fluids involved have very different material properties.
Following from the previous work [Tang, 2008] we consider stationary and time-dependent
bubbly flows, where the computational domain is always a unit square or unit cube filled
with a fluid to a certain height. The bubbles and droplets in the domain are always chosen
such that they are located in a structured way and have equal radius, s, at the starting
time.

Mathematically bubbly flows are modelled using the Navier Stokes equations including
boundary and interface conditions, which can be approximated numerically using operator
splitting techniques. In these schemes, equations for the velocity and pressure are solved
sequentially at each time step. In many popular operator-splitting methods, the pressure
correction is formulated implicitly, requiring the solution of a linear system (1) at each
time step. This system takes the form of a Poisson equation with discontinuous coefficients
(also called the ’pressure(-correction) equation’) and Neumann boundary conditions, i.e.,

-9 (o va) = Fwa e, (5)

%p(.%') = g(x),:v € 04, (6)

where Q,p, p,x and n denote the computational domain, pressure, density, spatial
coordinates, and the unit normal vector to the boundary, 912, respectively. Right-hand
sides f and g follow explicitly from the operator-splitting method, where ¢ is such that
mass is conserved, leading to a singular but compatible linear system (1).

A typical sequence of steps for Deflated Preconditioned CG algorithm can be outlined
here as described in [Tang, 2008]. This method is numerically more stable although it is
derived from the work discussed in [Saad, Yeung, Erhel, and Guyomarc’h, 2000].

1. Select xy. Compute rg := b — Axg and vy = Prg, Solve My = 7y and set pg := 1.

2. for j:=0,..., until convergence do

3. ’lﬁj = PApj
P (TA'ay')
4. aj = 7(19;715]_)

5. i‘j+1 = .i'j + a;p;

6. fj...l = ’Fj — OéjUAJj



7. Solve Mijrl = fj+1

o (Fir1yi41)
8. B =i

9. pjt1 = Yjr1 + Bjp;
10. end for
11. = := Qb+ Pij+1

A is the coefficent matrix. M is the preconditioning matrix. r; is the residual at gth
step and p; is the new search direction every step.z; is the solution we seek for the linear
system Ax = b.

Solving the linear system (1), that is a discretization of (5), within an operator splitting
approach is a bottleneck in the fluid-flow simulation, since it typically consumes the bulk of
the computing time. In order to accelerate the convergence of the iterative Precondtioned
Conjugate Gradient Algorithm with deflation we propose to use the GPU. The challenge
lies in optimizing the computation on the GPU in such a way so as to extract the maximum
computation throughput it can deliver. We discuss some of the challeneges involved in the
Research Questions section of this document.

3 Iterative Solution Methods

In this section a brief introuction of the discretization methods for Partial Differential
equations are discussed followed by a glimpse of the basic iterative methods.

3.1 Discretization of Partial Differential Equations

To solve differential equations a suitable approximation must be taken. Expressing them
in the form of equations involving a finite number of unknowns, we can translate them into
a problem of solving a sparse linear system. The discretization involves some boundary
conditions.

Consider the example of the Poisson’s Equation:

2 2
Ou  Ou ,f,for@l)eﬁ (7)

- 4+ =
890% 31‘% 2

where Q is a bounded, open domain in R?. Here, z1, z9are the two space variables.
The above equation is to be satisfied only for points that are located at the interior of the

Figure 1: Domain 2 for Poisson’s Equation



domain 2. Equally important are the conditions that must be satisfied on the boundary I'
of Q. These are called boundary conditions. Three common types of boundary conditions
are:

Dirichlet Condition u(z) = ¢(x) (8)

Neumann Condition gg(x) =0 (9)

Cauchy Condition ?)Z_L,(a?) + a(z)u(z) = y(x) (10)
i

The vector 71 refers to a unit vector that is normal to I' and directed outwards. For a
given vector ¥, with components v1 and v2, the directional derivative % is defined by

ou, . ul(x+ ht) —u(x)
a5 (®) = fim h (11)
ou ou
= 87];1(1:)1}1 + 67@(1})’[12 (12)
= vu.v (13)

3.1.1 Finite Difference Method

The finite difference method is based on local approximations of the partial derivatives in
a Partial Differential Equation, which are derived by low order Taylor series expansions.
It is particularly simple for uniform meshes. There are a number of ”fast solvers” for
constant coefficient problems, which can deliver solution in a logarithmic time per grid
point.

The simplest way to approximate the first derivative of a function u at the point x is

via the formula
<du(x)> oz +h) —u@) (14)

dx h
When w is differentiable at z, then the limit of the above ratio when h tends to zero
4
is the derivative of v at x. For a function whose fourth derivative 2771 exists in the

neighborhood of x, we have by Taylor’s Formula

du  h?*d?u  h3dPu  htdhu

h) = pie v, ncon oy 15

u(@+h) = ulw) + " 2d2 T 6 dr T uat (&+) (15)

for some &4 plus in the interval (z,z+h). Therefore the above approximation (14) satisfies

du  u(x+h)—u(z)  hdu 9
I Y togz T O(h?). (16)

replacing by -h in (15)we get

du  R?d*u  h3dPu  h* dru(€))
ule = h) = ule) = h et S 2 T G d® 20 dad
adding them up we get the centered difference approximation of the second derivative.
The dependence of this derivative on values of u at the points involved in the approximation
is often represented by a ”stencil”.
The approximation shown first (14) is forward rather than centered. Also a backward
approximation could be devised by replacing h by -h in that equation. The two formulas

can be merged to get the centered difference formula:

(17)

du(z) _u(zx+h)—u(z—h)
dv 2h (18)
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Figure 2: The three point stencil for the centered difference approximation to the second
order derivative

’Finite Differences for 1-D problems‘

Consider the one-dimensional equation

—u" (z) = f(z) for z € (0,1) (19)
u(0) =u(1)=0 (20)
The interval [0, 1] can be discretized uniformally by taking n + 2 points

xi=1ixh,i=0,...,n+1 (21)

where h = n%rl Because of the Dirichlet boundary conditions, the values at u(zg) and
u(xpy1) are known. At every other point, approximation of w; is sought for the exact
solution u(x;).

If centered difference approximation (17) is used, then by (19) expressed at the point
xi, the unknowns wu;, u;_1, ;41 satisfy the relation

—ui1 + 2u; — i1 = B2 f; (22)

’Finite Differences for 2-D problems‘

Similar to the previous case, consider a simple problem in 2D.

Pu 0%u )
u=0onT (24)

where ) is now the rectangle (0,/1) x (0,l2) and I' its boundary. Both directions can
be discretized uniformly in both dimensions by taking n; + 2 and no + 2 points in each
direction (x1,z2).

Hence the function is defined on

Ti; =1Xh1,0=0,...,n +1x2; =7 X h1,7=0,...,n2+1 (25)
where
l1 lo
1 n +1a 2 ng + 1 ( )

3.1.2 Finite Element Method

The finite element method is best suited for handling complex geometries (and boundaries)
with relative ease. The finite element method is best illustrated with the solution of a
simple Partial Differential Equation in a two dimensional space. Consider again Poisson’s
equation (7) with the Dirichlet boundary condition (8) where € is a bounded open domain
in R? and T its boundary. Then the Laplacian Operator can be defined as.

