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Abstract

The EADmetric is widely used in the calculations for the capital requirements concerning Coun-
terparty Credit Risk (CCR). In this thesis we compare several methods for calculating this EAD.
Basel III gives us two methods, the Standardized Approach for CCR (SA-CCR) and the Internal
Model Method (IMM). Furthermore, we introduce an integrated benchmark model, whereby we
estimate the EAD by integrating the Wrong Way Risk (WWR) directly, while in SA-CCR and
IMM this WWR is captured by an alpha factor of 1.4. In this benchmark model, we derive the
formula for backing out the probability of default using CDSs and then, via a Gaussian copula,
we include a correlation between the exposures and default probability to model the WWR. The
ultimate goal of this thesis is to find out how conservative the SA-CCR is compared to the IMM
and the integrated benchmark model, and if the alpha factor of 1.4 is a reasonable value to
account for WWR.

The test portfolios consist of interest rate swaps, cross currency swaps and FX forwards,
which are the most liquid product types in the market. To value these products we model the
interest rate using the Hull-White model and the exchange rate using a GBM, following industry
standard.

Testing results suggest that the SA-CCR is at least a factor of 1.5 more conservative than the
IMM in the presence of collateral, even with stressed parameters. The level of conservatism is
even higher because no diversification is allowed between different asset classes by SA-CCR.
Furthermore, we observe that using the parameters backed out from calibration and a default
correlation of about 30 to 40%, our integrated benchmark model based on copula returns more
or less comparable EADs of IMM times the alpha factor of 1.4. This indicates that this value of
1.4 is a reasonable value to cover WWR in the IMM framework.

Key words. counterparty credit risk, wrong way risk, exposure at default, collateral, credit
default swap, Hull-White model, geometric Brownian motion, Monte Carlo simulation, Gaussian
copula model
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1
Introduction

Before the credit crisis of 2008, some institutions and large banks were considered as “too big
to fall” and therefore risk-free. However, by 2008 five of the largest investment banks in the
United States became insolvent. Bear Stearns and Merrill Lynch had been sold for very low
prices while Morgan Stanley and Goldman Sachs had to give up their private bank status to
be bailed out by the U.S. government [17]. One top of it all, the fourth largest investment Bank
in the Unites States, Lehman Brothers, had to file for bankruptcy. This event swept over the
world like a large shock wave. In the Netherlands alone, the government had to take drastic
measures to save their largest banks [11]. It was the beginning of a deep recession around the
world starting in 2008.

Because of this crisis, trillions of dollars were lost from the financial market mainly because
of mispricing mortgage risk but also because of the bad identification of Counterparty Credit
Risk (CCR). Here we see CCR as the risk that a counterparty goes in to default and can no
longer pay their obligations. The crisis made clear that, regardless whether a counterparty is a
large investment bank or a Triple-A entity, it can never be considered risk-free. Because of this,
CCR has become a major subject for the global financial markets. It was always present in the
financial markets, but with the introduction of Basel III new rules were set in place to strengthen
bank capital for CCR.

Basel III is the successor of Basel II introduced by the Basel Committee on Banking Su-
pervision (BCBS) and was issued in December 2010 [26]. It was mostly an effort to control
the causes of the crisis and it therefore aims to strengthen the capital requirements of banks.
The risk-based capital requirements for CCR in Basel III cover two important characteristics of
CCR: the risk of counterparty defaults and the volatility in the creditworthiness of the counter-
party [20]. The risk of counterparty defaults was already covered in Basel I and Basel II but was
strengthened in Basel III. Moreover, the Basel III reforms introduced a new capital charge for
the risk of loss due to the decrease of the creditworthiness of the counterparty. This potential
mark-to-market loss is known as CVA risk. It captures changes in counterparty credit spreads
and other market risk factors. CVA risk was a major source of unexpected losses for banks
during the credit crisis.

In this thesis we will focus on the risk for counterparty default in the capital requirements
of CCR, which we will refer to as Regulatory Capital. Regulatory Capital for CCR is based on
the “loan-equivalent approach”, which means that each Over-The-Counter (OTC) derivative or
alike can be viewed as a loan from credit risk perspective. Hence Regulatory Capital for CCR
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is calculated by the product of Loss Given Default (LGD), Exposure at Default (EAD) and Prob-
ability of Default (PD). Since LGD and PD information can be retrieved from the market or from
the credit risk models, the calculation of Regulatory Capital for CCR lies in the quantification of
EAD, where the EAD of a trade is based on a metric called exposure.

The metric exposure is widely used in measuring CCR. When a bank has an outstanding
contract with a counterparty, we define the exposure of this contract as the positive part of the
Mark-to-Market (MtM) price of this contract at time of default. We define the MtM price as the
present value of the financial contract. The reason is that, when the counterparty goes into
default the bank has a claim of the positive MtM price, but when the MtM price is negative
we are in debt to the counterparty and from the valuation perspective our positions will be
unchanged in case of a default [17]. Exposure is therefore defined as the greater of the MtM
price and zero. The bank is mostly interested in the exposure at some future time because the
difference between CCR and the credit risk in loans is mainly in the additional uncertainty in
the EAD of the former, compared to the latter. This could be referred to as future exposure and
can be observed in figure 1.1 as the grey area. We define the PFE as the 97.5% percentile
of the future exposure. This can be seen as the 25 worst cases of the future exposure among
1000 scenarios and is illustrated in figure 1.1. We then define the EE as the average of all the
possible scenarios of the exposure at a given time point in the future.

Figure 1.1: Image of Exposure, future Exposure, EE and PFE from [17].

Banks measure and manage CCR internally using mainly the PFE and EE metrics. Here
PFE is mainly used internally for setting limits on the credit quality of the counterparties [10]. EE
is used combined with other quantities for the calculation of EAD and the capital requirements
due to counterparty risk. As said before, estimating the EAD is critical for calculating the Reg-
ulatory Capital for CCR. We distinguish two methods for calculating this EAD, a non-modelled
and a modelled approach. The modelled approach is named the Internal Model Method (IMM),
as defined in Basel regulations, a bank must undergo some strict model validation and approval
procedures to have the permission to use this approach by the regulator. The non-modelled
approach is named the standardized approach for CCR (SA-CCR) in the reformed Basel III
regulations, which replaces two old non-internal models approaches, the Current Exposure
Method (CEM) and the Standardised Method (SM).

In both methods the calculation of EAD requires a factor alpha of 1.4 to cover the so-
called Wrong Way Risk (WWR) in CCR quantifications. WWR is the risk arising due to the
unfavourable dependence between exposure and counterparty credit quality. In this thesis we
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will model the SA-CCR, IMM and an integrated benchmark model inspired by the approach
taken in [23]. In this integrated benchmark model we integrate the probability of default directly
in the EAD calculations to take into account the WWR correlation between the exposures and
probability of default of a counterparty, instead of the alpha factor used by the regulator. We
name this integrated benchmark model the Copula model since it uses a Gaussian copula to
include a correlation between a market factor and a credit worthiness indicator.

In this thesis, we will answer the question if the Copula model can be a good benchmark for
the IMM, i.e., if the alpha factor of 1.4 is a reasonable value to account for WWR. Furthermore,
we answer the question how conservative the SA-CCR is compared with the IMM and Copula
model. We continue this thesis by introducing a mathematical framework with definitions and
formulas we need further on. After that we will dive in somewhat deeper in CCR and the
mitigation of it in chapter 3, where we will also analyze the SA-CCR and IMM as described
in Basel III. In chapter 4 we will set up the algorithms and structures to value the financial
products which we will use in the simulation framework without WRR. In chapter 5 we will first
use the pricer of a Credit Default Swap to construct a probability of default. We will then use
this probability within the Copula model where we integrate the WWR. In the last chapter we
will compare numerical results and draw our conclusions.
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2
Mathematical Framework

In this chapter, we discuss some known definitions and theorems which we will need later on
in the thesis.

