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Abstract
Convection-dominated flow problems are well-known to have non-physical oscillations near steep gra-
dients or discontinuities in the solution when solved with standard numerical methods, such as finite
elements or finite difference methods. To overcome this limitation, algebraic flux correction (AFC) can
be used, which is a stabilization method. However, AFC contains time-consuming computations, there-
fore, alternative approaches are explored. The rapidly rising field of machine learning in the mathemati-
cal world, so called scientific machine learning, has successful applications in solving partial differential
equations. In this work, the focus is on convection-dominated flow problems, in particular the steady
state convection-diffusion equation in one-dimension. To solve this, two alternative approaches based
on neural network-learning have been developed that are able to mimic the AFC limiter with a certain
accuracy and performance. In some cases, the neural network-based limiter is outperforming the AFC
limiter.

i



Contents
Abstract i

1 Introduction 1
1.1 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Numerical solution of the stationary convection-diffusion equation 2
2.1 Weak form and numerical discretization. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Numerical integration and impose boundary conditions . . . . . . . . . . . . . . . . . . . 3
2.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Algebraic flux correction 10
3.1 Algebraic flux correction with TVD-type limiting. . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Defect correction scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Scientific machine learning 18
4.1 Network architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Training and regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Learning-based flux limiting 21
5.1 Reverse Engineering αij . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Development of neural network models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 Training: loss functions and hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . 25
5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.4.1 Solution model approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.4.2 Solution + fluxes model approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.4.3 Gradient model approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.4.4 Gradient + fluxes model approach. . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Learning-based surrogate model of AFC limiting 38
6.1 Type of input and output data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2 Neural network architects: FFNN, Splitted NN and PINN . . . . . . . . . . . . . . . . . . 43
6.3 Hyperparameter tuning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.4.1 Feedforward neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.4.2 Splitted neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.4.3 Physics-informed neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.4.4 Improvements on previous results . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7 Conclusion 65

References 67

A Learning-based flux limiting 68
A.1 Solution model approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.2 Solution + fluxes model approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.3 Gradient model approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.4 Gradient + fluxes approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

B Learning-based surrogate model of AFC limiting 85
B.1 Asymmetric data: other results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

B.1.1 Feedforward neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
B.1.2 Splitted neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
B.1.3 Physics-informed neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

ii



Contents iii

B.2 Asymmetric data: input-output mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
B.2.1 Feedforward neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
B.2.2 Splitted neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
B.2.3 Physics-informed neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

B.3 Symmetric data results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
B.3.1 Feedforward neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
B.3.2 Splitted neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
B.3.3 Physics-informed neural network . . . . . . . . . . . . . . . . . . . . . . . . . . .101

B.4 Improvements: symmetric data vs asymmetric data . . . . . . . . . . . . . . . . . . . . .103



1 Introduction
There is always a desire for numerical methods to solve partial differential equations (PDEs) to be
accurate, fast and generalizable, but this proves to be a challenging task and therefore is not always
achieved. This thesis will particularly focus on the convection-dominated flow problems, whereby it is
well-known that non-physical oscillations near steep gradients or discontinuities occur in the solutions
obtained with standard numerical methods, such as finite difference or finite element methods (FEM). A
stabilization method that has been developed to overcome this limitation is the algebraic flux correction
(AFC). The idea of AFC is to combine a high-order method, which obtains accurate solutions in smooth
regions, but are oscillatory in steep regions, with a low-order method that guarantees no oscillations in
the solutions, but are overly diffusive. The difference between these low-and high-order methods is the
anti-diffusion, which is added back in a limited amount to the low-order method in a non-linear fashion
by the AFC limiter. These extra computational steps are taken to stabilize the numerical solution, but
are time-consuming, therefore, alternative methods are explored with machine learning to replace AFC
and take it a step further by enhancing it with prior physical knowledge of AFC.

Machine learning (ML) techniques are recently widely being used in classical applied mathematics
problems, such as solving PDE problems, but according to the author’s best knowledge not much
research on applying ML to numerical schemes is concluded, in particular stabilizing methods using
neural networks. This new field of research, also known as scientific machine learning, is in rapid
development and due to neural networks’ universal approximation theorem, it can approximate the
underlying nonlinear input-output relationship in complex problems. Moreover, training neural networks
takes time, but once trained they can perform computationally cheap evaluations.

The motivation for this research is to be more efficient and potentially more accurate due to the huge
potential of machine learning techniques to accelerate and automate the tasks and computations, in
this thesis the focus is on convection-dominated flow problems, in particular the stationary convection-
diffusion equation in one-dimension.

1.1. Research objectives
The main goal of this research is to investigate if machine learning can mimic what the AFC limiter
does without computing it. Specifically, if a neural network can learn the behaviour of the AFC limiter
to mimic it. The main research question reads:

Can machine learning be used as a replacement for the AFC limiter?

Several sub-questions to guide the research are as followed:

1. What are possible network architectures and data sets for that?
2. What is the performance impact of the neural network on different problems?

In essence, is it generalizable (to other problems)?
3. Does the trained neural network outperforms the AFC limiter?
4. Does it generalize/applicable to higher dimensions and/or complex geometry problems?

A python code has been written to implement the problem and numerical methods. For the neural
network implementation, Pytorch is used.

1.2. Outline
In this thesis, the discretization regarding the one-dimensional stationary convection-diffusion equation
is described in chapter 2, followed by the fundamental mathematical concepts and application of the sta-
bilization method, the algebraic flux correction, in chapter 3. In chapter 4 the concept of a feedforward
neural network and its parameter are described, after which the first approach, the learning-based flux
limiting, is explained and applied to the problem with the corresponding model’s results and analysis
in chapter 5. The second approach, the learning-based surrogate model of AFC limiting, is described
in chapter 6 along with the developed neural network architectures and data sets and their results and
analysis. Finally, the conclusions from both approaches are described and future recommendations
are given in chapter 7.
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2Numerical solution of the stationary
convection-diffusion equation

In this chapter, the theory regarding the numerical solution of a one-dimensional boundary value prob-
lem of the stationary convection-diffusion equation is described. The numerical solution is determined
by applying the finite element method (FEM) whereby the variational form, also known as weak form
(WF), like in the Galerkin method is computed and is outlined in section 2.1. With the discretization,
the computations of the integrals involved in the discrete WF by the Gaussian quadrature rule and
the applications of boundary conditions are described in section 2.2. Finally, numerical examples are
shown in section 2.3 for the Galerkin method of two boundary value problems, namely the boundary
layer problem and the peak problem.

2.1. Weak form and numerical discretization
The convection-diffusion equation describes the motion of particles, like energy or other physical quan-
tities, through a fluid by a combination of convection and diffusion processes. Convection moves the
particles on a macroscopic level independently of their cause, while diffusion is a process of moving
particles from a region of high concentration to a region of low concentration of that particle [6].

The strong form of the boundary value problem of the 1D stationary convection-diffusion on a physical
space, which is an unit interval, is defined as:

−d (u(x))xx + (vu(x))x = R in Ω = [0, 1] (2.1)
u(0) = α, u(1) = β, (2.2)

where d > 0 is the diffusion coefficient, v is a constant velocity, R is the source and u(x) the solution.
When |v| >> d, then the problem is convection-dominated and the higher-order term with diffusion
influences the boundary in the form of boundary layers, consequently the solution is determined by the
low-order term corresponding to the convective term [8]. When |v| << d, then the problem is diffusion-
dominated. A non-dimensional ratio can be defined to measure the convection and diffusion processes
as the Péclet number, Pe = vL/d, where L is the length of the domain. Since the domain is on an
unit interval, L = 1, the formulation is described as Pe = v/d, whereby for a positive velocity the flow
goes from left to right, while for negative velocity the other way.

The Galerkin method is applied to (2.1) to obtain the weak form of the problem. First, take u ∈ S as
trial space, which defines the space where the solutions are square-integrable, have square-integrable
derivatives and obey the Dirichlet boundary conditions (also known as the Sobolev spaceH1(Ω)). Sec-
ondly, take w ∈ V as test space, which is similar to space S, but the solutions obey the homogeneous
Dirichlet boundary conditions. Thirdly, multiply equation (2.1) by a test function w and integrate over
the physical, Ω = [0, 1], followed by using integration by parts on the diffusive term only to get the
following:

[−duxw]
1
0 +

∫
Ω

duxwx + (vu)xw dx =

∫
Ω

Rw dx. (2.3)

To impose the Dirichlet boundary conditions, equation (2.2), w has to satisfy the homogeneous bound-
ary conditions, since these are essential boundary conditions, therefore the term over the entire bound-
ary vanishes. Finally, the WF is defined as following:

Find u ∈ S such that ∀ w ∈ V

∫
Ω

duxwx + (vu)xw dx =

∫
Ω

Rw dx, (2.4)

which can be abbreviated as : a(u,w) = f(w), where

a(u,w) =

∫
Ω

duxwx + (vu)xw dx

f(w) =

∫
Ω

Rw dx

2



2.2. Numerical integration and impose boundary conditions 3

The discrete WF of the problem using the same trial and test space, gives:

Find uh ∈ V h such that ∀ wh ∈ V h, a(uh, wh) = f(wh) , where (2.5)

a(uh, wh) =

∫
Ω

d(uh)x(w
h)x + ((vu)h)xw

h dx (2.6)

f(wh) =

∫
Ω

Rwh dx (2.7)

Using an equidistant mesh consequently makes the finite difference, finite volume and finite element
methods all equivalent. However, staying in the FEM framework for 1D the discrete spaces Sh and V h

are spanned by standard linear basis functions (also known as ’tent’ functions) {φj(x)} approximating
the solutions in the unit interval domain. To approximate the solution uh and the convective flux (vu)h,
a finite linear combination of basis functions is used as:

uh(x) =

n−1∑
j=0

ujφj(x), (vu)h =

n−1∑
j=0

(vjuj)φj(x). (2.8)

Since the velocity v is constant it can be taken out of the summation. Substituting this into equation
(2.5) and replacing wh by all basis functions φi(x) results in the matrix form:

(S −K)u = r, (2.9)

where u is the vector of coefficients ui used in the expansion of the solution provided by equation (2.8),
the entries of the discrete diffusion, S = {sij}, and convection,K = {kij}, operators and the discretized
right-hand side vector, r = {ri}. These matrix entries are given as following [7]:

kij = − v cij , cij =

∫
Ω

φj
′φidx, (2.10)

sij = d

∫
Ω

φj
′φi

′dx, ri =

∫
Ω

Rφidx (2.11)

where i, j = {0, 1, 2, . . . , n − 1}, n is the number of basis functions and the prime (′) gives the first
derivative.

2.2. Numerical integration and impose boundary conditions
In FEM, the parametric space, Ω̂, is mapped onto the physical space, Ω, so the mapping is used to
rewrite the integrals in the physical to solve them in the parametric space. Furthermore, the linear basis
functions defined with order 1, φ̂j = Nj,1(ξ), as defined by the Cox-de-Boor recursion formula:
for piecewise constants (p=0) [2]:

Ni,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1,

0 otherwise,
(2.12)

and for p = 1, 2, 3, . . . :

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ), (2.13)

where ξi denotes the ith node in the mesh vector Ξ = {ξ0, ξ1, . . . , ξn+p}, n is the number of basis func-
tions, p is the order of the polynomial of the basis function and i ∈ {0, . . . , n− 1}.

The mesh vector for this problem is Ξ = {ξ0, ξ1, . . . , ξn+1}, where ξi ∈ R is the ith node, i is the node
index i = 0, 1, . . . , n + 1, and n the number of basis functions. The 1D geometric mapping is defined
as:

x(ξ) =
∑
j

cjφ̂j(ξ), ξ ∈ Ω̂ = [0, 1] (2.14)
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where cj ∈ R are defined as control points. To solve the problem in the parametric domain, the co-
ordinates of the physical domain are transformed by the mapping ϕ : Ω̂ → Ω. Here the parametric
values ξ are converted to physical coordinates x. In order to get the solution in the physical domain,
the mapping should be bijective, such that ϕ−1 : Ω → Ω̂ exists [7].
A well known integration rule [6]:∫

Ω

u(x)dx =

∫
Ω̂

u(x(ξ))|detDx(ξ)|dξ, (2.15)

where Dx(ξ) is the Jacobian matrix of the geometrical mapping, but in 1D, this is dx
dξ . However, the

parametric space is also a unit interval, Ω̂ = [0, 1], where x = [1], which means that the integrals only
have a change of variables and thus is a linear transformation.

The integrals are assembled using the numerical quadrature rule [17] given as:∫ xR

xL

f(y)dy ≈ xR − xL

2

N∑
l=0

wlf
(xR − xL

2
xl +

xL + xR

2

)
, (2.16)

where wl and xl are computed with the Gaussian quadrature rule on domain [−1, 1] hence the change
of interval is applied for domain [xL, xR] and N = 2 due to linear basis functions.

For example, the discrete convection operator in the parametric domain is computed as following:

kij = − v

∫
Ω̂

φ̂j
′φ̂i dξ ≈ − v

n−p−1∑
k=0

∫
ek

φ̂j
′φ̂idξ︸ ︷︷ ︸

k
ek
ij

= − v

n−p−1∑
k=0

kekij , (2.17)

here ek with k = 0, 1, . . . , n− p− 1 defines the elements and since a basis function Ni,p(ξ) on mesh
vector Ξ = {ξ0, ξ1, . . . , ξn+p} is nonzero on [ξi, ξi+p+1], the ek are intervals in 1D, where the basis
functions are nonzero. Now applying the basis functions and the quadrature rule to kekij gives the
following computations:

kekij =

∫
ek

φ̂j
′(ξ)φ̂i(ξ)dξ =

∫
ek

N ′
j,p(ξ)Ni,p(ξ)dξ (2.18)

≈ ξk+1 − ξk
2

N=p+p∑
l=0

wlN
′
j,p

(ξk+1 − ξk
2

xl +
ξk + ξk+1

2

)
Ni,p

(ξk+1 − ξk
2

xl +
ξk + ξk+1

2

)
. (2.19)

In the assembled matrix A = S − K the boundary conditions of u has to be incorporated as the final
step. Due to the support feature of the B-spline basis functions, only the diagonal and off-diagonal axis
are nonzero values, resulting in a a sparse matrix:

A =


A00 0 · · · 0
A10 A11 · · · A1n−1

...
. . .

...
0 0 · · · An−1n−1

 , u =


u0

u1

...
un−2

un−1

 , r =


r0
r1
...

rn−2

rn−1

 . (2.20)

Since the left boundary is u0 = u(0) = α it will become that A00u0 = r0, A00 = 1 and r0 = α. For the
right boundary un−1 = u(1) = β it becomes An−1n−1un−1 = rn−1, An−1n−1 = 1 and rn−1 = β.

2.3. Numerical results
This section presents the results obtained for the Galerkin method applied to the boundary value prob-
lem (BVP), the 1D stationary convection-diffusion equation, defined in (2.1). Two BVPs used throughout
the thesis are the boundary layer problem defined as:

−d (u(x))xx + (vu(x))x = 0 in Ω = [0, 1] (2.21)
u(0) = 1, u(1) = 0, (2.22)
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and the peak problem defined as:

−d (u(x))xx + (vu(x))x = 1 in Ω = [0, 1] (2.23)
u(0) = 0, u(1) = 0, (2.24)

The analytical solution to the boundary layer problem is:

u(x) =
ev/d − ev/d·x

ev/d − 1
(2.25)

This analytical solution shows a steep gradient for high Péclet numbers as shown in Figure 2.1. The
computations were made for on an equidistant mesh with standard linear basis functions. The results
obtained from the boundary layer problem for positive velocity shows that as the Péclet number in-
creases the Galerkin solution becomes more unstable and produces non-physical oscillations in the
vicinty of steep gradients that are not present in the exact solutions.

As the number of basis functions, n, increases the oscillations are still present (see Figure 2.2), but
the amplitude is smaller due to the increase in evaluation points of the integrals to compute the solution.
Moreover, the numerical solution for lower Péclet number have less oscillations as the method has less
trouble with the convection part.

For the boundary layer problem with negative velocity, the flow direction is from right to left, and flipping
the boundary conditions, u(0) = 0, u(1) = 1, the numerical solution still produces spurious oscilla-
tions as shown in Figure 2.4. Similar oscillations are noticed in the numerical solutions of the peak
problem for positive and negative velocities, see Figures 2.3 and 2.4. Therefore, it is necessary to
apply a stabilization method for convection-dominated flow problems.

A common stabilization method for the Galerkin method is the Streamline Upwind/Petrov Galerkin
method (SUPG), but it has several disadvantages, one being that it does not guarantee to prevent non-
physical under-and over-shoots [6]. Therefore, the algebraic flux correction method is chosen as the
stabilization method, which has proven to prevent non-physical values for both frameworks FEA and
IGA [13, 11, 9, 9, 7].
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Figure 2.2: Galerkin solution for boundary layer problem with positive velocity and n = 20 for different Péclet numbers.
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Figure 2.3: Galerkin solution for peak problem with positive velocity and n = 20 for different Péclet numbers.
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Figure 2.4: Galerkin solution for boundary layer (above) and peak (below) problems with negative velocity and n = 20 for
different Péclet numbers.



3 Algebraic flux correction
In this chapter, the stationary convection-diffusion problem is stabilized by applying the principles of
the algebraic flux correction (AFC) with TVD-type limiting and described in section 3.1. This algorithm
is introduced by D. Kuzmin in [9] and D. Kuzmin and S. Turek in [14]. These papers as well as [11]
contain the complete description of the method and a summary of this family of methods can be found
in [11, 12], such as the AFC with flux limiting of FCT-type for time-dependent problems. In section 3.2
the defect correction scheme is described in regards to solving the non-linear system, followed by the
application of AFC to the numerical examples in section 3.3 as shown in the previous chapter.