0* 9

A=+
dz?  0x3

(27)
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Now by the virtue of the Greens theorem (proof dicussed in [Saad, 1996] ) we have

/VU.Vudx:/vAud:ch/val_{ds. (28)
Q Q r On

For the system we want to solve in (23) we must take approximations of w and that
over a finite dimensional space. Another consideration is that we must be able to solve
the system numerically with this formulation. A weak formulation, to extract a system of
equations that yield the solution of the problem, is in place.

ou Ov ou Ov
(f,v)z/fvdx. (30)
Q

The weak formulation of the initial problem consists of selecting a subspace of reference
V of L? and then defining the following problem.

Find u € V such that a(u,v) = (f,v),Vv € V. (31)

In order to understand the usual choices for the space V , the definition of the weak
problem only requires the dot products of the gradients of v and v and the functions f
and v to be Ly integrable. The most general V' under these conditions is the space of
all functions whose derivatives up to the first order are in Lg. This is known as H(().
However, this space does not take into account the boundary conditions. This however
is tru only in case of homogenous Dirichlet Boundary Conditions. The functions in V
must be restricted to have zero values on I'. The resulting space is called H}(€2). The
finite element method consists of approximating the weak problem by a finite dimensional
problem obtained by replacing V with a subspace of functions that are defined as low-
degree polynomials on small pieces (elements) of the original domain.

Consider a region €2 in the plane which is triangulated as shown in Figure 3

Figure 3: Finite Element triangulation of a domain

In this example, the domain is simply an ellipse but the external enclosing curve is not
shown. The original domain is thus approximated by the union 2 of m triangles K,

Qp = 6 K; (32)

For the triangulation to be valid, these triangles must have no vertex that lies on the
edge of any other triangle. The mesh size h is defined by



h = max diam(K;) (33)

7,:1,...,77’1

where diam(K), the diameter of a triangle K , is the length of its longest side. Then
the finite dimensional space V}, is defined as the space of all functions which are piecewise
linear and continuous on the polygonal region €25, and which vanish on the boundary I'.
More specifically,

Vi = {9la,,, continuous, ¢r, = 0, ¢x; linear Vj}. (34)

Here, ¢|x represents the restriction of the function ¢ to the subset X . If zj,j =1,....,n
are the nodes of the triangulation, then a function ¢; in V}, can be associated with each
node z;, so that the family of functions ¢;s satisfies the following conditions:

(ﬁ](xz) = 5ij = {llf.ib'Z = acj (35)
0ifas £33 (36)

These conditions define ¢;,7 = 1,...,n uniquely. In addition, the ¢;s form a basis of
the space V},. Each function of V}, can be expressed as

$(x) = Z &idi(). (37)

The finite element approximation consists of writing the Galerkin condition (31) for
functions in V},. This defines the approximate problem:

Find u € V}, such that a(u,v) = f(u,v),Vv € V. (38)

Since u is in V3, there are n degrees of freedom. By the linearity of a with respect
to v, it is only necessary to impose the condition a(u, ¢;) = (f,¢;) for i = 1,...,n. This
results in n constraints. Writing the desired solution u in the basis {¢;} as

u="> &¢i(x) (39)
i=1

and substituting in (38) gives the linear problem

Z a;i& = B (40)
=1
where
aij = a(9i, ¢5), Bi = (b, ¢i). (41)

The above equations form a linear system of equations
Az =0 (42)

in which the coefficients of A are the a;;s; those of b are the §;s.



3.1.3 Finite Volume Method

The finite volume method is geared toward the solution of conservation laws of the form

ou
F= 43
5 TVE=Q (43)
In the above equation, F (u,t) is a certain vector function of u and time, possibly
nonlinear. is i

)
This is called the flux vector. The source term ( is a function of space and

time.We now apply the principle used in the weak formulation, described before. Multiply
both sides by a test function w, and take the integral

/wd:r—l—/wv.ﬁd:)::/dex.
Q

Then integrate by part for the second term on the left-hand side to obtain

wd:c—/Vw Fda:+/wF nds-/deaj (45)
Q r Q

Consider now a control volume consisting, for example, of an elementary triangle K;
in the two-dimensional case, such as those used in the finite element method. Take for w

a function w; whose value is one on the triangle and zero elsewhere. The second term in
the above equation vanishes and the following relation results

/ —dx—i— /F Z_ F.iids = /K i Qdz (46)

The above relation is the basis of the finite volume approximation. To go a little

further, the assumptions will be simplified slightly by taking a vector function F that is
linear with respect to u. Specifically, assume

— )\1u —
F = = \u. 4
(m) u (47)

Note that, in this case, the term v7.F in (43) becomes ﬁ(u) =X Vv u . In addition,
the right-hand side and the first term in the left-hand side of (46) can be approximated
as follows:

(44)

(9u 8u,
3t ]K| / Qdx =~ ¢;|K;|. (48)

Here, | K;| represents the volume(m two dimensional volume is considered to mean area)
of K;, and ¢; is some average value of () in the cell K;. These are crude approximations
but they serve the purpose of illustrating the scheme. The finite volume (45) yields

Ou; .
Y |K|—|—)\/Funds:qz~\Ki]. (49)

The contour integral

/ ufids (50)
r;

is the sum of the integrals over all edges of the control volume. Let the value of u

on each edge j be approximated by some average u; In addition, s; denotes the length of
each edge and a common notation is

Sj = sjnj.

(51)



Then the contour integral is approximated by
X/ unds ~ Z UTjX.ﬁSj = Z UjX.Sj. (52)
I edges edges

The situation in the case where the control volume is a simple triangle is depicted in
Figure 4

Figure 4: Finite Volume Cell associated with node ¢ and neighboring cells.

The unknowns are the approximations wu; of the function u associated with each
cell. These can be viewed as approximations of u at the centers of gravity of each cell
i. This type of model is called cell-centered finite volume approximations.

The value u; required in (52) can be taken simply as the average between the approx-
imation u; of w in cell ¢ and the approximation u; in the cell j on the other side of the
edge

1
0y = (5 + ). (5)
This gives
8uz~

1 T -
E‘Kz’ + 5 Z(uz + u]'))\.Sj = qz|Kl| (54)

J
One further simplification takes place by observing that

and therefore

This yields

8“1' 1 AR
E|KZ| + 5 ZUj/\.Sj = q1|KZ| (57)
J
In the above equation, the summation is over all neighboring cells j. One problem
with such simple approximations is that they do not account for large gradients of u in
the components. In finite volume approximations, it is typical to exploit upwind schemes
which are more suitable in such cases.



3.2 Basic Iterative Methods at a Glance

Considering the methods to approximate a solution to the system
Az=1> (58)

where z is an unknown vector, b is a known vector, and A is a known matrix of
coeflicients.To begin we consider two methods that are most notable.

These methods might take a large number of iterations to converge to a solution and
might not be useful in many cases. However, convergence for finite difference discretization
of Elliptic Partial Differential Equations has been extensively studied.

3.2.1 JACOBI

The Jacobi iteration is based on the idea of splitting up A into D and E and F.

