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1
INTRODUCTION

In this thesis we propose a novel model approach to simulate the differentiation process of mesenchymal
stem cells (MSC’s). The reason to study the behavior of MSC’s is because of their promising features in tissue
engineering. With its mobility and differentiation properties, these cells are able to repair tissue in various
parts of the body. Recent research has shown that stem cell injection in damaged cardiac tissue can improve
damaged tissue [1]1.
With the abstraction ability of mathematics, a mathematical model could aid in stem cell research. By con-
densing the biological process in a mathematical model, the model could help in understanding the under-
lying mechanisms of (stem) cell differentiation, or could aid for educational purposes.
However, a mathematical model is as good as the knowledge about the subject which is being modeled. This
is most definitely true in this case, since stem cell differentiation remains a complex process, which is not
entirely understood yet [3]. Hence, it is a difficult task to present a model which simulates cell differentiation
in a realistic manner, since among others, validation of the model by the use of biological experiments is
challenging.
Then again, a reason to propose a mathematical model for cell differentiation is that they can reproduce an
experiment very easily compared to biological experiments. Besides that, mathematical models are ethically
neutral in contrast to biological experiments where one has to be concerned about these restrictions2.

To model (stem) cell differentiation, we use an approach which is inspired by the paper of Prokharau [4],
where (stem) cell differentiation is considered to be a gradual process whereby a cell obtains the character-
istics of its phenotype gradually, and by the thesis of W.M. Boon [5]. As stated before, a bio-mathematical
model is as good as the biological knowledge and choice of parameters. Hence, in order to produce a useful
model we are compelled to expand our knowledge about cell biology, which will be presented in Chapter 2.
After this introduction into cell biology, we will explore two models proposed by Prokharau and Macklin in
Chapter 3.
The novel model approach will be presented in Chapter 4 which is able to simulate the differentiation towards
p phenotypes. However, we will only simulate the differentiation towards two specific phenotypes, namely
muscle and fat cells. Subsequently we give some preliminary results of the 2D version of the model in Chapter
5, and a preview of the results from the 3D version in Chapter 6. Hereafter we discuss the obtained results in
more detail and point out parts of the model that can be improved in Chapter 7 and 8, respectively.

1However, another paper claims that this is not possible during in vitro studies at high frequencies [2]
2Take for example genetic modification, embryotic stem cell reasearch and cloning

1

http://www.actionbioscience.org/biotechnology/glenn.html
http://www.eurostemcell.org/factsheet/embyronic-stem-cell-research-ethical-dilemma
http://en.wikipedia.org/wiki/Ethics_of_cloning




2
BIOLOGY

In this chapter we will introduce the biological knowledge we have gained. We start by explaining the basics
of a cell, which list properties like its composition, migration and proliferation.
From this introduction we will guide the reader through the stages of cell differentiation, where we will fo-
cus on the differentiation of mesenchymal stem cells towards fat and muscle cells since the differentiation
process towards these two phenotypes is the main focus of this thesis.
In our novel model approach we attempt to simulate the differentiation of MSC towards adipocyte and my-
ocyte, hence the gained biological knowledge is a key ingredient to form our model assumptions.

2.1. GENERAL CELL BIOLOGY
Cells are the building blocks of life, they are the smallest unit of life that can replicate independently. The
whole population of cells can be divided into two classes, which are characterized by the presence or absence
of a nucleus. The cells without a nucleus are called prokaryotes and cells with a nucleus are called eukaryotes.
Prokaryotes are considered less complex than eukaryotes, mainly because it is assumed that eukaryotes are
composed of evolved prokaryotes. Since stem-, fat-, and muscle cells are eukaryotes, we have no interest in
the mechanisms behind prokaryotes in this thesis.

2.1.1. CELL COMPOSITION

Despite the small size of eukaryotic cells, ranging from a mere 10 - 100 µm, they are extremely complex.
Looking from a molecular point of view, we can say that eukaryotes are composed of water, inorganic ions
and organic molecules.
The total mass of a cell is for 70% made up of water. This is an important fact, because this helps with the
formation of the cell membrane. The reason behind this, is that the water molecule is a polar molecule.
The hydrogen atom of the water molecule has a small positive charge, whereas the oxygen atom is slightly
negatively charged. This causes the water molecule to bind more easily to other polar molecules and ions
and further it tends to minimize the contact with non-polar molecules. This interaction between molecules
is an important factor in the formation of biological structures, such as cell membranes, since cell membranes
are mainly composed of lipids that repel water.
About 1% of the mass in a eukaryote is caused by the inorganic ions, which include: Sodium, potassium,
magnesium, calcium, phosphate, chloride and bicarbonate.
The organic molecules are the ingredients that make a cell unique. These molecules can be classified into
four distinct classes

• Carbohydrates - provides the nutrients and energy storage in a cell.

• Nucleic acids - DNA and RNA, contain the blue print of the cell.

• Proteins - execute the ’blue print’ of the nucleic acids.

• Lipids - provides energy storage, are a major component of cell membranes and used in cell signaling.

3



4 2. BIOLOGY

The carbohydrates, nucleic acids and proteins are considered macromolecules due to their size. These com-
pounds are formed by joining (polymerization) of hundreds or thousands of low molecular-weight precur-
sors: amino acids, nucleotides, and simple sugars. [6]

From a functional point of view, a cell is filled with cytoplasm that is bounded by a cell membrane, where the
cytoplasm contains all the bound and unbound organelles, and the cytosol.
An important (unbound) organelle in the cytoplasm, is the cytoskeleton. This structure is, among others,
responsible for the size and shape of the cell. We will see that the cytoskeleton is an elastic skeleton which
deforms during cell movement and contraction.
One of the building blocks of the cytoskeleton is the protein actin, which is responsible for the formation of
microfilaments inside a cell. Further, the protein actin can act as a track on which the protein myosin attaches
to cause contraction in myocytes.
The cell membrane physically separates the intracellular components from the extracellular environment,
hence the cell membrane is the connection between the (inner) cytoskeleton and the (outer) extracellular
matrix (ECM).
This membrane is composed of lipids and proteins. The function of the lipids in the membrane, is to repel
water-soluble molecules, while the proteins act as a mediator for ions and biological molecules. The weight
distribution between the lipids and proteins is 50/50, since proteins are much larger than lipids, this ratio
translates into one protein molecule per every 50-100 molecules of lipid.
The proteins that reside in the cell membrane can be divided in two classes - peripheral proteins and integral
membrane proteins. Many integral proteins are also trans-membrane proteins, which span the lipid layer with
portions exposed on both sides of the membrane. A special set of trans-membrane proteins are the integrins
and the cadherins, which are considered cell adhesion molecules.

Figure 2.1: Abstract visualization of several membrane proteins

The integrins are responsible for the attachment of cells to the extracellular matrix and the cadherins are used
in cell-cell adherence.
These proteins are used at focal adhesion points, which are large, dynamic protein complexes through which
the cytoskeleton of a cell connects to the ECM. These integrins then bind to extra-cellular proteins via short
amino acid sequences.
The formation behind focal adhesion is a complex process, where many different (trans-membrane) proteins
are used. However, the core idea we can get from this, is that every cell has certain ’hooks’ on which it grabs
the ECM, or any other cell. Besides their mechanical functioning as ‘hooks’, the focal adhesions also serve as
a chemical transmitter. However, note that these ‘hooks’ are far more complex than stated here.

http://en.wikipedia.org/wiki/Focal_adhesion
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2.1.2. CELL MOVEMENT
The mechanism behind cell-ECM adhesion is also used in the movement of a cell. It can be assumed that
most animal cells use a crawl-like movement to migrate. This process of crawling can be summarized in four
distinct steps, as shown in Figure 2.2

Figure 2.2: Abstract display of cell movement

A cell may undergo both random and directed active migration. The random migration of a cell is modeled
by a Brownian motion, whereas the directed active migration is caused by a certain signal. These signals
originate from the cell’s environment and have a chemical nature, which causes chemotaxis, or a mechanical
nature, which causes mechanotaxis. Among these migration signals, there are many different type of -taxis,
like haptotaxis, phototaxis and thermotaxis.
Note that from Figure 2.2, it is clear that the cell must adapt its cytoskeleton to move. First it stretches itself in
the direction of motion, after which it propels the nucleus in the same direction. Then the cell has to contract
and reassemble its focal adhesions to make the next ‘step’.
The range of speed in which eukaryotes can move is very broad. For example, there are fish keratocytes 1

which move at a speed of 10-45 µm per minute. While on the other hand, there are mouse fibroblastoid cells
that have a speed of 29 µm per hour 2.

1wound healing fibroblast of the cornea
2Hyper link to web page which presents these results: webpage

http://www.weizmann.ac.il/plants/Milo/images/cell motility speed121208Clean(1).pdf


6 2. BIOLOGY

2.1.3. CELL CYCLE
The molecular process for cell movement is also relevant during cell mitosis, which is the process where a
cell divides. During this division, one cell has to create a boundary membrane for two cells and thus has to
rearrange its cytoskeleton.
Cell division is part of the cell cycle, which regulates the whole process of cell division. In Figure 2.3 the
different stages in the cell cycle are given in an abstract way, the protein classes cyclin and cyclin-dependent
kinases (CDK)[7] regulate how long each cell stays in a phase.

Figure 2.3: The cell cycle, copyright Richard Wheeler (Zephyris) 2006.

The cell cycle can be seen as having two consecutive phases - the Interphase and Mitosis. Where the inter-
phase contains three sub phases - Gap 1 (G1), Synthesis and Gap 2 (G2). During the interphase the cell grows,
replicates its DNA and prepares the cell for the mitosis stage. As soon as a cell reaches this point, it enters the
mitosis stage, stops growing and starts the division process.
Cell division is commonly referred to as cell proliferation. This proliferation process takes, for an average
eukaryote, approximately 24 hours, where 11 hours are spent in the G1 phase, 8 hours in the S phase, 4 hours
in the G2 phase and only one hours in the mitosis phase. Cell apoptosis, which is programmed cell death,
takes roughly 24 hours [8].
The last phase, Gap 0 (G0), also known as the resting phase, can be entered from Gap 1. When a cell enters
the resting phase, it no longer proliferates. It is common for cells that are fully differentiated to enter this
state. However, there is a possibility for some cells to re-enter the cell cycle despite not having differentiated
entirely.
Stem cells have the ability of (life-long) self renewal and cell differentiation. This makes stem cells an ideal
candidate to maintain the balance of different cells inside a cell population.
In their process of division, they can either divide in a symmetric or asymmetric way. In the first case, one
stem cell yields two stem cells, whereas in the latter case we get one stem cell and one (slightly more differ-
entiated) daughter cell.
The daughter cell is no longer considered a stem cell, since it is differentiated slightly towards a certain phe-
notype. However, the daughter cell can still be pluripotent 3. As the daughter cell continues to proliferate,
eventually a fully differentiated cell arises.

3Having the ability to differentiate towards multiple phenotypes

http://en.wikipedia.org/wiki/Asymmetric_cell_division
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2.1.4. CELL DIFFERENTIATION
The process of cell differentiation is complicated, and the simulation of this process lies at the core of this
thesis. A cell ‘decides’ when it should differentiate according to the signals it gets from the extra-cellular
matrix which have a chemical, or mechanical nature.
Each cell secretes its share of proteins to the extra-cellular matrix, which in turn comes into contact with
other cells. This interaction between cells gives a cell population the ability to communicate, and also for
a stem cell to decide towards which phenotype it should differentiate. In a similar way, mechanical signals
are conveyed through the ECM. Even though everything can be considered as a chemical at this level, we do
make a distinction in the cause of a chemical signal.
Further, according to Even-Ram (2006) [9], (stem) cell differentiation is also influenced by the surface topol-
ogy. In their article they state that under various elasticity conditions only certain phenotypes can arise. At
soft tissue (1 kPa) we expect more growth of nerve cells, whereas at 10 kPa we see the formation of muscle
tissue and at around 100 kPa the shaping of bone tissue.
Note however that it is possible for a stem cell that grows towards a certain phenotype, to change its des-
tination and become a different phenotype. The process of change in phenotype is called metaplasia and
dysplasia.

2.1.5. STEM CELLS
As mentioned earlier, stem cells have both the ability to renew themselves and eventually differentiate to-
wards a certain target cell. During the development of a human (or animal), there exist several types of stem
cells. For example, in the beginning of life there are fetal or embryonic stem cells, which are not limited to a
fixed number of mitotic divisions, by definition [10].
Even in an adult human there still reside stem cells, to keep a fresh cell population, these cells are called ‘adult
stem cells’. In the next section we will discuss a special type of adult stem cell, called the mesenchymal stem
cell.

http://en.wikipedia.org/wiki/Metaplasia
http://en.wikipedia.org/wiki/Dysplasia
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MESENCHYMAL STEM CELLS

Mesenchymal stem cells4 are considered to be the most promising for tissue engineering. The reason for this is
their multi potency and their self renewal potential. A source of MSC can be found in bone marrow, trabecular
bone, adipose tissue, skeleton muscle and others [3].
Their ability to differentiate towards several phenotypes is presented in Figure 2.4, where we also see the
cytokines (or growth factors) that are involved in the differentiation process.

Figure 2.4: Differentiation path of mesenchymal stem cells, copyright R& D systems

The speed at which a MSC can move is roughly 30 µm/h [11]. The study that revealed this result tried to
determine the effect of electro-taxis on the motility of MSC, where they compared to movement speed of
cells under influences of an electric field with that of a control group.
Another interesting result comes from a study by Bertolo [12], which links the motility of a MSC to the differ-
entiation property. In his conclusion he states that the in-vitro cell motility might be a useful tool to charac-
terize and distinguish the MSC population’s differentiation potential. With this characterization, it then could
be possible to assemble specific cell population compositions for tissue engineering.

4otherwise known as mesenchymal stromal cells
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2.2. PHENOTYPES

2.2.1. MYOGENESIS - THE MYOCYTE
Myogenesis is the formation of muscle tissue and occurs during embryonic development and muscle recov-
ery. We have listed the intermediate stages of embryo-tic myogenesis in Table 2.1. While we are not particu-
larly interested in the muscle development of an embryo, it does give a framework to analyze myogenesis.

Table 2.1: The different stages in myogenesis [13]

Stage of myogenesisnesis Associated genetic factors

De-lamination PAX3, c-Met
Migration c-Met/HGF, LBX1
Proliferation PAX3, c-Met, Mox2, MSX1, Six, Myf5, MyoD
Determination Myf5, MyoD
Differentiation Myogenin, MCF2, Six, MyoD, Myf6
Specific Muscle Formation Lbx1, Mox2
Satellite Cells PAX7

The last stage in myogenesis is the satellite cell, according to Table 2.1. Satellite cells maintain the muscle
tissue throughout adulthood and can be seen as quiescent myoblasts. Once they are activated, which can
be caused by either injury or high mechanical loading, the satellite cells re-enter the cell cycle in order to
proliferate and deliver differentiated cells via asymmetric division.
According to some studies, satellite cells are able to differentiate towards muscle, bone, and fat [14]. However,
other studies show that this should not be possible for pure satellite cells [15].
Figure 2.5 shows an abstract representation of the differentiation path from a satellite cell to a muscle cell.

Figure 2.5: Graphically representation of myogenesis [16]
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The differentiation process of a satellite cells resembles the stages shown in Table 2.1. Since, when a satellite
cell is activated, it will first de-laminate itself and migrate to the site of injury where it will proliferate and
differentiate.
In this differentiation process we can distinguish several physical stages that the satellite cell attains. The
first stage is called the myoblast, which is a bi-polar spindle shaped cell that can fuse together with other
myoblasts. Besides their fusion property, they are also able to proliferate and are determined to a myogenic
phenotype.
The fusion process is totally controlled by several growth factors that are expressed either in the ECM or the
cell itself. When enough myoblasts have fused together, we will call this quantity a myotube, which are multi-
nucleated elongated cells. These myotubes are destined to become muscle fibers, but only after a period of
maturation. During this maturation stage, the myotubes obtain their contractile behavior via the construc-
tion of myofibrils inside the cytoplasm. There the thick and thin filaments that make up the cytoskeleton
align themselves to form the myofibrils. In Figure 2.6 you can see a graphical representation of the myofibers.

Figure 2.6: Build up of muscle cell source

These myofibers are also multi-nucleated cells, since they are formed by the fusion of many mono-nucleated
myoblasts.
One important property of these myofibers is that they can contract in a very efficient way. When some
myofibers are bundled together, we call them a muscle fascicle. These bundles are then bundled together to
eventually obtain a full muscle, which can be activated voluntary in order to move a certain limb. In Figure
2.7 the reader can find a graphical representation on how this systems is build.

Figure 2.7: Build up of muscle cell

This process of contraction happens inside one muscle fiber, and because there are many myofibers bundled
together, this can create a great amount of force. The mechanisms behind it come from the structure inside
a myofiber, which is partitioned by several sarcomeres. These sarcomeres are the contractile compartments
of a myofibers, inside these sarcomeres thin and thick filaments move to and away from each other to induce
movement.

http://droualb.faculty.mjc.edu/
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The movement of these thin and thick filaments are driven by the molecules ATP and C a2+, this behavior is
called the cross-bridge theory and there are many animations available on the internet that show how this
works.

Note that there are several types of muscles, which are distinguished by the speed at which they contract.
For now, there has been made a distinction between three different types: slow twitch, fast twitch and the
hybrid type. Where the slow twitch muscles are related to aerobic movement, the fast twitch to anaerobic
movement, and where the hybrid type lays in between these two types.
Furthermore, besides the distinction in speed, all muscles have the ability to contract in different ways. The
following list shows these three contraction types.

• Concentric contraction, muscle actively shortening:

this happens when the load being lifted is less than the maximum tetanic tension it can generate.

• Eccentric contraction, muscle actively lengthening:

when the load is larger than the muscle can handle, this occurs. It is an interesting phenomena since
the cross-bridge theory is not as successful when describing eccentric loads.