3.1. Algebraic flux correction with TVD-type limiting
Before applying AFC to the stationary convection-diffusion equation in one dimension, it is solved with
the standard Galerkin method, which yields the following form:

(S −K)u = r. (3.1)

All algebraic operations performed below are necessary to get the Galerkin solution free of nonphys-
ical oscillations. In particular in the stationary case, operator K − S must not contain any negative
off-diagonal entries in order to be a local extremum diminishing scheme [14, 11]. The discrete diffusion
operator S [10], does not cause any problem because all off-diagonal entries are negative unless the
mesh or the diffusion tensor is highly anisotropic, which means that diffusion is direction-dependent,
but in this thesis, we limit to isotropic diffusion tensors, which are direction-independent.

Discrete upwind technique is used to compute the symmetric artificial diffusion operator D =
{dij} that is added toK, but in a conservative way. D is symmetric and has zero row and column sums
(to preserve conservativity of the scheme) (3.3). Square matrices that have all the properties as D are
called discrete diffusion operators [13].
For the stationary convection-diffusion ODE system (2.9), the discrete convection operator, K, has to
be altered to eliminate all negative off-diagonal. This can be achieved by adding an artificial discrete
diffusion operator, D, which is defined as symmetric matrix [11]:

D = dij such that dij = dji (3.2)

which have zero row and column sums ∑
i

dij =
∑
j

dij = 0 (3.3)

Matrix D is sparse and its nonzero off-diagonal entries dij may be positive (diffusion) or negative
(antidiffusion). Define following operation of so-called conservative flux decomposition for an arbitrary
discrete diffusion operator as followed applied to u [11]:

(Du)i =
∑
j

dijuj =
∑
j ̸=i

dijuj + diiui (3.4)

(3.3)
=

∑
j ̸=i

dijuj −
∑
j ̸=i

dijui (3.5)

=
∑
j ̸=i

dij(uj − ui) (3.6)

due to zero row sum property. Then the diffusive terms to node i can be decomposed into a sum of
numerical fluxes as follows:

(Du)i =
∑
j ̸=i

fij where fij = dij(uj − ui) (3.7)

where fij are diffusive fluxes.

10
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The optimal entries of the artificial diffusion operator D, a discrete diffusion operator, are given by
[13, 14]:

dij = dji = max{0,−kij ,−kji}, dii = −
∑
j ̸=i

dij (3.8)

The modified discrete convection operator L = {lij} is defined as L = K +D resulting in a stabilized
linear scheme where the entries of L are non-negative. In practice, D is not assembled explicitly, but
entries of L are modified within an edge-by-edge approach. First, we initialize L := K, then each pair
of nonzero off-diagonal coefficients lijand lji are analysed such that the smallest entries of K are set
to zero and the rest three entries ofK are modified to restore row/column sums. So computing dij with
(3.8) and the modifications of entries in L are given by [14]:

lii := lii − dij , lij := lij + dij , (3.9)
lji := lji + dij , ljj := ljj − dij (3.10)

The resulting scheme after applying these modifications and the original scheme (2.9) differentiate in
a way that can be represented as a sum of skew-symmetric diffusive fluxes fd

ij = dij(uj − ui) between
neighboring nodes that have overlapping support of the basis functions. The above modifications lead
to a linear scheme given as:

(S − L)u = r (3.11)

As Godunov’s theorem [4] stated, linear schemes are only first-order accurate, so to overcome this
limitation a non-linear scheme is constructed by combing the linear high-order scheme (2.9) and low-
order schemes (3.11) in a non-linear fashion given as followed [14]:

(S −K∗(u))u = r (3.12)

Here, the nonlinear discrete convection operator is defined as [7]:

K∗(u) = L+ F̄ (u) = K +D + F̄ (u) (3.13)

To remove certain fractions of artificial diffusion which was added to the high-order discretization to sup-
press spurious oscillations and avoiding loss of accuracy in smooth regions due to excessive diffusion
we will modulate the low-order scheme by some non-linear anti-diffusion operator: F̄ (u) = {f̄ij(u)},
which has the same properties as a discrete diffusion operator, but opposite sign of D, so −D. There-
fore, decomposition of anti-diffusion operator as a sum of anti-diffusive fluxes such as vector of all f̄i(u)
as f̄(u):

fi(u) := (F̄ (u)u)i =
∑
j ̸=i

f̄ij(u) (3.14)

with

f̄ij(u) = βij(u)(ui − uj) (3.15)

Define the coefficients βij such that anti-diffusive fluxes are relevant because the anti-diffusive fluxes
are defined as the limited difference of high-and low-order fluxes. Since the difference between high-
and low-order schemes is the added artificial diffusion applied to the solution, this is easily decomposed
into fluxes so that we define βij as [6]:

βij(u) = αij(u)dij (3.16)

where αij(u) is an adaptive flux limiter. When αij = 1 no limiting is applied since the anti-diffusive
fluxes will be equal to the difference of high-and low-order fluxes, which is the diffusive fluxes and
returns to the original Galerkin scheme. This limiter is computed by the TVD-type limiting algorithm
proposed by Kuzmin in [9]. For the description, the dependency on (u) is omitted to simplify the equa-
tions. Let us define the raw anti-diffusive fluxes to be limited as [14]:

fij = dij(ui − uj) and fij = −fji, (3.17)

Then the TVD-type limiting algorithm is given as followed[9] : for each pair of overlapping DOFs i and
j such that lji ≥ lij ≥ 0:
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1. Compute the sums of positive and negative anti-diffusive fluxes into i-th DOF to be limited:

P+
i := P+

i +max{0, fij}, P−
i := P−

i +min{0, fij} (3.18)

2. Compute upper and lower bounds Q±
i to be imposed on the sums P±

i :

Q+
i := Q+

i +max{0,−fij}, Q+
j := Q+

j +max{0, fij} (3.19)
Q−

i := Q−
i +min{0,−fij}, Q−

j := Q−
j +min{0, fij} (3.20)

3. Determine the nodal correction factors R±
i evaluated at the upwind DOF i:

R+
i = min

{
1,

Q+
i

P+
i

}
, R−

i = min
{
1,

Q−
i

P−
i

}
(3.21)

4. Compute the flux limiters:

αij =

{
R+

i , if fij > 0

R−
i , otherwise

(3.22)

Resulting scheme:

(S − L)u = r+ F̄ (u)u (3.23)

rewritten as:

((S − L)u)i = ri + f̄i(u) (3.24)

for i being the number of the considered degree of freedom, with f̄i(u) as [14]:

f̄i(u) =
∑
j ̸=i

αijfij (3.25)

With this method explicit construction of the anti-diffusion F̄ (u) is avoided and the final problem that is
a high-resolution scheme has to be solved is:

(S − L)u = r+ f̄(u). (3.26)

This non-linear algebraic system is solved by defect correction scheme in this thesis.

3.2. Defect correction scheme
The defect correction scheme (DCS) is an iterative method to solve non-linear algebraic systems. The
general idea is to start with an initial guess and in each iteration, an evaluation is made of non-linear
terms using the solution of the previous iteration. The stopping criteria are set on the desired tolerance
or until the limit of iterations is achieved. The algorithm reads as followed [6]:

1. Select an initial guess u(0), e.g.:

u(0) = 0 or low-order problem solution: (S − L)u(0) = r (3.27)

2. Solve the linear system:

(S − L)um = r+ f̄(um−1) (3.28)

3. Repeat step 2 until the following condition is fulfilled:

||(S − L)u(m) − r− f̄(u(m))|| < tol or m = mmax, (3.29)
(3.30)
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where tol is prescribed tolerance, mmax is prescribed maximal number of iterations and || · || is a norm
of interest.

Respectively, the presented algorithm clearly illustrates the idea behind the defect correction ap-
proach, but in practice an equivalent algorithm [14] is used more often:

1. Select an initial guess u(0), e.g.:

u(0) = 0 or low-order problem solution: (S − L)u(0) = r (3.31)

2. Solve the linear system for correction:

(S − L)∆u(m) = r+ f̄(u(m−1))− (S − L)u(m−1) (3.32)

where the right hand side is the residual from the previous approximation.
3. Apply the correction to the solution:

u(m) = u(m−1) +∆u(m) (3.33)

4. Repeat step 2 until the following condition is fulfilled:

||∆u(m)||
||u(m)||

< tol or m = mmax (3.34)

The necessary ingredients to implement the TVD-type limiting approach is presented and applicable
to the convection-diffusion problem.

3.3. Numerical results
The results obtained after stabilizing the Galerkin method with AFC are computed for the boundary layer
and peak problem defined in section 2.3. For different Péclet numbers the low-order upwind solutions
and the solutions obtained by the high-resolutionmethod: AFC of TVD-type limiting, are shown in Figure
3.1 for the boundary layer problem and in Figure 3.3 for the peak problem. Moreover, corresponding
P±, Q±, R± values of the AFC algorithm after one iteration of the DCS results are included to show
understand how the TVD-type limiting works (see Figures 3.2 and 3.4). At the first iteration for both
problems, the P+ values show how much flux wants to go into the node (knots), while the Q+ values
show which bounded flux is allowed to go into the node (knots). The ratio of them is defined by the R+

values, which evaluates how strong the limitation can be for the incoming fluxes.
It can be seen as the Péclet number increases, the flux values increase and therefore theR+ values

increases to prevent having oscillations in the solution. At regions where the solution is smooth, the
flux values are zero and therefore how much these fluxes are limited is not of importance. These AFC
results give a better understanding of how the limiter behaves and will assist in the development of
potential neural network architecture that can mimic the behaviour of the limiter.
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Figure 3.1: Upwind (low-order) and AFC (stabilized high-order) solution for boundary layer problem with positive velocity and
n = 20 for different Péclet numbers.
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Figure 3.2: AFC values after one iteration for the boundary layer problem with positive velocity and n = 20 for different Péclet
numbers.
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Figure 3.3: Upwind (low-order) and AFC (stabilized high-order) solution for peak problem with positive velocity and n = 20 for
different Péclet numbers.
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Figure 3.4: AFC values after one iteration for the peak problem with positive velocity and n = 20 for different Péclet numbers.



4 Scientific machine learning
This chapter gives a short overview of a neural network and its components, such as the architecture
of a feedforward neural network is explained in section 4.1, and the important aspects of training them
in section 4.2.

4.1. Network architecture
The most classical type of deep learning models are feedforward neural networks or multilayer
perceptrons (MLPs), which are also called Deep feedforward networks. The goal of a feedforward
network is to approximate some function f . For example for a classifier, y = f(x; θ) that maps an input
x to an output y and learns the value of the parameters θ, such that f is the best function approximation.
The reason to call these models feedforward is that the information propagates only in one direction, so
no feedback connections are included where the output is fed back to itself. They are called networks
because they are composed of many different functions.

For example, taking three functions f (1), f (2) and f (3), connected in a chain, in the form of f(x) =
f (3)(f (2)(f (1)(x))). These are common structures of neural networks. Here f (1) is called the first layer
or input layer of the network, f (2) the second layer and so on. The length of the chain gives the dept of
the model from which the term ’deep learning’ came. The final layer is the output layer. Hidden layers
are the layers in between the input and output layer and here the input x is evaluated without know-
ing the desired output y. The neural in these networks appear since they are inspired by neurons in
biology, like the human brain. Each hidden layer consists of vectors and the elements in that vector re-
sembles neurons. The number of neurons of these hidden layers determines thewidth of the model [5].

An example of a neuron that is connected by directed links in a neural network is shown in Figure 4.1
with the important descriptions of the parameters given in Table 4.1.

Figure 4.1: Artificial neuron [1]

Parameter Description
xi ith input of the neuron
wi Adaptive weight for xi

z Weighted sum of inputs:
z =

∑p
i=1 Wixi = WTx

σ(z) Activation function
v Output of neuron

Table 4.1: Parameters of artificial neuron

Each artificial neuron has an activation function, which takes in the summed weighted inputs and maps
these onto the functions and returns an ’activation’ value as output. This correlates to its own mapping
of the input with a certain output. During training, the weights are adjusted and the neuron learns to
make better approximation of the mapping from the input to the output. The activation functions play a
crucial role for neural networks to describe nonlinear functions, otherwise it would only describe linear
functions despite the setting. A bias can be added to shift the activation of a neuron in order to find
optimal weights. The most common used activation functions are shown in Figure 4.2.

Figure 4.2: From left to right; Sigmoid, tangent hyperbolic (tanh), Rectified Linear Unit (ReLU) [1]

18
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The equations of the activation functions are:

Sigmoid σ(z) = 1
1+e−z

Tangent hyperbolic (tanh) σ(z) = 2
1+e−2z−1

Rectified Linear Unit (ReLU) σ(z) =

{
0 if z < 0

z, if z ≥ 0

The network’s output are values, which makes it regression-based problem instead of the (tradi-
tional) classification problem.

Figure 4.3: Feedforward neural network [1].

• Activation of hidden-layer neuron j:

zj =

p∑
i=1

Wh
ijxi + bhj

• Output of hidden-layer neuron j:
vj = σ(zj)

• Output of output-layer neuron l:

yl =

m∑
j=1

W o
jlvj + bol

The input-output mapping can be given in matrix notation, such as:

Z = XbWh, Xb = [X 1]
V = σ(Z)
Y = VbWo, Vb = [V 1]

An example of a feedforward neural network is shown in Figure 4.3. The general goal of training a
neural network is to find the optimal weight matrixW and sometimes bias vector B, given as θ = [W B],
by minimizing a loss function L(f(x; θ), y) for all inputs x. The following steps occur during this training,
called supervised learning, after initialization of the weights and (optional) the bias to small random
values:

1. Forward computation: feed the input data into the network and proceeds through the hidden
layers to compute the output and the loss of the prediction f(x; θ) and target y
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2. Backward computation: calculate the gradients of the loss function with respect to the weights,
known as the process of back-propagation: ∇L(Wn) = [ ∂L

∂wi
, ∂L
∂w2

, . . . , ∂L
∂wM

]T

3. Optimization: adjust the weights based on the gradients to minimize the loss, known as the
process of gradient descent: Wn+1 = Wn − αn∇L(Wn)

4.2. Training and regularization
Minimizing the loss function by a neural network is called training. It approximates the unknown nonlin-
ear function that is underlying in the given input and output data mapping. The loss function is usually
obtained by computing, for example, the mean square error as:

L(f(x; θ), y) = 1

N

N∑
i=1

(f(xi, θ)− yi)
2.

An optimization algorithm is used to handle this training process. The most common one is the Stochas-
tic Gradient Descent (SGD), which is based on firs-order gradients and updates the weights and biases
in the direction of the steepest descent of the loss function. This algorithm computes the gradients with
respect to a subset of the data and the size of it is called the batch size, which is one of the hyperpa-
rameters that are optimized empirically. Another hyperparameter in the SGD is the learning rate, which
determines what the step size for the weight/bias update at every iteration.

Another optimizer is Adam, which is a modification of the SGD algorithm and computationally effi-
cient. It requires less tuning and increases the step size of the update if the direction of the gradient
keeps descending, but decreases the step size over time, specifically if the gradients are large. This
makes it a powerful optimizer and it tends to outperform SGD in practice.

To regulate the performance of the neural network on unobserved data, also called generalization, three
sets are created from the data, namely training, validation and test set. The training set is to train the
neural network and the validation set is used to select the right hyperparameters, such as the number
hidden layers or the number of predetermined training iterations, also called epochs. The test set is an
effort to improve the performance and verify that the hyperparameters have not been over-fitted to the
validation set. This is often observable when the validation loss start to increase after some epochs
while the training loss decreases.



5 Learning-based flux limiting
In this chapter, the learning-based flux limiting approach is presented in section 5.1 to attempt to mimic
AFC with neural networks models as described in section 5.2, followed by the descriptions of the pa-
rameters and loss functions used to train the neural networks in section 5.3. The results are given
in section 5.4 for each model. Finally, an analysis and discussion are given based on the results in
section 5.5.

5.1. Reverse Engineering αij
The neural network (NN) learning-based flux limiting approach is developed using AFC with TVD-type
limiting, henceforth called the AFC limiter, to solve the stationary convection-diffusion problem in one
dimension. To solve this non-linear problem the defect correction scheme (DCS) is used, which takes
up extra computational steps involving the AFC limiter and therefore is time-consuming. These calcu-
lations are circumvented by reverse engineering the final limiting coeffcients αij as produced by the
AFC limiter. The converged AFC solution, uAFC, obtained from the DCS at iteration m = n, and the
low-order upwind solution, ulow, at m = 1 are used in the system,

(S − L)um = r+ f̄(um−1),

that is solved by the DCS with m as iteration. After filling these solutions and rewriting it the following
is solved:

f̄(ulow) = (S − L)uAFC − r, (5.1)

where the anti-diffusive correction for the ith DOF f̄i(ulow) is computed as followed:

f̄i(ulow) =
∑
j ̸=i

ᾱijfij(ulow),

where fij(ulow) = dij(u
low
i − ulowj ) is the anti-diffusive flux with dij as the artificial diffusion coefficient

and ᾱij is the aggregated adaptive flux limiter, which now represents the one step limiter and is called
the reverse engineered αij , or in short αREV

ij . To compute this, an example with five basis functions
(n = 5) is as followed: Let v > 0 such that

f̄0(ulow) = +α01f01 ⇒ α01 = f̄0(ulow)/f01
f̄1(ulow) = −α01f01 + α12f12 ⇒ α12 = (̄f1(ulow) + α01f01)/f12

f̄2(ulow) = −α12f12 + α23f23 ⇒ α23 = (̄f2(ulow) + α12f12)/f23

f̄3(ulow) = −α23f23 + α34f34 ⇒ α34 = (̄f3(ulow) + α23f23)/f34

f̄4(ulow) = −α34f34

Note that for fij = 0 the αij is set to 1 similarly to the AFC limiter and the value of the last node is
not used, but serves as a verification. For v < 0, the anti-diffusion correction f̄(ulow) is computed in a
similar way, but starts with computing first the α34 term as given by:

α34 = f̄4(ulow)/f34
α23 = (̄f3(ulow + α34f34)/f23

α12 = (̄f2(ulow) + α23f23)/f12

α01 = (̄f1(ulow) + α12f12)/f01.