A=D-E-F (59)

in which D is the diagonal of A, —F its strict lower part, and —F its strict upper part, It
is always assumed that the diagonal entries of A are all nonzero.

The Jacobi iteration determines the i—th component of the next approximation so as
to annihilate the i—th component of the residual vector. In the following, & denotes the
i—th component of the iterate x; and (; the i—th component of the right-hand side b.
Thus, writing

(b - Akarl)i =0 (60)

in which (y); represents the i—th component of the vector y, yields

a e = - Z aijﬁj(-k) + Bis (61)
j=Li#1
or
1 n
(B Y ap)i=tn (62
* j=1j#1

This is a component-wise form of the Jacobi iteration. All components of the next
iterate can be grouped into the vector xx11. The above notation can be used to rewrite
the Jacobi iteration (62) in vector form as

Tpy1 = DN E+ F)zp + D71 (63)

3.2.2 GAUSS-SEIDEL

The Gauss-Seidel iteration corrects the i—th component of the current approximate solu-
tion, in the order ¢ = 1,2,...,n , again to annihilate the i—th component of the residual.
However, this time the approximate solution is updated immediately after the new com-
ponent is determined. The newly computed components §Z-(k),i =1,2,...,n can be changed
within a working vector which is redefined at each relaxation step. Thus, since the order
isi=1,2,...,n, the result at the :—th step is

i—1 n
Bi—> az‘jfj(-kﬂ) — aig"Y - > aijfj(k) =0, (64)
Jj=1 j=i+1

10



which leads to the iteration,

i—1 n
1 Z Z .
£7j(k+1) = ; < aijé-](k+1) - a’l]é-](k) + Bl) 9 1= ]-a (RS n (65)
& j=1 j=i+1

the defining equation (64) can be written as
b+ Exgi1 — Dxgqq + Fap =0, (66)

which leads immediately to the vector form of the Gauss-Seidel iteration

Tpy1 = (D — E) 'Fap + (D — E)~'b. (67)

Computing the new approximation in (63) requires multiplying by the inverse of the
diagonal matrix D. In (67) a trinagular system must be solved with D — E, the lower tri-
angular part of A. Thus, the new approximation in a Gauss-Seidel step can be determined
either by solving a triangular system with the matrix D — E or from the relation (64).

A backward Gauss-Seidel iteration can also be defined as

(D — F)tq = Exp + b, (68)

which is equivalent to making the coordinate corrections in the order n,n — 1,...,1.
A Symmetric Gauss-Seidel Iteration consists of a forward sweep followed by a backward
sweep. The Jacobi and the Gauss-Seidel iterations are both of the form

Mz :N:Ek—i-b:(M—A):Ek—i-b, (69)

in which
A=M—-N (70)

is a splitting of A , with M = D for Jacobi, M = D — E for forward Gauss-Seidel,and
M = D — F for backward Gauss-Seidel.

3.2.3 Block Relaxation Schemes

Block relaxation schemes are generalizations of the point relaxation schemes described
above. They update a whole set of components at each time, typically a subvector of the
solution vector, instead of only one component. The matrix A and the right-hand side
and solution vectors are partitioned as follows:

A A Az -0 Ay &1 b1
Agr Aga Azz - Agy &2 B2

A= |As1 Az Az - Ay | 2= |&|,0=|8s], (71)
Apl Ap2 Ap3 App §p Bp

in which the partitionings of b and x into subvectors 3; and &; are identical and compatible
with the partitioning of A . Thus, for any vector x partitioned as in (71),

(Azi)i =Y Aygy, (72)
Pj—1

in which (y;); denotes the i-th component of the vector i according to the above partition-
ing. The diagonal blocks in A are square and assumed nonsingular. Now define, similarly
to the scalar case, the splitting

11



A=D-E—-F (73)

with
A11 0O (0] A12 Alp
AQQ A21 O 0] Agp
D = 9 E = - . . 9 F = —
App Apr App -+ O O
(74)

With these definitions, it is easy to generalize the previous two iterative procedures defined
earlier, namely, Jacobi and Gauss-Seidel. For example, the block Jacobi iteration is now
defined as a technique in which the new subvectors §§k) are all replaced according to

Ayl = ((E + F)ay)i + B; (75)
or,

which leads to the same equation as before,
Tpp1 = D YE 4 F)xy, + D™ 'b, (77)

except that the meanings of D, E, and F have changed to their block analogues.
A general block Jacobi iteration can be defined as follows. Let V; be the n x n; matrix

Vi= [emi(1)7 €m;(2)s -+ emi(ni)] (78)

and
Wi = [N (1)€ma(1) s s (2) €ma(2)s > T () €mia(ni) s (79)

where each e; is the j-th column of the n X n identity matrix, and 7,,,;) represents a
weight factor chosen so that
WiV, =1 (80)

It must be noted in above that n; denotes the size of V;. When there is no overlap,
i.e., when the S;s form a partition of the whole set {1,2,...,n}, then define Nm;(j) = 1. Let
A;; be the n; x n; matrix

Aij = WZTA‘/J (81)

and define similarly the partitioned vectors
& = WiTa;, Bi = Win- (82)

Note that ViI/ViT is a projector from R™ to the subspace K; spanned by the columns
m;(1),...,m;(n;). In addition, we have the relation

T = Z Vi&;. (83)

Si=1

The n; dimensional vector WiTa: represents the projection ViWiTx of = with respect to
the basis spanned by the columns of V;. The action of V; performs the reverse operation.
That means V;y is an extension operation from a vector y in Kj(represented in the basis
consisting of the columns of V;) into a vector Vi;y in R™. The operator W is termed a
restriction operator and V; is an prolongation operator. Each component of the Jacobi
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iteration can be obtained by imposing the condition that the projection of the residual in
the span of S; be zero, i.e.,

wil [b - A(Viwkaﬂ +> vwl xkﬂ =0 (84)
J#1
Remember that §; = W]-Tx, which can be rewritten as
el = W L AW (b - Axy). (85)
This leads to the following algorithm:

1. For K =0,1, ..., until convergence Do:
2. Fort=1,2,...,p Do:

3. Solve A;;0; = WiT(b — Axy).

4. Set xp41 = xp + Vid;

5. EndDo

6. EndDo

As was the case with the scalar algorithms, there is only a slight difference between the
Jacobi and Gauss-Seidel iterations. Gauss-Seidel immediately updates the component to
be corrected at step i, and uses the updated approximate solution to compute the residual
vector needed to correct the next component. However, the Jacobi iteration uses the same
previous approximation xj for this purpose. Therefore, the block Gauss-Seidel iteration
can be defined algorithmically as follows:

’ General Gauss Seidel Iteration

1. Until convergence Do:

2. Fori=1,2,....,p Do:

3. Solve A;;0; = WiT(b — Az)
4. Set x := x + V;9;

5. EndDo

6. EndDo

From the point of view of storage, Gauss-Seidel is more economical because the new
approximation can be overwritten over the same vector. Also, it typically converges faster.
On the other hand, the Jacobi iteration has some appeal on parallel computers since
the second Do loop, corresponding to the different blocks, can be executed in parallel.
Although the point Jacobi algorithm by itself is rarely a successful technique for real-life
problems, its block Jacobi variant, when using large enough (overlapping) blocks, can be
quite attractive especially in a parallel computing environment.
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3.2.4 Preconditioning