2.1. Probability theory
Definition 2.1.1. For a random variable 𝑋 the Cumulative Density Function (CDF) is given by:

𝐹𝑥(𝑥) = ℙ[𝑋 ≤ 𝑥], (2.1)

which is also often known as just the probability distribution function. The Probability Density
Function (PDF) for a continuous random variable is given by:

𝑓𝑥(𝑥) =
𝑑
𝑑𝑥𝐹𝑥(𝑥). (2.2)

Definition 2.1.2. For a continuous random variable 𝑋 the expectation is given by:

𝔼[𝑋] = ∫
∞

−∞
𝑥𝑓𝑋(𝑥)𝑑𝑥. (2.3)

The variance of 𝑋 is then given by:

𝕍𝑎𝑟[𝑋] = ∫
∞

−∞
(𝑥 − 𝔼[𝑋])2𝑓𝑋(𝑥)𝑑𝑥. (2.4)

Definition 2.1.3. We say that 𝑋 is normally distributed with expectation 𝜇 and variance 𝜎2,
𝑋 ∼ 𝒩(𝜇, 𝜎2), when the CDF is given by:

𝐹𝑋(𝑥) =
1

𝜎√2𝜋
∫
𝑥

−∞
exp(−(𝑧 − 𝜇)

2

2𝜎2 )𝑑𝑧. (2.5)

Consequently, the PDF is given by:

𝑓𝑋(𝑥) =
1

𝜎√2𝜋
exp(−(𝑧 − 𝜇)

2

2𝜎2 ) . (2.6)
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Definition 2.1.4. For random variables 𝑋 and 𝑌, the joint cumulative distribution is given by:
𝐹𝑋,𝑌(𝑥, 𝑦) = ℙ(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦). (2.7)

If both variables are continuous the joint probability density function is given by:

𝑓𝑥,𝑦(𝑥, 𝑦) =
𝑑2
𝑑𝑥𝑑𝑦𝐹𝑋,𝑌(𝑥, 𝑦). (2.8)

We say that 𝑋 and 𝑌 follow a bivariate normal distribution with correlation coefficient 𝜌
and parameters 𝜇𝑋 , 𝜎2𝑋 , 𝜎2𝑌 , 𝜇𝑦 when their joint probability density function is given by:

𝑓𝑥,𝑦(𝑥, 𝑦) =
1

2𝜋𝜎𝑋𝜎𝑌√1 − 𝜌2
exp {− 1

2(1 − 𝜌2) [(
𝑥 − 𝜇𝑋

𝑋
)
2
+ (𝑦 − 𝜇𝑌

𝑌
)
2
− 2𝜌(𝑥 − 𝜇𝑋)(𝑦 − 𝜇𝑌)𝜎𝑋𝜎𝑌

]} .

(2.9)

2.2. Copula
When we have variables which can not be fitted to a bivariate or multivariate normal distribution
we can use a copulamodel. These are useful when choosing joint distributions tomodel random
variables whose marginal distributions are known [24], where the marginal distribution of one
variable is the probability distribution independent of the other variables.

Definition 2.2.1 (Copula). A joint probability function that results in both marginal distributions
being uniformly distributed on (0,1) is called a copula. That is, the joint distribution function
𝐶(𝑥, 𝑦) is a copula if 𝐶(0, 0) = 0 and for 0 ≤ 𝑥, 𝑦 ≤ 1:

𝐶(𝑥, 1) = 𝑥, 𝐶(1, 𝑦) = 𝑦. (2.10)

Saywewant to find a joint distribution function for random variables𝑋 and 𝑌, whosemarginal
functions are known continuous probability distribution functions: ℙ(𝑋 ≤ 𝑥) = 𝐹(𝑥) and ℙ(𝑌 ≤
𝑦) = 𝐹(𝑦). Now we want to find the joint probability function: 𝐻(𝑥, 𝑦) = ℙ(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦). We
take 𝐶(𝐹(𝑋), 𝐺(𝑌)) as the joint probability function of 𝐺(𝑌) and 𝐹(𝑋), this is a copula since both
𝐺(𝑌) and 𝐹(𝑋) are uniform. Since both 𝐹 and 𝐺 are increasing we know that 𝑋 ≤ 𝑥 if and only
if 𝐹(𝑥) ≤ 𝐹(𝑥). The same holds for 𝑌 and 𝐺(𝑌). Using this we can find the joint probability
function of 𝑋 and 𝑌, 𝐻(𝑥, 𝑦):

𝐻(𝑥, 𝑦) = ℙ(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦)
= ℙ(𝐹(𝑋) ≤ 𝐹(𝑥), 𝐺(𝑌) ≤ 𝐺(𝑦)
= 𝐶(𝐹(𝑥), 𝐺(𝑦)).

(2.11)

This copula approach of describing or modeling the joint distribution function for 𝑋 and 𝑌 is
first deciding on their marginal distributions 𝐹 and 𝐺, and then choosing an appropriate copula
to model the joint distribution of 𝐹(𝑋) and 𝐺(𝑌). An appropriate copula to model this joint
distribution is one that takes into account the dependency between 𝐹(𝑋) and 𝐺(𝑌).

A popular copula in the financial industry is the Gaussian copula. Let 𝑋 and 𝑌 be standard
normal variables whose joint probability function is given by (2.9) using 𝜇 = 0 and 𝜎 = 1. Let
Φ be the standard normal distribution, then the joint distribution of Φ(𝑋) and Φ(𝑌) is called the
Gaussian copula and is given by:

𝐶(𝑥, 𝑦) = ℙ(Φ(𝑋) ≤ 𝑥,Φ(𝑌) ≤ 𝑦) = ℙ(𝑋 ≤ Φ−1(𝑥), 𝑌 ≤ Φ−1(𝑦)) (2.12)

= ∫
Φ−1(𝑥)

−∞
∫
Φ−1(𝑦)

−∞

1
2𝜋√1 − 𝜌2

exp(−𝑠
2 − 2𝜌𝑠𝑡 + 𝑡2
2(1 − 𝜌2) ) 𝑑𝑠𝑑𝑡. (2.13)
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2.3. Stochastic processes
Throughout this paper we want to model different market scenario’s or “paths”. These sce-
nario’s are driven by risk factors which are typically modeled by stochastic processes. We
usually calibrate the model parameters for all risk factors from their historical scenario’s, based
on which we simulate scenarios of risk factors into the future. A stochastic process is a col-
lection of random variables indexed by a time variable 𝑡, denoted by (𝑋𝑡)𝑡≥0. In this section
the definitions and theorems are based on [14], [27] and [18]. We consider a probability space
(Ω,F , ℙ) and we define the following:

Definition 2.3.1 (Filtration). A filtration on probability space (Ω,F , ℙ) is a collection of 𝜎-algebras
(F𝑡)0≤𝑡≤∞ of F and is an increasing sequence F𝑠 ⊂ F𝑡 , ∀𝑠 ≤ 𝑡 ≤ ∞ .

Definition 2.3.2 (Adapted). A process (𝑋𝑡)𝑡≥0 is adapted if for every 𝑡 ≥ 0, 𝑋𝑡 is F𝑡 - measur-
able.