21
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AFC algorithm vs NN learning-based flux limiting

1. High-order method:
(e.g. Galerkin FEM)

(S −K)u = r

2. Low-order method:

(S − L)u = r

L = K +D results by adding the artificial diffusion D

AFC algorithm (TVD-type)

3. Apply the correction to the solution:

(S − L)u = r+ f̄(u)

where the anti-diffusive correction at i is:

f̄i(u) =
∑
j ̸=i

αij(u)fij(u),

fij(u) = dij(ui − uj)

αij(u(m−1)) is determined by
the algorithm: (3.17)-(3.22)

NN algorithm

3. Apply the correction to the solution:

(S − L)uAFC = r+ f̄(ulow)

where the anti-diffusive correction at i is:

f̄i(ulow) =
∑
j ̸=i

αREV
ij (ulow)fij(ulow),

fij(ulow) = dij(u
low
i − ulowj )

αREV
ij (ulow) = NN (ulow)

NN αREV
ijulow f̄(ulow)

Figure 5.1: A summary of the AFC algorithm and NN learning-based flux limiting algorithm for solving the nonlinear system.

5.2. Development of neural network models
The learning-based flux limiting approach is based on supervised learning where the neural network
approximates the underlying function that is known to us through the relationship between the input
variables and output variables. In this case the input data consists of some form of the upwind so-
lutions and the output data of the reverse engineered αij as shown in figure 5.1. This relationship
or mapping provides the neural network the ability to learn the behaviour of the AFC limiter, which is
the goal. For this purpose the feedforward neural network is used and via observing the training and
validation set losses or errors the architecture and hyperparameters were optimized. However, these
parameters might not be the most optimal ones and could be automatically tune by programs, like Ray
Tune [16], but these are usually computationally costly. The architecture is optimized by initially using
one hidden layer with few neurons and then increasing the layers and number of neurons per layer
when the training and validation losses were decreasing and the performance was improving.

An initial model is developed by fixing the input values of the neural network as given in Figure 5.2.
These input values takes into account the neighboring low-order solutions corresponding to the output
value αREV

ij , which provides more information about the solution around element [ui, ui+1] that can
guide the neural network in understanding the relationships/mapping better. This model is defined as
the solution model, as shown in Figure 5.3 (top left).
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Figure 5.2: The low-order upwind solution as input and reverse engineered αij as output corresponding to element [ui, ui+1]
for the neural network.

As an alternative, another model approach is considered that has besides the solution input values also
the anti-diffusive flux values fij = dij(ui−uj), where ui values are the low-order upwind solutions and
contains the physics aspect namely the artificial diffusion coefficient dij . Moreover, these fluxes are
also used to compute the AFC limiter in algorithm: (3.17)-(3.22), which also provides more information
to the model to predict the αREV

ij values. This approach defines the solution + fluxes model as shown
in Figure 5.3 (top right).

Yet another alternative is to compensate for the mesh size by taking the gradients of the low-order
solution as the input values because the mesh size determines the numerical accuracy of the solutions
and might influence the accuracy of the neural network as well if is not filtered out during training. For
example, fine meshes (equivalent to small mesh sizes) are numerically more accurate than coarse
meshes (equivalent to large mesh sizes). Therefore, taking the gradient of the low-order solution in-
corporates the mesh size dependency as smaller mesh sizes can determine a more accurate solution.
This defines the gradient model as shown in Figure 5.3 (bottom left).

The final model approach developed is inspired from the last two previousmodels, namely by combining
the gradient values of the upwind solution with the anti-diffusive fluxes, to get the best of both models
in one. This is defined the gradient + fluxes model, as shown in Figure 5.3(bottom right).

Figure 5.3: The four model approaches.

To sum up, the four potential model approaches are given in Figure 5.3 with the corresponding input
and output variables. These models are trained with the solutions of the boundary layer problem
defined in (2.21) and to find a suitable data that represents the task of limiting similar to AFC the best,
two data sets, single-mesh data andmulti-mesh data, were tested. To generate enough data to train
a neural network 144 various Péclet numbers ranging from 8 to 125 were used and other parameters
are summarized in Table 5.1.



5.2. Development of neural network models 24

Parameters single-mesh data multi-mesh data
number of basis functions (n) 10 10, 25, 50
artificial diffusion coefficient (dij) 0.36-0.5 0.36-0.5
velocity constant(s) (v) 0.72-1 0.72-1
diffusion coefficient (d) 0.008 - 0.09 0.008 - 0.09
solution profiles upwind BL problem upwind BL problem
Péclet number (Pe) 8 to 125 8 to 125

Table 5.1: Single-mesh and multi-mesh data generated by the solutions of the boundary layer (BL) problem to train the neural
network models and consists of 1026 data points and 9348 points respectively. For each data, the training data is 70% of the

data, validation data is 23% and test data is 7%.

To understand the relationship between the input variables and output variable three examples of the
input and output mapping with multi-mesh data for the models is given in Figure 5.4. Firstly, the so-
lution input value ui+1 versus the output value αpred

i,i+1 is mapped in Figure 5.4a. Note that for zero or
one solution values, the alpha values become irrelevant because the boundary conditions have to be
satisfied here. The boundary layer solution is steepest around x = 1, therefore more limiting is required
here and consequently the alpha values become mostly between zero and one. This is in general for
all mappings more important at high Péclet values, therefore, the alpha values are closer to zero, while
at low Péclet values the solution is not that steep so alpha values can be larger. For multi-mesh data,
on fine meshes more points are evaluated and therefore more accurate limiting is possible.

Secondly, the gradient input value ui+1−ui

∆x versus the output value αpred
i,i+1 is mapped in Figure 5.4b. For

the boundary layer problem, the gradient becomes more negative as the solution decreases, so more
limiting is needed and the alpha values become smaller. At straight solution regions the differences
between the points are zero and thus the alpha values can be any value between zero or one.

Lastly, the anti-diffusive flux input value fi,i+1 versus the output value αpred
i,i+1 is mapped in Figure 5.4c.

Note that the previous mapping can be interpreted as the opposite of this mapping because both map-
pings take the difference of the solution values, but in the opposite way. Besides, this mapping does
not divide by the mesh size, but is multiplied with the artificial diffusion coefficient di,i+1, so it contains
the physics of the problem. Moreover, in the mapping a large slope is visible, which corresponds to
the last solution points close to the steep region, whereas the other mapping between flux values zero
and 0.1 corresponds to the steep region of the solution.

Furthermore, high Péclet solutions have steeper regions and therefore have larger fluxes, but these
have to be limited and therefore correspond to smaller alpha values. Fluxes around zero do not need
to be limited and therefore can have alpha value zero, one or in between because that does not affect
the solution results. This also means that a small error in the αij predictions for a large flux can create
overshoots in the solution, so it is important that the predictions for large fluxes are as small as possible
equivalent to being sufficiently accurate.
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(c) Input-output mapping of anti-diffusive flux value fi,i+1

Figure 5.4: One input value to output value mapping for the different models with the solution value ui+1, gradient value
ui+1−ui

∆x
and anti-diffusive flux fi,i+1 value obtained by the upwind solutions of the boundary layer (BL) problem and

mulit-mesh data.

5.3. Training: loss functions and hyperparameters
The goal of training a neural network is to minimize the loss functions, so a suitable measure of the
error between the output of the network and the given target has to be considered. A straightforward
choice is taking the Mean Squared Error (MSE) of the target, αREV

ij , and the output of the neural network,
αpred
ij . However, the limiter αREV

ij is a dimensionless number between 0 and 1 and contains no other
information about the anti-diffusive fluxes that have to be limited. Therefore, other loss functions are
considered where suitable terms are included.

In AFC a limited amount of the anti-diffusive fluxes is added in a non-linear fashion to the system to
suppress the non-physical oscillations from reoccurring. This is defined by the anti-diffusive correction
f̄(u), which sums up the limited anti-diffusive fluxes over the domain and is given as αijfij(u). This is
represents a more realistic limiting behaviour and therefore is used as alternative second loss function.
Note that the output of the network is the aggregated αij value and to compute the anti-diffusive fluxes
fij the upwind solution ulow is used, which also forms the basis as the input of the neural network mod-
els.

A third loss function is considered as well, where the explicit computation of the anti-diffusive correc-
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tion as given by (3.25) is taken into account, but it also inherits the non-linear behaviour of adding the
fluxes similar to the AFC algorithm. Below the explicit loss function formulas are given, where N is the
batch size and n are the numbers between 1 and N . The loss functions are applied to each model and
compared with each other for each model.

LF1. MSE of predicted and target αij - alpha loss function:

LF1 =
1

N

N∑
n=1

(αpred(n)
ij − αREV

ij
(n))2 (5.2)

LF2. MSE of predicted and target αijfij(ulow) - limited (anti-diffusive) fluxes loss function:

LF2 =
1

N

N∑
n=1

(
(αpred

ij fij)
(n)

− (αREV
ij fij)

(n))2 (5.3)

LF3. MSE of predicted and target f̄(ulow) - limited (anti-diffusive) correction loss function:

LF3 =
1

N

N∑
n=1

(
(f̄pred(ulow))(n) − (f̄REV(ulow))(n)

)2
, (5.4)

where f̄REVi (ulow) =
∑

j ̸=i α
REV
ij fij(ulow).

Here αpred
ij is the output of the NN and αij values are the reversed engineered αij , abbreviated

as αREV
ij and described in section 5.1. For the third loss function, LF3, the error is computed for the

f̄pred(ulow) and requires to have neighboring αij and fij values as described in section 5.1, therefore,
it requires a complete different split of the data to achieve the training, validation and test sets than for
LF1 and LF3 where the data is randomly shuffled. This causes the training to be more computationally
inefficient, which can play a major role in the results. The architecture and hyperparameters used in
each model approach are shown in Table 5.2.

Parameters All models with LF1 and LF2 All models with LF3
Hidden layer (HL) 3 3
Neurons per HL 12, 15, 15 12, 20, 20
HL activation func-
tion

tanh tanh

OL activation func-
tion

Sigmoid Sigmoid

Optimizer Adam Adam
Learning rate 0.001 0.001
Epochs 1000 30
Batch size 64 n (number of basis functions)
Initial weights Xavier normalized distribution Xavier normalized distribution
Initial biases N (0, 0.25) N (0, 0.25)

Table 5.2: Hyperparameters for the different neural network models with loss function 1, 2 and 3.

The tanh activation function is considered in each hidden layer based on the mapping of the input
and output data of the models. The Sigmoid activation function is considered in the output layer to keep
the output value of the model between 0 and 1 since the αij is between these values. Here the Xavier
normalized distribution, also known as Glorot initialization, is the normal distribution, N (0, σ2), where

σ = gain×
√

2

fanin + fanout
,

and fanin is for example the number neurons in the input layer connected with weights to a hidden layer
and fanout the number of neurons in the hidden layer. The idea of Xavier normalized distribution is so
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that the neural network converges faster [3] for tanh activation function and the recommended gain
according to the PyTorch function documentation is 5/3 [15]. It was also observed that stable training is
achieved with this initialization of the weights in combination with the bias initialization with the normal
distribution.

5.4. Results
After training each model, the results for the two data sets, single-and multi-mesh data, are compared
with each other on the trained boundary layer problem. To evaluate the robustness of the models,
they are also tested on an untrained peak problem as defined in (2.23). These problems are tested on
different meshes (n = 5, 10, 20, 50) and inside and outside trained range of Péclet values (Pe = 4−700).

To test and compare the performance of each of the models the L2-norm of the relative error of the
AFC solution, uAFC, the neural network solution, uNN, which is computed with the predicted αij versus
the exact solution, uexact, as followed (the computation is found in the appendix):

||uAFC − uNN||2
||uexact||2

Here the relative error defines the accuracy of the solution obtained by the neural network, in other
words, if the absolute error of the AFC and NN solution compared to the exact solution is significant
(small or large). For example, the absolute error of the AFC and NN solution is small in the case when
the exact solution L2 norm is large, consequently leading to higher accuracy of the NN solution. This
error is calculated for each loss function for all models for comparison.

Moreover, the L2-norm of the αij error is computed as vectors, so ∀i, j:

||αpred
ij − αAFC

ij ||2 =

( n−2∑
m=0

|αpred(m)ij − αAFC(m)ij |2
)1/2

The model that mimics the AFC limiter the best is based on the lowest errors for the solutions for the
two data sets and two test problems, but also on whether the model solutions are similar or close to
the AFC solutions for most of the meshes and Péclet values. Furthermore, when the model solutions
exceed the AFC and or the analytical solutions then it represents an overshoot. However, when the
model solution are exceeding the AFC solution, but not the analytical solution then it outperforms AFC.
Finally, interesting solution profiles results are shown in the results below and the L2-norm relative
solution error and αij error for all tested meshes and problems for each model can be found in the
appendix A.

5.4.1. Solution model approach
For the trained boundary layer problem and both data sets, the solution model with limited fluxes loss
function (LF2) is most accurate on all meshes and for most Péclet values, but multi-mesh data has
smaller solution errors compared to the single-mesh data, see for example Figure 5.5. However, the
alpha L2 errors are smaller for alpha loss function (LF1) on coarse meshes but not for LF2. This might
be because the neural network optimizes its network-parameters better based on LF1 instead of LF2
as the αREV

ij value is the output value and to optimize for the limited anti-diffusive fluxes αREV
ij fij is more

complex. Moreover, on fine meshes, the solution errors for all loss functions are in the same order,
so solution profiles results are needed to observe which loss functions performs the best and has the
most accurate results, for example see Figure 5.6. Furthermore, for single-mesh data, the model based
on the limited correction loss function (LF3) is less accurate than other loss functions considering the
under-and/or overshoots present in the solutions.
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Figure 5.5: The L2-norm relative error of the (trained) boundary layer problem solutions for fine mesh (n = 20) for solution
model approach trained on single-mesh data (left) and multi-mesh data (right) and with loss functions (LFs): alpha LF1 (blue),

limited fluxes LF2 (orange) and limited correction LF3 (green).

Figure 5.6: The boundary layer solutions of the solution model on a coarse mesh (n = 20) for alpha loss function (LF1, left)
versus limited fluxes loss function (LF2, right) for multi-mesh data.

For the untrained peak problem, the solution error results on fine meshes, n = 20, 50, are more
accurate than on coarse meshes, n = 5, 10, for both data sets (see one of the examples in Figure
5.7). On coarse meshes, significant overshoots in the model solution are present for all loss functions
and Péclet numbers, so the errors are too high. On fine meshes, the solutions are close to the AFC
solutions for n = 50, but for n = 20 still overshoots are present in the solution for most Péclet values, for
example see Figure 5.8. For single-mesh data, limited correction loss function (LF3) results have most
similar solutions as AFC at the steep region of solution, other loss functions models are similar to each
other and have solutions close to AFC. Moreover, the solution errors for LF3 are less oscillatory than
for alpha (LF1) and limited fluxes loss functions (LF2). This could mean that this loss function model
has more stable limiting behaviour. For multi-mesh, LF2 is most accurate for most Péclet values at the
steep region of the solution, although, the differences in the errors with LF1 are very small.
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Figure 5.7: The L2-norm relative error of the (untrained) peak problem solutions for fine mesh (n = 20) for solution model
trained on single-mesh data (left) and multi-mesh data (right) and with loss functions (LFs): alpha LF1 (blue), limited fluxes LF2

(orange) and limited correction LF3 (green).

Figure 5.8: The peak problem solutions of the solution model on a coarse mesh (n = 20, left) versus fine mesh (n = 50, right)
for limited fluxes loss function (LF2) with multi-mesh data.

To conclude, for the boundary layer problem themodel trained onmulti-mesh data with limited fluxes
loss function (LF2) is based on observations of the errors and solution profiles the best on all meshes
and Péclet values. For the peak problem, the model gives for both data sets similar results and are only
most accurate on the finest mesh (n = 50). However, the multi-mesh data results are considered more
accurate for Pe > 100 than the single-mesh data, therefore, this data is most suitable to generalize this
model to untrained or other problems only on fine meshes.

5.4.2. Solution + fluxes model approach
For solution + fluxes model, the boundary layer problem results with limited fluxes loss function (LF2)
and multi-mesh data are most accurate for all meshes and Péclet values than single-mesh data with
LF2 (see one example in Figure 5.9). For single-mesh data, the solutions for alpha loss function (LF1)
and LF2 are similar on most meshes, but for LF2 they are still better. Moreover, the solutions for LF3
are overshooting AFC for high Péclet values and over-and undershooting AFC for low Péclet values,
but in some cases it outperforms AFC, see for example Figure 5.10 n = 20 for high Péclet values. For
multi-mesh data, the coarse mesh solutions have significant overshoots for LF1, but are similar to AFC
for fine meshes. Finally, the addition of the fluxes to the input data leads to no oscillations in the errors,
which could mean that this model has a more consistent limiting behaviour.
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Figure 5.9: The L2-norm relative error of the (trained) boundary layer problem solutions for fine mesh (n = 20) for solution +
fluxes model approach trained on single-mesh data (left) and multi-mesh data (right) and with loss functions (LFs): alpha LF1

(blue), limited fluxes LF2 (orange) and limited correction LF3 (green).

Figure 5.10: The boundary layer solutions of the solution + fluxes model on a coarse mesh (n = 20) for limited fluxes function
(LF2, left) versus limited correction loss function (LF3, right) for single-mesh data.