• Isometric contraction, muscle actively held at a fixed Length:

Think of this type when you lift an object. Your muscles contract and are actively held at a fixed length.

As mentioned in Section 2.1.5, cells communicate with each other via certain proteins, called cytokines or
growth factors. When it comes to myocytes, we call the cytokines that are secreted by this cell group myokines.
In this set of myokines there is a special subset that are only secreted during or after contraction, which exert
either autocrine, paracrine or endocrine effects.
The secretion of these special myokines have a tremendous amount of influence on the cell population as
a whole. Especially the adipose tissue that surrounds the muscle tissue will react to the secretion of these
myokines by releasing their energy, and thus reducing the amount of fat tissue.
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2.2.2. ADIPOGENESIS - THE ADIPOCYTE
Adipogenesis is the formation of fat cells from pre-adipocytes. Just like the process of myogenesis, a cell that
undergoes adipogenesis moves through several distinct stages. These stages can be found in table 2.2.

Table 2.2: The different stages in adipogenesis [17]

Stage of adipogenesis Characteristics

Mesenchymal precursor Proliferation
Ability to differentiate into multiple lineages

Committed preadipocyte Proliferation
Commitment to differentiation along adipocyte lineage
Fibroblast-like morphology

Growth-arrested preadipocyte Lack of proliferation due to contact inhibition
Mitotic clonal expansion Re-entry into the cell cycle induced by hormonal stimulation

Several rounds of cell divisions (i.e. mitotic clonal expansion)
Induction of C/EBPb and C/EBPd expression and activity

Terminal differentiation Cell-cycle arrest
Induction of PPARg and C/EBPa expression
Transcriptional activation of adipocyte genes (lipid and carbohy-
drate metabolism genes, adipokines)

Mature adipocyte High expression of adipocyte genes
Transcriptionally active PPARg, C/EBPa and C/EBPb
Signet-ring morphology: large lipid droplet occupies majority of
cell volume aThese distinctions are based primarily on in vitro
studies.

The body can gain energy from three main macro-nutrients: fat, carbohydrate and protein. The adipose
tissue inside a body is responsible for one of these macro-nutrients; fat.
The storage of fat can be done in two ways, either by the storage of white adipose tissue or brown adipose
tissue. The white adipose cell contain large amount of triglycerides, which are esters made up of a glycerol
and one or more fatty acids. In a white adipose cell the nucleus is not cell centered and very small, besides
there is little to no cytoplasm since most of the cell’s content is filled with triglycerides. The white adipose
tissue secretes these fatty acids to act as energy for muscles or other tissue.
The brown adipose cell contains fat droplets of different size, a cell centered nuclei and a cytoplasm filled
with numerous mitochondria. Unlike the white adipose cell, the brown adipose cell uses its own fatty acids
to generate heat. However, most fat is stored as white adipose tissue.
Besides the storage of energy, fat also comforts, cushions the body and helps as a structural function as it
attaches the skin to the underlying tissue [18]. An excess amount of fat inside an animal can cause nega-
tive effects, like obesity, cardiovascular disease or diabetes. This excess amount of fat is characterized by an
increase in size (hypertrophy) and number (hyperplasia) of adipocytes.
Fat tissue, like muscle tissue, secretes adipokines which regulate physiological processes throughout the
body like for example glucose metabolism, appetite and angiogenesis [17]. For a full list of all the known
adipokines, we refer to the paper published by [19], where the reader can also find a short explanation to
some interesting adipokines.



3
CLASSICAL MODELS FOR CELL

POPULATIONS AND DIFFERENTIATION

In this chapter we will discuss two published models that are concerned with cell differentiation. We will try
to find the essence of their models and the reason behind certain choices.

3.1. A MATHEMATICAL MODEL FOR CELL DIFFERENTIATION - PAVEL A. PROKHA-
RAU

In this section we consider the model proposed by Prokharau in 2012, since our model is inspired by it.
What makes this model so unique, is the way it treats cell differentiation. Most models use a mass-balance-
like system to simulate the differentiation to various phenotypes, by using a reaction-like term in the differ-
ential equation. In such models a cell type can directly ’jump’ to another phenotype. However, in the model
by Prokhaura, the differentiation is simulated as a gradual process.
This is done by a certain maturation state, which can change over time according to the different stimuli it
senses. This differentiation process is reversible as long as the differentiation is not complete, that is when
the cell is not matured yet.
The model by Prokharau et. al. [4], can be used to model any number of cell type differentiation and in their
paper they also give an application of their model for the simulation of bone growth.

The simulation of this model gives the density of a certain cell type per unit of maturation and unit of vol-
ume over time and space. As stated before, the unique property of this model is the gradual change in cell
differentiation.
By defining a set of complex boundary conditions, this model is able to change the composition of the cell
population, and therefore able to simulate bone growth.
The governing equation used to simulate the differentiation behavior from MSCs towards bone or fibroblast
tissue, is given by equation 3.1. Here we have an index i ∈ {b, f } which denotes the bone phenotype or the
fibroblast phenotype.

∂ci

∂t
=∇· (Dc∇ci )− ∂

∂a
(ui ci )+ Ac (1− ctot − f −b)ci , i = b, f . (3.1)

Let ctot (x, t ) be the normalized total density of MSC’s and the constant Ac the proliferation rate, then we see
that the proliferation rate stagnates when the total density of MSC’s reaches its limit, which is equal to one.
Here we have that the normalized total density is given by

ctot (x, t ) =
∫ 1

0
cb + c f d a. (3.2)

Further, the first term on the right-hand side of equation 3.1 represent a random walk of MSCs in the physical
space. Here ∇ denotes the nabla operator in physical space and the constant Dc is the mobility coefficient.
Further, the constant Ac is the rate of proliferation, which stops if the total density of MSC reaches its limit.

13



14 3. CLASSICAL MODELS FOR CELL POPULATIONS AND DIFFERENTIATION

The differentiation process is modeled by the second term, − ∂
∂a (ui ci ), where the flux ui ci comes from the

differentiation state domain.
This model is solved by using the finite volume method and the modified Euler method, for time integra-
tion. Using the finite volume method is a logical step, since they are dealing with conservation laws for the
concentrations and cell densities.

3.2. AN AGENT-BASED DISCRETE MODEL FOR CELL POPULATIONS
In this section we give a short review of an agent-based, or discrete cell based model, proposed by P. Macklin
and M.E. Edgerton [20]. An agent-based model allows a broad range of detail to be simulated where the cells
are not bound to a certain lattice but are able to move through a continuous domain. A drawback of this
approach depends on the amount of detail that is incorporated into the model, since this could drastically
increase the computation time.
Even though this model does not model cell differentiation, it does give a modular approach to cell behavior.
By using a relative simple approach, the model is able to simulate complex cell behavior, like tumor growth.
The first characteristic of the model is the implementation of the cell states and cell cycle, an abstract repre-
sentation of the connections between the cell states is given in Figure 3.1.

Figure 3.1: An abstract representation and connection of the cell states [20].

The symbols that are presented in the graph of Figure 3.1 denote probabilities of moving from one state to
another.
The second characteristic of the model is that the cell agents are also under the influence of forces from other
cells and their environment, which induce movement. This movement is captured by Newton’s First law as
shown in equation 3.3

mi v̇i =
∑

j

(
Fi j

cca +Fi j
ccr +Fi j

dd a

)
+Fi

cma +Fi
cba +Fi

cbr +Fi
loc +Fi

dr ag ≈ 0. (3.3)

Here, the sum is over all cells j in the computational domain and i denotes a cell different from j . This
model makes the assumption that the forces equilibrate quickly, so that |mi v̇i | ≈ 0. To see how the forces
from equation 3.3 apply to the cells, see Figure 3.2.
The cell force Fcca stands for the cell-cell adhesion force, which is driven by a complex equation accompanied
with a potential function with a compact support to limit the reach of the cell-cell adhesion. The force Fcma

stands for cell-ECM adhesion, Fcba represents the force that involves cell-BM adhesion, where BM stands for



3.2. AN AGENT-BASED DISCRETE MODEL FOR CELL POPULATIONS 15

Figure 3.2: An abstract representation of the cell properties and inter-cellular forces.

Boundary Membrane. Then, Fdd a gives the amount of force with debris-debris adhesion, where debris is a
certain cell state that a cell can be in. The force Fccr denotes the cell-cell repulsion, in order to prevent cell
overlap during the simulation. There is also the Fcbr force for the cell-BM repulsion and Fl oc stands for the
locomotive force, which only applies to cells that are in the motile state.
Then, the third characteristic of the model is the ability to incorporate a molecular-scale signaling model to
improve the cell agent’s “decision process". Finally, the model also introduces a set of (continuous) equations
that model the diffusion of oxygen among the cell population; the production of new ECM; and MMP (Matrix
metalloproteinases). Subsequently, these concentrations then influence the behavior of the cells.
Due to the modular set up of the model, it is relatively easy to adjust certain parts of the model and replace
it with an improved version where needed. This model is eventually used to simulate tumor growth in a two
dimensional breast duct, which showed promising results. Although, for a more detailed explanation of the
model we refer to the original paper [20].





4
A NOVEL MODEL APPROACH FOR CELL

DIFFERENTIATION

In the previous chapter we have seen a short review of two modeling approaches for cell behavior. Together
with the obtained biological knowledge, we are now ready to propose a novel model approach, which is in-
spired by the models Prokharau [4] and Vermolen [21].
The goal of this model is to give a mathematical framework for the differentiation behavior of mesenchy-
mal stem cells towards several phenotypes. In this chapter we introduce the two dimensional version which
simulates the differentiation towards two phenotypes, the fat and muscle cell. To introduce this model, we
first explain how we simulate individual cells and state the general properties a cell has. Then we continue
with the equation for the differentiation rate of a cell, and show which mechanisms are used to simulate this
differentiation process. Subsequently, we present the equations of cell-motion, cell-rotation and cell growth.
After that, we present results of this two dimensional modeling approach in Chapter 5 .
In Chapter 6, we present some preliminary results from the three dimensional version of the model. The
mathematical details to define the three dimensional version are given in Appendix A.8. Furthermore, in
Appendix A.7, one can find a short note on how to extend the model towards a variable amount of phenotypes.
The novel model approach simulates the differentiation behavior of an arbitrary number of discrete cells
C ∈Non a domain denoted byΩ, with boundary ∂Ω. The mechanisms behind the model of the differentiation
process are driven by a set of partial differential equations, which involve the diffusion of chemicals and the
displacement of the domain Ω due to cellular interaction. These partial differential equations will be solved
by using the Finite Element Method (FEM), see the Appendix A.2 for a brief explanation of the method.

17
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4.1. THE CELL
The discrete cells are modeled as discrete ellipse-shaped entities. Their dimensions are defined by their
length, width, center position and orientation. Furthermore, the boundary of a cell is approximated by a set
of L ∈ L nodes from which cells will secrete their chemicals and mechanically interact with the ECM. These
cells boundary nodes can be seen as the biological equivalent of focal adhesions.
In the coming sections, we will define various parameters and variables that can be cell or cell-boundary-
node dependent. Variables that are only cell-dependent will have an index i as superscript, and variables
that are cell-boundary-node dependent will have, in addition, an index j as subscript. Here the index i ranges
from 1, . . . ,C and index j from 1, . . . ,L.
Further, some variables are also phenotype dependent, for most of these variables we use the index k as
subscript, where k attains the values 1 or 2. We use this subscript when we want to denote the phenotype
dependency explicitly, since this could also be derived from the cell index itself.

Figure 4.1: The geometrical entities associated with a cell

In Figure 4.1 we present a general simulation cell. Here Li
k (t ) denotes the length, W i

k (t ) is the width and θi (t )

represents the angle between the orientation of the length Li
k (t ) and the x-axis, of cell i . Further, the area of

cell i is given by Ai (t ) =πLi
k (t )W i

k (t ).

The vector xi (t ) = [xi (t ), y i (t )] denotes the position of the cell center of cell i , the vector xi
j (t ) = [xi

j (t ), y i
j (t )]

denotes the position of the cell boundary node j of cell i , and ni
j (t ) is the outward normal vector at boundary

node j of cell i .
When the orientation of the length of the cell is parallel to the x-axis, hence when θi (t ) = 0, the cell boundary
are defined as

xi
j (t ) = Li

k (t )cos( j
2π

L
),

y i
j (t ) =W i

k (t )sin( j
2π

L
), j = 1, . . . ,L.

(4.1)

By using this relation, we conclude that the outward normal vector ni
j is given by

ni
j (t ) =

[
xi

j (t )

(Li
k (t ))2

,
y i

j (t )

(W i
k (t ))2

]
. (4.2)
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However, to include the orientation θi (t ) of the cell, we use the anti-clockwise rotation matrix R(θ) to rotate
the cell in the right direction. This rotation matrix is defined as

R(θ) =
[

cos(θ) −sin(θ)
sin(θ) cos(θ)

]
. (4.3)

Hence, we apply this rotation to the vectors xi
j (t ) and ni

j (t ) to obtain the rotated version of the cell boundary

nodes and normal vectors. Subsequently, we add the cell center xi (t ) to these rotated vectors to obtain the
right position and normal vectors of the cells.
Furthermore, we assume that the cells can only interact with the domainΩby their cell boundary nodes xi

j (t ).

This means that a cell secretes its cytokine onto the domain, and applies its contractile forces on the domain
via their cell boundary nodes. This results in a chemical concentration level on the domain and possibly a
deformation of the domain as well. The cells then senses theses chemical concentrations and deformations
via their cell boundary nodes.
The cell center node xi (t ) is needed to construct the cell boundary nodes and is used for the movement of
the cells during the simulation, see Section 4.3. This node will not act as a sensing node like the cell boundary
nodes. Further, note that in our simulations, the cells remain elliptic at all times. The issue of cell orientation
will be dealt with in greater detail in Section 4.3.1.
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4.2. THE MATURITY
To model the differentiation of the discrete cells, we propose the following model that is driven by a level of
maturity mi (t ) of cell i .

d

dt
mi (t ) = 1

2

(
U i

c (t )+U i
M (t )

)
, i = 1, . . . ,C ,

m(0) ∼ U(0,1).
(4.4)

Our assumption here is that the differentiation of cells depends solely on two terms, one that has a chemical
nature and the other with a mechanical nature. Here U i

c (t ) denotes the chemical part of the maturation rate
of cell i , and U i

M (t ) denotes the mechanical part for cell i . Both aging rates are determined by the amount of
chemical and mechanical stimuli a cell i senses through its cell boundary nodes, these stimuli are denoted
by ψi

c (t ) and ψi
M (t ), respectively. The values of these stimuli are obtained through a chemical model, which

governs the reaction diffusion equation, and a mechanical model, which is driven by the Navier Cauchy mo-
mentum equation. We will elaborate on this in Section 4.2.1 and 4.2.2, respectively.
Further, the maturation of each cell is summarized in the C ×1 vector m(t ). In order to start the maturation
process we set the initial value of the maturation vector m(0) = U(0,1), hence each entry of the vector is set
to a value from the uniform distribution over the open interval (0,1). This process, described by equation
4.4, stops for cell i when it reaches a maturity level of one. We then consider this cell to be mature and its
phenotype will also be final.

To denote the phenotype corresponding to cell i , we use the variable ιi (t ), which represents the numerical
version of the two phenotypes we are modeling. Hence, when ιi (t ) = 1 we have that cell i is a myocyte, and
when ιi (t ) = 2 we have ourselves an adipocyte. Furthermore, let ιiM (t ) denote the phenotype responsible

for the mechanical stimulus ψi
M (t ) sensed by cell i . In a similar way, we also define ιic (t ) for the chemical

stimulus.

Figure 4.2: Differentiation paths
of a cell

The model for the change in phenotype is inter-
twined in the chemical and mechanical aging rate
by the sign of these functions. For example, when a
cell is a certain phenotype ιi (t ) and gains a chem-
ical stimulus from a phenotype ιic (t ) 6= ιi (t ), then
the chemical aging rate U i

c (t ) will have a negative
sign, and thus reduces the maturity level of cell i .
The same procedure applies to the mechanical ag-
ing rate. In order to obtain the correct sign, we use
the following sign function

I i (x, t ) =
{

1 if x = ιi (t )
−1 if x 6= ιi (t )

. (4.5)

When a cell eventually obtains a negative matura-
tion due to this, it then changes its phenotype to the
stimulus which is responsible for the largest rate of
(negative) change. Subsequently, we take the abso-
lute value of this (yet) negative maturation level be-
fore we continue with the calculations.
The maturation process, modeled by equation 4.4,
and which genesis a cell will follow, is summarized in Figure 4.2. In this figure we can present the maturity
level and phenotype of each cell in a single graph.
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4.2.1. CHEMICAL SIGNALING

The explicit formulation of the chemical aging rate U i
c (t ) is given in equation 4.6.

U i
c (t ) =Umax tanh

(
2
ψi

c (t )

ξ(t )

)
I i (ιic , t ), i = 1, . . . ,C . (4.6)

where we have used the hyperbolic tangent to easily limit the chemical aging rate by the constant Umax . The
term inside the hyperbolic tangent is a scaled version of the chemical stimulus, where we use the function
ξ(t ), which also depends on the chemical stimulus and is explained further in Section 4.5.
In turn, the chemical stimulus is dependent on the chemical concentrations sensed by cell i through its cell
boundary nodes. These chemical concentrations are modeled by using the reaction diffusion equation. We
will now introduce the way how we obtain the chemical stimulus per cell.

THE CHEMICAL MODEL

These chemical concentration represent a certain type of myokine or adipokine that are secreted by their
corresponding cell type. The exact model that is used to calculate these concentrations is given by equation
4.7.