Definition 2.3.3 (Martingale). An adapted real-valued process (𝑋𝑡)𝑡≥0 is called a martingale if
𝑋𝑡 is integrable for every 𝑡 ≥ 0 and satisfies the martingale property for every 0 ≤ 𝑠 < 𝑡:

𝔼(𝑋𝑡|F𝑠) = 𝑋𝑠. (2.14)

The process is called a submartingale if for every 0 ≤ 𝑠 < 𝑡:

𝔼(𝑋𝑡|F𝑠) ≥ 𝑋𝑠. (2.15)

Definition 2.3.4 (Semimartingale). A semimartingale 𝑆 = (𝑆𝑡)𝑡≥0 is a adapted process of the
form:

𝑆𝑡 = 𝑆0 +𝑀𝑡 + 𝐴𝑡 (𝑡 ≥ 0), (2.16)

for a finite and F0 measurable 𝑆0, a local martingale (𝑀𝑡)𝑡≥0 with 𝑀0 = 0 and a finite variation
process (𝐴𝑡)𝑡≥0 with 𝐴0 = 0.
Definition 2.3.5. A real valued process {𝑊(𝑡), 𝑡 ≥ 0} or (𝑊𝑡)𝑡≥0 is a Brownian motion if:

• 𝑊(0) = 0
• For all 0 ≤ 𝑠 < 𝑡 ∶ 𝑊(𝑡) −𝑊(𝑠) ∼ 𝒩(0, 𝑡 − 𝑠).
• for 0 ≤ 𝑡0 < 𝑡1 < … < 𝑡𝑛,𝑊(𝑡𝑖) −𝑊(𝑡𝑖−1) with 𝑖 = 1,… , 𝑛 are independent.
• W(t) is almost surely continuous.

Theorem 2.3.6. The Brownian motion𝑊(𝑡) is a martingale.
Definition 2.3.7. For a simple process 𝜃(𝑡) = ∑𝑖 𝑣𝑖𝟙(𝑡𝑖−1 ,𝑡𝑖](𝑡) with stopping times 𝑡𝑖 and 𝑣 ∈
F𝑡𝑖−1 the integral of simple functions with respect to the Brownian motion is defined as:

𝐼𝑚(𝑡) = ∫
𝑡

0
𝜃𝑚(𝑠)𝑑𝑊(𝑠) =∑

𝑖≤𝑛
𝑣𝑖(𝑊(𝑡𝑖 ∧ 𝑡) −𝑊(𝑡𝑖−1 ∧ 𝑡)). (2.17)

Definition 2.3.8 (Ito’s integral). For any 𝜃(𝑠) ∈ 𝕃2, we can define the stochastic integral or Ito’s
integral as:

∫
𝑡

0
𝜃(𝑠)𝑑𝑊(𝑠) = lim

𝑚→∞
∫
𝑡

0
𝐼𝑚(𝑡), in 𝕃2, (2.18)
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with 𝜃𝑚(𝑠) a sequence of simple processes such that:

𝔼𝑛→∞ [∫
𝑡

0
|𝜃(𝑠) − 𝜃𝑛(𝑠)|𝑑𝑠] = 0. (2.19)

Theorem 2.3.9 (Ito’s formula). Let 𝑓 ∈ 𝐶2(ℝ)) and consider a semi martingale 𝑆 = 𝑀 + 𝐴.
Then it holds:

𝑓(𝑆𝑡) = 𝑓(𝑆0) + ∫
𝑡

0
𝑓′(𝑆𝑢)𝑑𝑆𝑢 +∫

𝑡

0
𝑓″(𝑆𝑢)𝑑[𝑆]𝑢, (2.20)

where we use Ito’s integral and [𝑆] is the quadratic variation of 𝑆.

2.4. Changing measures
In this paper we will distinguish two probability measures: the real-world measure ℙ and the
risk-neutral measure ℚ. In pricing derivatives we often use the risk neutral measure. Under
which the ratio of a derivative’s price and a numeraire becomes a martingale, following the
no-arbitrage pricing theory. The real-world measure is the measure which we can directly ob-
serve and quantify based on data series in the real world. For example, price quotes in the
stock market are usually no martingales. We can switch between measures using Girsanov’s
theorem.

Definition 2.4.1. Two probability measures ℙ and ℚ defined on probability space (Ω,F , 𝔽) are
equivalent if:

ℙ(𝐴) = 0 ⟺ ℚ(𝐴) = 0 for all 𝐴 ∈ F . (2.21)

Definition 2.4.2 (Girsanov’s Theorem). Let𝑊(𝑡) be a Brownianmotion on the probability space
(Ω,F , ℙ). We can divine a probability measure ℚ such that the Radon-Nikodyn derivative is
given by:

ℚ
ℙ|

F𝑡

= 𝑍𝑡 = ℰ(𝑋)𝑡 , (2.22)

with 𝑋 = (𝑋𝑡)𝑡≥0 a stochastic process and ℰ given by the stochastic exponential:

ℰ(𝑋)𝑡 = exp(𝑋𝑡 −
1
2[𝑋]𝑡). (2.23)

Then we know if𝑊(𝑡) is a Brownian motion under measure ℙ, then𝑊(𝑡)∗ is a Brownian motion
under ℚ and given by:

𝑊(𝑡)∗ = 𝑊(𝑡) − [𝑊(𝑡), 𝑋]. (2.24)

2.5. GBM
A process is called a Geometric Brownian Motion (GBM) process when it satisfies the following
SDE:

𝑑𝑆(𝑡) = 𝜇𝑆(𝑡)𝑑𝑡 + 𝜎𝑆(𝑡)𝑑𝑊(𝑡), (2.25)
with 𝑆(𝑡0) = 𝑆0, 𝜇 the drift parameter and 𝜎 the volatility. Here 𝑊(𝑡) is a Brownian motion and
for the increment we have:

𝑑𝑊(𝑡) = 𝑊(𝑡) −𝑊(𝑡 − 𝑑𝑡). (2.26)

Using Ito’s formula we can show that 𝑆(𝑡) has a log-normal distribution. This is that ln(𝑆(𝑡))
has a normal distribution. We take 𝑋(𝑡) = ln(𝑆(𝑡)) and see:

𝑑𝑋(𝑡) = (𝜇 − 12𝜎
2)𝑑𝑡 + 𝜎𝑑𝑊(𝑡), (2.27)
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with 𝑋(𝑡0) = ln(𝑆0). Since the Brownian motion increment 𝑑𝑊(𝑡) are normally distributed with
mean 0 and variance 𝑑𝑡, we see that the increments of 𝑋(𝑡) are normally distributed with mean
(𝜇 − 1/2𝜎)𝑑𝑡 and variance 𝜎2𝑑𝑡.

2.6. Dependent Brownian motions
Wewant to be able to add a dependence structure between two independent Brownian motions
𝑊̃1 and 𝑊̃2. We use [22] and we first establish what it means for two Brownian motions to be
independent, we find:

Definition 2.6.1. When two Brownian motions are correlated we have:

𝔼[𝑊𝑖(𝑡) ⋅ 𝑊𝑗(𝑡)] = 𝜌𝑖,𝑗𝑡 for 𝑖 ≠ 𝑗 (2.28)
𝔼[𝑊𝑖(𝑡) ⋅ 𝑊𝑗(𝑡)] = 𝑡 for 𝑗 = 𝑖 (2.29)

Two Brownian motions are said to be independent when:

𝔼[𝑊̃𝑖(𝑡) ⋅ 𝑊̃𝑗(𝑡)] = 0 for 𝑖 ≠ 𝑗 (2.30)
𝔼[𝑊̃𝑖(𝑡) ⋅ 𝑊̃𝑗(𝑡)] = 𝑡 for 𝑗 = 𝑖 (2.31)

And for the increments we have something similar, replacing 𝑡 with 𝑑𝑡.
Using a vector construction for our two independent Brownian motions, W̃ = [𝑊̃1, 𝑊̃1]𝑇, we

can implement a correlation using the Cholesky decomposition.

Definition 2.6.2. Each symmetric positive definite matrix 𝐶 has a unique factorization, the so-
called Cholesky decomposition, of the form:

C = LL𝑇 , (2.32)

where L is a lower triangular matrix with positive diagonals.