For the peak problem, the results for both data sets on fine meshes are more accurate than on
coarse meshes, which resulted in solutions containing overshoots for most Pèclet values. However,
the solutions on fine meshes such as n = 20 still contains small overshoots, but are on n = 50 most
similar to the AFC solutions, which was also observed for solution model. Based on the solution errors,
multi-mesh data is most accurate for limited fluxes loss function (LF2) for all meshes and Pe > 100
compared to alpha loss functions (LF1) and to single-mesh data, see one example in Figure 5.11. On
the other hand, the results for Pe < 100 are better for LF1 on all meshes.
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Figure 5.11: The L2-norm relative error of the (untrained) peak problem solutions for fine mesh (n = 20) for solution + fluxes
model trained on single-mesh data (left) and multi-mesh data (right) and with loss functions (LFs): alpha LF1 (blue), limited

fluxes LF2 (orange) and limited correction LF3 (green).

To sum up, for both problems the most accurate results for solution + fluxes model were obtained
with the multi-mesh data and limited fluxes loss function (LF2) on all meshes and most of the Péclet
values. So this model would be most suitable to be generalized for other problems only on fine meshes.

5.4.3. Gradient model approach
Gradient model learned a completely different input and output relation than the previous models, so
different limiting behaviour is expected. However, onmost meshes (n ≥ 10), the model is most accurate
with limited fluxes loss function (LF2) for all Péclet values, as shown in for example Figure 5.12, and
has boundary layer problem solutions most similar to the AFC solutions, but for single-mesh data it is
also accurate with alpha loss function (LF1) on fine meshes, see for example Figure 5.13. Other loss
functions have solutions that include significant overshoot on coarse meshes and small over-and/or
undershoots on fine meshes. For this model, the αij errors are on a coarse mesh smallest for LF1 with
single-mesh data, which has been observed for the solution model as well and confirms that LF1 is
easier to optimize for than others on coarse meshes.
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Figure 5.12: The L2-norm relative error of the (trained) boundary layer problem solutions for fine mesh (n = 20) for gradient
model approach trained on single-mesh data (left) and multi-mesh data (right) and with loss functions (LFs): alpha LF1 (blue),

limited fluxes LF2 (orange) and limited correction LF3 (green).
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Figure 5.13: The boundary layer solutions of the gradient model on a coarse mesh (n = 20) for alpha loss function (LF1, left)
with single-mesh data versus limited fluxes function (LF2, right) with multi-mesh data.

The impact of the mapping is more noticeable in the results for the untrained peak problem because
this model has a higher capacity to be generalized. Since on most meshes and for most Pèclet values
the solutions are similar to the AFC solutions and even in some cases outperforms AFC (see one
example in Figure 5.15). For multi-mesh data this is obtained with limited fluxes loss function (LF2)
and for single-mesh data with the alpha loss function (LF1) even though LF3 has smallest errors on
most meshes, see one example in Figure 5.14, this is because the solution is closer to AFC, but has
significant overshoot at the steep region compared to LF1, which has no overshoot.
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Figure 5.14: The L2-norm relative error of the (untrained) peak problem solutions for fine mesh (n = 20) for gradient model
trained on single-mesh data (left) and multi-mesh data (right) and with loss functions (LFs): alpha LF1 (blue), limited fluxes LF2

(orange) and limited correction LF3 (green).
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Figure 5.15: The peak problem solutions of the gradient model on a coarse mesh (n = 20) for alpha loss function (LF1, left)
with single-mesh data versus limited fluxes function (LF2, right) with multi-mesh data.

To conclude, for both problems and data sets the gradient model performs well with the limited fluxes
loss function (LF2) on most meshes and for most Péclet values, but for single-mesh data the alpha loss
function (LF1) is well generalizable to untrained problems and for multi-mesh this is achieved with LF2.

5.4.4. Gradient + fluxes model approach
For the boundary layer problem, the results of the gradient + fluxes model are similar to the gradient
model. Onmost of themeshes the results for single-mesh data aremost accurate for alpha loss function
(LF1), while, for multi-mesh data it is limited fluxes loss funtion (LF2), see for example Figure 5.16, that
obtains accurate results. The corresponding solutions are on most of the meshes and Péclet numbers
similar to AFC, but the solutions for single-mesh data outperforms the AFC solutions in some cases.

Moreover, on single-mesh data the solutions on coarse meshes are best with LF1 for most Péclet
numbers, for n = 5 both LF2 and limited correction loss function (LF3) have overshoots, but for n = 10
the solutions are similar to AFC for all loss functions; on fine meshes it is observed that the solutions of
LF1 are overshooting slightly AFC (outperforms as well), while of LF2 are undershooting AFC slightly
(see for example Figure 5.17), and LF3 are similar or close to AFC, for all Péclet values. So, overall
LF1 or LF3 could be chosen based on desired mesh for this data. For multi-mesh general observation
would be that for LF2 the solutions are most similar to the AFC solutions, while the solutions of LF1
are only more accurate for some high Péclet value cases on fine meshes, like reflected by the solution
errors.
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Figure 5.16: The L2-norm relative error of the (trained) boundary layer problem solutions for fine mesh (n = 20) for gradient
+ fluxes model approach trained on single-mesh data (left) and multi-mesh data (right) and with loss functions (LFs): alpha LF1

(blue), limited fluxes LF2 (orange) and limited correction LF3 (green).
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Figure 5.17: The boundary layer solutions of the gradient + fluxes model on a coarse mesh (n = 20) for alpha loss function
(LF1, left) versus limited fluxes function (LF2, right) with single-mesh data.

The solutions of the peak problem are most accurate for single-mesh data with alpha loss function
(LF1) and for multi-mesh data with limited fluxes loss function (LF2) on most of the meshes and Péclet
numbers, see one example Figure 5.18 and the solution for LF2 in Figure 5.19. These results lead to
solutions that are most similar to AFC and even outperforms AFC in some cases for both data sets
likewise to the gradient model. However, for single-mesh data LF2 solutions are also close to AFC only
on finemeshes and for the limited correction loss function (LF3) the solution have significant overshoots,
for example see solution for LF3 in Figure 5.19. For multi-mesh data and single-mesh data the LF2
differences of the solutions are very small on fine meshes.
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Figure 5.18: The L2-norm relative error of the (untrained) peak problem solutions for finest mesh (n = 20) for gradient +
fluxes model trained on single-mesh data (left) and multi-mesh data (right) and with loss functions (LFs): alpha LF1 (blue),

limited fluxes LF2 (orange) and limited correction LF3 (green).
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Figure 5.19: The peak problem solutions of the gradient + fluxes model on a coarse mesh (n = 20) for limited correction loss
function (LF3, left) with single-mesh data versus limited fluxes function (LF2, right) with multi-mesh data.

To sum up, the gradient + fluxesmodel is most accurate with single-mesh data for alpha loss function
(LF1) and with multi-mesh data for limited fluxes loss function (LF2) on most meshes and Pèclet values
for both problems. Thus, both data sets have the potential to be generalized to untrained or other
problems.

5.5. Analysis
In this section, the results are discussed and analysed. Four models have been proposed and each
model has been trained on two different data sets, namely single and multi-mesh data. These data
sets are generated by the low-order solutions of the boundary layer problem and also trained on three
different loss functions: alpha αij loss function (LF1), limited anti-diffusive fluxes αijfij loss function
(LF2) and limited anti-diffusive correction f̄(ulow) loss function (LF3). All the models have been tested
on the trained boundary layer problem and untrained peak problem. A summary of the most accurate
models with the corresponding parameters is given in Table 5.3.

Models Data LF Meshes
(n) + Pe

Generalizability

solution model multi-mesh 2 for all on a fine mesh (n = 50) ∀Pe ≥ 50∗solution+fluxes model

gradient model single-mesh 1 on most (n ≥ 10) on most meshes and Pe ∗
multi-mesh 2

gradient+fluxes model single-mesh 1 on most∗ on most meshes and Pe ∗

multi-mesh 2 on most on most meshes (n ≥ 10) and Pe ∗

∗ = outperforms AFC observably

Table 5.3: Summarized the best achievable models with the corresponding parameters for the different data sets (single-mesh
(n = 10) and multi-mesh(n = 10, 25, 50)), loss functions ( αij loss function (LF1), limited anti-diffusive fluxes αijfij loss

function (LF2) and limited anti-diffusive correction f̄(ulow) loss function (LF3)), and for tested meshes (n = 5, 10, 20, 50) and
Péclet (Pe) values based on the trained boundary layer (BL) problem results and the generalizability based on the untrained

peak (PK) problem results.

Mesh data analysis
The multi-mesh data achieves for each model accurate results, which could be expected since it con-
tains coarse and fine meshes and so it works on most if not all meshes for the boundary layer problem
and even for the peak problem it acquires results that outperform AFC. Single-mesh data is only compat-
ible with gradient and gradient+fluxes models because it takes into account the mesh size and therefore
the neural network can learn better the AFC limiting behaviour as the solution values are scaled and
do not depend on the mesh size anymore.
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Loss function analysis
As shown in Table 5.3 each model achieves more accurate results with LF2 compared to other loss
functions because LF2 takes into account the flux values, which gives more information than only the
alpha values, which is only a number between one and zero. Since the fluxes determine how much
limiting is required, therefore, optimizing the limited anti-diffusive fluxes αijfij gives more accurate
limiting behaviour and results. The Table also shows that LF3 does not provide accurate results with
any model and data sets, because it circumvents the summation of the limited anti-diffusive fluxes
and therefore the neural network is trained differently, which affects the performance and training took
longer, so it is more difficult to optimize for.

In general, LF2 results are less accurate with single-mesh data compared to multi-mesh data be-
cause single-mesh data does not provide sufficient information about the fluxes for the neural network
to optimize well with LF2. This could also be the case for the models where the flux information is not
sufficiently extracted from the solution input data because gradient-based models trained with single-
mesh data achieved accurate results with LF1. This could be because the gradient input data does
provide more information about limiting like AFC and therefore a simple loss function would work and
be optimized easier for this data.

To conclude, the alpha values of AFC and the models do not need to be similar to have accurate
performance and results, see for example LF2 which has the most accurate results for each model,
this means that when optimizing for LF2, the errors of the limited anti-diffusive fluxes of AFC and the
model are minimized, which is more important to be similar than the alpha values to be similar.

Comparison models
Based on the generalizability, gradient and gradient+fluxes models would be most suitable to mimic the
AFC limiting behaviour. The difference between these models is that the flux values are added, which
gives the neural network more information to learn and optimize for the loss functions. For example,
Table 5.3 shows that the model trained with single-mesh is the only one that outperforms AFC for both
boundary layer and peak problem on most meshes and Péclet values. Furthermore, for the solution
and solution+fluxes models adding the fluxes to the input data did not have the same impact on the abil-
ity of the neural network to learn or optimize better since the same results are obtained for both models.

Outperformance: AFC vs models
To outperform AFC, the models’ solutions are better than the AFC solutions and therefore are closer
to the analytical solution (and not exceeding it). From Table 5.3, it can be concluded that all models
are outperforming AFC for the untrained peak problem, which entails that less limiting is required than
AFC for this problem and that this less limiting behaviour is learned by the trained boundary layer prob-
lem. This behaviour is learned by the solution-based models accurately only for fine meshes and large
Péclet values, but by gradient-based models for most meshes and Péclet values. This shows that the
relationship between the input and output data plays a significant role in training a neural network to
learn the AFC limiter behaviour or more generally a numerical stabilization method.

Generalizability analysis
From Table 5.3 it follows that the solution model and solution+fluxes model are both more accurate than
the gradient model and gradient+fluxes model for the boundary layer problem on all meshes. However,
the latter models are more generalizable to untrained or other problems because of the different in-
put and output mapping. Finally, solution values as input data or solution-based models are only able
to learn the trained problem better and are less generalizable to other problems. Although, gradient
values as input data or gradient-based models are generalizable because they are able to extract a
general limiting pattern like AFC and are not specifically learning the mapping for the trained problem.
So gradient values provide more insight or information into the AFC limiting behaviour than the solution
values. In short, gradient-based models perform sufficiently accurate on most of the meshes for both
data sets, thus the affect of the numerical accuracy is less on these models.

Broad recommendations
It is recommended to train with data obtained with a fine mesh (n > 10), which occurs when multi-mesh
data is used, this increases the numerical accuracy and consequently the model’s accuracy. However,
single-mesh data (n = 10) can be used when the appropriate input values are used, as is the case for



5.5. Analysis 37

the gradient-based models. Moreover, to train a neural network the input and output relationship has
to be well compatible for the type of application since this will decide what the neural network has to
approximate with a suitable function. Likewise, this also applies to the type of loss function that is used.
For AFC, the gradient and/or fluxes as input values were the most optimal choices with relatively simple
loss functions, such as the optimization of the alpha errors (LF1) or the limited anti-diffusive flux errors
(LF2). To further evaluate the generalizability, the models can be tested on variations of the boundary
layer and peak problems, for instance by changing the boundary conditions.



6 Learning-based surrogate model of
AFC limiting

In this chapter, the neural network-based surrogate model of AFC limiting approach is developed and
described at first. The main focus of this approach is to find a suitable data set and neural network archi-
tecture that can mimic the behaviour of the AFC limiter given by the algorithm: (3.17)-(3.22). Therefore,
two data sets: constant diffusion data and variable diffusion data, explained in section 6.1 and three
different architectures: feedforward neural network, splitted neural network and physics-informed neu-
ral network, described in section 6.2, were considered. These networks were trained on the two data
sets and optimized with Ray Tune as explained in section 6.3, which tunes the hyperparameters and
lowers the manual efforts to obtain an optimal model. Finally, the neural networks are tested on differ-
ent problems to achieve the accuracy and performance and these results are described in section 6.4,
after which the analysis and discussion of the results follow in section 6.5.

An alternative technique to using a neural network in the AFC algorithm to solve the stationary convection-
diffusion equation is to use it as a surrogate model in the defect correction scheme [14] as described in
section 3.2. Here the neural network computes the αij values in a nonlinear fashion similar to the AFC
limiter of TVD-type. The idea is that the neural network learns the behaviour of the AFC limiter, where
the limiter is the benchmark.

The non-linear algebraic system of the stationary convection-diffusion equation solved by the defect
correction scheme (DCS), from equation (3.26), is given as:

(S − L)u = r+ f̄(u) (6.1)

where the anti-diffusive correction f̄(u) put into the system, from equation (3.25), is written as:

f̄i(u) =
∑
j ̸=i

αijfij , (6.2)

where fij = dij(ui − uj) is the anti-diffusive flux with dij as the artificial diffusion coefficient and αij is
the adaptive flux limiter. The limiter is computed using the fij values by the P, Q, and R equations of
the AFC with TVD-type limiting defined in Kuzmin’s algorithm: (3.17)-(3.22), which is also used by
the DCS and henceforth will be called the AFC limiter. The concept is to replace these equations by the
neural network, so it computes the anti-diffusive correction f̄(u) instead of the AFC limiter by using as
input the anti-diffusive fluxes, fij ∀i, j, and giving as an output the αij ∀i, j values, as shown in Figure
6.1. Consequently, the neural network relates the input data to the output data to mimic the P, Q, and
R equations, which defines the behaviour of the AFC limiter and therefore it functions as a surrogate
model in the DCS.

Moreover, the behaviour of the AFC limiter is not entirely based on the αij values, but the contribution
of the anti-diffusive fluxes fij have to be taken into consideration as well. Therefore, the behaviour
should be based more on the limited anti-diffusive flux as given by αijfij and consequently also on the
(converged) net limited anti-diffusive flux f̄i(u) because this is the part of the anti-diffusive flux that is
actually put into the system to remove excessive artificial diffusion in regions where possible without
generating spurious oscillations. For example, when the solution has regions where the slope is zero
the anti-diffusive flux fij is zero and therefore αij can be zero, one or any value in between without
generating oscillations in the solution.

So, the behaviour of the AFC limiter can be interpreted as followed: when AFC is limiting more than
required the solution is closer to the upwind (low-order) solution as less net limited anti-diffusive flux is
put into the system as a consequence less artificial diffusion is removed. However, limiting less than
required the solution is closer to the Galerkin (high-order) solution as more net limited anti-diffusive flux
is put into the system as a consequence more artificial diffusion is removed.

38
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AFC algorithm vs NN learning-based surrogate model of AFC limiting

1. Select the initial guess u(0), e.g.:

u(0) = upwind solution (low-order),
(S − L)u(0) = r

2. Solve the linear system for correction:

(S − L)∆u(m) = r+ f̄(u(m−1)) − (S − L)u(m−1),

where the anti-diffusive correction at i is:

f̄i(u(m−1)) =
∑
j ̸=i

αij(u(m−1))fij(u(m−1)),

fij(u(m−1)) = dij(u
m−1
i − um−1

j )

AFC algorithm

αij(u(m−1)) is determined by
the algorithm: (3.17)-(3.22)

NN algorithm

αij(u(m−1)) = NN (fij(u(m−1)))

NNfi,i+1

fi−1,i

fi+1,i+2

αi,i+1

u(m−1) f̄(u(m−1))

3. Apply the correction to the solution:

u(m) = u(m−1) +∆u(m)

4. Repeat step 2 unless following condition is fulfilled:

||∆u(m)||
||u(m)||

< tol or m = mmax

Figure 6.1: Summary of DCS with AFC and NN algorithms for solving the nonlinear system.

6.1. Type of input and output data
To find a suitable mapping between the input and output data to train the neural network in mimicing
the behaviour of the AFC limiter different approaches were considered. Firstly, the anti-diffusive fluxes
fij as input data and the corresponding αij values as output (see local window approach Figure 6.2) of
each iteration of the DCS for a boundary layer problem with single-mesh size (n = 50) was considered.
However, the mapping of the data appeared to be ill-conditioned because the fluxes around zero corre-
sponded to a large variation in the αij values as shown in the left plot in Figure 6.3 for Pe = ±100,±700,
therefore, restricting the learning space of the neural network.