∂ck

∂t
+∇· (vmck )−Dk∆ck =

C∑
i=1

L∑
j=1

γi
k (t )δ(x −xi

j (t ))∆Γi
j (t ), x ∈Ω,

ck (x,0) = 0, x ∈Ω,

Dk
∂ck

∂n
+κck = 0, x ∈ ∂Ω.

(4.7)

The chemical ck (x, t ) is a density, the vector vm is the mesh velocity due to the cellular forces that act on the
domain and Dk is the diffusion coefficient.
Further, k = 1,2, denotes either the distribution of myokine or adipokine, respectively. Note that these pro-
cesses are now independent, a possible extension is to have an interaction between the two chemical models.
In the (Robin) boundary condition, the parameter κ gives the inflow (or outflow) of the chemical concentra-
tion. With this boundary condition we state that the flux on the boundary is proportional to the concentration
at the boundary.
For this model, we have chosen a particular sourcing function to model the secretion of cytokine from the
cell boundary nodes. The amount of cytokine that is secreted by the cells into the domain per unit of time is
given by γi

k (t ), which depends on the maturity of the cell and the phenotype k as shown in equation 4.8.

γi
k (t ) = γ0

k mi (t )∑L
j=1∆Γ

i
j (t )

, k = 1,2, i = 1, . . . ,C , (4.8)

where the variable γ0
k gives the amount of density that is secreted per time unit. We want to note here that

the division by the summation over the intermediate length of a cell has not been implemented in the model.
Until we were in a late stadium of this thesis project we noticed this error, unfortunately we could not resolve
this in time.
The Dirac Delta function on the right hand-side of equation 4.2.1 is chosen such that the sourcing only occurs
at the cell boundary nodes xi

j , i = 1, . . . ,C , j = 1, . . . ,L. Note that the sourcing term in equation 4.7 is summed

over all the cells and their boundary nodes, which means that we get a sourcing term from each cell boundary
node due to the Dirac Delta function.
As stated before, the chemical stimulus ψi

c (t ) depends on the chemical concentration a cell senses. This
concentration is defined as the mean over all the concentration levels sensed by the cell boundary nodes,
hence

ci
k (t ) = 1

L

L∑
j=1

ck (xi
j , t ), k = 1,2, i = 1, . . . ,C . (4.9)

By using this definition, we define the chemical stimulus as the absolute difference of the chemical concen-
tration of both phenotypes

ψi
c (t ) = |ci

1(t )−ci
2(t )|, i = 1, . . . ,C . (4.10)
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The chemical stimulus is then substituted in equation 4.6 to determine the aging rate caused by the chemical
stimulus. The chemical stimulus direction ιic (t ) follows from the definition of the chemical stimulus, and is
given by

ιic (t ) = arg max
k∈{1,2}

ci
k (t ), i = 1, . . . ,C . (4.11)
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4.2.2. MECHANICAL SIGNALING

The explicit formulation of the mechanical aging rate U i
M (t ) is given in equation 4.12.

U i
M (t ) =Umax tanh

(
2
ψi

M (t )

η(t )

)
I i (ιic , t ), i = 1, . . . ,C . (4.12)

Again, we have made use of the hyperbolic tangent to limit the mechanical aging rate. Further, the function
η(t ) is used here to scale the mechanical stimulusψi

M (t ) and is explained further in Section 4.5. The following
section will show how we have obtained the mechanical stimulus.

THE MECHANICAL MODEL

The cells that live on the substrate Ω are able to apply force on it via their boundary nodes, as explained
in section 4.1. These forces are summarized, per phenotype, into the vectors F k ,k = 1,2 and are used in
equation 4.13 to determine the displacement caused by these forces.

∇·σ+F 1 +F 2 = 0, x ∈Ω,

σ ·n +K u = 0, x ∈ ∂Ω.
(4.13)

Here σ(x, t ) is the stress tensor, and F k (x, t ),k = 1,2 are the forces the different phenotypes apply on the

domain per unit area, their definition will be given in the next section.
The boundary condition used in 4.13, makes the boundary elastically connected to the tissue far away, where
the parameter K represents the stiffness of the boundary.
Further, in order to calculate the displacement of the grid, we assume that equation 4.13 models small dis-
placements. Hence, we will be working with the infinitesimal strain theory, which means that we assume

‖u‖¿ 1, and , ‖∇u‖¿ 1. (4.14)

By these assumptions, we have the following relation between the strain tensor and the displacement gradient

ε= 1

2
(∇u + (∇u)T ). (4.15)

In addition, Hooke’s law shows that the relation between the stress and the strain tensor is given by

E

 ε11

ε22

ε12

=
 1 −ν 0

−ν 1 0
0 0 1+ν

 σ11

σ22

σ12

 . (4.16)

Where E is Young’s modulus of the extra cellular matrix and ν is the Poisson ratio. This relation can also be
written as  σ11

σ22

σ12

= E

(1+ν)(1−2ν)

 1−ν ν 0
ν 1−ν 0
0 0 1−2ν

E

 ε11

ε22

ε12

 . (4.17)

From equation 4.17 and 4.15 we can see how the stress of the domain Ω is linked to the gradient of the dis-
placement 1. By substituting the equations 4.15 and 4.17 into equation 4.13, we can solve the problem for the
displacement vector u(x, t ).

1A full derivation, in 3D, of this relation is given in the appendix A.1
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THE CELLULAR FORCES

The force vector F k (x, t ) that acts on the domain, is given by the sum of all the forces that every cell boundary
node exerts on the domain. The force that a cell i applies on the domain via cell boundary node j , is directed
in the (outward) normal direction ni

j and has a magnitude of F i
j ,k (t ).

Since the dimension of the force vector F k (x, t ) must be force per surface area, we need to divide the magni-
tude F i

j ,k (t ) by the area of cell i in order to satisfy the dimensions of the Navier-Cauchy momentum equation.

In mathematical terms we say that the force, produced by a phenotype k, applied on the domain Ω, is given
by

F k (x, t ) =
C∑

i=1

∑L
j=1 F i

j ,k (t )ni
j

Ai (t )
,k = 1,2. (4.18)

Where the function F i
j ,k (t ) characterizes the force behavior of cell i with phenotype k on each cell boundary

node j . For myocytes (i.e. k = 1), we define the following characteristic force

F i
j ,1(t ) =

{
k i

j (t ) d
dt Li

1(t ) if mi (t ) < 0.8

k i
j (t ) d

dt Li
1(t )+∆Γi

j (t )F 0
1 mi (t )cos(ωt ) if mi (t ) ≥ 0.8

(4.19)

For adipocytes (k = 2), we define the following force function

F i
j ,2(t ) = k i

j (t )
d

dt
Li

2(t ). (4.20)

where we have that the function k i
j (t ) is given by

k i
j (t ) =

E i W i (t )∆Γi
j (t )

2Li
k (t )

. (4.21)

Here E i is Young’s modulus of cell i . The terms which contain the variable k i
j (t ) are designed to mimic the

force that cells exert on the domain while they grow. The idea originates from Hooke’s law, which states that

F = k∆L, (4.22)

with k the spring constant. Hence, this formula shows the amount of force needed to extend an object by
a length ∆L with a resistance given by k. However, we would like to link the amount of resistance k to the
Young’s modulus of a cell, which can be done by looking at the unidirectional definition of the Young’s mod-
ulus. This is given by

E = σ

ε
, ε= ∆L

L
, σ= F

A
. (4.23)

where ∆L denotes the change in length, L is the original length and F is the force applied on an area A to
obtain this change of length ∆L. We can rewrite this expression to the following format

E = F /A

L/∆L
⇒ F

∆L
= E A

L
. (4.24)

By using equation 4.22, we can see that the following identity holds

k = E A

L
⇒ F = E A

L
∆L. (4.25)

To relate equation 4.25 to the force that belongs to the growth of a cell, we rewrite this equation to

F i
j ,G (t ) =

E i W i (t )∆Γi
j

2Li
k (t )

d

d t
Li

k (t ). (4.26)

where E i is Young’s modulus for cell i , Li
k (t ) is the length of cell i and F i

j ,G (t ) is the growing force caused at cell

boundary node j of cell i . Here we have introduced a virtual height, given by 1
2 W i (t ), in order to approximate

the area A of equation 4.25 together with ∆Γi
j (t ). Further, the change in length d

d t Li
k (t ) is approximated by

d

d t
Li

k (t ) ≈ Li
k (t n+1)−Li

k (t n)

∆t
. (4.27)
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Figure 4.3: Pushing force of cells

Where ∆t is the time step used in the numerical simulations. A graphical representation of the growing force
that cells exert, is given in Figure 4.3.
Hence, we assume that both phenotypes produce a force due to their growth in size, and in addition, myocytes
also have the ability to exert a pulsating force on the domain to simulate muscular behavior. This muscular
behavior is characterized by two parameters F 0

1 , the magnitude of the force a myocyte exerts, and byωwhich
is the angular frequency of the co-sinus. The angular frequency is related to the frequency f by ω = 2π f ,
where the frequency is the reciprocal of the period T of the cosinus, hence f = 1

T period of the force.
Since we are solving our models in a discrete sense, we have a time step ∆t which determines the accuracy of
our solutions. However, this time step also determines the amount of detail that is modeled by the pulsating
force. Due to the angular frequency ω, we need an upper bound for the time step in order to model periodic
behavior. When we analyze the co-sinus, we have that

cos(ωt ) = cos(2π f t ). (4.28)

Due to the discrete time stepping, we state that t = n∆t ,n = 1, . . . ,Tmax . This simplifies equation 4.28 to

cos(2π f t ) = cos(2π f n∆t ) = cos(nπ(2 f ∆t )),n = 1, . . . ,Tmax . (4.29)

Knowing that taking the co-sinus of integer multiples of π results in a sequence of alternating −1 and 1, we
see that we must have that

2 f ∆t ≤ 1 ⇒∆t ≤ 1

2 f
, (4.30)

with f the frequency of the signal in order to simulate a predictable periodic function.
By using the force vectors that are produced by the cells, we obtain the displacement of the domain Ω by
solving the system 4.13 with the FEM. We use this displacement field to determine the mechanical stimulus
for each cell. For the definition of the mechanical stimulus, we use the octahedral shear strain to represent
the activity on the domain. This quantity is defined by

φ(x) = 2

3
|ε1(x)−ε2(x)|. (4.31)

Note that φ(x) is a dimensionless scalar variable that is based on the principle strains, which are the eigen-
values of the strain tensor (see equation 4.15).
To obtain the octahedral shear strain for one cell, we take the average of the octahedral shear strain of all the
cell boundary nodes.

φi (t ) = 1

L

L∑
j=1

2

3
|ε1(xi

j )−ε2(xi
j )|. (4.32)

The mechanical stimulus sensed by cell i is then given by the integral of a weighted version of the rate of
change of the octahedral shear strain over a time interval ((t −τ)+, t ), where τ denotes the length of the time
interval.
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By this we wish to simulate muscular memory of the muscle tissue, where we assume that recent muscular
activity will cause the most mechanical stimulus in the cell population. In mathematical terms, we write the
mechanical stimulus as

ψi
M (t ) =ψM (φi ) =

∫ t

(t−τ)+
w(s)

(
dφi

d s

)2

d s, i = 1, . . . ,C . (4.33)

Where the weight function w(s) is given by

w(s) =
{

e(s−t ), s ∈ (t −τ, t )
0 else

(4.34)

The direction of the mechanical stimulus ιiM (t ) is determined by the behavior of the octahedral shear strain

φi (t ). Since the octahedral shear strain reflects the behavior that the cells have on the domain, and because
myocytes can contract in a periodic fashion, we know that we can distinguish the different phenotypes via
the characteristics of the octahedral shear strain.
Therefore, we expect that when muscle-tissue is dominating in the cell population, the octahedral shear strain
will act in a periodic fashion similar to the muscle contraction. Thus, in order to distinguish muscular be-
havior from non-muscular behavior, we apply the Fourier Transform to the octahedral shear strain φi (t ) to
determine the frequency of this signal.
The Fourier Transform is useful in the sense that it translates a signal over a time domain to a signal over the
frequency domain. With this transformed function, in the frequency domain, we can then determine which
frequency possesses the highest amplitude which then tells us what the frequency of the original signal is
most likely to be.
Hence, for this approach we apply the Discrete Fourier Transform on the octahedral shear strain to decipher
the numerical frequency, which we denote by f̂ . Then we compare this frequency with the frequency of the
myocyte force function given by f . However, we expect that the numerical frequency of the octahedral shear
strain f̂ will be twice time the original frequency f since we took the absolute value of the principle strains in
equation 4.31. Therefore we define the direction of the mechanical stimulus as

ιiM (t ) =
{

1 1
2 f̂ ∈ [ 9

10 f , 11
10 f ]

0 1
2 f̂ 6∈ [ 9

10 f , 11
10 f ]

. (4.35)

For an explanation on the DFT, see Appendix A.5.
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4.3. CELL MOVEMENT
During the simulation, the cells in the domain have to ability to move, which is based upon various types
of stimuli. In this model we take into account mechanotaxis, chemotaxis and the Brownian motion. The
resulting stochastic differential equation (SDE) is given by

v i
k (t ) = d xi

k (t ) =σi
k (t )dW (t )+4µk mi (t )(1−mi (t ))∇ci

k (t )d t +µM ,k∇Mi (t )d t , i = 1, . . . ,C , k = 1,2, (4.36)

This equation is solved by the Euler-Maruyama method, which results in the following formula

xi
k (t n+1) = xi

k (t n)+σi
k (t )∆W (t )+4µk mi (t n)(1−mi (t n))∇ci

k (t )∆t +µM ,k∇Mi (t )∆t . (4.37)

Where i = 1, . . . ,C , k = 1,2,n = 1, . . . ,Tmax . Here n stands for the nth time step and ∆t is the time step.

BROWNIAN MOTION

We assume that cells are subject to random walk, the first term in equation 4.36, 4.37 is responsible for this.
Here the standard deviation σk is given by σi

k (t ) =σ0
k (1−mi (t )), σ0

k =√
2Dk ,k = 1,2. Thus, as a cell matures

it becomes less subject to the random walk.
The vector dW (t ) and ∆W (t ) represent the Wiener processes that model the random walk, which is charac-
terized by three properties

• W(0) = 0;

• The function t →W (t ) is almost surely continuous everywhere;

• W (t ) has independent increments with W (t )−W (s) ∼ N (0, t − s), for 0 ≤ s < t where N (µ,σ2) denotes
the normal distribution with expected value µ and variance σ2.

Instead of assuming W (t ) ∼ N (0, t ), which cannot support algebraic calculations, the Wiener process dW is
introduced. Further, we have that ∆W ≡αp∆t , where α∼ N (0,1) and ∆t is the time step.

CHEMOTAXIS

The second term in equation 4.36, 4.37 mimics the behavior of chemotaxis. The term presented here is equal
to the maximum gradient sensed on the cell boundary nodes, which is measured in the L2-norm. For this rea-
son, we have executed the following computations. First we calculate which node senses the largest chemical
gradient.

p i = arg max
j∈{1,...,L}

‖∇ck (xi
j , t )‖, i = 1, . . . ,C . (4.38)

The index p i is then substituted in the actual gradient to obtain the following

∇ci
k (t ) =∇ck (xi

p i ), i = 1, . . . ,C . (4.39)

We assume that this variables mimics the behavior of chemotaxis in a cell population. However, we would
like to see the modeling over several chemical substances and different reactions towards these chemical
concentrations in terms of movement and behavior. For example, some chemicals repel a certain cell type,
while other chemicals attract this phenotype.
In a complex setting we would like to see attraction towards more specific chemicals and possibly different
attraction rates over time.

MECHANOTAXIS

The third term ∇Mi (t ) denotes the movement caused by mechanotaxis, which is driven by the gradient of the
mechanical strain energy (MSE).
From [22] we see that the mechanical strain energy in two dimensions is defined as

M(x, t ) = 1

2
(σ11ε11 +σ12ε12 +σ22ε22) . (4.40)

We apply a similar approach for the calculation of the mechanical strain energy per cell, as with the chemical
gradient. Hence, we calculate the gradient of the MSE on each cell boundary node per cell and then determine

http://en.wikipedia.org/wiki/Euler-Maruyama_method
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the maximum gradient which will give the direction and magnitude of movement. In summary we calculate
the index which holds the maximum gradient in magnitude by

p i = arg max
j∈{1,...,L}

‖∇M(xi
j , t )‖, i = 1, . . . ,C . (4.41)

Using this index, we define the following direction of movement

∇Mi (t ) =∇M(xi
p i ), i = 1, . . . ,C . (4.42)

The details behind the calculation of this gradient, using gradient recovery techniques, are found in Appendix
A.6.
Further more, the mechanical sensitivity parameter µM ,k has a different sign based on the phenotype k. Here
we have chosen that when k = 1 the sign of this parameter is negative and when k = 2, we have a positive sign.
By this choice, we try to simulate the clustering of fat tissue around muscle tissue, since there will be the most
mechanical strain energy, and the spread of muscle tissue over the domain to avoid clustering of myocytes.
However, we have not found a paper which presents a value for this parameter, thus the value we will use is
chosen such that we obtain the behavior we desire.

4.3.1. CELL ROTATION

As stated in Section 4.1, the cells are assumed to have the ability to rotate. This rotation is based on the current
orientation θi (t ) and on the direction in which the cell will move v i

k (t ). We assume that the orientation of the
cell will change towards the direction of movement. Therefore we have used the following equation to model
this behavior.

d
d t θ

i (t ) = θi ,0(t )cos−1
(

v i
k (t )·θi (t )

‖v i
k‖‖θi ‖

)
, i = 1, . . . ,C ,k = 1,2,

θi (0) = 2πU (0,1), i = 1, . . . ,C .
(4.43)

Here θi ,0(t ) is used to scale, and provide the correct sign to the rate of change. The vector v i
k (t ) is the velocity

at which cell i moves, and θi (t ) is the angle θi (t ) of cell i written in vector format. This situation is sketched
in Figure 4.4.