Using a correlation matrix C, the Cholesky decomposition gives us:

C = [ 1 𝜌1,2
𝜌1,2 1 ] = [

1 0
𝜌1,2 √1 − 𝜌21,2

] [
1 𝜌1,2
0 √1 − 𝜌21,2

] (2.33)

Now take independent Brownian motion 𝑊̃1 and 𝑊̃2 and we correlate them using a matrix-
vector multiplication L ∗ W̃(𝑡).

[
1 0
𝜌1,2 √1 − 𝜌21,2

] [𝑊̃1𝑊̃2
] = [

𝑊̃1
𝜌1,2𝑊̃1 +√1 − 𝜌21,2𝑊̃2

] . (2.34)

Nowwe define𝑊1(𝑡) = 𝑊̃1 and𝑊2(𝑡) = 𝜌1,2𝑊̃1+√1 − 𝜌21,2𝑊̃2. Which gives us two Brownian
motion correlated with 𝜌1,2.
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3
Counterparty Credit Risk (CCR) and

CCR Measures

In this chapter we dive into the definition of CCR and the quantification metrics for CCR in
industry, which we will need throughout this thesis. For this we use the book of Jong Gregory
[17]. Later on we will look into the methods to calculate EAD provided by Basel.

3.1. Financial Risk
In the financial world one can encounter different types of risk. An investor, bank or other
financial entity is always looking for a way to identify, quantify, manage and/or mitigate various
risks they face. Here risk mitigation refers to themeans one can take to reduce and/or transform
the concerned risk.

The topic of this thesis is related to the so-called Counterparty Credit Risk. This is the
risk that the counterparty of one’s financial contract will default prior to the expiration of the
contract and will not make all the payments required by the contract [30]. Exchange traded
derivatives are not affected by CCR: An exchange is a centralized counterparty and thus has
the knowledge of all positions traded via them. Due to the trades overview it has, the exchange
is able to better manage and thus guarantee the cash flows promised by the counterparty.

Other types of financial risk are typically categorized as follows: Market risk is the risk or the
volatility in the movements of market prices. Credit risk is when a debtor of a loan position may
be unable or unwilling to pay. Liquidity risk is the risk that a transaction cannot be executed
at normal market prices due to illiquidity of the underlying asset. Funding liquidity risk is the
possible inability to fund contractual payments or collateral requirements, potentially forcing an
early liquidation of assets and creating losses. Operational risk arises from unexpected errors
and losses incurred by people, systems, internal and external events, which includes human
error, failed processes, model risk, fraud and legal risk.

CCR is a risk caused by both volatility in the market and in the default probability of the
counterparty. However, it concerns the profit part of the Profit & Loss (P&L) distribution of a
financial product, while market risk concerns the loss part. CCR is somewhat similar to credit
risk, however, two aspects may differentiate these risks. First, the future value of the financial
contract traded in the market is uncertain and could be affected by collateral agreements. For
example, the value of a derivative on a potential default date will be the netted value of all future
cash flows required under that contract. Second, in a derivatives transaction each counterparty
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has credit risk to the other.

3.2. Exposure
Credit exposure defines the loss in the event of a counterparty default and is the basic metric
to quantify trade-level CCR [16]. For many financial instruments, the creditor is not at risk
for the full principal amount but only the replacement costs. We will often consider exposure
independently of any default event if assuming the absence of wrong way risk described in
section 3.3.

The MtM of a financial product defines the present value of the financial product under the
MtM Accounting and is usually the sum of discounted values of all payments to take place in
the future. These payments may be scheduled to occur many years in the future and may have
present values that are strongly dependant on market variables.

In the event a counterparty has defaulted, an institution may closeout the relevant contracts
and cease any future contractual payments. Following this, they may determine the net amount
owing between them and their counterpary. When the outstanding amount is negative, the
institution is still legally obligated to settle this amount. However, from a valuation perspective,
the position appears essentially unchanged. When the outstanding amount is positive, the
institution expect to recover some fraction of their claim. This unknown recovery value is not
included in the definition of exposure. We can then define exposure for a portfolio with MtM
price 𝑉(𝑡) at a certain time 𝑡 as:

𝐸(𝑡) =max(𝑉(𝑡), 0). (3.1)

As explained before in the introduction, the trading limit with respect to one counterparty is
usually defined based on the metric PFE, which is the 25th largest value out of 1000 possible
scenarios of the exposure we could have at a certain time in the future, i.e. corresponding
to 97.5% quantile of the exposure distribution. Regulators also define regulatory capital to
cover CCR, which is based on another metric named EE, which is the average of all possible
scenarios of exposure values.

3.3. Wrong Way risk
WWR is the risk that there exists an unfavourable dependence between exposure and counter-
party’s credit quality. In case of a FX Forward or cross-currency product we can consider WWR
as a possible linkage between the relevant foreign exchange rate and the default probability of
the counterparty. In the case of interest rate products, WWR might exist due to a relationship
between the relevant interest rates and the counterparty default probability: High interest rates
may trigger defaults and whereas low interest rates may be indicative of a recession where
defaults are more likely. One way of quantifying WWR is somehow modeling the relationship
between default probability and exposure, which is a main target of this thesis, see chapter 5.

3.4. Mitigation of CCR
3.4.1. Netting set
One way to mitigate CCR is by entering into a netting agreement, such that the MtM prices
of all trades within the same netting set with a counterparty can be aggregated, or in financial
jargon, netted. This is also sometimes referred to as closeout netting.

A bank can also consider payment netting, where it can net cash flows occurring on the
same day. This will typically relate to settlement risk.

We will mostly refer to a netting set which corresponds to a trade of set which can legally be
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netted together in the event of a default. In this thesis we will consider for simplicity one netting
set.

3.4.2. Collateral
Another way to mitigate CCR is collateralization. It works similar to loan collaterals: a borrower
is required to post collateral to the lender as a security of the loan. The collateral can be in the
form of an asset, cash or real estate depending on the type of loan. In our case when a bank and
a counterparty exchange a product or portfolio, they could ask collateral from the other party as
a security for high exposures. Just as netting this is in two ways, meaning that both parties can
post collateral. The receiver of the collateral only becomes the owner of this if the counterparty
goes into default. In the case of a positive MtM value the bank can ask for collateral and in
case of a negative MtM value, collateral could be asked of the bank. When entering a contract
with a counterparty, you can agree on several collateral posting. The amount of collateral is
then defined through the following parameters:

• A Threshold (TH), which is defined as the threshold for the MtM price, above which col-
lateral is posted.

• An independent amount, which is also named as initial margin by regulations, is an
amount of extra collateral that must be posted irrespective of the exposure.

• The Minimum Transfer Amount (MTA), which is the minimum amount of collateral that
can be posted.

Collateralization does bring other types of risk. Besides operational and liquidity risk we
are also faced by the Margin Period of Risk (MPOR), which is the risk that collateral cannot
be received immediately. During this period the MtM price might still change, causing possible
under-collateralization of the position. We will talk more about this in the next section, based
on [7].

3.4.3. Margin
We will consider the collateral in a bilateral way governed by the ISDA Master Agreement and
its Credit Support Annex (CSA), which is the commonly adopted template for legal contracts for
bilateral over-the-counter derivatives trading. The collateral structure is specified in the CSA
as a combination of two types of margin: initial margin and variation margin. A margin is the
collateral that an investor has to deposit with their broker or exchange to serve as collateral
for the trade. When the trade drops in value the investor must bring the initial margin back to
the initial level and the amount that need to be posted is referred to as variation margin. The
variation margin is thus closely related to the MtM price. The initial margin is the amount that
the investor must have to post to enter the trade.

Furthermore, we must take into account the MPOR. According to Basel III article 50.19 [1]
the definition of MPOR is given by the time period from the last exchange of collateral covering
a netting set of transactions with a defaulting counterparty until that counterparty is closed out
and the resulting market risk is re-hedged. This we interpret as the time between a margin call
is made and the moment when the collateral is received, which we denote with 𝜕𝑡. According
to Basel III article 53.28 [4] this is for re-margining with a periodicity of N-days at least equal
to the supervisory floor, F, plus the N days minus one day. Suppose we have a re-margining
period of 1 day and a supervisory floor of 10 business days, the length of the MPOR is equal
to 10.