Figure 6.2: Local window approach for input flux values, fij , and output value, αij .
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Secondly, more data is generated to broaden the space of the mapping, random solution profiles,
like cosine and sine functions, and the Galerkin and upwind solutions of the boundary layer and peak
problems both with negative and positive velocities were considered. For these profiles, the anti-
diffusive flux fij values were computed with their corresponding αij values for one AFC-TVD-loop
iteration (step 2 in DCS), which is equivalent to using the P, Q and R equations once. For example, the
mapping of the upwind solution of the boundary layer and peak problems are shown in the right plot of
Figure 6.3 for Pe = ±100,±700. Note that as the Péclet number increases the solutions get steeper
therefore the fij increases consequently decreases the αij values to limit oscillations from occurring
in the solution.

The three neural networks were trained with this data with the local window approach. Although,
the predictions for the αij values did not achieve symmetric solution profiles of the boundary layer and
peak problem in both velocity directions for all trained neural networks. This was especially noticeable
for the n = 20 results, thus, eliminating the need for the cosine and sine functions with this approach.
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Figure 6.3: For n = 50 the mapping between fij and αij of each iteration of the TVD loop (left) and of the first iteration of the
TVD loop (right) with the upwind solutions of the boundary layer (BL) and peak (PK) problems, both for Péclet number ±100

(v = ±1, d = ±1/100) and ±700 (v = ±1, d = ±1/700).
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Figure 6.4: For n = 50 the mapping between fij and αij of the first iteration of the TVD loop for the boundary layer (BL) and
peak (PK) problem, both for Péclet number ±100 (left) and ±700 (right) with variable velocities.

As a result, the neural networks were trained with the local window approach, where the anti-
diffusive fluxes fi−1,i, fi,i+1, fi+1,i+2, correspond to the output value, αi,i+1 (as shown in DCS Figure
6.1). The data is generated for one iteration of the DCS, so the fluxes are computed only once and
used to compute the αij value by using the P, Q, and R equations once. The fluxes were computed
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by fij = dij(ui − uj) where the artificial diffusion coefficient dij is related to the velocity constant used
in the problem. Therefore, two different data sets were investigated to find the optimal data set to train
the network that learns the AFC limiter equations. One data set is created with a constant diffusion
coefficient, dij = 0.5, and one data set with a variable diffusion coefficient, dij = v/2 (the 1/2 comes
from the Gauss quadrature rule see section 2.2) with v as the velocity constant. The former data set
has v = 1 and the latter set has different velocity constants.

Moreover, the ui values were sampled from the Galerkin and upwind solution profiles of the bound-
ary layer and peak problems in both velocity directions for fixed number of basis functions n = 50. These
solution profiles have steep, non-physical oscillatory and smooth regions (see Figure 6.5) where AFC
limits accordingly. For example, in oscillatory regions the αij values are zero, while in smooth or contin-
uous regions the αij values are close to one. In steep regions of the solutions, αij values are between
zero and one, which are the most challenging regions as oscillations can reappear in the solutions
when the Galerkin solutions or oscillations are not limited enough. The goal for the neural network is
to learn to recognize these types of regions and limit accordingly.
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Figure 6.5: Solution profiles for computing the fluxes to train the neural networks. (a) The Galerkin and upwind solutions, both
for peak and boundary layer problems and Péclet number from ±30 to ±700. (b) The Galerkin and upwind solutions for peak

problem and upwind solutions for boundary layer problem and number from ±50 to ±700.

Furthermore, a fine mesh (n = 50) is chosen to represent the steep regions in the solutions accurately
with sufficient nodes, where AFC has to limit. Both problems are used with positive velocity and neg-
ative velocity to create more data, but also to train the neural network to behave symmetrically and
consistently for these problems as the AFC limiter is capable of doing this. The problems are also con-
sidered for a wide range of Péclet numbers, where higher Péclet numbers are included. A summary of
the training data sets, the constant and variable dij , are given in Table 6.1 with the specific parameters
used. In Figures 6.5 the corresponding solution profiles used are presented. Important to consider here
is that for the boundary layer problem as the Péclet number increases, the solutions become steeper
at the right boundary (x = 1) for positive velocity or at the left boundary (x = 0) for negative velocity.
If different velocity constants are used for similar Péclet numbers the solutions do not change, but the
diffusion coefficients dij do change consequently changing the fluxes fij and therefore the αij values,
so the mapping changes as shown in Figure 6.4. Moreover, as the Péclet number increases for the
peak problem the solutions also get steeper at the peak region, which is near the right boundary (x = 1)
for positive velocity or at the left boundary (x = 0) for negative velocity, considering constant velocity
is used, for example v = 1. However, as the velocity constant increases for similar Péclet number the
slope of the line before the peak occurs decreases making it a less steep solution while maintaining the
steepness of the peak region for the corresponding Péclet number. Furthermore, the different velocities
changes the dij and the (ui − uj) values of the solution profiles and therefore the change of velocity
is cancelled out in the computations of the fluxes fij . Thus, the mapping for similar Péclet values with
different velocities are identical as shown in Figure 6.4.



6.1. Type of input and output data 42

Parameters constant dij data variable dij data
artificial diffusion coefficient (dij) 0.5 0.15-0.6
velocity constant(s) (v) 1 0.3-1.2
diffusion coefficient (d) 0.0015.. - 0.03 0.00109.. - 0.009
number of basis functions (n) 50 50
solution profiles Galerkin, upwind ± PK/BL Galerkin±PK, upwind± PK/BL
Péclet number (Pe) ± 30 to ± 700 ± 50 to ± 700

Table 6.1: Constant and variable artificial diffusion coefficient data sets to train the neural networks on the Galerkin and/or
upwind solutions of the boundary layer (BL) and peak (PK) problems. The constant dij data has v = 1.2 for Pe = ±700

instead of one.

As a result of the chosen solution profiles the flux input data and alpha output data form the mapping
as shown in Figure 6.6 and Figure 6.7 for constant and variable diffusion coefficient data, respectively.
For both data sets, the alpha values are zero for a wide range of flux values, which corresponds to
the oscillations in the Galerkin solutions, but also alpha values are close to one for a small range of
flux values close to zero, which relates to smooth regions in the solutions that are not limited by AFC.
Moreover, it can be observed that for a certain range of positive fluxes, the mapping has a slope. As
the flux values increases the alpha values decreases indicating that the regions in the solutions get
steeper, which correspond to increasing Péclet numbers. However, a main difference between the two
data sets can be observed from the relations between the alpha values and the input values fi−1,i and
fi+1,i+2. For the constant diffusion data, the slope relation is present in both cases, while for the variable
diffusion data a more spread out relation is visible. The latter is caused by the different velocities used
in the data, which will influence the neural network to learn differently than for the former data set.
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Figure 6.6: Input-output mapping to train the neural networks for constant diffusion coefficient dij = 0.5 constructed from
Galerkin and upwind solutions for both the peak and boundary layer problems for fixed number of basis functions, n = 50, and

Péclet numbers ranging from ±30 to ±700.
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6.2. Neural network architects: FFNN, Splitted NN and PINN
Feedforward Neural Network
As has been used in previous chapters, the feedforward neural network (FFNN) is used here since it will
give a reference for the ability to train and learn the behaviour of AFC limiter compared to other neural
network architectures. A FFNN of five hidden layers is used after optimizing the architecture manually
for two to eight hidden layers by observing the training and validation losses. Circumstantially, five
main computation steps are involved in the AFC limiter, namely taking the maximum and minimum of
the fluxes, adding the values together, taking a division between the Q and P values, taking the mini-
mum between one and fraction P and Q and finally the if statement to compute alpha. However, this
does not necessarily imply that each hidden layer will learn one step. All hidden layers have tanh as
activation function because the fluxes are between negative and positive values and the value of the
neurons will be kept between minus one and one. The output layer has a Sigmoid activation function
to keep the alpha value between zero and one. As the loss function the MSE is taken between the αij

from AFC and the predicted αij of the network as defined in previous chapter with equation (5.2). The
next architecture is a variation of the FFNN, namely the hidden layers are partially connected.

Splitted Neural Network
The Splitted neural network (SpNN) is developed inspired from the AFC limiter, so the P, Q and R
equations. As shown in Figure 6.9 the first hidden layer is a split layer that creates two separate
networks. The idea behind splitting the network into two is to mimic the P+, Q+ and P−, Q− equations
separately in each sub-network because these equations computeR+ andR− , respectively, and these
two contribute to computing the αij . The activation functions chosen are also based on the AFC limiter
as shown in Figure 6.8. The ReLU(z) = max(0, z) and −ReLU(−z) = min(0, z) represent the positive
flux contributions (P+, Q+) and the negative flux contributions (P−, Q−) respectively. The tanh(z) and
− tanh(z) account for the contribution of the fluxes, but also to mimic the division between the Q± and
P± values while keeping the output values between 1 and -1. The min(1, z) has to function like the
if statement for choosing the R+ or R− and is the last step to compute the αij value. Moreover, in
hidden layer 1 two different activation functions are applied in each network, which serves as taking
the positive (fij) and negative (−fij) fluxes like in the Q± equations. These activation functions have
been applied in various configurations in the hidden layers while manually tuning the hyperparameters
(explained in the section 6.3) and tested on the boundary layer and peak problems. Based on this the
best configuration of the model as shown in Figure 6.9 got the solutions closest to AFC, which might
represent the separation of the P±, Q± equations in another way, for example separating the P± and
Q± in each sub-network. Lastly, similar to the FFNN the loss function is the MSE between the αij from
AFC and the predicted αij of the network as defined equation (5.2).
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Figure 6.9: Splitted Neural Network with input, output layer and five hidden layers (HL1-5) with different activation functions in
each layer based on the AFC limiter.

Physics-informed Neural Network
In recent years a rapid rising scientific machine learning technique has been developed in diverse ap-
plications that integrates knowledge of physical phenomenon with deep learning to solve problems
involving Partial Differential Equations (PDEs) Physics-Informed Neural Networks (PINNs). The net-
work is trained in order to approximate the solutions of the PDEs by minimizing the loss function, which
obeys the physical constraints. The loss function includes a supervised loss that comes from the ini-
tial and boundary conditions and an unsupervised loss of the PDE, which is the residual of the PDE.
However, instead of approximating the solution of the PDE we have to approximate the αij with the
AFC limiter by the network. Therefore, the P, Q and R equations are included into the loss function that
computes the αPINN

ij as followed:

L
MSE
=

1

N

N∑
n=1

(α
pred(n)
i,i+1 − αPINN

i,i+1
(n))2, where αPINN

i,i+1 :=


min

{
1,

Q+
i

P+
i

}
, if fi,i+1 > 0

min
{
1,

Q−
i

P−
i

}
, otherwise

(6.3)
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with redefined P± and Q± equations:

P+
i := max{0, fi,i−1}+max{0, fi,i+1}, Q+

i := max{0,−fi,i−1}+max{0,−fi,i+1} (6.4)
P−
i := min{0, fi,i−1} +min{0, fi,i+1}, Q−

i := min{0,−fi,i−1}+min{0,−fi,i+1}. (6.5)

The αPINN
i,i+1 equations hold only for the upwind node and its flux contributions from the left and right node

for the positive velocity problems (v > 0). To be able to work for the negative velocity problems (v < 0),
the i and j are switched and therefore we have to consider fi+1,i+2 instead of fi−1,i. Thus, the above
equations will be as followed:

αPINN
i+1,i :=


min

{
1,

Q+
i+1

P+
i+1

}
, if fi+1,i > 0

min
{
1,

Q−
i+1

P−
i+1

}
, otherwise

(6.6)

where

P+
i+1 := max{0, fi+1,i}+max{0, fi+1,i+2}, Q+

i+1:= max{0,−fi+1,i}+max{0,−fi+1,i+2} (6.7)
P−
i+1 := min{0, fi+1,i} +min{0, fi+1,i+2}, Q−

i+1 := min{0,−fi+1,i}+min{0,−fi+1,i+2}. (6.8)

The αij is computed at the time of computation and back-propagation is performed on these equa-
tions to update the weights and biases of neural network via automatic differentiation. Thus, the PINN
is trained to find the best weights and biases by minimizing the loss and therefore representing the
underlying non-linear input and output relationship of the AFC limiter.

6.3. Hyperparameter tuning
There are two main types of hyperparameters: model and algorithm hyperparameters. Model hyper-
parameters determine the model architecture like the number of fully connected layers in a network,
while the algorithm hyperparameters are involved in the learning process of the network, like the batch
size and learning rate. Optimizing these parameters can make the difference between an average
model and a highly accurate model. Moreover, manually finding the optimal hyperparameters is a
time-consuming process and a waste of resource power, so it is necessary to automatize this process.
Therefore, hyperparameter optimization (HPO) or tuning is used as it shows to be critically beneficial
for quickly maximizing model performance and minimizing the training cost.

Ray Tune [16], a Python library, is a HPO tool that can be used at any tuning scale from laptops
to multiple machines without changing your code completely, so only a few lines of extra code are
needed. This is the reason to choose Ray Tune and that it can be applied to various machine learning
frameworks, like PyTorch, TensorFlow and Keras. Moreover, it includes a variety of state of the art
and popular optimization algorithms, such as Population Based Training (PBT) and Bayesian optimiza-
tion, which enables the user to explore them that matches their model. These algorithms reduce the
cost of training by terminating bad trials early, choosing better parameters to evaluate or even change
hyperparameters during training to optimize schedules.
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Figure 6.10: Key concepts of hyperparameter tuning with Ray Tune. Diagram from [16].

In Figure 6.10 the key concepts of Ray Tune are given. Firstly, the search space defines the values
for the hyperparameters to optimize and how they are sampled, for example random normal or inte-
gers. This information is passed to the trainable, which has the objective functions that has to be tuned,
which in our case is the neural network. During the training loop the trainable reports back scores for
which the objective function is optimized and here the validation losses are chosen as the scores. To
effectively optimize the hyperparameters a search algorithm is used that selects the hyperparameter
configurations to evaluate. The default and most basic algorithms are random and grid search, where
random search samples the parameter randomly from a distribution and grid search explores every
configuration of the parameter. The algorithm Bayesian optimization/Hyperband (BOHB) is used for
our approach since it terminates bad trials and also uses Bayesian Optimization to improve the hyper-
parameter search. To speed up the hyperparameter tuning process schedulers can be used that stop,
pause or tweak the hyperparameters of running trials, but do not select which parameter configura-
tions to evaluate. The first-in-first-out (FIFO) schedular is used as default, which as the name suggests
goes through the trials in the same order they were created by the search algorithm and does not stop
searches early. BOHB is intended to be paired with a specific schedular class, namely HyperBandFor-
BOHB, which is a variant of the HyperBand schedular that is an early stopping algorithm [16]. Finally,
various methods can be used to analyse the training process by Ray Tune, for example how the best
trial or the best hyperparameter configuration for that trial can be accessed.

Best hyperparameters FFNN SpNN PINN
Neurons per HL 42, 25, 24, 19, 20 16, 40, 56, 40, 14 27, 45, 32, 19, 28
Learning rate 0.001231.. 0.003534.. 0.001997..
Epochs 647 893 1221
Batch size 30 56 20

Table 6.2: Constant dij data: Best hyperparameter with Ray Tune of the three neural networks: FFNN, SpNN, PINN with five
hidden layers.

Best hyperparameters FFNN SpNN PINN
Neurons per HL 24, 37, 29, 30, 34 40, 10, 10, 14, 14 17, 23, 44, 20, 45
Learning rate 0.001804.. 0.004606.. 0.002445..
Epochs 1005 1168 1312
Batch size 60 24 20

Table 6.3: Variable dij data: Best hyperparameter with Ray Tune of the three neural networks: FFNN, SpNN, PINN with five
hidden layers.

In Tables 6.2 and 6.3 the best hyperparameter configurations of the three neural networks for constant
diffusion data and variable diffusion data are given respectively. Based on manual optimization of the
hyperparameters, the search spaces were defined in a small or large range for each neural network.
Therefore, the SpNN has a specific range for the model parameters and also due to its architecture,



6.4. Results 47

while for the FFNN and PINN the neurons per hidden layer range is from 10 to 50. Moreover, the
variable diffusion data is larger than the constant diffusion data, but a larger batch size range, namely
16 to 64, is used as the search space for both data sets. For the learning rate in the Adam optimizer a
tuning range for the constant diffusion of 1e-4 to 1e-2 is considered, while for variable diffusion data a
range of 1e-3 to 5e-3 is chosen because for this data set the losses were more stable.

Furthermore, initial weights and biases were first manually optimized before Ray Tune is used.
Constant initial weights and biases did not yield better results than random values therefore normal or
uniform distributions have been considered. By looking at the input and output values and the types of
activation functions used in the neural networks, the weights were initialized with the Xavier Normalized
distribution and the weights with the normal distribution.

6.4. Results
For the constant and variable diffusion data, the three trained and optimized neural networks are tested
on the trained boundary layer and peak problems to benchmark their performance and accuracy. It
must be pointed out that the peak problem solutions have a slope while the boundary layer problem
solutions have a constant value before the steep regions occur, therefore, this problem has a more
complex limiting behaviour. Moreover, the networks are tested on an untrained problem, namely where
the boundary conditions of the boundary layer problem are switched, such as: u(0) = 0 and u(1) = 1,
which is called the variation of the boundary layer problem. This is to obtain the limitations of the
models (since the left side of the mapping plays a crucial part for that problem) and how well they are
generalized. These problems are tested on a coarse mesh (n = 20) and fine meshes (n = 50, 80),
since the mesh size (1/n−1) influences the numerical accuracy and as consequence will influence the
accuracy of the models, but how severe that is has to be investigated. Furthermore, these problems
are tested for a Péclet range from ±10.30 to ±707.96, which is inside and outside the trained range, to
observe if the models are limiting like AFC because as the Péclet numbers increase the solutions get
steeper and therefore require more limiting. Moreover, AFC limits symmetrically for the negative and
positive velocities, therefore the models are tested for both velocities for all problems.