The Jacobi and Gauss-Seidel iterations are of the form

Th+1 = G$k + f, (86)

in which
Gja(A)=I-D714A (87)
Gas(A)=1—(D—E)™'A, (88)

for the Jacobi and Gauss-Seidel iterations, respectively. Moreover, given the matrix
splitting

A=M—N, (89)

where A is associated with the linear system
Az =0 (90)
a linear fixed point iteration can be defined by the recurrence

Tpp1 = M Nz + M1 (91)
which has the form (86) with

G=M'N=M"YM-A) (92)
—I-M1'A (93)
f=M"b (94)

For example, for the Jacobi iteration, M = D,N = A — D, while for Gauss-Seidel
iteration, M =D —-E N=M — A=F.
The iteration zx11 = Gz + f can be viewed as a technique for solving the system

(I-G=f (95)
Since G has the form G = I — M~!A, this system can be rewritten as

M 'Ax =M1 (96)

The above system which has the same solution as the original system is called a precondi-
tioned system and M is the preconditioning matrix or a preconditioner. In other words, a
relazation scheme is equivalent to a fized point iteration on a preconditioned system.

3.2.5 Convergence

The basic iterative methods discussed above define a sequence of iterates of the form

Th41 = G$k + f, (97)

in which G is a certain iteration matriz. If the above iteration converges, its limit x
satisfies

r=Gz+ f. (98)
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In the case where the above iteration arises from the splitting A = M — N , it is easy
to see that the solution to the above system is identical to that of the original system
Az =b. Indeed, in this case the sequence (97) has the form

Tpy1 = M Nz, +M~1b (99)

and its limit satisfies

Mx=Nx+b (100)

or Az=b. So convergence exists.

The conditions under which convergence happens can be summed up by saying that
for any initial vector xo the iteration (97) converges only if spectral radius of G is less
than 1.

Also the convergence factor or rate of convergence is equal to the spectral radius of
the iteration matrix G.

3.3 Conjugate Gradient

The Conjugate Gradient method is an important method for solving sparse linear systems.
It is based on the idea of using a projection method on Krylov Subspaces K, to find an
approximate solution x,, to

Az =1b (101)

This is in turn done by imposing a Petrov Galerkin condition
b— Az, LL,,, (102)

where L,, is another subspace of dimension m. Here, xg represents an arbitrary initial
guess to the solution. The subspace Ky, is written as

Km(A, o) = span{rg, Arg, Arg, ..., A" 1o}, (103)

where ro = b — Axy.

When there is no ambiguity,/C,, (A, ro)will be denoted by K,,. The different versions
of Krylov subspace methods arise from different choices of the subspace £, and from the
ways in which the system is preconditioned.

Two broad choices for L,, give rise to the best known techniques. The first is simply
L., = K,,and the minimum-residual variation £,, = AKC,,.

An important assumption, for The Conjugate Gradient Method, is that the coefficient
matrix A is Symmetric Positive Definite(SPD).

3.3.1 Arnoldi Orthogonalization

The Arnoldi method is an orthogonal projection method onto IC,,, for general non-Hermitian
matrices. The procedure was introduced in 1951 as a means of reducing a dense matrix
into Hessenberg form. Arnoldi presented his method in this manner but hinted that the
eigenvalues of the Hessenberg matrix obtained from a number of steps smaller than n could
provide accurate approximations to some eigenvalues of the original matrix. It was later
discovered that this strategy leads to an efficient technique for approximating eigenvalues
of large sparse matrices.

1. Choose a vector vy of norm 1

2. For j =1,2,...m Do:

15



3. Compute h;j = (Avj,v;) for i =1,2,...,j
Compute w; := Avj — Zgzl hijv;

i1 = llwsll2

If hjy1,; = 0 then Stop

Vi1 = wj/hjt1

EndDo

® N> gt

At each step, the algorithm multiplies the previous Arnoldi vector v; by A and then
orthonormalizes the resulting vector w; against all previous v;s by a standard Gram-
Schmidt procedure. It stops if the vector w; vanishes.

3.3.2 Lanczos Method

The symmetric Lanczos algorithm can be viewed as a simplification of the Arnoldi method
for the particular case when the matrix is symmetric. When A is symmetric, then the
Hessenberg matrix H,,becomes symmetric tridiagonal. This leads to a three-term recur-
rence in the Arnoldi process and short-term recurrences for solution algorithms such as
FOM and GMRES. On the theoretical side, there is also much more to be said on the
resulting approximation in the symmetric case.

The standard notation used to describe the Lanczos algorithm is obtained by setting

aj = hij, B = hj-1, (104)

and if T}, denotes the resulting H,, matrix, it is of the form,

ar P2
B2 az B3
T, = S . . (105)
Bm-1 ®m-1 Bm
Bm  am

This leads to the following form of the Lanczos algorithm.

1. Choose an initial vector v; of norm unity. Set 81 = 0,v9 =0

2. For j =1,2,...,m Do:

3. wj = Avj; — Bjvj—1

4. aj = (wj, vj)

O, wj = wWj — Qv

6. Bj+1 = ||wjll2. If Bj41 = 0 then Stop
7. v = wj /By

8. EndDo

It is rather surprising that the above simple algorithm guarantees, at least in exact
arithmetic, that the vectors v;,7 = 1,2, ..., are orthogonal. In reality, exact orthogonality
of these vectors is only observed at the beginning of the process. At some point the v;s
start losing their global orthogonality rapidly. The major practical differences with the
Arnoldi method are that the matrix H,, is tridiagonal and, more importantly, that only
three vectors must be stored, unless some form of reorthogonalization is employed.
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3.3.3 Conjugate Gradient Algorithm

The Conjugate Gradient method is a realization of an orthogonal projection technique
onto the Krylov Subspace K, (A, rg) where rq is the initial residual.

First we derive the Arnoldi Method for the case when A is symmetric. Given an initial
guess xg to the linear system Ax = b and the Lanczos vectors v;,i = 1,...,m together
with the tridiagonal matrix T},, the approximate solution obtained from an orthogonal
projection method onto /C,,, is given by

Tm = 20 + Vintm: Ym = T, (Ber). (106)
We now have the Lanczos method for linear systems
1. Compute g = b — Axg, B: = ||roll2, and vi: =1r¢/8
2. For j=1,1,...,m Do:
3. wj = Av; — Bjvj—1(If j =1 set Brvg = 0)
4. aj = (wj, v5)
d. wj = wj — Qv
6. Bj+1 = ||lwjll2. If Bj41 =0set m: = j and go to 9
7. vy = wj/Bin
8. EndDo
9. Set T, = tridiag (8, o, Bi+1), and Vi, = [v1, ...y Up].