When we consider ourselves a bank 𝐵 and have a counterparty 𝐶 which pays collateral
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𝐴𝐵(𝑡) and 𝐴𝐶(𝑡) respectively. The collateral at time 𝑡 can then be defined by:

𝐾(𝑡) = 𝐴𝐶(𝑡) − 𝐴𝐵(𝑡), (3.2)

where the collateral in possession of the bank is defined as 𝐾(𝑡) and we assume the collateral
payments are netted. In the presence of collateral, the definition of exposure is adjusted to the
following:

𝐸(𝑡) =max(𝑉(𝑡) − 𝐾(𝑡), 0). (3.3)

If we take into account the threshold payments for the bank and counterparty as TH𝐵 and
TH𝐶 respectively, we can find an expression for the collateral of both parties. Note that 𝑉(𝑡) is
the MtM price of a portfolio in favour of the bank, we have:

𝐴𝐶(𝑡) = max((𝑉(𝑡) − TH𝐶), 0), (3.4)
𝐴𝐵(𝑡) = max((−𝑉(𝑡) − TH𝐵), 0). (3.5)

To fully align with the collateral requirements in practice, wemust consider a fewmore things
which we discussed earlier. In reality there is delay between the marginal call and collateral
which is the MPOR indicated by 𝜕𝑡. When we fill this in for (3.2) together with the expressions
of the thresholds we get:

𝐾(𝑡) =max((𝑉(𝑡 − 𝜕𝑡) − TH𝐶), 0) −max(−(𝑉(𝑡 − 𝜕𝑡) − TH𝐵), 0). (3.6)

Furthermore, since the default settlement is also not instant, we must consider the cash
flows which happen close to a default. We will refer to these as trade flows since they do
not necessarily have to be cash that is exchanged. A missed trade flow is a serious event
under the ISDA Master Agreement, and a “failure to pay” can rapidly lead to default and trade
termination. We will refer to the unpaid trade flows as UTF(𝑡). When we add this term to the
simplified model, we have the following updated version of the exposure formula:

𝐸(𝑡) =max(𝑉(𝑡) − 𝐾(𝑡) +UTF(𝑡), 0). (3.7)

In another, less common, version of the classical model, the assumption is that both 𝐵 and
𝐶 will stop paying trade flows at the moment the MPOR commences, time 𝑡 − 𝜕𝑡. Then we
would set the unpaid trade flows to:

UTF(𝑡) = TF(𝑡, [𝑡 − 𝜕𝑡, 𝑡]), (3.8)

where TF(𝑡, [𝑡 − 𝜕𝑡, 𝑡]) is the time 𝑡 net value of all the trade flows scheduled between 𝑡 − 𝜕𝑡
and 𝑡.

In this thesis we will assume that both 𝐵 and 𝐶 will pay their trade flows for the entire MPOR
and thus set UTF(𝑡) to 0. Furthermore, we assume that only our counterparty pays collateral.
We do still want to take in to account the minimal transfer amount where for simplification we
can add this to the threshold and call thisMTA. In our simulation, we will calculate the exposure
with collateral as (3.2) with 𝐾(𝑡) given by:

𝐾(𝑡) =max(𝑉(𝑡 − 𝜕𝑡) − TH−MTA, 0). (3.9)
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3.5. EAD under Standardized Approach.
The Standardized Approach for CCR, ie. SA-CCR, can be found in the Basel framework, article
CRE52 [5]. The SA-CCR can be used only for OTC derivatives, exchange-traded derivatives
and long settlement transactions. It is determined by using the following formula:

EAD = 𝛼 ∗ (RC+ PFE), (3.10)

where EAD is the exposure at default and is to be calculated separately for each netting set.
In the formula above we have that 𝛼 = 1.4 (designed to address WWR), RC the replacement
costs and PFE the amount for potential future exposure.

The RC and PFE are calculated differently for a margined and a unmargined netting set.
We say that a netting set is margined when the counterparty has to post variation margin. All
other netting sets are considered as unmargined netting sets, including where only the bank
needs to post variation margin.

3.5.1. RC
If we consider an unmargined netting set, the RC intends to capture the loss that would occur
if a counterparty would default and could not pay their obligation immediately. The PFE add-on
represents a potential conservative increase in exposure over a one-year time horizon from the
present date. The replacement costs are then given by:

RC =max(𝑉 − 𝐶, 0), (3.11)

where 𝐶 is equal to the Net Independent Collateral Amount (NICA), which is the difference of
the initial collateral amount between the bank and the counterparty. Note that in this case the
RC takes in to account the loss at a single time point. The future component of only a 1-year
period is then added with the PFE add-on.

For a margined netting set, the RC tries to capture the loss that would occur if a counterparty
were to default at the present or at a future time, assuming that the closeout and replacement of
transactions occur instantaneously. However, we must take into account the MPOR between
the last exchange of collateral before default and replacement of the trades in the market. The
PFE add-on represents the potential change in value of the trades during this time period. Here
the RC is equal to:

RC =max(𝑉 − (VM+ NICA),TH+MTA− NICA, 0). (3.12)

In this thesis we take NICA equal to 0, and say that the variation margin (VM) is equal to the
value of the portfolio. We see that the recover costs are equal to the threshold plus minimum
transfer amount. This is then the maximum loss which could occur. Note that the RC does not
take into account the MPOR, this will be integrated in the PFE add-on.

Note that the RC is calculated at netting set level, whereas PFE add-ons are calculated for
each asset class within a given netting set and then aggregated.

3.5.2. PFE add-on
PFE is the amount of potential future exposure. It consists of an aggregate add-on component,
which consist of add-ons calculated for each asset class and a multiplier that allows for recog-
nition of excess collateral or negative MtM value for the transactions. Thus, the PFE is given
by:

PFE =multiplier ∗ AddOnaggregate. (3.13)

15



Since over-collateralization should reduce capital requirements for CCR, the PFE compo-
nent also takes into account the risk-reducing property of collateral. This is why the Basel com-
mittee decided to apply a multiplier component that decreases when the collateral increase.
This multiplier is floored at 5% so it does not reach 0. The multiplier will be activated when the
current market value is negative or when the initial collateral is higher then the initial value. The
multiplier is given by:

multiplier =min {1;Floor+ (1 − Floor) ∗ exp( 𝑉 − 𝐶
2 ∗ (1 − Floor) ∗ AddOnagg

)} . (3.14)

In our case we won’t take into consideration the initial collateral so the multiplier is only
activated when the initial value is negative. Note that the multiplier decreases when the value
decreases and that the multiplier increases when the aggregated add-on increases.

To calculate the aggregate add-on, banksmust calculate add-ons for each asset class within
the netting set. The SA-CCR uses the following five asset classes:

• interest rate derivatives

• Foreign exchange derivatives

• Credit derivatives

• Equity derivatives

• Commodity derivatives

The respective add-ons for each asset class are simply aggregated using the following
formula:

AddOnaggregate =∑
𝑎
AddOn𝑎 , (3.15)

where 𝑎 is the asset class. When this primary risk driver is clearly identifiable, the transaction
will fall into one of the asset classes described above.

Per trade in one asset class we must calculate the effective notional (EN) which is described
below. Then, we need to divide the trades into hedging sets by separating them according to
the corresponding currency. Then per hedging sets we can divide the trades into one of the
three maturity buckets. Bucket 1 for trades with a maturity lower then one year, bucket 2 for
maturities between one and five years, and bucket 3 for maturities higher then five years. We
calculate the effective notional per maturity bucket by adding the effective notional on trade
level. We name these EN𝐵1,EN𝐵2 and EN𝐵3.