To measure and compare the performance of the models the L2-norm of the relative error of the
solutions as described in chapter 5 is computed. Additionally, the solution profiles of the neural networks
and numerical methods versus the exact solutions are computed for Péclet numbers ±10, 20, 50, 100 in
the low Péclet range and±160, 210, 533.33, 700 in the high Péclet range. For these values the pointwise
difference between the exact solution versus the AFC and neural network solution are also computed
in order to observe the differences between the solutions and if the neural network solution exceeds
the analytic solution and/or the solution of AFC creating overshoots mainly at the steep region. Also,
for converged αij the limited anti-diffusive flux, αijfij , of the neural network and AFC is computed to
see how much flux is actually limited and added back to the system. These results assist with the
understanding how the models are limiting for which some interesting examples are shown and other
cases can be found in appendix B.1. Finally, to gain more insight into the neural networks for both data
sets the input and output mapping of predictions against AFC as target values are generated and can
be found in the appendix B.2.

6.4.1. Feedforward neural network
The predictions of FFNN trained on the constant diffusion data are more accurate than those of the
variable diffusion data based on the observations of the input and output mapping with the true values.

Figure 6.11 shows qualitatively that the models perform well both on the trained constant and variable
diffusion data since the boundary layer problem solutions are similar to the AFC solutions, so the errors
are in an acceptable range. However, they limit noticeably more than AFC for the low Péclet range
(Pe ≤ (±)50) on a coarse mesh resulting in the solutions being lower than the AFC solutions thus
being less accurate, an example for n = 20 can be seen in Figure 6.12. The decreasing error trend in
both velocity directions for all meshes shows that the models are limiting more as the Péclet number
increases, which is expected and essential to limit the growing oscillations and therefore mimics AFC
accurately and symmetrically.
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Figure 6.11: FFNN L2 relative error for boundary layer problem with positive and negative Péclet numbers for n = 20, 50, 80
for constant diffusion data (left) and variable diffusion data (right).
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Figure 6.12: FFNN limited anti-diffusive flux results with the NN and AFC solution profiles against the exact solution for
constant (left) and variable (right) dij data for n = 20 and Pe = 50, 210 for the boundary layer problem.

Figure 6.13 clearly shows that the errors are ten times larger as expected due to the nature of the
solutions of the peak problem for both diffusion data sets compared to the previous problem. On
the coarse mesh (n = 20) the models’ solutions have noticeable overshoots for high Péclet value
(Pe ≥ (±)100), therefore, not limiting enough compared to the fine meshes, which shows negligible
amount of overshoots and in some cases outperforms the AFC solutions (by being more accurate than
the AFC solutions and closer to the analytical solutions) as shown for one case in Figure 6.14 with the
solution differences. The constant diffusion data model is less accurate on the coarse mesh compared
to the variable diffusion data model because the solutions also contain more oscillations as the Péclet
values increases. Thus, variable diffusion data model is more accurate based on the n = 20 results for
this problem and has a symmetric limiting pattern for very fine or coarse mesh.
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Figure 6.13: FFNN L2 relative error for peak problem with positive and negative Péclet numbers for n = 20, 50, 80 for
constant diffusion data (left) and variable diffusion data (right).

Constant dij data Variable dij data

Figure 6.14: FNN pointwise differences plots for the peak problem with positive high Péclet numbers for n = 20 trained with
constant diffusion data (left) and variable diffusion data (right).

Figure 6.15 shows that the errors for the models on untrained problem, that is the variation of the
boundary layer problem, are 10 to 100 times larger compared to the the trained problems. However,
the constant diffusion model produces more accurate results compared to the variable diffusion model
for all Péclet values on all meshes. From the solution profiles, see examples in Figure 6.16, and
differences results it can observed that in general on a coarse mesh the solutions contain a significant
amount of overshoots than on fine meshes due to the fact that less points represent the steep region.
Furthermore, the variable diffusion data model has a large amount of oscillations on the fine meshes
for high Péclet values (Pe ≤ 100) compared to the constant diffusion model, which has a negligible
amount. Overall, the model trained on constant diffusion data is more symmetric and accurate and
therefore more generalizable compared to model trained on the variable diffusion data.
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Figure 6.15: FFNN L2 relative error for variation of boundary layer problem (untrained) with positive and negative Péclet
numbers for n = 20, 50, 80 for constant diffusion data (left) and variable diffusion data (right).
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Figure 6.16: FFNN limited anti-diffusive flux results with the NN and AFC solution profiles against the exact solution for
constant (left) and variable (right) dij data for n = 20 and Pe = 50 for the untrained problem.

A summary of the results for the tested problems is given in Table 6.4 for the FFNN. Based on the L2

error, the solution profiles, differences and limited anti-diffusive fluxes plots the results of the problems
have been categorized in three classes of accuracy. Firstly, the sufficiently accurate class is where
the results matches AFC the most or is similar to AFC for all meshes and Péclet numbers. Secondly,
the moderately accurate class is where the results are close to AFC for fine meshes (n = 50, 80), but
solutions on a coarse mesh (n = 20) are significantly under-and/or overshooting the AFC solutions and
therefore improving the model is recommended. Thirdly, the not accurate class is where the solutions
contain oscillations and/or overshoots the AFC and analytical solutions for all n values and therefore
improving the model is required.

FeedForward Neural Network Constant dij data Variable dij data
± BL problem

√ √

± PK problem +/−
√

± varBL problem + −
√

= sufficiently accurate; + = moderately accurate; − = not accurate;

Table 6.4: FFNN comparison table between the constant and variable dij data tested on the trained problems: boundary layer
(BL) and peak (PK) problem, and the untrained problem: variation of boundary layer (varBL) problem in positive and negative

velocity directions (±) for all meshes.
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By having these two diffusion data sets gives the opportunity to understand how the FFNN archi-
tecture learns and what the impact of the architecture is on the performance and accuracy. Thus, a
general observation is that the FFNN is better generalized with the constant diffusion data when com-
pared with the variable diffusion data, which also results from the input and output mapping predictions
and indicates that the former data set has a simpler mapping which is more suitable for this architecture
to learn the AFC limiter. In section 6.4.4 the variation of the boundary layer problem is included in the
training data to see if these results can be improved.

6.4.2. Splitted neural network
The predictions of SpNN trained on both diffusion data sets are similarly based on the observations of
the input and output mapping with the true values.

Figure 6.17 shows that the SpNN models for both data sets have similar error range and also a de-
creasing trend as the FFNN results for the boundary layer problem on all meshes. This means it is
also limiting more as the Péclet number increases, but both data sets have different limiting behaviour
than AFC. The constant diffusion data model limits less than AFC in some Péclet cases on all meshes,
while, the variable diffusion model limits more than AFC in those cases. Nevertheless, the solutions of
the models are similar to AFC for all meshes and Péclet values, but that of the variable diffusion data
are closer to the AFC solutions on a coarse mesh for the low Péclet range (Pe = ±10−±100) and are
more symmetric in both velocity directions.
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Figure 6.17: SpNN L2 relative error for boundary layer problem with positive and negative Péclet numbers for n = 20, 50, 80
for constant diffusion data (left) and variable diffusion data (right).

From Figure 6.18 it is clear that variable diffusion data model is performing more symmetrically than
the constant diffusion data model on all meshes. Moreover, for both models the limiting behaviour on
a coarse mesh differs significantly (see one example in Figure 6.19). For example, at low Péclet range
(Pe = ±10−±100) they both generate similar solutions as AFC, but at high Péclet values (Pe > (±)100)
the solutions of the constant diffusion model have small overshoots in the vicinity of the steep region,
therefore, not limiting enough like AFC. Whereas, the solutions of the variable diffusion model is limiting
more than AFC at the smooth region and accurately limits the oscillations in the steep region (see one
example in Figure 6.20). In general for the peak problem, the SpNN outperforms AFC on accuracy
and performance with the variable diffusion data on all meshes, while, with the constant diffusion data
it generates unstable and inconsistent limiting behaviour.
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Figure 6.18: SpNN L2 relative error for peak problem with positive and negative Péclet numbers for n = 20, 50, 80 for
constant diffusion data (left) and variable diffusion data (right).

Constant dij data Variable dij

Figure 6.19: SpNN pointwise differences plots for the peak problem with positive high Péclet numbers for n = 20 trained with
constant diffusion data (left) and variable diffusion data (right).

Constant dij data Variable dij

Figure 6.20: SpNN limited anti-diffusive flux results with the exact solution for the peak problem with positive high Péclet
numbers for n = 20 trained with constant diffusion data (left) and variable diffusion data (right).
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Figure 6.21 qualitatively shows that the variable diffusion model is more accurate and symmetric than
the constant diffusion model for all meshes and Péclet values. The constant diffusion data model has
solutions with increasing overshoot amplitude as the Péclet number increases, which appear on the
coarse mesh at lower Péclet values compared to the fine meshes, therefore, not limiting sufficiently.
The variable diffusion model prevents oscillations and overshoots from occurring in the solutions, but
at the cost of limiting more than required, which is expected due to the mapping. An example for both
data sets is shown in Figure 6.22. Moreover, it has been observed that for all meshes the solutions
are closer to the upwind solutions for low Péclet values, therefore, limiting more than AFC, but as the
Péclet number increases the solutions get closer to AFC. Moreover, the model was also tested on
more coarser meshes (n = 5, 10) for all problems and all Péclet values and the solutions were free of
overshoots and oscillations and were more accurate on the smooth regions than AFC, which makes
the model mesh independent.
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Figure 6.21: SpNN L2 relative error for variation of boundary layer problem (untrained) with positive and negative Péclet
numbers for n = 20, 50, 80 for constant diffusion data (left) and variable diffusion data (right).
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Figure 6.22: SpNN limited anti-diffusive flux results with the NN and AFC solution profiles against the exact solution for
constant (left) and variable (right) dij data for n = 20 and Pe = 100.

A summary of the results for the tested problems is given in Table 6.6 for the SpNN. Based on the
results, the problems have been categorized in three classes of accuracy as defined before.
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Splitted Neural Network Constant dij data Variable dij data
± BL problem

√ √

± PK problem +/
√ √

± varBL problem − +
√

= sufficiently accurate; + = moderately accurate; − = not accurate;

Table 6.5: SpNN comparison table between the constant and variable dij data tested on the trained problems: boundary layer
(BL) and peak (PK) problem, and the untrained problem: variation of boundary layer (varBL) problem in positive and negative

velocity directions (±) for all meshes.

Overall, it can be observed that the SpNN architecture is suitable more for the variable diffusion
data, so it might be better at learning a more complex relation/mapping than the FFNN architecture. In
the section 6.4.4, it is investigated if the performance could improve by training on the above tested
problems.

6.4.3. Physics-informed neural network
It must be taken into account that the training time of this neural network took considerably longer than
the other network architectures, which resulted in less samples being optimized with Ray Tune than
the previous network architectures. So a more optimized model could be developed if a longer training
time is given to this architecture.

The predictions of PINN trained on the constant diffusion data are more accurate than those of the
variable diffusion data based on the observations of the input and output mapping with the true values.

Likewise to the two previous network architecture, the errors of the PINN for the boundary layer problem
is also around 10−3 for all meshes as shown in Figure 6.23, but based on the observations this network
has the most symmetric error so far for both data sets for this problem. The solutions for both models
are similar to AFC on fine meshes (n = 50, 80), therefore, sufficiently accurate, but on coarse mesh
(n = 20) they are slightly overshooting AFC in the low Péclet range (Pe ≤ 50) for variable diffusion data
and in the high Péclet range (Pe > 100) for constant diffusion data, so are limiting less than AFC here.
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Figure 6.23: PINN L2 relative error for boundary layer problem with positive and negative Péclet numbers for n = 20, 50, 80
for constant diffusion data (left) and variable diffusion data (right).

Figure 6.24 present the error for the peak problems for both data sets. It is clear that the accuracy is
higher on fine meshes than on a coarse mesh. Both models’ solutions contain small overshoots on the
coarse mesh for all Péclet values (see one example with solution differences in Figure 6.25), which start
for constant diffusion data at high Péclet numbers (Pe > 100) and for variable diffusion data it starts at
low Péclet numbers (Pe > 50) but decreases as the Péclet values increase. However, they outperform
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AFC on the straight region of the solution like in the previous two neural network architectures on all
meshes. On fine meshes the solutions are sufficiently accurate. Based on the coarse mesh, variable
diffusion data would be more accurate for this problem.
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Figure 6.24: PINN L2 relative error for peak problem with positive and negative Péclet numbers for n = 20, 50, 80 for constant
diffusion data (left) and variable diffusion data (right).

Constant dij data Variable dij data

Figure 6.25: PINN pointwise differences plots for the peak problem with positive high Péclet numbers for n = 20 trained with
constant diffusion data (left) and variable diffusion data (right).

For the variation of boundary layer problem the result is given in Figure 6.26, which shows that symmetry
is preserved, but themodel trained on constant diffusion data is more accurate than on variable diffusion
data. Although, the solutions of both models contain overshoots on all meshes (see one example with
solution differences in Figure 6.27). The constant diffusion model has an increase in small overshoots
in the solutions (for n = 20 at Pe ≥ 50, and for n = 50, 80 at Pe ≥ 100), but they start to decrease
when the Péclet number start to increase, therefore, limiting more. Also, for this data the overshoots
gets larger as the meshes get finer, while, for the variable diffusion data it is the opposite, but are still
larger than constant diffusion data. Overall, both data sets only produce accurate results for low Péclet
numbers with this neural network unlike the previous two neural network architectures.
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Figure 6.26: PINN L2 relative error for variation of boundary layer problem (untrained) with positive and negative Péclet
numbers for n = 20, 50, 80 for constant diffusion data (left) and variable diffusion data (right).
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Figure 6.27: PINN pointwise differences plots for the variation of the boundary layer problem with positive high Péclet numbers
for n = 20 trained with constant diffusion data (left) and variable diffusion data (right).

A summary of the results for the tested problems is given in Table 6.6 for the PINN. Based on the results,
the problems have been categorized in three classes of accuracy as defined before.

Physics-informed Neural Network Constant dij data Variable dij data
± BL problem

√ √

± PK problem +/
√

+
± varBL problem − −

√
= sufficiently accurate; + = moderately accurate; − = not accurate;

Table 6.6: PINN comparison table between the constant and variable dij data tested on the trained problems: boundary layer
(BL) and peak (PK) problem, and the untrained problem: variation of boundary layer (varBL) problem in positive and negative

velocity directions (±) for all meshes.

Overall, the PINN is not generalizable with these two types of data because of the results of the
untrained problem. In the section 6.4.4 it will be investigated if this improves when more data is used
to train this network.
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6.4.4. Improvements on previous results
For the three types of neural network architectures and the two data sets the previous results on the
untrained problem, namely the variation of the boundary layer problem, were not all accurate. There-
fore, this section will investigate if it is possible to improve those results. To achieve this, the solutions
to the variation of the boundary layer problem are included in the previous constant and variable dij
data sets to let the networks learn that problem, but also a variation of the peak problem is included,
namely where the source of the problem is -1 instead of 1, which will invert the solutions as shown in
Figure 6.28. The variation of the problems mirrors the previous mapping, which mainly consisted of
non-zero αij values corresponding to the positive fluxes therefore also generating the mapping on the
negative flux side, which results in symmetric data as shown in Figures 6.29 and 6.30 for constant
and variable dij data respectively. The previous data will be called asymmetric data henceforth.

Moreover, the symmetric data is larger than the asymmetric data and challenges the models to learn
when to use which side of the mapping. Therefore, they have to learn which solution profile requires
which side of the mapping. Thus, this investigates if the models can learn the AFC limiter behaviour in
both ways, so limit increasing and decreasing solutions.

To measure the accuracy and performance of the models similar results are produced as the previ-
ous results and also the hyperparameters are tuned with RayTune to optimize the models as shown in
Table 6.7 and Table 6.8 for constant and variable diffusion data respectively.

To compare the models the results for the networks trained on asymmetric and symmetric data are
shown. The results are also shown for the constant and variable diffusion separately. Finally, to gain
more insight into the neural networks for these data sets the input and output mapping of predictions
against AFC as target values are generated and can be found in the appendix B.3. Here the L2 solution
errors are also included for all neural networks and for all tested problems. Finally, some interesting
results are shown in the results below and more cases can be found in the appendix B.4.
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Figure 6.28: The solution profiles for constant and variable dij symmetric data to compute the fluxes and corresponding alpha
values to train the networks. The Galerkin and upwind solutions, both for peak (source=1), boundary layer (u(0) = 1, u(1) = 0)
and variations of peak (source=-1) and boundary layer problems (u(0) = 0, u(1) = 1) (a) for Péclet number from ±30 to ±700.

(b) for Péclet number from ±50 to ±700.
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Figure 6.29: Input-output mapping to train the neural networks for constant diffusion coefficient dij = 0.5 constructed from
Galerkin and upwind solutions for both for peak (source=1), boundary layer (u(0) = 1, u(1) = 0) and variations of peak

(source=-1) and boundary layer problems (u(0) = 0, u(1) = 1) for fixed number of basis functions, n = 50, and Péclet numbers
ranging from ±30 to ±700.
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Figure 6.30: Input-output mapping to train the neural networks for variable diffusion coefficient dij constructed from Galerkin
and upwind solutions for both for peak (source=1), boundary layer (u(0) = 1, u(1) = 0) and variations of peak (source=-1) and
boundary layer problems (u(0) = 0, u(1) = 1) for fixed number of basis functions, n = 50, and Péclet numbers ranging from

±50 to ±700.