10. Compute y,, = T,  (Ber) and z,, = 20 + VinYm

We can write LU factorization of T, as T}, = L,,U,,. The matrix L,, is unit lower
bidiagonal and U, is upper bidiagonal. Thus, the factorization of T, is of the form

1 m P
Ao 1 n2 B3
Tm = )\3 1 X N3 ﬁ4 . ( 1 07)
Ay 1 n Bs
As 1 75

The approximate solution is then given by,

Ty = x0 + ViU L1 (Bey). (108)
Letting
Py =V, Ut (109)
and
Zm = L1 Be1, (110)
then,
T = 20 + Pmzm. (111)

Note that, p,,, the last column of P,,, can be computed from the previous p;’s and v,
by the simple update

Pm =1 1[Um - ﬁmpm—l]' (112)
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Here f3,, is a scalar computed from the Lanczos Algorithm, while 7,, results from the m-th
Gaussian Elimination step on the tridiagonal matrix, i.e.,

Bm
Am = , 113
Nm—1 ( )
N = Qtm — A Om. (114)

Also from the structure of L,, we have

2 = [Zm‘l] , (115)

Cm
in which (,, = —A\Gn_1. As a result, x,, can be updated at each step as
Tm = Tm—1 + CnPm (116)

where p,, is defined above.
This brings us to the direct version of Lanczos algorithm for linear systems.

1. Compute ro = b — Azxg,(1: = B: = |[rolle, and v1: =19/
2. Set A1 =01 =0,pg=0
3. For m = 1,2, ..., until convergence Do :

4. Compute w: = Avy — Bum—1 and ay, = (W, vy,)

5. If m > 1 then compute A\, = B and Cmn = —AmCmn-1

NMm—1

6. M = m — AmfBm

7. Pm = ' (Vm — BnPm—1)

8. Tm = Tm—1+ (mPm

9. If x,, has converged then Stop
10. w: =w — amvm,

11. Bm+1 = ||wl|2, Vm41 = w/Bm+1

12. EndDo

This algorithm computes the solution of the tridiagonal system T,,y,, = Be1 progres-
sively by using Gaussian elimination without pivoting. However, partial pivoting can also
be implemented at the cost of having to keep an extra vector. In fact, Gaussian elimina-
tion with partial pivoting is sufficient to ensure stability for tridiagonal systems. Observe
that the residual vector for this algorithm is in the direction of v,,4+1 due to equation
(106).Therefore, the residual vectors are orthogonal to each other. Likewise, the vectors
p; are A orthogonal, or conjugate.

A consequence of the above proposition is that a version of the algorithm can be
derived by imposing the orthogonality and conjugacy conditions. This gives the Conjugate
Gradient algorithm which we now derive. The vector x;;1, the solution at iteration j + 1,
can be written as,

Tj+1 = Tj + a;pj. (117)

Therefore the residual vectors must satisfy the recurrence

Tiv1 =75 — ajApj. (118)
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If the r;’s are to be orthogonal, then it is necessary that (r; — ojApj, ;) =0 and as a
result

SR e

Also, it is known that the next search direction p;y; is a linear combination of r;4q
and pj, and after rescaling the p vectors appropriately, it follows that

Pj+1 = Tj41 + Bjpj. (120)
Thus, a first consequence of the above relation is that
(Apj,r5) = (Apj,pj — Bj-1pj—1) = (Apj,p;) (121)

because Ap; is orthogonal to p;j_i. Then, (119) becomes «; = (rj,7;)/(Apj,p;). In
addition, writing that pj;; as defined by (120) is orthogonal to Ap; yields

(rj+1, Apj)
Bi= = A (122)
T (v Apj)
Bj can also be written as
i (rj+1, <7"j+1 — 7’;‘)) _ (Tj+1,7”j+1) (123)
a;  (Apj,p;) (rj,r5)

Putting these together we have the algorithm for Conjugate Gradient.
1. Compute rg := b — Axg,pg := 7o.

2. For j = 0,1, ..., until convergence Do:

3. aj = (rj;75)/(Apj, ps)

4. zj11 = x5 + a;p;

5. 1j41:=1; —a;Apj

6. B = (rj+1,7541)/(rj,75)

7. pj+1 =141+ B;p;

8. EndDo

3.3.4 Preconditioning applied to Conjugate Gradient

Efficiency and robustness of iterative techniques can be improved by using preconditioning.
Preconditioning is simply a means of transforming the original linear system into one which
has the same solution, but which is likely to be easier to solve with an iterative solver.

Consider a matrix A that is symmetric and positive definite and assume that a pre-
conditioner M is available. The preconditioner M is a matrix which approximates A in
some yet-undefined sense. It is assumed that M is also Symmetric Positive Definite. From
a practical point of view, the only requirement for M is that it is inexpensive to solve
linear systems Mz = b. This is because the preconditioned algorithms will all require a
linear system solution with the matrix M at each step. Then, for example, the following
preconditioned system could be solved:

M 'Az =M1 (124)
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or

AMtu=5b (125)

r=M"u (126)

These two systems are no longer symmetric in general. To preserve symmetry one can
devise M such that its Cholesky factorization can be written, that is:

M =LL", (127)

Then a simple way to preserve symmetry is to split the preconditioner between left
and right, i.e., to solve

LAL Ty =L 2e=L"Tu (128)

which involves a Symmetric Positive Definite matrix. However, it is not necessary
to split the preconditioner in this manner in order to preserve symmetry. Observe that
M~1A is self-adjoint for the M -inner product,

(M~ Az, y)y = (Az,y) = (¢, Ay) = (2, M(M ™ A)y) = (z, M~ Ay) (130)

Therefore, an alternative is to replace the usual Euclidean inner product in the Con-
jugate Gradient algorithm by the M-inner product. If the CG algorithm is rewritten for
this new inner product, denoting by the original residual and by r; = b — Az; the origi-
nal residual and by z; = M~!r; the residual for the preconditioned system the following
sequence can be written .

1. aj = (Zj,zj>M/(M71Apjapj)M
Tj1 7= Tj + yp;
rit1 =1 — ajApj andzj = M lrjgy

Bj = (zj+1, 2zj+1)m/ (25, %) m

AN R

Pi+1 = zj+1 + Bjp;

Since (zj,zj)m = (rj,zj)and (M1 Ap;, p;)m = (Apj,pj), the M -inner products do
not have to be computed explicitly.
We have the preconditioned iteration for the CG algorithm as follows

1. Compute 7 := b — Axg, 20 = M ~'ry, and py := 2o

2. For 7 = 0,1,... until convergence Do:
3. aj = (rj,2)/(Apj, pj)

4. zj11 = x5 + a;p;

5. Tj41 =1 — ajAp;

6. zjy1 = M_lrj-i-l

7. Bj = (1j41, 2j+1)/ (15, %)

8. pj+1:= zj41 + Bjp;

9. EndDo
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3.4 Preconditioning Techniques

One of the simplest ways of defining a preconditioner is to perform an incomplete factoriza-
tion of the original matrix A . This entails a decomposition of the form A = LU — R where
L and U have the same nonzero structure as the lower and upper parts of A respectively,
and R is the residual or error of the factorization. This incomplete factorization known
as ILU(0) is rather easy and inexpensive to compute. On the other hand, it often leads
to a crude approximation which may result in the Krylov subspace accelerator requiring
many iterations to converge. To remedy this, several alternative incomplete factorizations
have been developed by allowing more fill-in in L and U. In general, the more accurate
ILU factorizations require fewer iterations to converge, but the preprocessing cost to com-
pute the factors is higher. However, if only because of the improved robustness, these
trade-offs generally favor the more accurate factorizations. This is especially true when
several systems with the same matrix must be solved because the preprocessing cost can
be amortized.