Figure 4.4: Graphical representation of the (anti-clockwise) angle

In the second term of equation 4.43, we determine the angle between the vectors v i
k (t ) and θi (t ), which will

produce a non-negative angle. However, since we want to change the angle of cell i towards the direction of
movement, we need to determine if the right hand side of equation 4.43 is positive or negative.
For the situation shown in Figure 4.4, we want a positive rate of change, since the angle θi (t ) is taken with
respect to the x-axis. Hence, in order to determine the sign of the rate of change, we need to determine in
which quadrant v i

k (t ) lies with respect to θi (t ).
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To do this, we first define the clock-wise rotation matrix Rcw (θ)

Rcw (θ) =
[

cosθ sinθ
−sinθ cosθ

]
. (4.44)

Then, to determine in which quadrant v i
k (t ) lies, we rotate this vector with an angle θi (t ) in a clock-wise

direction,
v̂ i

k (t ) = Rcw (θi (t ))v i
k (t ). (4.45)

Now the problem is reduced to looking in which quadrant the rotated vector v̂ i
k lies with respect to the x-axis.

This problem is solved by looking at the sign of the dot product between the rotated vector v̂ i
k and the unit

vector e y of the y-axis. Therefore we define the scaling factor as

θi ,0(t ) = sgn
(
v̂ i

k (t ) ·e y

)
. (4.46)

This result is then used for equation 4.43. To solve this equation, we use the Euler-backward method to
discretize this equation in time and obtain the following updating formula

θi (t n+1) = θi (t n)+∆tθi ,0(t n)cos−1

(
v i

k (t n) ·θi (t n)

‖v i
k (t n)‖‖θi (t n)‖

)
,

v i
k (t n) = xi

k (t n+1)−xi
k (t n)

∆t

(4.47)

This rotation θi (t n+1) is then used in the rotation matrix given in equation 4.3 to rotate the cell boundary
nodes in the correct direction.

4.4. PHYSIOLOGICAL CHANGE OF THE CELL
As the cells mature through time, they will gradually obtain the characteristics of a phenotype. This is notice-
able in their force behavior as well as their movement.
In this model we also adapt the shape of the different phenotypes as they are maturing. We assume that
muscle cells will have an elliptical shape and fat cell a circular shape, this behavior is summarized in the
following equations

Li
k (t ) = L0

k + (L∞,k −Li ,0
k )mi (t ) (4.48)

W i
k (t ) =W 0

k + (W∞,k −W i ,0
k )mi (t ) (4.49)

Where L0
k ,W 0

k are the initial length and width of phenotype k and L∞,k ,W∞,k are the maximum length and

width obtained by phenotype k. Here the maturity mi (t ) scales the length of each phenotype in a linear way
from the initial length towards the maximum length. The exact definition of the initial and maximum length
and width are given in Table 4.1



30 4. A NOVEL MODEL APPROACH FOR CELL DIFFERENTIATION

4.5. PARAMETER CHOICE
In this section we give an elaborate explanation on how we choose the parameters, since this is a crucial part
for the simulation results. The parameters are split up into four distinct groups, Table 4.1 shows the physio-
logical parameters of the cells, Table 4.2 gives the parameters belonging to the simulation of the mechanical
model, Table 4.3 presents the parameters that are needed for the chemical model and Table 4.4 gives the
parameters belonging to the maturation process.
Most parameter values are found through research in cell biology papers, however, some values are self cre-
ated and therefore an NA (Not Applicable) is added instead of a link to the source.
The dimension of all the parameters are expressed by using [L], [T ], [ρ], which expresses the length, time and
density of a parameter, respectively. In this thesis our reference length is in micrometers, the time dimension
represents minutes and rho isµg /µm2 . To shorten notation, we also use [N ] = [L]

[T ]2 [ρ][L]2 to denote the force,

note here the [L]2 after the density, this is because we are using a two dimensional domain. Furthermore,
during this dimension analysis we use the standard metric prefixes.

Table 4.1: Table containing physiological parameters of the two phenotypes

Variable name Variable symbol Dimension Value Reference
Initial width of a myocyte W 0

1 [L] 25 source
Initial length of a myocyte L0

1 [L] 35 NA
Max. width of a myocyte W∞,1 [L] 25 source
Max. length of a myocyte L∞,1 [L] 150 NA
E-modulus of a myocyte Ec,1 [µN ][L]−2 10 ·10−3 [23]
Initial width of an adipocyte W 0

2 [L] 25 NA
Initial length of an adipocyte L0

2 [L] 25 NA
Max. width of an adipocyte W∞,2 [L] 75 [24]
Max. length of an adipocyte L∞,2 [L] 75 [24]
E-modulus of an adipocyte Ec,2 [µN ][L]−2 0.42 ·10−3 [25]

In Table 4.1 we see the values that correspond to the geometric parameters of a cell, which are visualized in
Figure 4.1. Note here the [L]−2 for the elastic moduli of the cells, this should imply that we are using three
dimensional cells when one recalls that the dimension of the elastic modulus is force per unit area. However,
from section 4.1 we showed that we modeled cells as two dimensional entities, which is thus in contrast with
the chosen dimension of the elastic modulus of a cell.
To justify this conflict, we assume that both cell types are virtually cylindrical shaped with a height equal to
1
2 W i (t ), which can be seen in equation 4.26. By virtually we mean that it has no further implication in the
model whatsoever, the sole reason is to justify the dimensions of the equations.

Table 4.2: Table containing mechanical related parameters for the model

Variable name Variable symbol Dimension Value Reference
E-modulus of the substrate E [µN ][L]−1 25 ·10−3 [26]
Poisson rate ν [−] 0.3 [27]
Force of myocyte F 0

1 [µN ][L]−1 15 [28]
Period of contraction ω [−] 2

10π NA
Muscle memory τ [T ] 30 NA
B.C. mechanical model K [µN ][L]−2 20 ·10−3 NA
Mechanical sensitivity for my-
ocyte

µM ,1 [L]3[µN ]−1[T ]−1 3 ·104 NA

Mechanical sensitivity for
adipocyte

µM ,2 [L]3[µN ]−1[T ]−1 0.5 ·103 NA

The value for the period of contraction and the muscle memory here chosen in Table 4.2, are quite arbitrary,
since any number would suffice. This is because we can not model actual muscle behavior with this model,
since this is far too complex compared to this model, we can only make sure that we are able to identify the
muscular behavior.
Further, the value for the mechanical sensitivity is obtain after a process of trial and error such that it simu-
lates the behavior we desire.

http://ocw.tufts.edu/data/15/342519.pdf
http://ocw.tufts.edu/data/15/342519.pdf
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Table 4.3: Table containing chemical and kinetic related parameters for the model

Variable name Variable symbol Dimension Value Reference
Diffusion coef. myokine D1 [L]2[T ]−1 810 source
Secretion rate myocyte γ1 [ρ][T ]−1 0.5 [29]
Sensitivity towards myocyte
gradient

µ1 [L]2[T ]−1[ρ]−1 6.6 ·103 NA

Diffusion coef. adipokine D2 [L]2[T ]−1 810 source
Secretion rate adipocyte γ2 [ρ][T ]−1 0.5 [29]
Sensitivity towards adipocyte
gradient

µ2 [L]2[T ]−1[ρ]−1 6.6 ·103 [30]

B.C. chemical model κ [L][T ]−1 1 NA

The value for the sensitivity towards the chemical gradient, shown in Table 4.3, is also chosen to satisfy the
simulation results we desire. At first we tried values taken from the paper by Ford [30], which reflected the
chemical sensitivity of the E.coli bacteria, but these values gave strange simulation results. Hence, after some
trial and error we have found these values which result in a decent balance between the three factors of
movement.
Note that the coefficients for both phenotypes shown in Table 4.3 are taken equal. The reason for this is
mostly due to lack of information of the biological parameters, therefore we conduct a sensitivity analysis in
Chapter 5 in order to see the effect in small changes of these parameters.

Table 4.4: Table containing chemical related parameters for the model

Variable name Variable symbol Dimension Value Reference
maximum aging rate Umax [T ]−1 1/120 NA
scaling MAR η(t ) [−] maxi∈[1,C ] ‖ψi

M (t )‖ NA
scaling CAR ξ(t ) [−] maxi∈[1,C ] ‖ψi

c (t )‖ NA

In Table 4.4 we see the parameters associated with the aging rate equations, see equation 4.6 and 4.12. These
parameters are hard to choose since they have no biological relevance, they are mere mathematical artifacts
used to model the behavior we think that is appropriate. For the moment we have chosen the following
formulation for the scaling parameters

η(t ) = max
i∈[1,C ]

‖ψi
M (t )‖

ξ(t ) = max
i∈[1,C ]

‖ψi
c (t )‖

(4.50)

The advantage of choosing these scaling parameters as such, is due to its simplicity in implementation and
scalability with the cell population size. In the case of ξ(t ), we are aware of the fact that by this choice we let
the maturity depend on a relative chemical concentration sensed by the cell population at a certain time t ,
which seems to be in contrast with the natural process of cell differentiation. Since from a biological point
of view, all processes are controlled by an absolute amount of biomolecules which can be part of a chemical
reaction. These chemical reactions obey the conservation of mass and energy, hence this kind of relativity
may be wrong here.
Further, the maximum aging rate has been set to 1

120 for the moment, as can be seen in Table 4.4. Which
means that the minimum transition time from maturity level zero to one, is equal to 120 time units, which
are in this case minutes. This setting can easily be adapted if we gather more information on the time it takes
for a cell to undergo myo- or adipogenesis.

http://www.math.ubc.ca/~ais/website/status/diffuse.html
http://www.math.ubc.ca/~ais/website/status/diffuse.html
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4.5.1. MODEL OVERVIEW
This section will give an overview on how we have implemented the model in Matlab, since the model and all
its components can seen quite complex.

Algorithm 1 Algorithm for the novel model approach

Load Parameter.m . The first step is to load all the parameters and predefined matrices
Execute Assembly process .Here we assemble the mass matrices of the mechanical and chemical model
Execute Element-Cell process .Here we find which cell nodes lie in which triangle, this relation is crucial
to construct the force and source vectors
Execute External Vector process .Here we assemble the cell-force vector and cell-source vector
for n = 2 to Tmax do

Solve mechanical model
Update mesh
Execute Aging rate process .Here we calculate all the chemical gradients and mechanical octahedral

shear strain needed to determine the chemical and mechanical aging rate
Execute Gradient Recovery process . The gradient of the mechanical strain energy is now calculated by

using the ZZ-patch gradient recovery method
Execute Update process . By using the obtained aging rates and chemical/mechanical gradient, we can

update the maturity, position and all the other cell variables that are linked to this
Execute Assembly process
Execute Element-Cell process
Execute External Vector process
Solve chemical model . Since we solve the chemical model implicitly, we need the mass matrices and

source functions on the next time step. Therefore, we can only calculate the chemical concentration after the
grid displacement and cell movement

Execute Plot process
end for



5
RESULTS FROM THE NOVEL MODEL

APPROACH IN 2D

Having defined and motivated the novel model approach, together with a clear set of parameters, we are ready
to present results obtained from the two dimensional version of the novel model approach. In this chapter
we will present two type of results, one in the form of a sensitivity analysis where we present the model results
from the variation of a set of parameters, the other is a position analysis based on the movement of the cells.
The goal of these results is to test our hypotheses about the behavior of the model, since validating our model
approach with actual biological data is not possible for now.

5.1. SENSITIVITY ANALYSIS
The sensitivity analysis will be used on the force magnitude of the myocytes, as well as on the secretion rate
parameters of both phenotypes. The reason to analyze these parameters is because they define the source
and force vectors of the chemical and mechanical model. Hence, these parameters lie at the core of the model
and are the most important driving factors for the differentiation behavior of the cells. The set of parameters
we use to produce the model results are summarized in Table 5.1.

Table 5.1: Default parameters for sensitivity analysis

Name Symbol Value
Number of cells C 300
Number of cell boundary nodes L 23
Number of grid nodes M 31
Domain length l0 3000
Simulation time Tmax 1000
Time step ∆t 0.5
Myocyte sourcing rate γ0

1 0.5
Adipocyte sourcing rate γ0

1 0.5
Myocyte chemical sensitivity µ1 6.6 ·103

Adipocyte chemical sensitivity µ2 6.6 ·103

Myocyte mechanical sensitivity µM ,1 3 ·104

Adipocyte mechanical sensitivity µM ,2 0.5 ·103

Muscle memory τ 60
Muscle frequency f 0.01
Myocyte force magnitude F 0

1 15

Note that the simulation time, Tmax , is expressed in minutes which implies that we are modeling 16 2
3 hours.

In the coming sensitivity simulations we will look at six variations of a particular parameter, where with each
variation we simulate the differentiation process of 300 cells over a time of 1000 minutes. To compare these
parameter variations, we show the mean behavior of the cells over time per variation. Hence, in the graphs
to come, there will be six lines each plotted with a different color that each represent the mean behavior of

33
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300 cells. Also, to distinguish the different phenotypes in the simulation results, we use dotted lines to denote
myocytes and solid lines for adipocyte in line graphs. Further, in the position analysis section, we use the
color red to denote myocytes and blue for adipocytes.

5.1.1. SECRETION SENSITIVITY ANALYSIS
In the following section we present the results from the sensitivity analysis on the mentioned parameters.
The main idea behind this analysis is to understand the influence that small changes in the force and source
function have on the differential behavior of the cell population. Furthermore, this is an excellent method to
identify possible strange behaviors in the model, due to implementation errors.

MYOCYTE SECRETION RATE VARIATION

Table 5.2: Variation of parameters for sensitivity
analysis

Symbol name Value
γ0

1,1 0.1
γ0

1,2 0.2
γ0

1,3 0.3
γ0

1,4 0.4
γ0

1,5 0.5
γ0

1,6 0.6

We start by variating the myocyte secretion rate, as stated in Table
5.2. Note that the secretion of adipokines is fixed to 0.5, as stated
in the default parameter table 5.1.
Our hypothesis is that as when γ0

1,b ≤ γ0
2,b = 1, . . . ,6, we will ob-

tain a cell culture that is dominated by adipocyte tissue. How-
ever, we do realize that there are two terms that influence a cell
to become a myocyte, while there is only one term that stimu-
lates adipose tissue creation. Hence it is plausible that while the
secretion rate of the adipose tissue is dominating we still obtain
a majority of myocyte tissue.
The results of this variation in parameters can be found in Figure
5.1 and 5.2.

ADIPOCYTE PHENOTYPE

Table 5.3: Variation of parameters for sensitivity
analysis

Symbol name Value
γ0

2,1 0.4
γ0

2,2 0.6
γ0

2,3 0.8
γ0

2,4 1.0
γ0

2,5 1.2
γ0

2,6 1.4

The variation of the adipocyte secretion rate is given in Table 5.3.
Note that the secretion of myokines is fixed to 0.5, as stated in the
default parameter table 5.1.
The variation in the secretion rate of the adipose culture is done
over a different interval than that of the myocyte culture. This
is because myocytes have a benefit from both the chemical and
mechanical stimuli, while adipocytes can only benefit from their
chemical signaling. Therefore we increase the secreation of
adipocytes and try to determine a critical adipokine secretion
rate, where lower secretion rates will result in myocyte dominat-
ing cell populations and higher secretion rates will have more
adipose tissue.
The results of this variation in parameters can be found in Figure 5.3 and 5.4.
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5.1.2. FORCE MAGNITUDE SENSITIVITY ANALYSIS

Table 5.4: Variation of‘ parameters for sensitivity
analysis

Symbol name Value
F 0

1,1 2
F 0

1,2 4
F 0

1,3 6
F 0

1,4 10
F 0

1,5 20
F 0

1,6 30

In this section we vary the magnitude of the myocyte force vector
with values shown in Table 5.4.
We assume that the effect of this increase in force magnitude is
of minor significance, since the effect of the force on the differ-
entiate rate seems to be quite low. This is because there is a long
chain of calculations before the actual force ‘reaches’ the differ-
entiation rate, and even then, by the choice of the scaling func-
tion, this effect of the force magnitude could be null.
To recap, in the following chain of calculations, we see how the
magnitude of the force is related to the mechanical aging rate.

F 0
1 ⇒ F 1 ⇒ u ⇒ ε⇒ ε1,ε2 ⇒φ⇒ψM ,maxψM ⇒UM . (5.1)

Especially the last step seems to diminish the effect of an increase in myocyte behavior, since we normalize
with respect to the maximum sensed stimulus.
The results of this variation in parameters can be found in Figure 5.5.
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MYOCYTE SECRETION RATE VARIATION RESULTS
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Figure 5.1: Variation of myocyte secretion rate according to legend in top graph. (top) Graph showing
the mean behavior of the maturity level of 300 cells over time; (bottom): Graph displaying the

distribution of the phenotypes over time.

In the top graph we see that over the course of time the cell population reaches maturity, where for some
populations this mean behavior is faster than others. The bottom graph shows the distribution of the cell
population per variation of the secretion rate of the myocytes. We see from Figure 5.1 that for myocye se-
cretion rates below 0.5, we obtain an adipocyte dominant cell population. Since the amount of myocytes
produces at a secretion rate of 0.5 and 0.4 differs a lot, more research would be needed to determine the exact
tipping point of this secretion rate. However, we can expect that this will range between 0.4 and 0.5.
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Figure 5.2: Variation of the myocyte secretion rate according to Table 5.2. (top) Graph showing the
mean myokine concentration over time, (bottom) Graph showing the mean adipokine concentration

over time while keeping the adipocyte secretion rate constant.