To measure the accuracy and performance of the models similar results are produced as the previ-
ous results and also the hyperparameters are tuned with RayTune to optimize the models as shown in
Table 6.7 and Table 6.8 for constant and variable diffusion data respectively.

To compare the models the results for the networks trained on asymmetric and symmetric data are
shown. The results are also shown for the constant and variable diffusion separately. Finally, to gain
more insight into the neural networks for these data sets the input and output mapping of predictions
against AFC as target values are generated and can be found in the appendix B.3. Here the L2 solution
errors are also included for all neural networks and for all tested problems.

Best hyperparameters FFNN SpNN PINN
Neurons per HL 17,40,21,33,29 48,10,20,14,20 11,33,19,42,18
Learning rate 0.00413.. 0.00396.. 0.00292..
Epochs 1124 1446 1298
Batch size 58 30 42

Table 6.7: Constant dij symmetric data: best hyperparameter with Ray Tune for the neural networks: FFNN, SpNN, PINN with
five hidden layers.
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Best hyperparameters FFNN SpNN PINN
Neurons per HL 19,19,25,49,21 40,20,10,34,12 13,50,13,19,42
Learning rate 0.00100.. 0.00386.. 0.00187..
Epochs 1467 1242 1019
Batch size 28 40 28

Table 6.8: Variable dij symmetric data: best hyperparameter with Ray Tune for the neural networks: FFNN, SpNN, PINN with
five hidden layers.

Feedforward Neural Network
The predictions of FFNN trained with symmetric variable diffusion data are more accurate than those
of the symmetric constant diffusion data based on the observations of the input and output mapping
with the true values.

The model trained on symmetric constant dij data has for the boundary layer problem small observable
differences on all meshes compared to asymmetric data, but for both sets the solutions are relatively
close to AFC solutions. However, the former data set is significantly more accurate for low Péclet
values. For the peak problem this data set performs more accurate on a coarse mesh for all Péclet
numbers (for n = 20 see Figure 6.31), but on fine meshes the asymmetric data is better. Lastly, for
the variation of the boundary layer problem the symmetric data achieves more accurate results than
asymmetric data for all cases.

Themodel trained on symmetric variable dij data has been improved significantly by this data set for the
variation of the boundary layer problem because the solutions have no overshoots exceeding the ana-
lytical solution on all meshes and Péclet values, see one case in Figure 6.32. For other problems the
symmetric data results remained similar or were in some cases better than the asymmetric data results.

To conclude, the FFNN achieves the most accurate results with the symmetric variable dij data for all
problems on most meshes and Péclet values compared to the constant dij data and asymmetric data.

Asymmetric data Symmetric data

Figure 6.31: FFNN pointwise differences plot for n = 20 for constant dij data with asymmetric data (left) and symmetric data
(right) for the peak problem for one of the Péclet values.
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Asymmetric data Symmetric data

Figure 6.32: FFNN solution profiles for n = 50 for variable dij data with asymmetric data (left) and symmetric data (right) for
the variation of the boundary layer problem for one of the Péclet values.

Splitted Neural Network
The predictions of SpNN trained with symmetric variable diffusion data are more accurate than those
of the symmetric constant diffusion data based on the observations of the input and output mapping
with the true values.

The model trained on symmetric constant dij data has been improved and is now more accurate for
the variation of the boundary layer problem compared to the asymmetric dij data for all meshes and
Péclet values. For example, the solution as shown in Figure 6.33 have no overshoots present. For the
peak problem, the results have also slightly improved as well since the solutions have become closer
to AFC compared to the asymmetric data results, but this leads to the fact that it does not outperform
AFC anymore for all cases. The boundary layer problem are similar for both data sets.

The model trained on symmetric data variable dij data performs slightly more accurate on the variation
of the boundary layer problem for all cases than for the asymmetric data, as shown for example for
n = 50 in Figure 6.34. The same has been observed in the n = 20, 80 solution results for this problem.
For the peak problem the solutions remained similar for fine meshes, but on a coarse mesh they are
slightly closer to AFC on the straight region, which also affects the outperformance. The boundary layer
problem results are similar for both data sets.

Both constant and variable dij data sets performed similar for boundary layer and its variation problems
with this neural network architecture. However, based on the peak problem on all meshes the variable
dij data results were in general more accurate than AFC and therefore also more accurate than the
constant dij data results, which solutions appear to be closer to the AFC solutions.
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Asymmetric data Symmetric data

Figure 6.33: SpNN solution profiles for n = 50 for constant dij data with asymmetric data and symmetric data for the variation
of the boundary layer problem for one of the Péclet values.

Asymmetric data Symmetric data

Figure 6.34: SpNN differences plot for n = 50 for variable dij data with asymmetric data and symmetric data for the variation
of the boundary layer problem for one of the Péclet values.

Physics-informed Neural Network
The predictions of PINN trained with symmetric variable diffusion data are more accurate than those of
the symmetric constant diffusion data based on the observations of the input and output mapping with
the true values.

The results for the constant dij data are also improved by the symmetric data for the variation of the
boundary layer problem for fine meshes and all Péclet values, see an example for n = 50 in Figure
6.35. However, on a coarse mesh the solutions have small noticeable under-and overshoots present,
therefore, this is inconsistent limiting. The results on the peak problem have also been observably
improved on and on the boundary layer problem remained similar to the asymmetric data, only for the
latter problem it losses performance on a coarse mesh for low Péclet values.

With symmetric variable dij data the results of the model also performs more accurate on fine meshes
for the variation of the boundary layer problem than with the asymmetric data see in Figure 6.36 an
example. However, on a coarse mesh the results are less accurate since the solutions undershoots
the AFC solutions at some Péclet values. For the peak problem on a coarse mesh the solutions have
become further away from AFC at the straight region and also exceeds the analytical solutions com-
pared to the asymmetric data results. On fine meshes the results are more accurate. For the boundary



6.4. Results 62

layer problem, the results are also noticeably more accurate than the asymmetric data.

Comparing the results for symmetric data, the variable dij data is more accurate than the constant
dij data for the boundary layer problem. Based on the peak problem results for high Péclet values
on all meshes, variable dij data is also more noticeably accurate than the constant dij data, because
the latter data set solutions consists of small oscillations and overshoots, even though, the former one
exceeds the analytical solutions this a trade-off that has to be considered. Lastly, for most meshes and
Péclet values the results for the variation of the boundary layer problem are most accurate with variable
dij data. To conclude, the symmetric variable dij data is on all problems better than the asymmetric
data on most meshes and Péclet values.

Asymmetric data Symmetric data

Figure 6.35: PINN differences plot for n = 50 for constant dij data with asymmetric data and symmetric data for the variation
of the boundary layer problem for one of the Péclet values.

Asymmetric data Symmetric data

Figure 6.36: PINN solution profiles for n = 50 for variable dij data with asymmetric data and symmetric data for the variation
of the boundary layer problem for one of the Péclet values.
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6.5. Analysis
In this section, the results of the presented three neural network architectures, feedforward neural
network (FFNN), splitted neural network (SpNN) and physics-informed neural network (PINN), are dis-
cussed and analysed based on the tested problems: boundary layer, peak and variation of the boundary
layer problems. These neural networks were trained on two different data sets, namely constant and
variable diffusion dij data, which were generated by the Galerkin and low-order upwind solutions of the
boundary layer and peak problems. The types of data sets are called asymmetric data and a summary
of the most accurate results of the asymmetric data is provided in Table 6.9. To train the FFNN and
SpNN the mean-square error (MSE) is taken between the target αij from AFC and the predicted αij of
the network. For the PINN the loss function is based on the AFC limiter.

NNs ± BL problem ± PK problem* ± varBL problem
Data Meshes (n) + Pe Data Meshes (n) + Pe Data Meshes (n) + Pe

FFNN both data sets on most meshes
and Pe

constant dij data on fine meshes ∀Pe constant dij data
on most meshes and Pe
(overall overshoot//limit↓)

variable dij data
on most meshes
and Pe

variable dij data on fine meshes ∀Pe ≤ 100

SpNN both data sets on most meshes
and Pe∗∗

both data sets on most meshes
and Pe∗∗

constant dij data on fine meshes ∀Pe ≤ 160

variable dij data
on most meshes and Pe
(overall undershoot/limit↑)

PINN constant dij data
on most meshes
and Pe∗∗

constant dij data
on most meshes
and Pe∗∗ both data sets on fine meshes ∀Pe ≤ 100

variable dij data
on most meshes
and Pe

variable dij data
on most meshes
and Pe

∗ = outperforms AFC observably; ∗∗ = more accurate than FFNN on all meshes and ∀Pe based on a coarse mesh (n = 20)

Table 6.9: Summary of the best obtained asymmetric data results for three neural networks (NNs): feedforward neural network
(FFNN), splitted neural network (SpNN) and physics-informed neural network (PINN) trained on two fine meshed (n = 50) data
sets: constant and variable diffusion dij data and tested on the trained boundary layer (BL), peak (PK) and untrained variation
of boundary layer (varBL) problems on coarse (n = 20) and fine (n = 50, 80) meshes for different positive and negative (±)

Péclet values (Pe).

Data analysis: constant dij data vs variable dij data
The variable diffusion data has more spread in the input-output mapping compared to the constant
diffusion data, which allows the αij values to be converging in a larger search space corresponding to
the flux values. Whereas, the constant diffusion data forms a more confined search space for the αij

values. This mapping difference influences the ability of neural networks to mimic the behaviour of the
AFC limiter. For example, Table 6.9 shows that FFNN is more accurate with constant diffusion data on
most problems, but SpNN is more accurate with variable diffusion data, which even outperforms AFC
for the trained problems. This might be because FFNN is able to learn the AFC limiter better with a
simple mapping and SpNN with a more complex mapping, which represents a more general limiting
behaviour. However, PINN achieves the most accurate results for the trained problems with the con-
stant diffusion data, which shows that this architecture does not need a complex mapping to learn the
AFC limiter.

Neural network architecture analysis
Due to the architectures of neural networks, they are able to interpret the constant and variable diffusion
data sets differently and consequently learn for one data set better. Despite the fact that they all are
feedforward neural networks, they have different architectures, activation functions, hyperparameters
and loss functions.

The FFNN and PINN have relatively simple neural network architectures compared to the SpNN.
However, the PINN consists of the AFC limiter equations in the loss function that enables it to have
prior knowledge about the function to approximate, which increases the complexity of backpropagation
and optimization of the network parameters based on the loss function. Consequently, the best results
for the trained boundary layer and peak problems were obtained by the SpNN and PINN, which both
outperform AFC on both problems, compared to FFNN. In short, these complex neural network archi-
tectures are most suitable to mimic the behaviour of the AFC limiter on these problems with a relatively
small data set compared to other applications of neural networks in science and engineering.

Outperformance: AFC vs neural networks
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To outperform AFC, the neural networks’ solutions are better than the AFC solutions and therefore are
closer to the analytical solution (and not exceeding it). From Table 6.9, it can be concluded that all neural
network architectures are outperforming AFC for the peak problem on most meshes and Péclet values.
This is caused by the fact that for the boundary layer problem less limiting is required compared to the
peak problem, therefore, with sufficient limiting, but less limiting than AFC has implemented for this
problem the neural networks become more accurate. This is indicative that the input and output data
relationship plays a significant role. Furthermore, the advantage of training on two different problems
enables the neural network to be a more general stabilization method and therefore it is recommended
to train on different problems.

Generalizability analysis
From Table 6.9 it can be concluded that the most generalizable neural network architectures are FFNN
and SpNN, because both are able to perform accurately on the untrained variation of boundary layer
problem for most cases with one of the diffusion data sets. Moreover, the PINN fails to generalize
well to untrained problems on most meshes and Péclet because it is more difficult to train due to the
complicated loss function than the other two architectures. This training difficulty is due to the nature of
including the fluxes in the loss function, therefore, there is an added complexity in the back-propagation
and optimization. Other optimization algorithms might be used to make this more efficient in training
and possibly improve the performance.

Improvements: symmetric data vs asymmetric data
To improve the asymmetric data results on the untrained variation of the boundary layer problem, all
neural networks were trained for this problem and the variation of the peak problem, as described and
shown in subsection 6.4.4. This created symmetric data for both the constant and variable diffusion
data, which is a larger data set than the asymmetric data.

For FFNN more accurate results were achieved with symmetric data on all problems than with
asymmetric data. This was acquired with variable diffusion data, which entails that this neural network
architecture learns this complex mapping better with a larger data set. Similar results for the PINN
were achieved, but not for the peak problem as the coarse mesh solutions exceed the analytical solu-
tions, which was not the case for the asymmetric data. Furthermore, for SpNN the variable diffusion
data obtained in general more accurate results than AFC and therefore outperforms AFC and the other
neural networks in all cases. However, it is recommended that other untrained problems are tested
with the symmetric data for all neural networks to test the performance, accuracy and generalizability.
For example, by changing the boundary conditions of the problems or applying them to other partial
differential equations.

Other possibilities to improve
Another possible way to improve the results in general for FFNN and SpNN could be by changing the
loss function, for instance by taking the MSE of limited anti-diffusive fluxes as done in the previous
approach. For PINN a more efficient algorithm to compute the loss function is possibly required to
optimize the learning process.



7Conclusion
In this thesis project, the one-dimension stationary convection-diffusion equation is solved with finite
element methods and a stabilization method, the algebraic flux correction (AFC), is applied to limit the
non-physical oscillations in the solution. With the knowledge of the concept of feedforward and physics-
informed neural network and machine learning techniques, two alternative approaches were developed
to mimic the AFC limiter behaviour: learning-based flux limiting and a learning-based surrogate model
of AFC limiting.

In the learning-based flux limiting approach, the extra computations performed by the defect corrections
scheme in AFC to compute the AFC limiter in each iteration are circumvented by the neural network.
For this approach, four feedforward neural network models have been proposed:

• solution model
• solution + fluxes model
• gradient model
• gradient + fluxes model

where the name of the models represents the type of input data is used. Each model has been trained
on two different data sets, namely single and multi-mesh data. These data sets are generated by
the low-order upwind solutions of the boundary layer problem and also trained on three different loss
functions, namely the alpha loss function, the limited anti-diffusive fluxes loss function and the limited
anti-diffusive correction loss function. All the models have been tested on the trained boundary layer
problem and untrained peak problem. From the results, it follows that the gradient-based models are
most suitable and generalizable compared to the solution-based models to mimic the AFC limiter, be-
cause they are less influenced by the accuracy of the numerical method. Moreover, the gradient input
values provide more insight into the AFC limiting behaviour, because the relationship or mapping be-
tween the input and output data represents the underlying nonlinear behaviour that the neural network
has to approximate. Thus the mapping plays a significant role in training the neural network.

Furthermore, it has been observed that the type of loss functions has a large impact on the perfor-
mance of the neural network because it follows that for AFC the minimization of the limited anti-diffusive
flux is more important than the minimization of the alpha values. Consequently, the limited anti-diffusive
flux loss function gives more accurate results for all models than other loss functions. Moreover, the
data based on fine meshes is recommended as more accurate results were achieved due to the nu-
merical accuracy, so multi-mesh data is recommended. Lastly, outperforming AFC is possible on the
untrained problem making them generalizable.

For the learning-based surrogate model of AFC limiting approach, the neural network replaces the
AFC limiter in the defect correction scheme and solves the limited anti-diffusive flux correction in each
iteration. For this approach, three neural network architectures:

• feedforward neural network (FFNN)
• splitted neural network (SpNN)
• physics-informed neural network (PINN)

were developed and applied. These neural networks were trained on diffusion data, which were
generated by the Galerkin and low-order upwind solutions of the boundary layer and peak problems.
These types of data sets are called asymmetric data. Moreover, these neural networks were tested on
three problems: boundary layer, peak and a variation of the boundary layer problems.

It can be concluded, that complex neural network architecture, such as SpNN and PINN, are most
suitable to mimic the AFC limiter and for this type of application. Both models perform very good on
trained problems with constant or variable diffusion data and even outperform AFC. However, PINN is
less generalizable than SpNN due to it achieving less accurate results for the untrained problem. FFNN
is more accurate with constant diffusion data in general for all cases.

The results were improved for all neural networks by training them on symmetric data, which was cre-
ated by the variation of the boundary layer and the peak problems. All neural networks were more
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accurate with the variable diffusion data, which entails that this complex limiting mapping is learned
better with a larger data set. However, it is recommended to test the symmetric data model for other
untrained problems to be able to determine the generalizability capacity. Finally, training on two differ-
ent problems enables to be a more general stabilization method and therefore it is recommended to
train on different problems.

It can be concluded that promising results are produced with regards to replacing the AFC limiter with
machine learning and some suitable neural network architectures and data sets are achieved to do
this. The generalizability of the neural network approaches has been tested on untrained problems
whereby it performed good and in some cases it outperformed AFC. However, within the time frame of
the project, the generalizability to higher dimensions and/or complex geometries have not been tested
and therefore are not known. Thus, this is a good opportunity to do more research on this type of
application in the future.



References
[1] R. Babuska and J. Kober. Lecture slides of knowledge-based control systems(SC42050). 2021.

URL: Tu%20Delft.
[2] J.A. Cottrell, T.J.R. Hughes, and Y. Basilevs. Isogeometric Analysis: Toward Integration of CAD

and FEA. John Wiley & Sons, Ltd., 2009.
[3] X. Glorot and Y. Bengio. “Understanding the difficulty of training deep feedforward neural net-

works”. In: Proceedings of the 13th International Conference on Artificial Intelligence and Statis-
tics (AISTATS) Volume 9 of JMLR (2012).