The preconditioned versions of some Krylov subspace methods have been discussed
in the previous section on CG with a generic preconditioner M. In theory, any general
splitting in which M is nonsingular can be used. Ideally, M should be close to A in some
sense. However, note that a linear system with the matrix M must be solved at each
step of the iterative procedure. Therefore, a practical and admittedly somewhat vague
requirement is that these solutions steps should be inexpensive.

Consider a general sparse matrix A whose elements are a;j,%,7 = 1,...,n. A general
Incomplete LU (ILU) factorization process computes a sparse lower triangular matrix L
and a sparse upper triangular matrix U so the residual matrix R = LU — A satisfies certain
constraints, such as having zero entries in some locations. We first describe a general ILU
preconditioner geared toward M-matrices. Then we discuss the ILU(0) factorization, the
simplest form of the ILU preconditioners.

A general algorithm for building Incomplete LU factorizations can be derived by per-
forming Gaussian elimination and dropping some elements in predetermined nondiagonal
positions.

Let A be an M-matrix and let A; be the matrix obtained from the first step of Gaussian
elimination. It can be shown that A; is also an M-matrix. If we remove the first row and
first column of A; then the resulting (n — 1) x (n — 1) matrix is also an M-matrix.

Assume now that some elements are dropped from the result of Gaussian Elimination
outside of the main diagonal. Any element that is dropped is a nonpositive element which
is transformed into a zero. Therefore, the resulting matrix A; is such that

Ay = A +R, (131)

where the elements of R are such that r; = 0,7;; > 0. Thus,
A < Ay (132)

and the off-diagonal elements of A; are nonpositive. Since A; is an M-matrix, 4; is also
an M-matrix. The process can now be repeated on the matrix A(2: n,2: n), and then
continued until the incomplete factorization of A is obtained. The above arguments shows
that at each step of this construction, we obtain an M-matrix and that the process does
not break down.

The elements to drop at each step have not yet been specified. This can be done
statically, by choosing some non-zero pattern in advance. The only restriction on the zero
pattern is that it should exclude diagonal elements. Therefore, for any zero pattern set P,
such that

P c{(i,j)li # ;1 <4,j <n}, (133)
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an Incomplete LU factorization, I LUp, can be computed as follows.
1. For k=1,...,n—1 Do:
2. Fori=Fk+1,n and if (i,k) ¢ P Do:
3. ik = Qik/ kg
4. For j=k+1,...,n and for (i,5) ¢ P Do:
D, Q4j = Qjj — Qjf * A
6. EndDo
7. EndDo

8. EndDo

The For loop in line 4 should be interpreted as follows: For j = k+ 1,...,n and only for
those indices j that are not in P execute the next line. In practice, it is wasteful to scan
j from k + 1 to n because there is an inexpensive mechanism for identifying those in this
set that are in the complement of P.

Now consider a few practical aspects. An ILU factorization based on the form of
the previous Algorithm is difficult to implement because at each step k, all rows k£ + 1
to n are being modified. However, ILU factorizations depend on the implementation of
Gaussian elimination which is used. Several variants of Gaussian elimination are known
which depend on the order of the three loops associated with the control variables ¢, j and
k in the algorithm. Thus, previous Algorithm is derived from what is known as the k.1, j
variant. In the context of Incomplete LU factorization, the variant that is most commonly
used for a row-contiguous data structure is the ¢, k, 7 variant. It is used for dense matrices.

Adapting this version for sparse matrices is easy because the rows of L and U are
generated in succession. These rows can be computed one at a time and accumulated
in a row-oriented data structure such as the CSR format. This constitutes an important
advantage. Based on this, the general ILU factorization takes the following form.

1. For i =2,...,n Do:

2. For k=1,...,i—1 and if (i,k) ¢ P Do:
3. @ik = aik/akk

4. For j=k+1,...,n and for (i,5) ¢ P Do:
D, Qgj = Ajj — QjkAkj-

6. EndDo

7. EndDo

8. EndDo

It is not difficult to see that this more practical IKJ variant of ILU is equivalent to the
K1J version which can be defined from the first algorithm in this section.

Note that this is only true for a static pattern ILU. If the pattern is dynamically
determined as the Gaussian elimination algorithm proceeds, then the patterns obtained
with different versions of GE may be different.

The Incomplete LU factorization technique with no fill-in, denoted by ILU(0), consists
of taking the zero pattern P to be precisely the zero pattern of A. In the following,
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Figure 5: The ILU(0) factorization for a five-point matrix.

we denote by b;. the i-th row of a given matrix B, and by NZ(B), the set of pairs
(4,7),1 <i,j < n such that b; ; # 0.

The incomplete factorization ILU(0) factorization is best illustrated by the case for
which it was used originally, namely, for 5-point and 7-point matrices related to finite
difference discretization of PDEs. Consider such a matrix A as illustrated in the bottom
left corner of Figure 5. The A matrix represented in this figure is a 5-point matrix of size
n = 32 corresponding to an n; x n, = 8 X 4 mesh. Consider now any lower triangular
matrix L which has the same structure as the lower part of A, and any matrix U which
has the same structure as that of the upper part of A. Two such matrices are shown at
the top of Figure 5. If the product LU is performed, the resulting matrix would have the
pattern shown in the bottom right part of the figure. It is impossible in general to match
A with this product for any L and U. This is due to the extra diagonals in the product,
namely, the diagonals with offsets n, —land —n,;+ 1. The entries in these extra diagonals
are called fill-in elements. However, if these fill-in elements are ignored, then it is possible
to find L and U so that their product is equal to A in the other diagonals. This defines the
ILU(0) factorization in general terms: Any pair of matrices L (unit lower triangular) and
U (upper triangular) so that the elements of A — LU are zero in the locations of NZ(A).
These constraints do not define the ILU(0) factors uniquely since there are, in general,
infinitely many pairs of matrices L and U which satisfy these requirements. However, the
standard ILU(0) is defined constructively using the above Algorithm with the pattern P
equal to the zero pattern of A.

1. Fori=2,...,n Do:
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2. For k=1,...,i— 1 and for (i,k) € NZ(A) Do:
3. Compute a;; = a;,/akk

4. For j=k+1,...,n and for (i,j) € NZ(A), Do:
5. Compute a;; := a;; — a;rax;-.

6. EndDo

7. EndDo

8. EndDo

The accuracy of the ILU(0) incomplete factorization may be insufficient to yield an ad-
equate rate of convergence. More accurate Incomplete LU factorizations are often more
efficient as well as more reliable. These more accurate factorizations will differ from ILU(0)
by allowing some fill-in. Thus, ILU(1) keeps the first order fill-ins, a term which will be
explained shortly. To illustrate ILU(p) with the same example as before, the ILU(1) fac-
torization results from taking P to be the zero pattern of the product LU of the factors
L,U obtained from ILU(0). This pattern is shown at the bottom right of Figure 5. Pre-
tend that the original matrix has this augmented pattern NZ;(A). In other words, the
fill-in positions created in this product belong to the augmented pattern NZj(A), but
their actual values are zero. The new pattern of the matrix A is shown at the bottom
left part of Figure 6. The factors L and U; of the ILU(1) factorization are obtained by
performing an ILU(0) factorization on this augmented pattern matrix. The patterns of Lq
and U; are illustrated at the top of Figure 6. The new LU matrix shown at the bottom
right of the figure has now two additional diagonals in the lower and upper parts.