In Figure 5.2 we see the mean value of adipokines and myokines sensed by the cells over time. These values
represent the expected chemical concentrations when one takes the results from Figure 5.1 into account.
Note that in the top graph the order of the plotted concentrations respects the order of the secretion rates
given in the legend of that figure. In the bottom graph we see a reverse relation, this is to be expected since
when the myocyte population produces little myokines (for example the red line) we also have less myocytes
and hence more adipocytes, which results in a larger adipokine concentration. Thus, when the secretion of
myokines increases, we see a decrease in adipokine concentration.
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Figure 5.3: Variation of adipocyte secretion rate according to legend in top graph. (top) Graph
showing the mean behavior of the maturity level of 300 cells over time; (bottom): Graph displaying

the distribution of the phenotypes over time.

In Figure 5.3 we see the mean behavior of the aging rate of 300 cells over time. Compared to the course of
change given in Figure 5.1, we see that this situation is less convergent, since after 1000 minutes there are still
cell populations which have not fully matured.
However, given the fact that we wanted to find a tipping point, these results give us sufficient information.
By inspection, one can see in the bottom graph that for the green line, i.e. an adipocyte secretion rate of 0.8,
we obtain a well balanced cell population. For adipocyte secretion rates higher than this value, we see that
the adipocytes are more dominant in the cell population. For rates lower than this 0.8, the muscle tissue is
dominant.
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Figure 5.4: Variation of the adipocyte secretion rate according to Table 5.3. (top) Graph showing the
mean myokine concentration over time, (bottom) Graph showing the mean adipokine concentration

over time while keeping the adipocyte secretion rate constant.

In Figure 5.4 we see in the bottom graph that an increase in the adipocyte secretion rate will result in an over-
all greater adipokine concentration, in the top figure we see an inverse effect for the myokine concentration
sensed by the cells.

From the results given in Figure 5.1 and 5.3, we would like to deduce a relation between the secretion rates of
the two phenotypes which will results in a balanced population. From the sensitivity analysis of the myocyte
secretion rate, we concluded that when γ0

1 = 0.45 and γ0
2 = 0.5 we will obtain a balanced cell population. And

from the current sensitivity analysis of the adipocyte secretion rate we found that γ0
1 = 0.5 and γ0

2 = 0.8 will
result in a balanced cell population. By taking the fraction between the two secretion rates,

b0 = γ0
2

γ0
1

⇒ 0.8

0.5
= 8

5
= 1.6,

0.5

0.45
= 10

9
≈ 1.11, (5.2)

hence, from these calculations it seems that it is not possible to set of a relation between the two secretion
rates that will result in a balanced cell population.
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Figure 5.5: Varying the myocyte force magnitude according to Table 5.4. (top) Graph showing the
mean behavior of the maturity level of 300 cells over time; (bottom): Here we see the distribution of
the phenotypes over time, where the y-axis denotes the number of cells that a certain phenotype is.

We continue the sensitivity analysis by varying the myocyte force function. Here we set the cytokine secre-
tion rates for both phenotypes to 0.5. We should keep in mind that from the previous sensitivity analysis
when both secretion rates are set to 0.5, the myocyte population will eventually dominate the cell popula-
tion. Therefore we will look what lower values of the force magnitude F 0

1 will do to the creation of muscle
tissue.
From Figure 5.5 we see that this has little effect on the composition of the cell population, since in all vari-
ations the myocytes still dominates the cell population. However, there are some small variations in the
amount of myocyte that are eventually produced. For example, when F 0

1 = 4, we obtained the most my-
ocytes, when F 0

1 = 20 we got the least and with F 0
1 = 30 we had something in between. This could mean that

there are sub-optimal choices for the force magnitude F 0
1 , however, more research is needed in order to verify

this behavior of the model.
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5.2. POSITION ANALYSIS
Besides the differentiation behavior, we are also interested in the positioning of the cells at the end of the
simulation. In this section we will show the positions of the cells after a simulation of 1000 minutes, where
the same parameters are used as proposed in Table 5.1.
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Figure 5.6: Cell position when γ0
1 = 0.4 and γ0

2 = 0.5

Figure 5.6 shows the position of cells when the simulation has ended, hence after 1000 simulation minutes.
Notice the clear myocyte cluster which is surrounded by some scattered adipocytes, where some adipocytes
are intertwined in the myocyte cluster. We would like to note how this formation has come to being, since the
process prior to this composition also contains valuable information.
During the simulation, the movement of most cells is being dominated by the random walk and the chemical
gradient. This chemical gradient causes cells to form dense clusters, which are self-sustaining since more
cells gather around these clusters and keep secreting their cytokine. The movement due to haptotaxis is of
minor significance in the early parts of the simulation, but becomes more important when the cells have
matured.
This is because the movement due to chemotaxis and randomness is dependent on the maturity level, once
a cell has matured it is no longer subject to these influences. Hence, then the movement of cells is dominated
by haptotaxis, which causes the cells to spread out and reduce the amount of dense clusters.





6
RESULTS FROM THE NOVEL MODEL

APPROACH IN 3D

Extending the model towards three dimensions was, from a theoretical point of view, a doable task. The im-
plementation of this three dimensional version required some more attention than expected. However, since
we were able to extend most parts of the 2D model towards 3D, we would like to present some preliminary
results of the 3D version of the model.
However we cannot justify the correctness of the results presented here, since this code is more susceptible
to implementation errors than the 2D version, which is mainly due to inexperience with the 3D model. In
the near future, we would first like to attempt validation techniques on the methods used in the 3D model
before appropriate model results can be produced. For example, we have not validated the 3D version of the
chemical and mechanical model, and we were unable to implement the equation for rotation of the cells.
Under these circumstance we will continue with the sensitivity analysis on the same set of parameters as with
the 2D model. Thereafter, we also discuss the positioning of the cells after a simulation.

6.1. SENSITIVITY ANALYSIS
The sensitivity analysis will again be concerned with the secretion rates of both phenotypes and the force
magnitude of the myocytes. For the coming simulations we will use the set of parameters, given in Table 6.1,
to start the simulations.

Table 6.1: Default parameters for sensitivity analysis

Name Symbol Value
Number of cells C 300
Number of cell boundary nodes L 6
Number of grid nodes M 6
Domain length l0 3000
Simulation time Tsi m 1000
Time step ∆t 0.5
Myocyte sourcing rate γ0

1 0.5
Adipocyte sourcing rate γ0

1 0.5
Myocyte chemical sensitivity µ1 6.6 ·103

Adipocyte chemical sensitivity µ2 6.6 ·103

Myocyte mechanical sensitivity µM ,1 1 ·104

Adipocyte mechanical sensitivity µM ,2 0.5 ·103

Muscle memory τ 60
Muscle frequency f 0.01
Myocyte force magnitude F 0

1 15

The range of variations that we view per parameter might be different from the 2D case, which is not inten-
tional. Because the 2D model is faster than the 3D version, since less computations are needed, and because
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we have worked with the 2D model slightly longer, we were able to analyze more variations and see which
range showed the best results. We were unable to do the same for the 3D model, partly because of its in-
completeness, its long computational time and due to the fact that we have implemented this model in a late
stage of this thesis project.
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6.1.1. SECRETION SENSITIVITY ANALYSIS
This section introduces the variations of the secretion rate parameters in a similar manner as the 2D case.

MYOCYTE SECRETION RATE VARIATION

Table 6.2: Variation of parameters for sensitivity analysis

Symbol name Value
γ0

1,1 0.2
γ0

1,2 0.3
γ0

1,3 0.4
γ0

1,4 0.5
γ0

1,5 0.6
γ0

1,6 0.7

We vary the myocyte secretion rate according to Table 6.2, the results of this variation can be found in Figure
6.1 and 6.2.

ADIPOCYTE PHENOTYPE

Table 6.3: Variation of parameters for sensitivity analysis

Symbol name Value
γ0

2,1 0.5
γ0

2,2 0.6
γ0

2,3 0.7
γ0

2,4 0.8
γ0

2,5 0.9
γ0

2,6 1.0

We vary the adipocyte secretion rate according to Table 6.3, the results of this variation can be found in Figure
6.3 and 6.4.

6.1.2. FORCE MAGNITUDE SENSITIVITY ANALYSIS

Table 6.4: Variation of‘ parameters for sensitivity analysis

Symbol name Value
F 0

1,1 5
F 0

1,2 10
F 0

1,3 15
F 0

1,4 20
F 0

1,5 25
F 0

1,6 30

We vary the adipocyte secretion rate according to Table 6.4, the results of this variation can be found in Figure
6.5.
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MYOCYTE SECRETION RATE VARIATION RESULTS
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Figure 6.1: Variation of myocyte secretion rate according to legend in top graph. (top) Graph showing
the mean behavior of the maturity level of 300 cells over time; (bottom): Graph displaying the

distribution of the phenotypes over time.

In Figure 6.1 we see the mean age behavior of the simulated cells in the top graph, the bottom graph shows
the distribution of both phenotypes over time. From this bottom graph we see a clear distinction between
the chosen variations, since when γ0

1 ≥ 0.5 the cell population will be dominated by myocytes. Secretion rates
below this value show an adipose dominant cell population. This is in close relation with the two dimensional
version of the model, which verifies in some sense the correctness of the extension towards three dimensions.
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Figure 6.2: Variation of the myocyte secretion rate according to Table 6.2. (top) Graph showing the
mean myokine concentration over time, (bottom) Graph showing the mean adipokine concentration

over time while keeping the adipocyte secretion rate constant.

In Figure 6.2 we see the mean chemical concentrations sensed by the cells over time. These result here reflect
the behavior we expect, for example, the magenta line should represent the highest concentration when we
look at the myokine concentration since in that case we had the most myocytes. Therefore we have in that
case that the chemical concentration of the adipokine should be the lowest.
However, there is some remarkable behavior, and that is the ’jumps’ in the chemical concentrations in some
cases. We would expect that this is accompanied by a sudden phenotype change, but this is not apparent
from the bottom graph of Figure 6.1. Another reason could lie in the way we correct cells that move outside
the domain. The method we have used looks each time step, after the update of the variables, if any cell
boundary node would lies outside the domain. If so, it then identifies which cell is responsible for this and
then resets the location of its cell center, and hence all its cell boundary nodes. It is possible that this process
caused a cell to be spawned in a cluster of myocytes, which then explains the sudden increase in sensed
myokine concentration and the drop of sensed adipokine concentration.
But if that is the case, we would expect the same behavior in the 2D model, but we know that we have not
observed this behavior in that case. So it might be because this change is more apparent in the 3D version, or
there is another unkown reason which causes these jumps.
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Figure 6.3: Variation of adipocyte secretion rate according to legend in top graph. (top) Graph
showing the mean behavior of the maturity level of 300 cells over time; (bottom): Graph displaying

the distribution of the phenotypes over time.

In Figure 6.3 we see the change of the population’s mean age in the top graph and the composition of the
cell population in the bottom graph. Again we have some interesting model results, since the red and yellow
line (i.e. γ0

2 = 0.4,0.5) still show an myocyte dominant cell composition. However, when we increase the
adipocyte secretion rate beyond this point, thus γ0

2 > 0.5, we obtain an adipocyte dominant cell population.
Compared to the two dimension version, we see that we obtain a similar results but not identical. What is also
noteworthy is the behavior of these extreme cell population compositions, compared to the two dimensional
case. By this we mean that in the 3D version we hardly obtain a 50-50 cell population composition, whereas
in the 2D case this was more the norm than the exception.
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Figure 6.4: Variation of the adipocyte secretion rate according to Table 5.3. (top) Graph showing the
mean myokine concentration over time, (bottom) Graph showing the mean adipokine concentration

over time while keeping the adipocyte secretion rate constant.

The chemical concentrations show again results which we expect if we look at the graphs in Figure 6.3.
From the results given in Figure 6.1 and 6.3, we would like to deduce a relation between the secretion rates of
the two phenotypes which will results in a balanced population. From the sensitivity analysis of the myocyte
secretion rate, we concluded that when γ0

1 = 0.4 and γ0
2 = 0.5 we will obtain a balanced cell population. And

from the current sensitivity analysis of the adipocyte secretion rate we found that γ0
1 = 0.5 and γ0

2 = 0.6 will
result in a balanced cell population. By taking the fraction between the two secretion rates,

b0 = γ0
2

γ0
1

⇒ 0.6

0.5
= 6

5
= 1.2,

0.5

0.4
= 5

4
≈ 1.25, (6.1)

hence, from these calculations it seems that we can state a relation between the two secretion rates that can
result in a semi-balanced cell population. We state semi-balanced here because of the extreme composition
results. However, this ratio should be used as a guideline, or rule of thumb, than as some result of a proof.
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Figure 6.5: Varying the myocyte force magnitude according to Table 6.4. (top) Graph showing the
mean behavior of the maturity level of 300 cells over time; (bottom): Here we see the distribution of
the phenotypes over time, where the y-axis denotes the number of cells that a certain phenotype is.

In the bottom graph of Figure 6.5, we see the composition of the cell population over time. Compared to
Figure 5.5, we have obtained a very unusual result here, since there is a strange mixture between which varia-
tions of the parameter F 0

1 resulted in a myocyte dominant population and which did not. To recap, the values
F 0

1 = 5,10,30 gave a myocyte dominant population, while all the other values gave an almost exact 50-50 cell
population composition as a result.
Since these result seem so irregular, we are unable to give a solid conclusion. Hence, more research is needed
on this variation.
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6.2. POSITION ANALYSIS
In Figure 6.6 we see the graphical representation of the cells’ position after the simulation which corresponds
with the purple line in Figure 6.1. By inspection, one sees immediately that the fat cell population is domi-
nating the cell population. In between the fat cells, one can find some muscle cells.

Figure 6.6: Cell position which corresponds with the purple line (i.e. γ0
1 = 0.6) of Figure 6.1.

Note however that there has been no change of orientation of any cell during the simulation, since there was
no more time left to implement this into the 3D model. Compared to the 2D case, there is less clustering of fat
cells, however the distribution of the cells also seems more random. We would need more time to investigate
how the movement parameters affect the cell movement in 3D, since it is apparent that they have a different
influence because of the large difference in cell position compared to the 2D case of Figure 5.6.





7
DISCUSSION

Chapter 5 presented some results from the 2D version of the model, and Chapter 6 did the same but for the
3D version of the model. In this section we will discuss these results and make small notes on how to improve
the model for future reference. A more detailed list of the action can be found in Chapter 8.
We will start this discussion by evaluating the goal of this thesis. We started this project to think of a novel
model approach for (stem) cell differentiation, where we eventually used an innovative way of modeling dif-
ferentiation and cell movement. Since here we see cell differentiation as a gradual process, instead of a dis-
crete one which is commonly used in other models, and the cell movement is based on discrete cell entities
that can move around during the simulation, instead of cell densities that flow through the domain.
These model choices were made to allow us to simulate a certain amount of detail during the process of
cell differentiation. We assume that this detail is needed to eventually be able to model more complex cell
phenomena, like the fusion of myoblasts or cell division.
The results obtain from the 2D and 3D model are not sufficient enough to aid true cell biologist, yet. However,
the results are useful for a mathematician that wants to validate its model based on the behavior it expects.
Further, we are obliged to note some flaws or strange mathematical quirks that reside in the model. We
start by discussing the movement of the cells. As stated in Section 4.3, a cell moves under the influence of
randomness, chemotaxis and haptotaxis, which we see as realistic influences of cell movement. However,
the choice of parameters that determine the sensitivity towards these type of movement is crucial for the
simulation results. From our experience, it was difficult to find parameter values that were obtained from
cell biology papers, hence we were forced to attempt a trial and error method to find reasonable simulation
results. This is of course not an ideal approach. Further, we have also experienced that the same motility
parameters used in the 2D case, do not result in a similar behavior of movement for the 3D case.
Also, as already discussed in the parameter section 4.5, the choice for the scaling function (see equation 4.50)
is also doubtful. Note that the scaling functions were used to limit the rate of differentiation of the cells,
however finding an alternative scaling function was a difficult task when taking into account the way a cell
can act and sense its environment. A possible adaption that can be made to simulate the differentiation rate
in a different way, is by allowing cells to (re)enter the cell cycle which then causes cells to differentiate after
the mitotic phase. In that case, the maturity of a cell does not change each time step, but each time a cell exits
the cell cycle. Now the rate of differentiation will no longer be determined by functions U i

c (t ) or U i
M (t ), but

by a stochastic (differential) equation which incorporates the mechanical and chemical stimuli, for example.
However, this is just a speculation on how cell differentiation could also be simulated.
In conclusion we can say that from a biological point of view, we have not yet obtained a useful model that
could aid cellular biologists. However, from a mathematical point of view, we have obtained the basis of a
model that is able to be extended to an even more complex system. For the improved version of the current
model, we believe that it will be possible to simulate the formation and change of tissue for bone, fat and
muscle cells.
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8
FUTURE WORK

In the previous chapter we have concluded our work with some remarks on how to improve the model. In
this chapter we will elaborate on these remarks and also note more possible extensions as well as future plans
of the model. This chapter is mostly designed for the successor that will continue with this proposed model.
The possible extension we would like to see in the near future are given below.

• Introduce a new phenotype, the bone cell. Pay attention to the definition of the mechanical stimuli and
the way to identify this cell’s behavior with the Fourier Transform;

• Simulate a more detailed version of myogenesis. In this thesis there has been no distinction between
myoblasts, myotubes and myocytes, these are all considered to be one entity which grows stronger
over time. We would like to improve the model to be able to fuse cells together. However, obtaining this
fusing model is no straightforward task, since for example one has to be concerned with the position of
fusion and the equation of movement after two (or more) cells have fused. Moreover, this fusion model
can also be used to fuse muscle tissue to bone tissue.;

• Introduce the cell cycle, see [31] or [20] for inspiration. We see this addition as a key factor in being able
to simulate the change of existing tissue over time.;

• Introduce interaction between fat cells and muscle cells, i.e. burning and formation of fat due to mus-
cular (in)activity.

Especially for the successor that continues with this model, we would like to point out the following errors
and improvements one can make to the model.