[4] S.K. Godunov. “Finite difference method for numerical computation of discontinous solutions of
the equations of fluid dynamics”. In: Mat. Sbornik 47:271–306 (1959).

[5] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. http://www.deeplearningbook.org.
MIT Press, 2016.

[6] A. Jaeschke. “Isogeometric Analysis for Compressible Flows with Application in Turbomachinery”.
Delft University of Technology, 2015.

[7] A. Jaeschke and M. Möller. “High-Order Isogeometric Methods for Compressible Flows. I. Scalar
Conservations Laws”. In: van Brummelen H., Corsini A., Perotto S., Rozza G. (eds) Numerical
Methods for Flows. Lecture Notes in Computational Science and Engineering. Vol. 132 (2020).
DOI: https://doi.org/10.1007/978-3-030-30705-9_3.

[8] J. van Kan, A. Segel, and F. Vermolen. Numerical Methods in Scientific Computing. 2nd ed. Delft
Academic Press/ VSSD, 2014.

[9] D. Kuzmin. “Algebraic flux correction for finite element discretizations of coupled systems”. In:
Computational Methods for Coupled Problems in Science and Engineering 2 (2007), pp. 653–
656.

[10] D. Kuzmin, R. Löhner, and S. Turek. Flux-Corrected Transport. Principles, Algorithms, and Appli-
cations. 2nd ed. City, State or Country ....: Springer, 2012.

[11] D. Kuzmin and M. Möller. Algebraic Flux Correction I. Scalar Conservation Laws. In: Kuzmin
D., Löhner R., Turek S. (eds) Flux-Corrected Transport. Scientific Computation. 1st ed. Berlin,
Heidelberg: Springer, 2005.

[12] D. Kuzmin and M. Möller. Algebraic Flux Correction II. Compressible Euler equations. In: Kuzmin
D., Löhner R., Turek S. (eds) Flux-Corrected Transport. Scientific Computation. 1st ed. Berlin,
Heidelberg: Springer, 2005.

[13] D. Kuzmin and S. Turek. “Flux correction tools for finite elements”. In: Journal of computational
physics 175, 525-558 (2002).

[14] D. Kuzmin and S. Turek. “High-resolution FEM-TVD schemes based on a fully multidimensional
flux limiter”. In: Journal of Computational Physics (2004).

[15] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learning Library”. In:
Advances in Neural Information Processing Systems 32. Curran Associates, Inc., 2019, pp. 8024–
8035. URL: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-
performance-deep-learning-library.pdf.

[16] The Ray Team. Key Concepts of Ray Tune. 2022. URL: https://docs.ray.io/en/latest/
tune/key-concepts.html (visited on 12/20/2021).

[17] C. Vuik et al. Numerical methods for ordinary differential equations. 2nd ed. ISBN:97890-6562-
3737. Delft: Delft Academic Press/VSSD, 2016.

67

Tu%20Delft
http://www.deeplearningbook.org
https://doi.org/https://doi.org/10.1007/978-3-030-30705-9_3
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://docs.ray.io/en/latest/tune/key-concepts.html
https://docs.ray.io/en/latest/tune/key-concepts.html


68



A.1. Solution model approach 69

A Learning-based flux limiting
A.1. Solution model approach

Single-mesh data Multi-mesh data

Figure A.1: The L2-norm relative error of the (trained) boundary layer problem solutions for different meshes
(n = 5, 10, 20, 50, from top to bottom) for the solution model approach trained on single-mesh data (left) and multi-mesh data
(right) and with loss functions (LFs): alpha LF1 (blue), limited anti-diffusive fluxes LF2 (orange) and limited anti-diffusive

correction LF3 (green).
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Figure A.2: The L2-norm error of the (trained) boundary layer problem αij values for different meshes (n = 5, 10, 20, 50,
from top to bottom) for the solution model approach trained on single-mesh data (left) and multi-mesh data (right) and with loss
functions (LFs): alpha LF1 (blue), limited anti-diffusive fluxes LF2 (orange) and limited anti-diffusive correction LF3 (green).
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Figure A.3: The L2-norm relative error of the (untrained) peak problem solutions for different meshes (n = 5, 10, 20, 50, from
top to bottom) for the solution model approach trained on single-mesh data (left) and multi-mesh data (right) and with loss
functions (LFs): alpha LF1 (blue), limited anti-diffusive fluxes LF2 (orange) and limited anti-diffusive correction LF3 (green).
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Figure A.4: The L2-norm error of the (untrained) peak problem αij values for different meshes (n = 5, 10, 20, 50, from top to
bottom) for the solution model approach trained on single-mesh data (left) and multi-mesh data (right) and with loss functions

(LFs): alpha LF1 (blue), limited anti-diffusive fluxes LF2 (orange) and limited anti-diffusive correction LF3 (green).
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A.2. Solution + fluxes model approach

Single-mesh data Multi-mesh data

Figure A.5: The L2-norm relative error of the (trained) boundary layer problem solutions for different meshes
(n = 5, 10, 20, 50, from top to bottom) for the solution + fluxes model approach trained on single-mesh data (left) and

multi-mesh data (right) and with loss functions (LFs): alpha LF1 (blue), limited anti-diffusive fluxes LF2 (orange) and limited
anti-diffusive correction LF3 (green).
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Figure A.6: The L2-norm error of the (trained) boundary layer problem αij values for different meshes (n = 5, 10, 20, 50,
from top to bottom) for the solution + fluxes model approach trained on single-mesh data (left) and multi-mesh data (right) and
with loss functions (LFs): alpha LF1 (blue), limited anti-diffusive fluxes LF2 (orange) and limited anti-diffusive correction LF3

(green).
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Figure A.7: The L2-norm relative error of the (untrained) peak problem solutions for different meshes (n = 5, 10, 20, 50, from
top to bottom) for the solution + fluxes model approach trained on single-mesh data (left) and multi-mesh data (right) and with
loss functions (LFs): alpha LF1 (blue), limited anti-diffusive fluxes LF2 (orange) and limited anti-diffusive correction LF3 (green).
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Figure A.8: The L2-norm error of the (untrained) peak problem αij values for different meshes (n = 5, 10, 20, 50, from top to
bottom) for the solution + fluxes model approach trained on single-mesh data (left) and multi-mesh data (right) and with loss
functions (LFs): alpha LF1 (blue), limited anti-diffusive fluxes LF2 (orange) and limited anti-diffusive correction LF3 (green).
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A.3. Gradient model approach

Single-mesh data Multi-mesh data

Figure A.9: The L2-norm relative error of the (trained) boundary layer problem solutions for different meshes
(n = 5, 10, 20, 50, from top to bottom) for the gradient model approach trained on single-mesh data (left) and multi-mesh data

(right) and with loss functions (LFs): alpha LF1 (blue), limited anti-diffusive fluxes LF2 (orange) and limited anti-diffusive
correction LF3 (green).
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Figure A.10: The L2-norm error of the (trained) boundary layer problem αij values for different meshes (n = 5, 10, 20, 50,
from top to bottom) for the gradient model approach trained on single-mesh data (left) and multi-mesh data (right) and with loss
functions (LFs): alpha LF1 (blue), limited anti-diffusive fluxes LF2 (orange) and limited anti-diffusive correction LF3 (green).
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Figure A.11: The L2-norm relative error of the (untrained) peak problem solutions for different meshes (n = 5, 10, 20, 50,
from top to bottom) for the gradient model approach trained on single-mesh data (left) and multi-mesh data (right) and with loss
functions (LFs): alpha LF1 (blue), limited anti-diffusive fluxes LF2 (orange) and limited anti-diffusive correction LF3 (green).
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Figure A.12: The L2-norm error of the (untrained) peak problem αij values for different meshes (n = 5, 10, 20, 50, from top
to bottom) for the gradient model approach trained on single-mesh data (left) and multi-mesh data (right) and with loss

functions (LFs): alpha LF1 (blue), limited anti-diffusive fluxes LF2 (orange) and limited anti-diffusive correction LF3 (green).
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A.4. Gradient + fluxes approach

Single-mesh data Multi-mesh data

Figure A.13: The L2-norm relative error of the (trained) boundary layer problem solutions for different meshes
(n = 5, 10, 20, 50, from top to bottom) for the gradient + fluxes model approach trained on single-mesh data (left) and

multi-mesh data (right) and with loss functions (LFs): alpha LF1 (blue), limited anti-diffusive fluxes LF2 (orange) and limited
anti-diffusive correction LF3 (green).



A.4. Gradient + fluxes approach 82

Single-mesh data Multi-mesh data

0 100 200 300 400 500 600 700
Peclet number

101

100

10 1

L2
-n

or
m

 e
rro

r
L2-norm ij error: NN REV and AFC for n = 5 LF 1

LF 2
LF 3

0 100 200 300 400 500 600 700
Peclet number

101

100

10 1

L2
-n

or
m

 e
rro

r

L2-norm ij error: NN REV and AFC for n = 5 LF 1
LF 2

0 100 200 300 400 500 600 700
Peclet number

101

100

10 1L2
-n

or
m

 e
rro

r

L2-norm ij error: NN REV and AFC for n = 10 LF 1
LF 2
LF 3

0 100 200 300 400 500 600 700
Peclet number

101

100

10 1

L2
-n

or
m

 e
rro

r

L2-norm ij error: NN REV and AFC for n = 10 LF 1
LF 2

0 100 200 300 400 500 600 700
Peclet number

101

100

10 1

L2
-n

or
m

 e
rro

r

L2-norm ij error: NN REV and AFC for n = 20 LF 1
LF 2
LF 3

0 100 200 300 400 500 600 700
Peclet number

101

100

10 1

L2
-n

or
m

 e
rro

r

L2-norm ij error: NN REV and AFC for n = 20 LF 1
LF 2

0 100 200 300 400 500 600 700
Peclet number

101

100

10 1

L2
-n

or
m

 e
rro

r

L2-norm ij error: NN REV and AFC for n = 50 LF 1
LF 2
LF 3

0 100 200 300 400 500 600 700
Peclet number

101

100

10 1

L2
-n

or
m

 e
rro

r

L2-norm ij error: NN REV and AFC for n = 50 LF 1
LF 2

Figure A.14: The L2-norm error of the (trained) boundary layer problem αij values for different meshes (n = 5, 10, 20, 50,
from top to bottom) for the gradient + fluxes model approach trained on single-mesh data (left) and multi-mesh data (right) and
with loss functions (LFs): alpha LF1 (blue), limited anti-diffusive fluxes LF2 (orange) and limited anti-diffusive correction LF3

(green).
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Figure A.15: The L2-norm relative error of the (untrained) peak problem solutions for different meshes (n = 5, 10, 20, 50,
from top to bottom) for the gradient + fluxes model approach trained on single-mesh data (left) and multi-mesh data (right) and
with loss functions (LFs): alpha LF1 (blue), limited anti-diffusive fluxes LF2 (orange) and limited anti-diffusive correction LF3

(green).
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Figure A.16: The L2-norm error of the (untrained) peak problem αij values for different meshes (n = 5, 10, 20, 50, from top
to bottom) for the gradient + fluxes model approach trained on single-mesh data (left) and multi-mesh data (right) and with loss
functions (LFs): alpha LF1 (blue), limited anti-diffusive fluxes LF2 (orange) and limited anti-diffusive correction LF3 (green).
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B.1. Asymmetric data: other results
B.1.1. Feedforward neural network
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Figure B.1: FFNN limited anti-diffusive flux results with the NN and AFC solution profiles against the exact solution for
constant (left) and variable (right) dij data for n = 20 and Pe = 50, 210 for the boundary layer problem.
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Figure B.2: FNN pointwise differences plots for the peak problem with positive high Péclet numbers for n = 20 trained with
constant diffusion data (upper) and variable diffusion data (lower).
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Figure B.3: FFNN limited anti-diffusive flux results with the NN and AFC solution profiles against the exact solution for
constant (left) and variable (right) dij data for n = 20 and Pe = 50, 533.33 for the untrained problem.
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B.1.2. Splitted neural network
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Figure B.4: SpNN pointwise differences plots for the peak problem with positive high Péclet numbers for n = 20 trained with
constant diffusion data (upper) and variable diffusion data (lower).
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Figure B.5: SpNN limited anti-diffusive flux results with the exact solution for the peak problem with positive high Péclet
numbers for n = 20 trained with constant diffusion data (upper) and variable diffusion data (lower).
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B.1.3. Physics-informed neural network
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Figure B.6: PINN pointwise differences plots for the peak problem with positive high Péclet numbers for n = 20 trained with
constant diffusion data (upper) and variable diffusion data (lower).
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Figure B.7: PINN pointwise differences plots for the variation of the boundary layer problem with positive high Péclet numbers
for n = 20 trained with constant diffusion data (upper) and variable diffusion data (lower).
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B.2. Asymmetric data: input-output mapping
The predictions for each trained neural network for the constant and variable diffusion constant data is
given in an input and output mapping against the true data in the following sections. Moreover, both
data sets have 3528 and 2940 data points respectively, where one data point corresponds to the three
input fluxes fij and the corresponding output αij value. The data is divided into three sets, such as:
70% (2469 data points for constant, 2057 for variable) is the training data, 22.5% (794 data points
for constant, 662 for variable) is the validation data and 7.5% (265 data points for constant, 221 for
variable) is the test data. The results are given for the training and validation sets.

B.2.1. Feedforward neural network
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Figure B.8: FNN Input-output mapping for the training and validation data sets with asymmetric data for constant diffusion data.
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Figure B.9: FNN Input-output mapping for the training and validation data sets with asymmetric data for variable diffusion data.
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B.2.2. Splitted neural network
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Figure B.10: SpNN Input-output mapping for the training and validation data sets with asymmetric data for constant diffusion
data (upper) and variable diffusion data (lower).
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B.2.3. Physics-informed neural network
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Figure B.11: PINN Input-output mapping for the training and validation data sets with asymmetric data for constant diffusion
data (upper) and variable diffusion data (lower).
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B.3. Symmetric data results
The predictions for each trained neural network for the constant and variable diffusion constant data is
given in an input and output mapping against the true data in the following sections. Moreover, both
data sets have 7056 and 7840 data points respectively, where one data point corresponds to the three
input fluxes fij and the corresponding output αij value. The data is divided into three sets, such as:
70% (4939 data points for constant, 5487 for variable) is the training data, 22.5% (1587 data points
for constant, 1764 for variable) is the validation data and 7.5% (530 data points for constant, 589 for
variable) is the test data. The results are given for the training and validation sets. The results are given
for the training and validation sets. Furthermore, the relative error results for the boundary layer, peak
and variation of the boundary layer problems are also given for each model trained on the constant and
variable diffusion data sets.

B.3.1. Feedforward neural network
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Figure B.12: FNN Input-output mapping for the training and validation data sets with symmetric data for constant diffusion data.
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Variable dij data
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Figure B.13: FNN Input-output mapping for the training and validation data sets with symmetric data for variable diffusion data.
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Figure B.14: FFNN L2 relative error for boundary layer problem with positive and negative Péclet numbers for n = 20, 50, 80
with symmetric data for constant diffusion data (left) and variable diffusion data (right).
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Figure B.15: FFNN L2 relative error for peak problem with positive and negative Péclet numbers for n = 20, 50, 80 with
symmetric data for constant diffusion data (left) and variable diffusion data (right).
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Figure B.16: FFNN L2 relative error for variation of boundary layer problem with positive and negative Péclet numbers for
n = 20, 50, 80 with symmetric data for constant diffusion data (left) and variable diffusion data (right).
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B.3.2. Splitted neural network
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Figure B.17: SpNN Input-output mapping for the training and validation data sets with symmetric data for constant diffusion
data (upper) and variable diffusion data (lower).
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Figure B.18: SpNN L2 relative error for boundary layer problem with positive and negative Péclet numbers for n = 20, 50, 80
with symmetric data for constant diffusion data (left) and variable diffusion data (right).
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Figure B.19: SpNN L2 relative error for peak problem with positive and negative Péclet numbers for n = 20, 50, 80 with
symmetric data for constant diffusion data (left) and variable diffusion data (right).
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Figure B.20: SpNN L2 relative error for variation of boundary layer problem with positive and negative Péclet numbers for
n = 20, 50, 80 with symmetric data for constant diffusion data (left) and variable diffusion data (right).
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Figure B.21: PINN Input-output mapping for the training and validation data sets with symmetric data for constant diffusion
data (upper) and variable diffusion data (lower).
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Figure B.22: PINN L2 relative error for boundary layer problem with positive and negative Péclet numbers for n = 20, 50, 80
with symmetric data for constant diffusion data (left) and variable diffusion data (right).
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Figure B.23: PINN L2 relative error for peak problem with positive and negative Péclet numbers for n = 20, 50, 80 with
symmetric data for constant diffusion data (left) and variable diffusion data (right).
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Figure B.24: PINN L2 relative error for variation of boundary layer problem with positive and negative Péclet numbers for
n = 20, 50, 80 with symmetric data for constant diffusion data (left) and variable diffusion data (right).
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B.4. Improvements: symmetric data vs asymmetric data

Figure B.25: FFNN differences plot for n = 20 for constant dij data with asymmetric data and symmetric data for the peak
problem.
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Figure B.26: FFNN solution profiles for n = 50 for variable dij data with asymmetric data and symmetric data for the variation
of the boundary layer problem.
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Figure B.27: SpNN differences plot for n = 50 for variable dij data with asymmetric data and symmetric data for the variation
of the boundary layer problem.
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Figure B.28: SpNN solution profiles for n = 50 for constant dij data with asymmetric data and symmetric data for the variation
of the boundary layer problem.
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Figure B.29: PINN differences plot for n = 50 for constant dij data with asymmetric data and symmetric data for the variation
of the boundary layer problem.
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Figure B.30: PINN solution profiles for n = 50 for variable dij data with asymmetric data and symmetric data for the variation
of the boundary layer problem.
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