To calculate the effective notional per hedging set ℎwe follow the following formulas, whereby
we distinguish the cases whether the bank chooses to recognise offset:

Offset formula: ENℎ = √EN2𝐵1,EN2𝐵2,EN2𝐵3 + 1.4EN𝐵1EN𝐵2 + 1.4EN𝐵2EN𝐵3 + 0.6EN𝐵1EN𝐵3

(3.16)
No Offset formula: ENℎ = |EN𝐵1| + |EN𝐵2| + |EN𝐵3| (3.17)

For foreign exchange classes we do not separate the trades into maturity buckets. The ENℎ
is then simply the sum of the effective national’s of all the trades within the hedging set. In the
foreign exchange asset class we distinguish hedging sets by the same currency pair.
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We now want to derive the add-on per asset class. We do this by using the effective notional
per hedging set ENℎ described above, and with the Supervisory Factor (SF) per asset-class.
This is a factor specific to each asset class used to convert the effective notional amount into
effective EPE based on the measured volatility of the asset class. For the interest rate class
this is equal to 0.5% and for the foreign exchange class 4%. The hedging set add-on is derived
when we multiply ENℎ with SF. The asset class add-on is calculated by taking the sum of the
hedging set add-ons:

AddOn𝑎 =∑
ℎ
AddOnℎ =∑

ℎ
SF ∗ |ENℎ| (3.18)

We need to divide the three products IRS, XCS and FX Forward to their corresponding
asset class. We will say that the IRS and XCS are in the interest rate asset class since this is
the most dominant risk factor. Within the IRS asset class we will divide the hedging sets where
the product is in domestic currency and foreign currency. Within the XCS asset class we will
divide the hedging sets in the cases where the fixed leg is paid in the domestic currency and
where the fixed leg is paid in foreign currency. Within the FX asset class we have only one
hedging set.

3.5.3. Effective Notional
The effective notional is a measure of the sensitivity of the trade to the underlying risk factors
and is calculated as:

EN = 𝑑 ∗ 𝑀𝑓 ∗ 𝛿, (3.19)

where 𝑑 is the adjusted notional. For interest rate and credit derivatives, the adjusted notional
is the product of the trade notional amount 𝑁 converted to the domestic currency, and the
supervisory duration 𝐷𝑠. This last term is given by the following formula:

𝐷𝑠 =
exp(−0.05 ∗ 𝑆) − exp(−0.05 ∗ 𝑇)

0.05 , (3.20)

where 𝑆 is the start date and 𝑇 the end date of the time period referenced by the interest rate
or credit derivative. Thus 𝑑 is given by:

𝑑 = 𝑁 ∗ 𝐷𝑠. (3.21)

For derivatives in the foreign exchange asset class the adjusted notional is the notional
value of the foreign currency leg of the derivative contract converted to the domestic currency.

Supervisory delta 𝛿 is also defined at the trade level and is applied to the adjusted no-
tional amount to reflect the direction of the transaction and its non-linearity. It is defined for all
derivatives as +1 for a long position and -1 for a short position.

For XCS and IRS products 𝛿 = 1 when we pay the fixed leg and receive the floating leg.
Then consequently we have 𝛿 = −1 when we pay the floating leg and receive the fixed leg.
For FX products 𝛿 = 1 when we pay the domestic currency and receive the foreign currency.
Consequently 𝛿 = −1 when we pay the foreign currency and receive the domestic currency.

The maturity factor 𝑀𝑓 takes in to account the time period over which the PFE is calcu-
lated. This is different for margined and unmargined netting sets. For unmargined netting set
the maturity factor is calculated as the minimum of one year and the remaining maturity 𝑀 of
the derivative contract, floored at ten business days. This gives the following formula for the
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maturity factor:

𝑀𝑓 = √
min{𝑀; 1}

1 . (3.22)

For a margined netting set, the maturity factor is calculated using the MPOR. Since we have
set the MPOR to 10 business days and 𝑀𝑓 is expressed in years, the formula is given by:

𝑀𝑓 =
3
2
√ 10
252. (3.23)

3.6. EAD under the Internal Model Method
Another way to calculate the EAD is by an Internal Model Method, i.e the IMM. Detailed model
requirements of this method are described in the Basel framework article CRE53 [4]. A bank
that wants to use the IMM to measure exposure or EAD can only do so when it has approval
from its supervisor.

The IMM measures the CCR exposure or EAD at the level of a netting set. It must fore-
cast the changes in market value due to changes in market variables, i.e. risk factors, such as
interest and exchange rates. For margined counterparty’s the model may also capture future
collateral movements. The particular model that a bank should use is not specified in regula-
tions. Instead it must meet certain requirements. When using such a model, the exposure of
default is defined as follows:

EAD = 𝛼 ∗ EEPE, (3.24)

where 𝛼 is again 1.4 and EEPE is the average over time of the effective EE.

The internal model estimates EE at future time points 𝑡1, 𝑡2, … , 𝑡𝑛. The effective EE is the
non-decreasing EE and it is given by:

effective𝐸𝐸(𝑡𝑘) =max(effective𝐸𝐸(𝑡𝑘−1), 𝐸𝐸(𝑡𝑘)), (3.25)

for 𝑡𝑘 = 𝑡1, 𝑡2, … , 𝑡𝑛. The IMM requires that we calculate the EEPE over a 1 year time horizon.
If all contracts expire before one year, then the we need to calculate the EEPE over the time
until the last contract is expired. Using that 𝑑𝑡𝑘 = 𝑡𝑘 − 𝑡𝑘−1, the EEPE is given by:

EEPE =
min(1,𝑀)

∑
𝑘=1

effective𝐸𝐸(𝑡𝑘)𝑑𝑡𝑘 . (3.26)

Note that the alpha factor in the SA-CCR and in the IMM is introduced to account for WWR.
Later in this thesis, as a main goal of this thesis, we will model WWR specifically and integrate
it into the simulation framework we develop according to IMM requirements.
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4
Simulation Framework without WWR

In this chapter we set up a simulation framework for CCR according to IMM requirements, as
well as the pricing functions to value the financial products which we will include in our testing
portfolios. In accordance with IMM, in this simulation framework we won’t take the WWR into
consideration yet. Below we first describe the mathematical framework for interest rates, after
which we define the products that we consider in this thesis. We then describe the algorithms to
calculate the EE. Lastly, we develop the method for calibration and conduct sensitivity analysis
to determine the parameters.

4.1. Various interest rate definitions
The concept of interest rate is quite familiar to many of us. When someone deposits money on
the bank account they expect to receive some interest from it. Or when a bank loans money
to a client, the client must pay interest. We provide mathematical definitions of various interest
rates below so that we can model them properly in our simulation. The definitions can be found
in the books [22] and [9].

Definition 4.1.1 (Money market account). We say 𝐵(𝑡) is the value of a bank account at time
𝑡 ≥ 0. Here we assume 𝐵(0) = 1 such that:

𝐵(𝑡) = 𝑒∫
𝑡
0 𝑟(𝑠)𝑑𝑠 , (4.1)

where 𝑟(𝑡) is a function of time and is referred to as the instantaneous spot rate or the short
rate.

Definition 4.1.2 (short-rate). The short-rate is defined as the interest rate one earns on a risk
less investment over an small period of time Δ𝑡. We see from the previous definition that:

𝐵(𝑡 + Δ𝑡) − 𝐵(𝑡)
𝐵(𝑡) ≈ 𝑟(𝑡)Δ𝑡. (4.2)

Thus money on the bank account, a riskless investment, grows at each small period of time
Δ𝑡 with the return of 𝑟(𝑡).

Bond securities are financial products that pay a regular interest, which is called a coupon,
on a predefined amount of money. The main issuers of bonds in global financial markets are
central and local governments, whereas companies may issue so-called corporate bonds. A
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special type of bonds are zero-coupon bonds, which are often-used numeraires for pricing
interest rate derivatives.