• Find an appropriate way to deal with cells that move out the domain of computation;

• Validation of 3D models and functions used;

• Rotation and movement limitation. In the current thesis we did not limit the actual movement speed
of the cells, likewise, a cell also should have a limit in its rotation speed.

We expect that this model approach is able to eventually simulate the development of bone, fat and muscle
formation, but also to simulate the change of certain tissue over time. We believe that there is a possibility that
this model can aid in the understanding of cell differentiation, but also that it can be helpful for educational
purposes.
Further, we would like to see the continuation in the development of the 2D and the 3D model, since both
have their advantages and disadvantages. The 2D model preserves a certain simplicity and low computa-
tional cost, while the 3D model is by definition more realistic but can be harder to handle due to the high
computational cost.
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A
APPENDIX

A.1. DERIVATION OF THE RELATION BETWEEN STRESS AND DISPLACEMENT
This section explains the relation between the displacement and the stress tensor in three dimensions. First
we define the relation between the strain tensor and the displacement vector in the infinitesimal strain theory

ε= 1

2
(∇u + (∇u)T ), (A.1)

where

∇u =


∂
∂x
∂
∂y
∂
∂z

[
u(x) v(x) w(x)

]=
 ux vx wx

uy vy wy

uz vz wz

 . (A.2)

Here u(x), v(x) and w(x) denote the displacement in the x−, y− and z−direction.
From this we gain an explicit view on the strain-displacement relation

ε=
 ux

1
2 (uy + vx ) 1

2 (wx +uz )
1
2 (uy + vx ) vy

1
2 (wy + vz )

1
2 (wx +uz ) 1

2 (wy + vz ) wz

 . (A.3)

By Hooke’s law there is also a stress-strain relation

E



ε11

ε22

ε33

ε12

ε23

ε13

=



1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 1+ν 0 0
0 0 0 0 1+ν 0
0 0 0 0 0 1+ν





σ11

σ22

σ33

σ12

σ23

σ13

 . (A.4)

Taking the inverse leads to

σ11

σ22

σ33

σ12

σ23

σ13

= E

(1+ν)(1−2ν)



1−ν ν ν 0 0 0
ν 1−ν ν 0 0 0
ν ν 1−ν 0 0 0
0 0 0 1−2ν 0 0
0 0 0 0 1−2ν 0
0 0 0 0 0 1−2ν





ε11

ε22

ε33

ε12

ε23

ε13

 . (A.5)

Rewriting this into matrix format, we obtain

σ= E

(1+ν)(1−2ν)

 ε11(1−ν)+ε22ν+ε33ν ε12(1−2ν) ε13(1−2ν)
ε12(1−2ν) ε11ν+ε22(1−ν)+ε33ν ε23(1−2ν)
ε13(1−2ν) ε23(1−2ν) ε11ν+ε22ν+ε33(1−ν)

 . (A.6)
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And using the strain-displacement relation from equation A.1, we get

σ= E

(1+ν)(1−2ν)

 ux (1−ν)+ vyν+wzν
1
2 (1−2ν)(uy + vx ) 1

2 (1−2ν)(wx +uz )
1
2 (1−2ν)(uy + vx ) uxν+ vy (1−ν)+wzν

1
2 (1−2ν)(wy + vz )

1
2 (1−2ν)(wx +uz ) 1

2 (1−2ν)(wy + vz ) uxν+ vyν+wz (1−ν)

 . (A.7)
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A.2. THE FINITE ELEMENT METHOD
This section is meant to give a short introduction to the method we use to solve our mathematical models.
We will leave out most mathematical details that are concerned with this method and try to transmit the idea
of this method.

With a boundary value problem (BVP), one also has the (partial) differential equations that give the solution
in an abstract sense.
In this thesis we used the Finite Element Method (FEM) to approximate the solution of the (partial) differ-
ential equations. There are two ways to apply the finite element method to a problem. The first one is by
finding the corresponding minimization problem to the PDE’s, and then apply Ritz’ method. The other one
is by calculating the weak form of the PDE, and the apply Galerkin’s method.
Both ways give a similar result when it is possible to find a corresponding minimization problem, since this is
not always the case. The conditions under which we can say that a boundary value problem has an equivalent
minimization problem are given below, where L represents the operator of the boundary value problem.

• symmetry (self ad-jointness) of the operator L of the BVP:∫
Ω

uLvdΩ=
∫
Ω

vLudΩ,∀u, v ∈Σ. (A.8)

• positiveness of the operator L: ∫
Ω

uLvdΩ≥ 0,∀u ∈Σ. (A.9)

With Σ the solution space. If these conditions are met, then we say that the operator L is strongly elliptic.
In section A.3.1 we show that the problem given by equation 4.13 is strong elliptic and thus there will be no
difference in applying Galerkin’s or Ritz’ method to solve the model given by equation 4.13.

We continue with a brief explanation on how we use the FEM with Galerkin’s method for a general problem.
In sections A.3 and A.4, we show how the FEM applies to our models.
The first step in the FEM when we are going to use Galerkin’s method, is to derive the weak form of the PDE.
This is done by multiplying the partial differential equation by a test function φ ∈ H 1, which comes from a
Hilbert space, and then integrate this product over the domain of computation Ω. By using integration by
parts, we are able lower the order of the partial differential equation.
The next step is to approximate the solution by an unknown linear combination of N basis functions and also
discretize the domain Ω by these N points. The basis functions have a compact support around its specific
node in the mesh. Eventually we want to obtain this yet unknown linear combination, because once this is
known we have our solution.
The set of basis functions comes from the Hilbert space and must be linearly independent and complete, so
that this set forms a basis for the Hilbert space in the limit. The test function φ(x) is also expanded in a series
of basis functions, but because our test function is arbitrary, we use φ(x) =φi (x), i = 1, . . . , N [32, p.123-124].
The definition of these basis functions is a crucial step in the FEM. In this thesis we used piecewise linear
basis functions for the FEM, which are defined as

• φi (x) is linear per element, i = 1, . . . , N

• φi (x j ) = δi j , i , j = 1, . . . , N

where x j is the coordinate of the j th node and where the element comes from the discretization of the domain
with N points, from this discretization we can construct M elements, which are finite.
Despite the other ways that are available to define the basis functions, we restrict ourselves to piecewise linear
basis functions. This means that when we work on a two dimensional domain, we will use the following
formulation

φi (x) = ai
0 +ai

1x +ai
2 y. (A.10)

While on a three dimensional domain our basis functions are given by

φi (x) = ai
0 +ai

1x +ai
2 y +ai

3z (A.11)
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Note that by using these piecewise linear functions as basis functions, we will obtain an accuracy of order
O (h2), where h is the uniform grid size. The coefficients ai

k are determined by the dimensions of the element
in which node i lies.
Since we have obtained the weak form of the BVP, and approximated the solution and the test functions by
a set of basis functions, we are now able to solve the problem for these N unknowns. However, the integrals
obtained from the weak form are taken over the whole domain Ω, which are difficult to calculate. A much
easier approach is to integrate over each element Ωe , considering the nifty definition of the basis functions.
By this approach, we can treat every element independently which results in a so called element matrix and
element vector per element.
After the calculation of all the element matrices and vectors for each element, we can assembly a large matrix
which contains all the information of these element matrices and vectors, and thus summarized our PDE into
one large system. We can then solve this system for the unknown coefficients which we used to approximate
the solution in its basis functions.
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A.3. DERIVATION OF THE THE WEAK FORMULATION OF THE MECHANICAL MODEL
The three dimensional mechanical model is defined as

∇σ+F = 0, x ∈Ω, (A.12)

σ ·n +K u = 0, x ∈ ∂Ω. (A.13)

To obtain the weak form of equation A.12, we use an element-wise approach. Hence, we continue by deriving
the weak form of the x, y and z components of equation A.12. However, since these derivations use a similar
approach, we will only show the calculations for the weak form of the x-component, followed by the result of
the weak form for the y and z components for completeness.
The x component version of equation A.12 is given by

∇·σx +Fx = 0, x ∈Ω, (A.14)

σx ·n +K u = 0, x ∈ ∂Ω. (A.15)

where σx is the first row (or column) of equation A.7.
In order to deduce the weak form of equation A.14 we multiply the equation by a test function φ(x) and then
integrate over the domainΩ. ∫

Ω
(∇·σx )φ dΩ+

∫
Ω

Fxφ dΩ= 0, x ∈Ω. (A.16)

Applying Green’s theorem on the first integral, gives

−
∫
Ω
∇φ ·σx dΩ+

∫
∂Ω
φ(σx ·n) dΓ+

∫
Ω

Fxφ dΩ= 0, x ∈Ω. (A.17)

This can be simplified by using the boundary condition A.13. We then get:

−
∫
Ω
∇φ ·σx dΩ−K

∫
∂Ω
φu dΓ+

∫
Ω

Fxφ dΩ= 0, x ∈Ω, (A.18)

∫
Ω
∇φ ·σx dΩ+K

∫
∂Ω
φu dΓ=

∫
Ω

Fxφ dΩ, x ∈Ω. (A.19)

The next step in the FEM process is to approximate the domain integral by discrete elements Ωe ,e = 1, . . . , M
and the boundary integral by discrete boundary elementsΩbe ,be = 1, . . . , Mbe .

M∑
e=1

∫
Ωe

∇φ ·σx dΩ+K
Mbe∑

be=1

∫
∂Ωbe

φu dΓ=
M∑

e=1

∫
Ωe

Fxφ dΩ, x ∈Ω. (A.20)

Now we will approximate the solution and the test function, by a series of basis functions

u(x) =
N∑

j=1
u jφ j (x), v(x) =

N∑
j=1

v jφ j (x), (A.21)

w(x) =
N∑

j=1
w jφ j (x), φ(x) =φi (x), i = 1, . . . , N , (A.22)

and substitute this back into equation A.20.

M∑
e=1

∫
Ωe

∇φi ·σx dΩ+K
Mbe∑

be=1

N∑
j=1

u j

∫
∂Ωbe

φiφ j dΓ=
M∑

e=1

∫
Ωe

Fxφi dΩ, x ∈Ω, i = 1, . . . , N . (A.23)

These integrals in equation A.23 can be greatly reduced in complexity if we focus on one element e, or bound-
ary element be. This is because of the nifty definition of the basis functions φ(x)i . However, in this process
we need to be careful with the notation of the grid node we are on, since every basis function is defined on
each element differently. Therefore, we denote the nodes of an element e by the bold-face index i = 1,2,3,4.
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The first integral from equation A.23 is given by∫
Ωe

(∇φi) ·σx dΩ, i = 1, . . . ,4 (A.24)

Which is equal to

Eν

∫
Ωe

 ∂xφi

∂yφi

∂zφi

 ·
 ux (1−ν)+ vyν+wzν

1
2 (1−2ν)(uy + vx )
1
2 (1−2ν)(wx +uz )

 dΩ, i = 1, . . . ,4. (A.25)

Where ∂x denotes the partial differentiation with respect to x, the symbols ∂y and ∂z are defined in a similar
way. Note that the integral in equation A.25 equals the volume of the tetrahedron, because the vector-matrix
product results in a constant value. By using the theorem of Holand-Bell, we see that

∫
Ωe

dΩ= |∆e |
n! , where n

is the dimension of the problem, and thus we obtain the following formula.

Eν
|∆e |
n!

4∑
j=1

 a1
i

a2
i

a3
i

 ·

 uja1
j (1−ν)+ vja2

j ν+wja3
j ν

1
2 (1−2ν)(uja2

j + vja1
j )

1
2 (1−2ν)(wja1

j +uja3
j )

 dΩ, i = 1, . . . ,4. (A.26)

After multiplication, we obtain

Eν
|∆e |
n!

4∑
j=1

(
a1

i a1
j (1−ν)+ 1

2
(1−2ν)(a2

i a2
j +a3

i a3
j )

)
uj + . . .(

a1
i a2

j ν+
1

2
(1−2ν)a2

i a1
j

)
vj + . . .(

a1
i a3

j ν+
1

2
(1−2ν)a3

i a1
j

)
wj dΩ, i = 1, . . . ,4.

(A.27)

The second integral is the boundary integral

B be
ij = K

∫
∂Ωbe

φiφj dΓ, i, j = 1, . . . ,3. (A.28)

Note that this integral only passes three nodes, since we are on a boundary surface. Or in other words, we are
on a plane of a tetrahedron. By using the Holand-Bell theorem, we get the following element matrix

B be = K
|∆be |

(n +1)!

 2 1 1
1 2 1
1 1 2

 (A.29)

The third and last integral is given by

F e
x,p =

∫
Ωe

Fxφp dΩ,p = 1, . . . ,4 (A.30)

Where we have that the force Fx inside the integral equals

Fx (x, t ) =
2∑

k=1

C∑
i=1

L∑
j=1

Fk (t )nx (xi
j )δ(x −xi

j )∆Γ(xi
j ). (A.31)

Where nx (x) is the x component of the (outward) normal vector at point x. Further, we have that the Dirac
Delta function is defined as

δ(x) =
{ +∞, x = 0

0, x 6= 0
,

∫ ∞

−∞
δ(x)d x = 1. (A.32)

Where it has the following property ∫ ∞

−∞
f (t )δ(t −T )d t = f (T ). (A.33)

Which is called the sifting property1. Due to this, we see that our integral is simplified to

F e
x,p =

∫
Ωe

Fxφp dΩ=
2∑

k=1
Fk (t )

C∑
i=1

L∑
j=1

nx (xi
j )∆Γ(xi

j )φp(xi
j ),p = 1, . . . ,4. (A.34)

1For more information see WikiDiracDelta

http://en.wikipedia.org/wiki/Dirac_delta_function
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Which gives an element vector of the form

F e
x =

2∑
k=1

Fk (t )
C∑

i=1

L∑
j=1

nx (xi
j )∆Γ(xi

j )


φ1(xi

j )

φ2(xi
j )

φ3(xi
j )

φ4(xi
j )

 . (A.35)

This element vector will only be non-zero when we can apply the sifting property.
From equation A.27, A.29 and A.35, we then assemble these element matrices and vector into one large sys-
tem.
In equation A.27 we define the mass matrices U 1, V 1 and W 1 by using the corresponding coefficients that
are multiplied by the coefficients used in equation A.21 and A.22. In a similar way we define U 2,V 2,W 2 and
U 3,V 3,W 3 for the y and z component version of equation A.12.
Let B denote the assembled mass matrix corresponding to equation A.29, we can then write the weak form of
equation A.12 as the following system U 1 +B V 1 W 1

U 2 V 2 +B W 2

U 3 V 3 W 3 +B

 u
v
w

=
 F x

F y

F z

 . (A.36)

Here the vectors u, v and w correspond to the coefficients used in equation A.21 and A.22.
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A.3.1. ELLIPTIC PROBLEM
In this section we will show that the mechanical model, given by 4.13 is a strong elliptic system. To see this,
we first need to give the definition of a strong elliptic system. For a system given by

∂

∂xα
(aαβi j u j

xβ
+bαi j u j +eαi ) (A.37)

where we make use of the Einstein summation convention and we have that α,β= 1, . . . ,ν i , j = 1, . . . , N . This
system will be strongly elliptic if the coefficients satisfy the following constraint

|aαβi j λαλβ| 6= 0,∀λα,λβ 6= 0. (A.38)

This determinant then contains all the coefficients of the derivatives, on element i , j we have the summation
of all the possible second order derivatives of the i th equation and the j th variable.

D =

∣∣∣∣∣∣∣∣∣∣

λ1
2(ν−1)

ν−1+2ν2 + 1
2
λ2

2

1+ν + 1
2
λ3

2

1+ν
1
2
λ2λ1
1+ν − λ2νλ1

(1+ν)(2ν−1) − λ1νλ3
ν−1+2ν2 + 1

2
λ3λ1
1+ν

− λ2νλ1
ν−1+2ν2 + 1

2
λ2λ1
1+ν

1
2
λ1

2

1+ν + λ2
2(ν−1)

(1+ν)(2ν−1) + 1
2
λ3

2

1+ν
1
2
λ3λ2
1+ν − λ3νλ2

ν−1+2ν2

− λ1νλ3
ν−1+2ν2 + 1

2
λ3λ1
1+ν − λ3νλ2

(1+ν)(2ν−1) + 1
2
λ3λ2
1+ν

1
2
λ1

2

1+ν + 1
2
λ2

2

1+ν + λ3
2(ν−1)

ν−1+2ν2

∣∣∣∣∣∣∣∣∣∣
(A.39)

Calculating this determinant gives us

D = 1

4
(λ2

1 +λ2
2 +λ2

3)3 ν−1

(2ν−1)(1+ν)3 . (A.40)

Which is a very elegant formula, considering the matrix where we started with. The first term, containing the
squares of the lambda’s, can be ignored since we know that this will always be positive. For the second term,
there is some freedom considering different values of ν. To see which values are appropriate, we have plotted
this function in Figure A.1.

Figure A.1: The determinant in A.40 versus the Poisson ratio.

We immediately see that the proper values for ν lie in the
interval (−1, 1

2 ), which is what we expect considering the
denominator of the second term.
Further, since the Poisson ratio is the negative ratio of
transverse to axial strain, we also have a physical interpre-
tation of this value. We know that the Poisson ratio of a
stable, isotropic, linear elastic material cannot be less than
minus one nor greater than a half. Since we assume that
the extra cellular matrix will behave in a linear, isotropic
manner, we will also have a Poisson ratio that lies in the in-
terval (−1, 1

2 ). Hence, from this we can conclude that the
determinant given in equation A.40 will be positive, and
thus the mechanical model given by 4.13, is a strongly el-
liptic system.
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A.4. DERIVATION OF THE ( WEAK) FORMULATION CHEMICAL MODEL
The chemical model is given by the following initial boundary problem

∂ck

∂t
+∇· (vck )−Dk∆ck =

C∑
i=1

L∑
j=1

γk (mi )δ(x −xi
j (t )) = Sk (x), (A.41)

ck (0, x) = 0, x ∈Ω,

Dk
∂ck

∂n
+κck = 0, x ∈ ∂Ω.