One problem with the construction defined in this illustration is that it does not extend
to general sparse matrices. It can be generalized by introducing the concept of level of
fill. A level of fill is attributed to each element that is processed by Gaussian elimination,
and dropping will be based on the value of the level of fill. Any form of GE can be used
to illustrate. The rationale is that the level of fill should be indicative of the size: the
higher the level, the smaller the elements. A very simple model is employed to justify the
definition: A size of € is attributed to any element whose level of fill is k, where € < 1.
Initially, a nonzero element has a level of fill of one (this will be changed later) and a zero
element has a level of fill of co. An element a;; is updated in line 5 of IKJ variant of GE
by the formula

A5 = Qi — Qi X Qfgj- (134)

If lev;; is the current level of the element a;;, then our model tells us that the size of the
updated element should be

aij = 6le’l}ij _ 6l€vik X elevkj — Elevij _ Elevij—&-levkj' (135)

Therefore, roughly speaking, the size of a;; will be the maximum of the two sizes €/®Vsand
eleviitlevk; and it is natural to define the new level of fill as,

levij := min{lev;, levyy, + levy;}. (136)

In the common definition used in the literature, all the levels of fill are actually shifted
by —1 from the definition used above. This is purely for convenience of notation and to
conform with the definition used for ILU(0). Thus, initially lev;; = 0 if a;; = 0, and
lev;j = oo otherwise. Thereafter, define recursively

levi;j := min{levy;, levy, + levy; + 1}. (137)
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Figure 6: The ILU(1) factorization

Observe that the level of fill of an element will never increase during the elimination. Thus,
if a;; # 0 in the original matrix A , then the element in location 4, j will have a level of fill
equal to zero throughout the elimination process. The above systematic definition gives
rise to a natural strategy for discarding elements. In ILU(p), all fill-in elements whose
level of fill does not exceed p are kept. So using the definition of zero patterns introduced
earlier, the zero pattern for ILU(p) is the set

P, ={(i,j)|levi; > p}, (138)

where [ev;; is the level of fill value after all updates (137) have been performed. The case
p = 0 coincides with the ILU(0) factorization and is consistent with the earlier definition.

In practical implementations of the ILU(p) factorization it is common to separate
the symbolic phase (where the structure of the L and U factors are determined) from
the numerical factorization, when the numerical values are computed. Here, a variant
is described which does not separate these two phases. In the following description, a;s
denotes the i-th row of the matrix A, and a;; the (4, j)-th entry of A.

1. For all nonzero elements a;; define lev(a;j) =0
2. For vt =2,...,n Do:

For each k =1,...,i — 1 and for lev(a;;) < p Do:

- W

Compute a;x 1= a;x/akk

5. Compute Gy := Qjx — QipQkx.
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6. Update the levels of fill of the nonzero a; ;s using (137)
7. EndDo

8. Replace any element in row i with lev(a;j) > p by zero

9. EndDo

3.4.1 ILUT approach and implementation issues

There are a number of drawbacks to the above algorithm. First, the amount of fill-in and
computational work for obtaining the ILU(p) factorization is not predictable for p > 0.
Second, the cost of updating the levels can be quite high. Most importantly, the level of
fill-in for indefinite matrices may not be a good indicator of the size of the elements that are
being dropped. Thus, the algorithm may drop large elements and result in an inaccurate
incomplete factorization, in the sense that R = LU — A is not small. Experience reveals
that on the average this will lead to a larger number of iterations to achieve convergence,
although there are certainly instances where this is not the case. The techniques indicated
below have been developed to remedy these three difficulties, by producing incomplete
factorizations with small error R and a controlled number of fill-ins.

A generic ILU algorithm with threshold can be derived from the IKJ version of Gaus-
sian elimination, by including a set of rules for dropping small elements. In what follows,
applying a dropping rule to an element will only mean replacing the element by zero if it
satisfies a set of criteria. A dropping rule can be applied to a whole row by applying the
same rule to all the elements of the row. In the following algorithm, w is a full-length work-
ing row which is used to accumulate linear combinations of sparse rows in the elimination
and wyg, is the k -th entry of this row. As usual, a;s« denotes the i-th row of A.

ILUT

1. Fori=1,...,n Do:
2. w:i= Qs

3. For k=1,...,i— 1 and when wg # 0 Do :

Wi

4. W ‘= Tk

5. Apply a dropping rule to wy
6. If wy # 0 then
T. W= W — Wk * Uk
8. Endlf
9. EndDo
10. Apply a dropping rule to row w
11. 45 == wjforyj=1,...,i—1
12, w;j == wjforj =1,..,n
13. w:=0

14. EndDo
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The ILU(0) can be viewed as a special case of the above algorithm. The dropping rule
for ILU(0) is to drop elements that are in positions not belonging to the original structure
of the matrix.

In an ILU(p, 7), p is the parameter that helps control memory usage, while 7 helps to
reduce computational cost.

In the factorization ILU(p, 7), the following rule is used.

1. In line 5, an element wy is dropped (i.e., replaced by zero) if it is less than the
relative tolerance 7; obtained by multiplying 7 by the original norm of the ¢-th row
(e.g., the 2-norm).

2. In line 10, a dropping rule of a different type is applied. First, drop again any
element in the row with a magnitude that is below the relative tolerance 7;. Then,
keep only the p largest elements in the L part of the row and the p largest elements
in the U part of the row in addition to the diagonal element, which is always kept.

Few of the Implementation details are worth noting for this method of factorization.
Listed below are the challenges to an efficient implementation.

1. Generation of the linear combination of rows of A.
2. Selection of the p largest elements in L and U .

3. Need to access the elements of L in increasing order of columns.

To solve the first issue one can use a clever storage pattern as summarized in [Saad,
1996]. For the second hurdle heapsort or a variation on quick sort could be utilized. Finally
to speed-up the access to the elements of L can be done by storing them in a binary search
tree.

There could be problems with the implementation of ILUT case.They could be sum-
marized as follows:-

1. The ILUT procedure encounters a zero pivot;

2. The ILUT procedure encounters an overflow or underflow condition, because of an
exponential growth of the entries of the factors;

3. The ILUT preconditioner terminates normally but the incomplete factorization pre-
conditioner which is computed is unstable.

To remedy the problems that might arise with the ILUT approach an ILUTP approach
might be used in generating a factorization.