Definition 4.1.3. A basic interest rate product is the zero-coupon bond, 𝑃(𝑡, 𝑇), which pays 1
currency unit at maturity time 𝑇, i.e. 𝑃(𝑇, 𝑇) = 1. We are interested with its value at time 𝑡 < 𝑇.
The price of a zero-coupon bond at time 𝑡 with maturity 𝑇 is thus given by:

𝑃(𝑡, 𝑇) = 𝔼𝑄 [ 𝐵(𝑡)𝐵(𝑇)𝑃(𝑇, 𝑇)|F (𝑡)] = 𝔼𝑄 [𝑒−∫
𝑇
𝑡 𝑟(𝑧)𝑑𝑧|F (𝑡)] . (4.3)

We can define the spot rate 𝑅(𝑡, 𝑇) as the continuously compounded rate of return that
generates the observed price of the pure discount bond. We can solve this as:

𝑃(𝑡, 𝑇) = 𝑒−𝑅(𝑡,𝑇)(𝑇−𝑡), (4.4)

𝑅(𝑡, 𝑇) = − ln𝑃(𝑡, 𝑇)(𝑇 − 𝑡) . (4.5)

Alternative to continuous compounding we can do simple compounding.

Definition 4.1.4. The simply compounded interest rate at time 𝑡 for maturity 𝑇 is denoted by
𝐿(𝑡, 𝑇) and is the constant rate at which an investment has to be made to produce an amount of
one unit of currency at maturity, starting from 𝑃(𝑡, 𝑇) units of currency at time 𝑡 when accruing
occurs proportionally to the investment time.

𝐿(𝑡, 𝑇) = 1 − 𝑃(𝑡, 𝑇)
(𝑇 − 𝑡)𝑃(𝑡, 𝑇) . (4.6)

Market LIBOR rates rates are simply compounded rates. It can be easily proved that the
instantaneous short rate 𝑟(𝑡) is the limit of the different rates defined above:

𝑟(𝑡) = lim
𝑇→𝑡

𝑅(𝑡, 𝑇) = lim
𝑇→𝑡

𝐿(𝑡, 𝑇). (4.7)

4.1.1. Forward interest rate
Forward rates are characterised by three time instants, 𝑡, expiry 𝑇 andmaturity 𝑆 with 𝑡 ≤ 𝑇 ≤ 𝑆.
Forward rates are interest rates that can be decided today for an investment in a future time
period. We can derive the forward interest rate through a forward rate agreement (FRA). The
contract gives its holder an interest-rate payment for the period between time 𝑇 and 𝑆. At
maturity 𝑆 a payment based on the floating spot rate 𝐿(𝑇, 𝑆) is exchanged for a payment based
on the fixed interest rate 𝐾 resetting at 𝑇. For a notional amount 𝑁 the value of the FRA at time
𝑆, seen from the perspective where one pays the floating leg, is given by:

𝑉𝐹𝑅𝐴(𝑆) = 𝑁(𝑆 − 𝑇)(𝐾 − 𝐿(𝑇, 𝑆)) = 𝑁 ((𝑆 − 𝑇)𝐾 −
1

𝑃(𝑇, 𝑆) + 1) . (4.8)

Therefore the value for the FRA at time 𝑡 is:

𝑉𝐹𝑅𝐴(𝑡) = 𝑃(𝑡, 𝑆)𝑉𝐹𝑅𝐴𝑆 = 𝑃(𝑡, 𝑆)𝑁(𝑆 − 𝑇)(𝐾 − 𝐿(𝑆, 𝑇)), (4.9)
= 𝑁 (𝑃(𝑡, 𝑆)(𝑆 − 𝑇)𝐾 − 𝑃(𝑡, 𝑇) + 𝑃(𝑡, 𝑆)) . (4.10)

There is one value for 𝐾 such that the value at 𝑡 is 0. This resulting rate is the forward rate.
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Definition 4.1.5. The simply compounded forward interest rate at time 𝑡 for expiry 𝑇 > 𝑡 and
maturity 𝑆 > 𝑡 is denoted by 𝐹(𝑡, 𝑇, 𝑆) and is defined by:

𝐹(𝑡, 𝑇, 𝑆) = 1
𝑆 − 𝑇 (

𝑃(𝑡, 𝑇)
𝑃(𝑡, 𝑆) − 1) , (4.11)

when the maturity date approaches the expiry date we can get the instantaneous forward rate
by taking the limit.

Definition 4.1.6 (Instantaneous forward interest rate). The Instantaneous forward interest rate
at time 𝑡 for maturity 𝑇 > 𝑡 is denoted by 𝑓(𝑡, 𝑇) and given by:

𝑓(𝑡, 𝑇) = lim
𝑆→𝑇

𝐹(𝑡, 𝑆, 𝑇) = −𝜕 ln𝑃(𝑡, 𝑇)𝜕𝑇 . (4.12)

4.1.2. IRS swap
Swaps are financial products that enable their holders to swap two sets of interest rate pay-
ments. The most commonly known type of swap is the plain vanilla interest rate swap. We
will consider the case where one party agrees to pay the fixed cash flows that are equal to the
interest at a predetermined, fixed rate on a notional amount. The counterparty pays a floating
interest on the same notional amount. The payments are made at predetermined future dates
before a pre-defined maturity date.

We will refer to the plain vanilla interest rate swap as just the Interest Rate Swap (IRS). The
IRS consists of two legs, a fixed leg with a series of fixed rate payments, at a fixed rate 𝐾 at the
future times 𝑇𝑖+1, … , 𝑇𝑚 and the float leg consisting of a series floating rates. We take 𝜏𝑖 as the
time between payments in years. The payment of the fixed leg at 𝑇𝑖 then equals 𝜏𝑖𝑁𝐾, with 𝑁
the notional amount and 𝐾 the fixed interest rate. We choose 𝐾 such that value of the swap at
𝑡 = 0 is equal to 0.

The float leg equals𝑁𝜏𝑖𝐹(𝑡; 𝑇𝑖−1, 𝑇𝑖)which is the forward interest rate over the period [𝑇𝑖−1, 𝑇𝑖].
Here 𝑇𝑖−1 is the reset date and 𝑇𝑖 the maturity date. This means that the interest rate over the
period [𝑇𝑖−1, 𝑇𝑖], is determined at 𝑇𝑖−11. We will assume that these dates will overlap with the
payment dates. The payoff of the interest rate swap is then given by:

𝑉𝐼𝑅𝑆(𝑡) = 𝑁
𝑚

∑
𝑘=𝑖+1

𝜏𝑘𝑃(𝑡, 𝑇𝑘)(𝐹(𝑡; 𝑇𝑘−1, 𝑇𝑘) − 𝐾). (4.13)

Note that we only sum beginning at 𝑖 + 1, since the start date of the swap is at 𝑇𝑖, the first
payment is at 𝑇𝑖+1. We now only consider the price of the payer swap. Using the definition of
the forward rate we see:

𝑉𝐼𝑅𝑆(𝑡) = 𝑁
𝑀

∑
𝑘=𝑖+1

𝜏𝑘𝑃(𝑡, 𝑇𝑘)𝐹(𝑡; 𝑇𝑘−1, 𝑇𝑘) − 𝑁𝐾
𝑀

∑
𝑘=𝑖+1

𝜏𝑘𝑃(𝑡, 𝑇𝑘) (4.14)

= 𝑁(𝑃(𝑡, 𝑇𝑖) − 𝑃(𝑡, 𝑇𝑚)) − 𝑁𝐾
𝑚

∑
𝑘=𝑖+1

𝜏𝑘𝑃(𝑡, 𝑇𝑘), (4.15)

where 𝑡 < 𝑇𝑖+1, and we will use that 𝑃(𝑡, 𝑇𝑖) = 1 if 𝑡 > 𝑇𝑖. Thus we will shift 𝑇𝑖 such that
𝑇𝑖 < 𝑡 < 𝑇𝑖+1
1There exist also set-in-arrear IR swaps, for which the forward rates are set at the end of each coupon period, i.e,
𝑇𝑖. These are not in scope of this thesis.
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4.2. Foreign exchange derivatives
In our testing portfolio we also have products related to currency exchanges. We will use the
terms domestic and foreign interest rates to define the different interest rate per currency. For
the exchange rate we will use the notation 𝑋(𝑡), which means 𝑋(𝑡) unit of domestic currency
equals one unit of foreign currency at time 𝑡.