(A.42)

where k = 1, . . . , p, representing the phenotypes and the summation is done over the cells and their boundary

nodes. Further, we have that the advection velocity is given by v = du
d t , here u is the displacement vector ob-

tained from the mechanical problem.

In order to derive the weak form of equation A.41, we multiply by a test function φ ∈ H 1 and then integrate
over the (time dependent) domainΩ(t ),∫

Ω(t )

∂ck

∂t
φ+∇· (vck )φ−Dk∆ckφ dΩ=

∫
Ω(t )

Sk (x)φ dΩ. (A.43)

Using Green’s Theorem and the boundary condition to reduce the second order derivative to,∫
Ω(t )

∂ck

∂t
φ+∇· (vck )φ+Dk∇ck ·∇φ dΩ+κ

∫
∂Ω(t )

ckφ dΓ=
∫
Ω(t )

S(x)φ dΩ. (A.44)

Expanding the gradient term in front of the velocity field, gives∫
Ω(t )

∂ck

∂t
φ+ v ·∇ckφ+ ck∇· vφ+Dk∇ck ·∇φdΩ+κ

∫
∂Ω(t )

ckφdΓ=
∫
Ω(t )

S(x)φ dΩ. (A.45)

Notice that the first two terms of the integral form a material derivative,∫
Ω(t )

(
∂ck

∂t
+ v∇ck

)
φdΩ=

∫
Ω(t )

(
∂ck

∂t
+ ∂ck

∂x

d x

d t
+ ∂ck

∂y

d y

d t
+ ∂ck

∂z

d z

d t

)
φdΩ=

∫
Ω(t )

Dck

Dt
φdΩ. (A.46)

However, we would like to have the test function also inside the material derivative operator. Hence, by some
algebraic operators, we get

Dck

Dt
φ= D(ckφ)

Dt
− ck

Dφ

Dt
= D(ckφ)

Dt
. (A.47)

The last equality holds by Dziuk and Elliott (2007), which means that the material derivative of the test func-
tion equals zero. From the proof of the Reynolds Transport Theorem2, we have the following property

d

d t

(∫
Ω(t )

f (x, t )dΩ

)
=

∫
Ω(t )

(
D f (x, t )

Dt
+ f (x, t )∇· v(x, t )

)
dΩ. (A.48)

where v(x, t ) is the velocity of the domain.
We are going to use this identity to simplify our weak form, which can be done because we have a time de-
pendent domain. Using this identity, we see that∫

Ω(t )

(
∂ck

∂t
+ v ·∇ck + ck∇· v

)
φdΩ=

∫
Ω(t )

D(ckφ)

Dt
+ ckφ∇· vdΩ= d

d t

∫
Ω(t )

ckφdΩ. (A.49)

If we substitute this result into A.45, we obtain the following formula

d

d t

∫
Ω(t )

ckφdΩ+Dk

∫
Ω(t )

∇ck ·∇φdΩ+κ
∮
Γ(t )

ckφdΓ=
∫
Ω(t )

Sk (x)φ dΩ. (A.50)

The next step is to approximate the domain integral by the elements e,e = 1, . . . , M , and the boundary integrals
by the boundary elements be,be = 1, . . . , Mbe .

M∑
e=1

d

d t

∫
Ωe (t )

ckφdΩ+Dk

∫
Ωe (t )

∇ck ·∇φdΩ+κ
Mbe∑

be=1

∫
∂Ωbe (t )

ckφdΓ=
M∑

e=1

∫
Ωe (t )

Sk (x)φ dΩ. (A.51)

2See wikipedia page ReynoldsTT

http://en.wikipedia.org/wiki/Reynolds_transport_theorem
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We approximate the solution ck (x, t ) by a linear combination of basis functions

ck (x, t ) =
N∑

j=1
ck, j (t )φ j (x), φ(x) =φi (x), i = 1, . . . , N . (A.52)

where N is the number of nodes on the grid. By substituting these approximations into equation A.51, we
obtain

M∑
e=1

N∑
j=1

d

d t

∫
Ωe (t )

ck, j (t )φ jφi dΩ+Dk

∫
Ωe (t )

ck, j (t )∇φ j ·∇φi dΩ+ . . .

Mbe∑
be=1

κ

∫
∂Ωbe (t )

ck, j (t )φ jφi dΓ=
M∑

e=1

∫
Ωe (t )

Sk (x)φi dΩ, i = 1, . . . , N .

(A.53)

Since the basis functions are constructed in a nifty way, we will look at an arbitrary element e and investigate
each integral separately. However, in this process we need to be careful with the notation of the grid node we
are on, since every basis function is defined on each element differently. Therefore, we denote the nodes of
an element e by the bold-face index i = 1,2,3,4.
The first integral from equation A.53 is given by

Ae
ij =

∫
Ωe (t )

φjφidΩ, i, j = 1, . . . ,4. (A.54)

Using Holand-Bell, we obtain the following element matrix

Ae (t ) = |∆e |
(n +2)!


2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

 , (A.55)

where n is the dimension of our problem. We deal with the time derivative of the concentration ck after the
assembly process. From the second integral we can define the following element matrix which represents the
discretization of the diffusive part

De
ij(t ) = Dk

∫
Ωe (t )

∇φj ·∇φidΩ=

Dk

∫
Ωe (t )

a1
j a1

i +a2
j a2

i +a3
j a3

i dΩ=

Dk
|∆e |
n!

a1
j a1

i +a2
j a2

i +a3
j a3

i , i, j = 1, . . . ,4.

(A.56)

The third integral of equation A.53 is the boundary integral. Hence, the boundary element matrix is given by

B be
ij (t ) = κ

∫
∂Ωbe (t )

φjφidΓ, i, j = 1, . . . ,3, (A.57)

Using Holand-Bell, we obtain the following element matrix

B be (t ) = κ |∆be |
(n +1)!

 2 1 1
1 2 1
1 1 2

 . (A.58)

In the last integral we have to deal with the source function. Since we have the Dirac Delta function inside
the source function, we get a similar result as with the mechanical model by using the sifting property of the
Dirac Delta function.

Se
p(t ) =

∫
Ωe (t )

Sk (x)φp(x) dΩ,p = 1, . . . ,4, (A.59)

Se
p(t ) =

C∑
i=1

L∑
j=1

γk (mi )φp(xi
j ),p = 1, . . . ,4. (A.60)
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Which gives the following element vector.

Se (t ) =
C∑

i=1

L∑
j=1

γk (mi )


φ1(xi

j )

φ2(xi
j )

φ3(xi
j )

φ4(xi
j )

 . (A.61)

With the gathered information we are able to assemble all the element matrices and vectors into a large matrix
and vector. Schematically, the system we obtain is given by

A
d

d t
c(t )+Dc(t )+Bc(t ) = S(t ). (A.62)

Where A is the matrix corresponding to the first integral, D is the matrix from the diffusive part, B is the
boundary matrix and S(t ) is the source vector. To explain how we deal with the time derivative, we rewrite
the equation to

A
d

d t
c(t ) = S(t )− (D +B)c(t ). (A.63)

A straightforward way to discretize the time derivative is by using the Euler Forward method. However, in
doing so, we limit ourselves in the size of the time step. A more favorable option would be to use the Euler
Backward method, which gives us super stability in time.

An+1cn+1(t ) = An+1cn(t )+dt
(
Sn+1(t )− (Dn+1 +B n+1)cn+1(t )

)
, (A.64)(

An+1 +∆t (Dn+1 +B n+1)
)

cn+1(t ) = An+1cn(t )+∆tSn+1(t ),n = 1, . . . ,Tmax (A.65)

Here n denotes the time step. In the context of the discretization of partial differential equations, we need
the mass matrix

(
An+1 +∆t (Dn+1 +B n+1)

)
on the left hand side to be an M-matrix. An n ×n matrix A is an

M-matrix, if it satisfies the following properties

1. Ai i > 0 for i = 1, . . . ,n;

2. Ai j ≤ 0 for i 6= j , i , j = 1, . . . ,n;

3. A is irreducibly diagonally dominant.

This property guarantees the absence of wiggles in convection dominated flows and the positivity of concen-
trations in chemical engineering applications [33].
However, since we are using the theorem by Holand-Bell to obtain a value for the integral, we are lacking this
property in matrix An+1 and B n+1. An easy way to see this is by looking at the element matrices of equation
A.55 and A.58. It is clear that these element matrices do not satisfy the criteria of an M-matrix, hence it is
unlikely that the assembled matrix will have these properties. The matrix Dn+1 is already an M-matrix since
this matrix represents the discretization of the diffusion.
In order for matrix An+1 and B n+1 to be an M-matrix, we need a different approach than Holand-Bell to
evaluate the integral. An option to do so is by using Newton-Cotes integration, this result in an element
matrix of the form

αIn×n (A.66)

where α is some constant depending on the area of the triangle ∆ and In×n is the identity matrix with dimen-
sion n. Then both the matrices An+1 and B n+1 will have the shape of an identity matrix, hence they will have
the M-property. The result of using Newton-Cotes integration, instead of Holand-Bell, becomes apparent in
the precision of our solution, since this approximation introduces an error of order O (h2). However, since we
use linear basis functions to solve the partial differential equations with the FEM, we already have an error of
order O (h2), hence using Newton-Cotes will not influences the precision of our solution.
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A.5. FOURIER ANALYSIS ON THE MECHANICAL SIGNAL
In this section we explain how we conduct the Fourier Analysis on the mechanical signal to obtain the direc-
tion of the mechanical stimulus.
In this setting we choose the time interval to be given by [(t −τ)+, t ], which is equal to the domain of inte-
gration in equation 4.33. However, since we do not have an analytical representation of the signal φi (t ), we
must use the numerical approximation ofφi (t ) and therefore also use the Discrete Fourier Transform (DFT).
When we apply this transformation to the signalφi (t ), we get

Φi (s) =FD [φi (t )]. (A.67)

Where we define the DFT, as

Φi (s) =
N−1∑
n=0

φi (tn)e−2πi sn/N , s ∈Z. (A.68)

Here tn ,n = 0, . . . , N −1 denotes the discretization of the time interval [(t −τ)+, t ], which is discretized by N
nodes that depend on the time step size ∆t by the following relation N = τ

∆t . However, we do realize that the
time step is restricted by the period (or frequency) that we impose on the contraction rate of the myocytes,
since the DFT produces accurate results when the time interval is an integer multiple of the period.
Keeping this in mind, we obtain the frequency of the signalφi (t ) by

ŝ = argmax
s

‖φi (s)‖ (A.69)

However, this value ŝ will only tell us at which position we will find the frequency in the frequency domain. To
obtain the frequency we will use the sampling frequency Fs = 1

∆t and the fact that the frequency in the center

of the frequency domain is equal to Fs
2 , hence

f̂ = Fs

2
ŝ

2

N
, (A.70)

which we can simplify to

f̂ = Fs ŝ

N
,

ω̂= 2π f̂ .
(A.71)
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A.6. THE GRADIENT RECOVERY METHOD
In this section we explain how we have obtained the gradient of the mechanical strain energy while using
first order basis functions. We will first show the essence of the problem, which is that we need to calculate
a second derivative, while our basis functions are a first order polynomial. Recall that the mechanical strain
energy is defined by

M(x, t ) = 1

2
(σ11ε11 +σ12ε12 +σ22ε22) . (A.72)

Substituting the definition for the stress and strain into this equation, we see that we have

M(x, t ) = Eν
2

(
(ux (1−ν)+ vyν)ux + 1

2
(1−2ν)(uy + vx )

1

2
(uy + vx )+ (uxν+ vy (1−ν))vy

)
=

Eν
2

(
u2

x (1−ν)+ux vyν+ 1

4
(1−2ν)(u2

y + v2
x +2uy vx )+ vy uxν+ v2

y (1−ν)

)
=

Eν
8

(
4u2

x (1−ν)+8ux vyν+4v2
y (1−ν)+u2

y + v2
x +2uy vx −2νu2

y −2νv2
x −4νuy vx

)
.

(A.73)

If we want to calculate the gradient of equation A.73, we obtain a complex formula where we need to be able
to calculate the second order derivative of the displacement u(x, t ). However, note that the displacement
u(x, t ) is approximated by N basis functions.

u(x, t ) =
N∑

j=1
u jφ j (x), v(x, t ) =

N∑
j=1

v jφ j (x). (A.74)

Where the basis functions were explicitly defined on an element as

φj(x) = aj
0 +aj

1x +aj
2 y, j = 1, . . . ,3. (A.75)

Hence, per element we are able to calculate the first derivative of the displacement u(x, t ). However, calculat-
ing the second order derivative is possible, but results in a rather trivial answer which is unsuitable for further
calculations.
In order to be able to calculate the gradient of the mechanical strain energy, we calculate the piecewise con-
stant stress and strain field, and then approximate a piecewise linear function to these fields. This method is
also known as the ZZ-patch recovery method [34].
To obtain this piecewise linear function we will make use of the already defined (first order) basis functions
and try to find a suitable linear combination such that the error between this piecewise linear function and
the stress and strain fields is minimal. We denote this approximation of the stress and strain field by

σ∗(x) =
N∑

j=1
σ∗

j φ j (x), (A.76)

ε∗(x) =
N∑

j=1
ε∗j φ j (x). (A.77)

The idea here is to apply a least square estimation with these approximations to the existing values of the
stress and strain on a patch, such a patch is given in Figure A.2 and constitutes of the union of the adjacent
elements to a node.
By using this approximation on a patch, we can then determine (approximated) nodal values for the stress
and strain fields, which are denoted by σ∗

j ,ε∗j as seen in equation A.4, A.77. In turn, this enables us to calcu-

late the derivative of the stress and strain fields that are needed to calculate the gradient of the mechanical
strain energy. To demonstrate this technique, we will now show an example to calculate one component of
the stress field.

To calculate the least square estimation on a patch we will first define a polynomial, in vector format, that is
of the same order as our basis functions

P (x) = [1 x y], (A.78)

Further, we define the following patch coefficients, in vector format, that will enable us to eventually calculate
the nodal coefficients σ∗

j

σ∗
j = [σ∗

1 σ
∗
2 σ

∗
3 ]T . (A.79)
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Figure A.2: The geometrical entities associated with a cell, where the sampling nodes are denoted by
the small solid triangles

Then we take the values of the strain field σh , that we have obtained from the FEM, in the NP sampling
nodes given in Figure A.2, and use these values for the least square estimation. This results in minimizing the
following function

F (σ∗
j ) =

NP∑
p=1

(σh(xp , yp )−P (xp , yp ) ·σ∗
j )2 (A.80)

If we want to minimize F (σ∗
j ), we need to calculate F ′(σ∗

j ) = 0, hence

F ′(σ∗
j ) = 0

−2
NP∑

p=1
P (xp , yp )T (σh(xp , yp )−P (xp , yp )σ∗

j ) = 0

NP∑
p=1

P (xp , yp )T (σh(xp , yp )−P (xp , yp )σ∗
j ) = 0

NP∑
p=1

P (xp , yp )T P (xp , yp )σ∗
j =

NP∑
p=1

P (xp , yp )Tσh(xp , yp )

(A.81)

Hence, if we want to solve this equation, we first define

Ap =
NP∑

p=1
P (xp , yp )T P (xp , yp )

bp =
NP∑

p=1
P (xp , yp )Tσ∗

j

(A.82)

and then state
σ∗

j = A−1
p bp (A.83)

By using these coefficients, we then define the nodal value of the stress field as

σ∗
j = P (x j )σ∗

j , j = 1, . . . , N (A.84)
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To see the effect of this method on the first component of the stress field, we present the following two figures.
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Figure A.3: Derivative of the displacement with respect to the x direction by using the FEM solution

Figure A.3 shows the piecewise constant derivative of the displacement in the x direction. By applying the
ZZ-patch gradient recovery method on this result, we obtain the graph seen in Figure A.4.
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Figure A.4: ZZ-patch gradient recovery solution of the derivative of the displacement with respect to
the x direction

Note however that this is just an approximation. By closer inspection, one can see that the method has dif-
ficulty in mimicking the extreme values of the derivative from Figure A.3. Though, the reconstruction of the
gradient has improved compared to cases where this gradient recovery method has not been applied.
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A.7. GENERALIZED NOVEL MODEL APPROACH FOR ARBITRARY PHENOTYPES
In this section we explain how to expand the current model to simulate the differentiation behavior towards
p phenotypes, instead of two.
First of all, the model for two phenotypes has been constructed such that extending it an arbitrary number of
phenotypes is a straightforward task. The main problem lies in defining new variables for the other pheno-
types.
For example, to add one phenotype we need to determine what its shape will be, the secretion rate of its cy-
tokine and the way it applies force on the domain and how it reacts to forces and to its chemical environment.
Having defined these quantities, we are left with one challenge, and that is the definition of the mechanical
stimuli ψi

M (t ) and the direction of the mechanical stimuli ιiM (t ). Since at this moment, the definition of the
mechanical stimuli is specifically designed for myocyte behavior. The same holds for the definition of the
direction of the mechanical stimuli. When we introduce a new phenotype, for example bone cells, we need
to reconsider these definitions and adapt them where necessary.
However, to make an appropriate adaptation, we first need to obtain more knowledge about the phenotype
we want to add. Like its behavior during differentiation, interaction with other cells and change in size during
its genesis. Hence, little can be said about how to add another phenotype, however we have constructed the
model cleverly such that this addition takes little effort.
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A.8. EXTENSION TOWARD THREE DIMENSIONS
In this section we will explain how the 2D model can be extended towards three dimensions. Since the reader
should be quite familiar with the 2D model by now, we will mostly state the new equations which will be
accompanied with some small notes.
We start by explaining how a 3D cell is defined, and all its geometrical aspects. Then we will make a small
note about the force function of the cells, followed by the changes in the equation for cell movement. At last
we make a short comment on the change of the domainΩ.