ILUTP(”P” stands for pivoting) uses a permutation array perm to hold the new order-
ings of the variables, along with the reverse permutation array. At step i of the elimination
process the largest entry in a row is selected and is defined to be the new i-th variable.
The two permutation arrays are then updated accordingly. The matrix elements of L and
U are kept in their original numbering. However, when expanding the L — U row which
corresponds to the i-th outer step of Gaussian elimination, the elements are loaded with
respect to the new labeling, using the array perm for the translation. At the end of the
process, there are two options. The first is to leave all elements labeled with respect to
the original labeling. No additional work is required since the variables are already in this
form in the algorithm, but the variables must then be permuted at each preconditioning
step. The second solution is to apply the permutation to all elements of A as well as
L/U. This does not require applying a permutation at each step, but rather produces a
permuted solution which must be permuted back at the end of the iteration phase. The
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complexity of the ILUTP procedure is virtually identical to that of ILUT. A few additional
options can be provided. A tolerance parameter called permtol may be included to help
determine whether or not to permute variables: A nondiagonal element a;; is candidate
for a permutation only when tol X |a;;| > |a;;| Furthermore, pivoting may be restricted
to take place only within diagonal blocks of a fixed size. If we assume that the size of
the blocks is named as mbloc then a value of ofmbloc > n indicates that there are no re-
strictions on the pivoting. A state-of-the-art Multilevel scheme using ILU preconditioners
is also discussed in [Bollhéfer and Saad, 2006]. To solve special matrices stored in the
sparse skyline format (SSK) an ILUTS method could be used to factorize. Thus savings
in storage could be leveraged. Also the symmetric nature of such matrices could result in
a symmetric preconditioner.

3.5 Domain Decomposition

Domain decomposition methods refer to a collection of techniques which revolve around
the principle of divide-and-conquer. Consider the problem of solving the Laplace Equation
on an L-shaped domain

o T Qs

Figure 7: An L-shaped domain subdivided into three subdomains

partitioned as shown in Figure 7. Domain decomposition or substructuring methods
attempt to solve the problem on the entire domain

Q=Jo, (139)

from problem solutions on the subdomains €);. There are several reasons why such tech-
niques can be advantageous. In the case of the above picture, one obvious reason is that
the subproblems are much simpler because of their rectangular geometry. For example,
fast solvers can be used on each subdomain in this case. A second reason is that the phys-
ical problem can sometimes be split naturally into a small number of subregions where the
modeling equations are different (e.g., Eulers equations on one region and Navier-Stokes
in another). Substructuring can also be used to develop out-of-core solution techniques.
As already mentioned, such techniques were often used in the past to analyze very large
mechanical structures. The original structure is partitioned into pieces, each of which is
small enough to fit into memory. Then a form of block-Gaussian elimination is used to
solve the global linear system from a sequence of solutions using subsystems.
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In order to review the issues and techniques in use and to introduce some notation,
assume that the following problem is to be solved:

Au=fin Q (140)
u=wur on I' = 00. (141)

Domain decomposition methods are all implicitly or explicitly based on different ways of
handling the unknowns at the interfaces. From the PDE point of view, if the value of the
solution is known at the interfaces between the different regions, these values could be used
in Dirichlet-type boundary conditions and we will obtain s uncoupled Poisson equations.
We can then solve these equations to obtain the value of the solution at the interior points.
If the whole domain is discretized by either finite elements or finite difference techniques,
then this is easily translated into the resulting linear system.

Assume that the problem associated with the domain shown in Figure 7 is discretized
with centered differences.We can label the nodes by subdomain as shown in Figure 8.

GO—G—062—9
26— —8—29)
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40 e 3O (3 (37 ———(19)—— 2021
(D——(8——O——G6——16——1)—8
4 5) 6) 35) 13) 14 15
D—1 € (4 10——(10—13

Figure 8: Discretization of the problem for L-shaped geometry

Note that the interface nodes are labeled last. As a result, the matrix associated with
this problem will have the structure shown in Figure 9. For a general partitioning into s
subdomains, the linear system associated with the problem has the following structure:

By E; x1 fi
By Es T2 f2
: =1 (142)
B, E; T fs
F B F, C y g
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Figure 9: Matrix associated with the finite difference mesh of the Figure 8

where each x; represents the subvector of unknowns that are interior to subdomain €2;
and y represents the vector of all interface unknowns. It is useful to express the above
system in the simpler form,

A @) = (£> withA = <1§ g) (143)

Thus, E represents the subdomain to interface coupling seen from the subdomains, while
F represents the interface to subdomain coupling seen from the interface nodes.

3.5.1 Direct Solution and Schur Complement

Consider the linear system written in the form (143), in which B is assumed to be non-
singular. From the first equation the unknown x can be expressed as

r=B7(f - By) (144)

Upon substituting this into the second equation, the following reduced system is ob-
tained:
(C—FB'E)y=g—FB7!f. (145)

The matrix
S=C-FB'E (146)

is called the Schur complement matrix associated with the y variable. If this matrix can be
formed and the linear system (145) can be solved, all the interface variables y will become
available. Once these variables are known, the remaining unknowns can be computed, via
(144). Because of the particular structure of B, observe that any linear system solution
with it decouples in s separate systems. The parallelism in this situation arises from this
natural decoupling. A solution method based on this approach involves four steps:
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1. Obtain the right-hand side of the reduced system (144).
2. Form the Schur complement matrix (145).
3. Solve the reduced system (144).

4. Back-substitute using (143) to obtain the other unknowns.

One linear system solution with the matrix B can be saved by reformulating the
algorithm in a more elegant form. Define

E =B'E andf = B7'f. (147)
The matrix £ and the vector f are needed in steps (1) and (2). Then rewrite step (4) as
t=B'f—-B 'Ey=f —Ey, (148)

which gives the following algorithm

[BLOCK GAUSSIAN ELIMINATION |

1. Solve BE' = B, and Bf = f for E' and f, respectively
2. Compute ¢ =g— Ff

3. Compute S = C — FE'

4. Solve Sy = ¢’

5. Compute z = f — E'y

In a practical implementation, all the B; matrices are factored and then the systems
Bl-E; = F;and B; fi/ = f; are solved. In general, many columns in E; will be zero. These
zero columns correspond to interfaces that are not adjacent to subdomain ¢. Therefore,
any efficient code based on the above algorithm should start by identifying the nonzero
columns.

’PROPERTIES OF SCHUR COMPLEMENT

If A be a nonsingular matrix partitioned as in (143) and such that the submatrix B
is nonsingular and let R, be the restriction operator onto the interface variables, i.e, the

linear operator defined by
R, <x> — . (149)

Y

Then the following properties are true.

1. The Schur complement matrix .S is nonsingular.

2. If A is SPD, then so is S.

3. For any y, S~y = RyA_l(S).
The first property indicates that a method that uses the above block Gaussian elimination
algorithm is feasible since S is nonsingular. A consequence of the second property is that
when A is positive definite, an algorithm such as the Conjugate Gradient algorithm can be
used to solve the reduced system (145). Finally, the third property establishes a relation

which may allow preconditioners for .S to be defined based on solution techniques with the
matrix A.
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’SCHUR COMPLEMENT FOR VERTEX BASED PARTITIONINGS‘

The partitioning used in Figure 8 is edge-based, meaning that a given edge in the
graph does not straddle two subdomains. If two vertices are coupled, then they must
belong to the same subdomain. From the graph theory point of view, this is perhaps less
common than 