A.8.1. GEOMETRICAL ADAPTATIONS
In 2D we already defined the length and width of a cell, for the 3D model we also need a definition for the
height, which is given by

H i
k (t ) = H 0

k + (H∞,k −H i ,0
k )mi (t ). (A.85)

By using the length, width and height, we define the cell boundary nodes by the following parametric formula

xi
j ,J (t ) = Li

k (t )cos(J
2π

L
−π)cos( j

2π

L
),

y i
j ,J (t ) =W i

k (t )cos(J
2π

L
−π)sin( j

2π

L
),

zi
j ,J (t ) = H i

k (t )sin(J
2π

L
−π), j , J = 1, . . . ,L.

(A.86)

From this parametric formulation, we can easily determine the outward normal vector on the surface of an
ellipsoid.

ni
j ,J (t ) =

[
xi

j ,J

(Li
k (t ))2

,
y i

j ,J

(W i
k (t ))2

,
zi

j ,J

(H i
k (t ))2

]T

j , J = 1, . . . ,L. (A.87)

In order to perform the rotation to the cells, we need to define three rotation matrices. One rotation matrix
for each axis, where each rotation matrix rotates a vector around its axis in an anti-clockwise manner. The
definition of these rotation matrices are given by equation A.88.

Rx (θ) =
 1 0 0

0 cosθ −sinθ
0 sinθ cosθ

 ,

Ry (θ) =
 cosθ 0 sinθ

0 1 0
−sinθ 0 cosθ

 ,

Rz (θ) =
 cosθ −sinθ 0

sinθ cosθ 0
0 0 1

 .

(A.88)

The rotation for a certain cell boundary point xi
j ,J (t ) = [xi

j ,J (t ), y i
j ,J (t ), zi

j ,J (t )]T , is then determined by three

angles, θx ,θy and θz . The details on how these angle change over time will be explained later on.
In the 2D model we used the variable ∆Γi

j to define the source and force function. This variable denoted

the intermediate length between adjacent cell boundary nodes, the 3D version of this is denoted by ∆Si
j ,J .

However, in the 3D simulation results that are present in this thesis, we have approximated this quantity by
dividing the surface area of the cells by the L2 boundary points. This creates an uniform distribution for the
cell surface elements∆Si

j ,J (t ). This is not an ideal method to achieve this quantity, hence for future references

we would like to see this be improved.
To obtain the surface are of an ellipsoid is no straightforward task, since there is no analytical formulas for
this. One, of the many, approximations is given by Thomsen’s formula,

Si (t ) = 4π

(
(Li

kW i
k )p + (Li

k H i
k )p + (H i

kW i
k )p

3

)1/p

, i = 1, . . . ,C , (A.89)

where we use p ≈ 1.6075.
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A.8.2. CELL FORCE
Due to the change in the definition of the intermediate length, we also have to adjust the definition of the
growing force, given by equation 4.26. Recall that in the 2D case, we added a virtual height to the equation in
order to satisfy the dimensions. In the 3D case, we no longer need this virtual height since we already satisfy
the dimensions by using the following definition of the growing force

F i
j ,J ,G (t ) =

E i∆Si
j ,J (t )

Li
k (t )

d

dt
Li

k (t ), j , J = 1, . . . ,L. (A.90)

Besides this change in the force vector, we also extend the definition of the octahedral shear strain towards
three dimensions. This quantity is then defined by

φ(x) = 2

3

√
(ε1 −ε2)2 + (ε2 −ε3)2 + (ε1 −ε3)2. (A.91)

Further, the calculations that are accompanied with the octahedral shear strain remain the same.

A.8.3. CELL MOVEMENT
The movement of a cell is influenced by three factors: randomness, the chemical gradient and the mechanical
gradient. Extending the first two factors towards three dimensions is a straightforward task. However, to
extend the mechanical gradient, we need to present a new definition, since the mechanical strain energy in
three dimensions is given by

M(x, t ) = 1

2
(σ11ε11 +σ12ε12 +σ22ε22 +σ33ε33 +σ13ε13 +σ23ε23) . (A.92)

However, any further calculations remain unchanged.
We continue with the change in orientation of the cells, since this requires some more adaptations. We have
already introduced the three rotations matrices Rx (θ),Ry (θ),Rz (θ), but in this section we will show how the
rotation angles θi

x (t ),θi
y (t ),θi

z (t ) will change over time. An important note here is that we reduce the 3D
problem to three 2D versions, which are simpler because we already have an approach to deal with that
situation. A key ingredient here is that we are able to project a 3D vector on three surfaces, as shown in Figure
A.5.

Figure A.5: Graphical representation of the projection of a vector on three different surfaces.

This method of decomposition can be applied to both the current orientation vector θi (t ) and the direction
of movement vector v i

k (t ). Subsequently, we calculate the angles between these two vectors on all the three

surfaces by using the same method as proposed in Section 4.3.1. Let v i
k (t ) denote the vector of change in
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position for every cell boundary node in 3D, and let θi (t ) be the vector form of the current orientation of the
cell. Then we denote the projection of the displacement vector on the y − z-plane by v i

x,k (t ), the projection

on the x − z-plane is given by v i
y,k (t ) and the projection on the x − y-plane is v i

z,k (t ). In a similar manner we

define the projections of θi (t ) on the three different planes.
The equation of change for the three angles is then given by the compact formulation

d

d t
θi
α(t ) = θi ,0

α (t )cos−1

(
v i
α,k (t ) ·θi

α(t )

‖v i
α,k‖‖θi

α‖

)
, i = 1, . . . ,C ,k = 1,2,

θi
α(0) = 2πU (0,1), i = 1, . . . ,C ,

(A.93)

where α= {x, y, z}, and to define θi ,0
α (t ) we first define the following vectors

v̂ i
α,k (t ) = Rcw (θi

α(t ))v i
α,k (t ). (A.94)

Where Rcw (θ) is the clock-wise rotation matrix. With this new defined vector, we have that

θi ,0
x (t ) = sgn(v̂ i

x,k (t ) ·ez ),

θy i ,0(t ) = sgn(v̂ i
y,k (t ) ·ez ),

θi ,0
z (t ) = sgn(v̂ i

z,k (t ) ·e y ).

(A.95)

Note that we have not implemented this rotation method into the 3D model. Thus the idea proposed here is
only a theoretical approach for which we assume will work in practical applications as well. If this were to be
implemented in the current model, we advice to write a small test script first to get a feeling for the rotations
and to be sure that every rotation is done in a correct way.

A.8.4. DOMAIN CHANGES
The transform the 2D domain to a 3D one is straightforward, since all the calculations to find the weak form
have already been executed in 3D, see Appendix A.3 and A.4. However, from a computational point of view
there has been made some changes due to the use of a different kind of grid and node numbering, but this
remark only concerns the one that works with the source code.
Further, the domain remained a cube, which is denoted byΩ, and the boundary ∂Ω is now defined by the six
faces that make up the cube.
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A.9. VALIDATION OF MODELS
A model is useless without validating the basics one is working with. In this thesis the basics are the time-
dependent reaction diffusion equation, and the momentum equation.
In order to be sure that the answers we obtain are what we expect, we have constructed a validation technique.
The trick is to propose a solution, i.e. a known concentration or displacement which satisfies the boundary
conditions, and then solve for the appropriate source or force vector.
The obtained source and force vector are then implemented in the Finite Element Method, which gives our
numerical answer. What we expect to see is that this numerical answer equals the proposed solution from
which we started as time and spatial resolution increase.
This validation technique has been applied to the time dependent advection diffusion equation of the chem-
ical mode, and the momentum equation of the mechanical model.
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A.9.1. CHEMICAL MODEL
The chemical model is driven by the following set of equations

∂ck

∂t
−Dk∆ck = S(x), x ∈Ω,

ck (x,0) = 0, x ∈Ω,

Dk
∂ck

∂n
+κck = 0, x ∈ ∂Ω.

(A.96)

Here we have that ck is the chemical concentration, Dk is the diffusion coefficient, S(x) is the sourcing vector
and κ is the rate of outsourcing at the boundary.
We now wish to find a sourcing vector that corresponds with the steady state solution

c(x, y, t ) = x(l0 −x)y(l0 − y), (A.97)

where l0 is the length and width of the domain Ω. By setting κÀ 1, equation A.97 will satisfy the boundary
conditions. When equation A.97 is substituted into equation A.96, we obtain the following sourcing function

S(x, y) =−2Dk (−l0 y + y2 −xl0 +x2). (A.98)

In the left graph of Figure A.6 one can see a plot of the analytic solution proposed in equation A.97, where in
the right graph of Figure A.6 we present the numerical approximation.
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Figure A.6: Comparisson between analytic (left) and numerical (right) solution

In order to produce these results we have used the following parameters

Table A.1: Parameters used to calculate the numerical solution

Parameter Value
Dk 135
M 50
l0 2000
κ 1 ·1015

∆t 1 ·108

T 2

By inspection one can already see the similarities, however inspection is not enough to see that the numer-
ical approximation is a reasonable one. Therefore, in Figure A.7 one can see the relative absolute difference
between the numerical and analytical solution.
This error is calculate by

|c̃(x, t )− c(x, t )|
c(x, t )

. (A.99)

Where c̃(x, t ) is the numerical solution and c(x, t ) the analytical solution given by equation A.97.
From Figure A.7 we see that the error is of order 10−10 under the conditions posed in Table A.1
If we would take κ even larger, then we obtain a warning from Matlab saying that the mass matrix is close to
singular. The large time step is taken such that we have to calculate fewer time steps.
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Figure A.7: Relative difference between the analytic and numerical solution
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Figure A.8: Relative difference between the analytic and numerical solution

However, if we do take ∆t larger, then something remarkable happens to the absolute difference. This phe-
nomena is given in Figure A.8. We believe this behavior is caused by numerical errors. For this particular case
we have used the same parameters, except set the time step ∆t = 1 ·1015.
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A.9.2. MECHANICAL MODEL
The mechanical model is driven by the equations

∇·σ+F 1 +F 2 = 0, x ∈Ω,

σ ·n +K u = 0, x ∈ ∂Ω.
(A.100)

The proposed solution for this model is identical to that of the chemical model

u(x, y) = x(l0 −x)y(l0 − y)

v(x, y) = x(l0 −x)y(l0 − y)
(A.101)

Hence, also in this situation we need that K À 1.
By substituting this solution into equation A.100, we get a force vector with the following x and y components

Fx (x, y) =−1

2
Eν(4l0νx +4l0νy −4νx2 −4νy2 + l 2

0 −4l0x −6l0 y +2x2 +4x y +4y2),

Fy (x, y) =−1

2
Eν(4l0νx +4l0νy −4νx2 −4νy2 + l 2

0 −6l0x −4l0 y +4x2 +4x y +2y2).
(A.102)

Here l0 is the length and width of the domain, ν is Poisson’s ratio and Eν is given by

Eν = E

(1+ν)(1−2ν)
. (A.103)

Implementing this in the FEM gives a vector plot of the numerically calculated displacement. In Figure A.9
we compare the analytical results with the numerical solution.

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000
Quiver plot of the displacement, analytically

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000
Quiver plot of the displacement, numerically

Figure A.9: Comparisson between analytic(left) and numerical(right) solution

From this quiver plot, we see by inspection that the numerical solution produces correct results. To see how
precise our approximation is, we will analyze the displacement in the x-direction on l0/2.
Since we have a strong elliptic problem, we have no need to also investigate the y-direction, since the problem
is symmetric by definition of ellipticity.
In Figure A.10 the absolute relative difference between the numerical ũ(x, t ) and analytical solution u(x, t ) on
the line y = l0/2 is given. Hereby we mean that the graphs presented here are calculated by

εe =
|ũ(x, t )−u(x, t )|

u(x, t )
(A.104)
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Figure A.10: Relative difference between analytic and numerical solution for different grid sizes M

However, from Figure A.10 we see that the relative difference is only of order 10−4 when M = 31, while for the
validation of the chemical model we obtained a relative error of order 10−10. Hence, we would like to know
which value for M would produce a relative error of order 10−10 and if this is possible.
By taking the mean value of the relative error in equation A.104 we can assign one value that represents
this error for each grid size, when we then increase the grid size M we expect that the relative error should
decrease. This behavior can be seen in Figure A.11, we have taken the log scale of the absolute relative error
and grid size M , since then we can easily observe of which order the error is in terms of M .
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Figure A.11: Plot of equation A.104 with increasing grid size M using log scaled axis.

By inspection we see that the slope of the graph presented in Figure A.11 is ≈ −2. Since M ∼ 1
h , we can now

say that the absolute relative error is of order O (h2) which is what we expect when we are using the FEM with
linear basis functions. However, this means that around M ≈ 1000 we would obtain an absolute relative error
of 10−10.
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A.10. COMPARING DIFFERENT SOURCE TECHNIQUES
In section 4.2.1 we described that cells secrete their cytokine into the domain via their cell boundary nodes,
which act as source nodes for the domain. However, it is also possible to let cells secrete their cytokine from
their cell center.
The difference between these two approaches could decide which approach is more favorable. But before we
continue, we explain how for a general case the sourcing vector is created from the cell boundary nodes.
Figure A.12 shows a cell on the domain Ω, where the grid is represented by the triangular pattern and the
ellipse-shape represents the cell on the domain. As explained before, we have approximated the domain by
N points, and the cell boundary by L points. Due to this, we have that every cell boundary node will lie in a
certain triangle.
This relation between the grid nodes and the cell boundary nodes is used to construct the sourcing vectors.
A graphical representation of this relation is also given in Figure A.13.

Figure A.12: Abstract display of
cell and grid

Figure A.13: Abstract display of
cell and grid

To quantify the difference between the two sourcing techniques, we will solve the chemical model for one cell
with either L boundary nodes, or none. Which results in the definition of two distinct sourcing functions.
The sourcing function that corresponds to the situation where we use L cell boundary-nodes, is given by
equation A.105

S̃(x) =
L∑

j=1
γ0m1(t )δ(x −x1

j )∆Γ1
j , (A.105)

where mi (t ) is fixed, since we do not model the differentiation process in this case, and ∆Γ1
j is the intermedi-

ate length between two successive cell boundary-nodes.
The sourcing function that corresponds to the situation where we source from the cell center-node, is given
by equation A.106

Ŝ(x) = γ0m1(t )δ(x −x1)P i (t ), (A.106)

where the last factor represents the approximation of the perimeter by Ramanujan of an ellipse, which is
given by

h = (Li (t )−W i (t ))2

(Li (t )+W i (t ))2

P i (t ) =π(Li (t )+W i (t ))

(
1+ 3h

10+p
4−3h

) (A.107)

and is of order O (h5) [35].
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In order to compare the two cases, we need to obey a certain mass balance between the two sourcing func-
tions. Hence we want that ∫

Ω
Ŝ(x)dΩ=

∫
Ω

S̃(x)dΩ,∫
Ω
γ0m1(t )δ(x −x1

j )P i (t )dΩ=
∫
Ω

L∑
j=1

γ0m1(t )δ(x −x1
j )∆Γ1

j dΩ,

γ0m1(t )P i (t ) =
L∑

j=1
γ0m1(t )∆Γ1

j ,

P i (t ) =
L∑

j=1
∆Γ1

j ,

(A.108)

where we have used the sifting property to simplify the domain integrals.
Hence, before we run the simulation, we need to be sure that we satisfy the constrain given in equation A.108.
Since the order of the approximation depends on h, given in equation A.107, we will analyze a worst case
scenario in which we a have a skew ellipse and then find a value for L which is sufficient for the approximation
of the boundary of this ellipse.
The worst case scenario can be found by modeling a full grown myocyte, which has the poorest length-width
ratio. In Figure A.14 we see the absolute error for different cell boundary-nodes, where we made a distinction
between even and odd numbered cell boundary-nodes.
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Figure A.14: Absolute difference between the circumference approach

From this analysis we see that L = 44 gives the smallest error and L = 23 the second smallest error. Continuing
with this parameter, we analyze the difference in sourcing of both sourcing approaches.
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In Figure A.15 we display the cell center-sourcing technique. Notice the big red dot around the cell center.
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Figure A.15: Sourcing from cell
center

Solution cytokine, with internal sourcing, at minute    1
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Figure A.16: Sourcing from cell
boundary

Inspecting both figures, we see a clear distinction between the two approaches. This comes from two factors,
the first is the short time of simulation and the second comes from the assumption that muscle cells are
best modeled as ellipse-shaped cells. However, it is possible that this assumption is wrong and that a more
plausible way of modeling muscle cells is by using many circle-shaped cells. Therefore we also investigate the
case where we use circle-shaped cells, the result of this can be found in Figure A.17 and A.18
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Figure A.17: Sourcing from cell
center

Solution cytokine, with internal sourcing, at minute    1
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Figure A.18: Sourcing from cell
boundary

This result would bring us again in the position that cell-center sourcing seems to be avoided, because of the
large difference in the characteristic of the contour plot. However, note that these results display the chemical
concentration after one time step. Therefore we also plot the chemical concentration over a longer period of
time, these are shown in Figure A.19 and A.20.
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Solution cytokine, with central sourcing, at minute   10
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Figure A.19: Sourcing from cell
center
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Figure A.20: Sourcing from cell
boundary

This shows that eventually the two solutions will obtain the same characteristics over time, and eventually
be equal in the sense of the equilibrium state, which is what we expect since we conserve mass. However,
this does not give rise to the conclusion that, when we simulate only circular shaped cells, the central secre-
tion method is more favorable than the cell boundary secretion method. This is because we are simulating a
dynamic system that is sensitive to small amounts of chemical concentration and has no desire to obtain an
overall equilibrium state, rather we would expect some sort of dynamic equilibrium state in the cell popula-
tion due to the constant change of the cell population.
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