A simple exchange rate product is the Foreign Exchange (FX) Forward. This is a derivative
where one currency is exchanged for another currency at future date at a predetermined ex-
change rate. We want to exchange an amount of domestic currency𝑁𝑑 for an amount of foreign
currency 𝑁𝑓 at time 𝑇. Using the zero coupon bond for the domestic and foreign currency we
receive the value of the forward contract at time 𝑡 < 𝑇:

𝑉𝐹𝑋(𝑡) = 𝑁𝑓𝑃𝑓(𝑡, 𝑇)𝑋(𝑡) − 𝑁𝑑𝑃𝑑(𝑡, 𝑇), (4.16)

where 𝑃𝑓(𝑡, 𝑇) is the zero coupon bond in the foreign currency and 𝑃𝑑(𝑡, 𝑇) the zero coupon
bond in the domestic currency. At the time the contract is made we want to choose 𝑁𝑑 and 𝑁𝑓
according to a predetermined exchange rate 𝑋0 and we have 𝑁𝑑 = 𝑋0𝑁𝑓. The value of an FX
Forward is than fair at time 𝑡 when 𝑋0 is given by the forward exchange rate.

Definition 4.2.1. The forward exchange rate is given by:

𝑋𝐹(𝑡, 𝑇) = 𝑋(𝑡)
𝑃𝑓(𝑡, 𝑇)
𝑃𝑑(𝑡, 𝑇)

. (4.17)

We will also consider a Cross-Currency Swap (XCS). This is a swap which is similar to the
interest swap, only we will receive one of the legs in foreign currency. The value of a swap
in which one receives the floating leg in foreign currency and pays the fixed leg in domestic
currency is given in domestic currency:

𝑉𝑋𝐶𝑆(𝑡) = 𝑁𝑓𝑋(𝑡)
𝑀

∑
𝑘=𝑖+1

𝜏𝑘𝑃𝑓(𝑡, 𝑇𝑘)𝐹𝑓(𝑡; 𝑇𝑘−1, 𝑇𝑘) − 𝑁𝑑𝐾
𝑀

∑
𝑘=𝑖+1

𝜏𝑘𝑃𝑑(𝑡, 𝑇𝑘), (4.18)

where we also choose 𝑁𝑑 and 𝑁𝑓 according to a predetermined exchange rate 𝑋0. Later in
the calculations of our portfolio we allow different variates of XCS contracts such as we pay or
receive the floating or fixed leg.

4.3. Interest rate models
To model the interest rate, a popular type of models in industry are short-rate models, in par-
ticular the Hull-White model and an adaption of the Hull-White model i.e. the G1+ model. For
more details we refer to [22], [9] and [12].

An interest rate model is classified as an affine term-structure model, if it is a stochastic
model whereby the drift and volatility are of the affine form. More precisely, when the risk free
dynamic of the short rate model is given by:

𝑑𝑟(𝑡) = 𝜇(𝑡, 𝑟(𝑡))𝑑𝑡 + 𝜎(𝑡, 𝑟(𝑡))𝑑𝑊(𝑡), (4.19)

then the model has an affine term structure if the drift and volatility are of the following form for
deterministic time functions 𝛽1, 𝛽2, 𝛼1 and 𝛼2:

𝜇(𝑡, 𝑟(𝑡)) = 𝛽1(𝑡)𝑟(𝑡) + 𝛼1(𝑡), (4.20)
𝜎2(𝑡, 𝑟(𝑡)) = 𝛽2(𝑡)𝑟(𝑡) + 𝛼2(𝑡). (4.21)
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It is desirable for the short rate model to be of affine term structure since we can then write
the zero coupon bond as an expression of the short rate. Note that for affine interest rate
models, we can always write the price of a zero-coupon bond as follows:

𝑃(𝑡, 𝑇) = 𝐴(𝑡, 𝑇) exp(−𝐵(𝑡, 𝑇)𝑟(𝑡)), (4.22)

where 𝐴 and 𝐵 can be obtained by solving the following Ricatti differential equations:
𝜕
𝜕𝑡𝐵(𝑡, 𝑇) + 𝛽1(𝑡)𝐵(𝑡, 𝑇) −

1
2𝛽2(𝑡)𝐵(𝑡, 𝑇)

2 + 1 = 0, 𝐵(𝑇, 𝑇) = 0 (4.23)

𝜕
𝜕𝑡 [ln𝐴(𝑡, 𝑇)] − 𝛼1(𝑡)𝐵(𝑡, 𝑇) +

1
2𝛼2(𝑡)𝐵(𝑡, 𝑇)

2 = 0, 𝐴(𝑇, 𝑇) = 1. (4.24)

4.3.1. Hull-White model
The Hull-White model is a single-factor, no-arbitrage yield curve model in which the short-term
interest rate is driven by an extended Ornstein-Uhlenbeck mean reverting process. The dy-
namic of process 𝑟(𝑡) is given by:

𝑑𝑟(𝑡) = 𝜆(𝜃(𝑡) − 𝑟(𝑡))𝑑𝑡 + 𝜂𝑑𝑊𝑟(𝑡), 𝑟(0) = 𝑟0, (4.25)

where𝑊𝑟(𝑡) is the Brownian Motion, parameter 𝜂 determines the overall level of volatility and 𝜆
is the mean reversion rate parameter. A large value of 𝜆 causes short-term rate movements to
dampen out rapidly, so that the long-term volatility is reduced. Here 𝜃(𝑡) is a time-dependent
drift term, which is used to fit the mathematical bond prices to the yield curve observed in the
market, which is given by:

𝜃(𝑡) = 1
𝜆
𝜕
𝜕𝑡𝑓

𝑟(𝑡) + 𝑓𝑟(𝑡) + 𝜂2
2𝜆2 (1 − 𝑒

−2𝜆𝑡). (4.26)

The Hull-White process is free of arbitrage if and only if we have the following expression
in (4.26):

𝑓𝑟(𝑡) = − 𝜕𝜕𝑡 log𝑃𝑚𝑘𝑡(𝑡), (4.27)

where 𝑃𝑚𝑘𝑡(𝑡) is the market discount and is given by:

𝑃𝑚𝑘𝑡(𝑡) = 𝑒−𝑟0𝑡 . (4.28)

Using Ito’s lemma we get the following solution for the short rate process:

𝑟(𝑡) = 𝑒−𝜆𝑡𝑟(𝑠) + 𝜆∫
𝑡

𝑠
𝜃(𝑧)𝑒−𝜆(𝑡−𝑧)𝑑𝑧 + ∫

𝑡

𝑠
𝜂𝑒−𝜆(𝑡−𝑧)𝑑𝑊𝑟(𝑧). (4.29)

Therefore, 𝑟(𝑡) is conditionally on F𝑠 normally distributed with mean and variance given by:

𝔼[𝑟(𝑡)|F𝑠] = 𝑟(𝑠)𝑒−𝜆𝑡 + 𝜆∫
𝑡

𝑠
𝜃(𝑧)𝑒−𝜆(𝑡−𝑧)𝑑𝑧, (4.30)

𝕍𝑎𝑟[𝑟(𝑡)|F𝑠] = ∫
𝑡

𝑠
𝜂2𝑒−2𝜆(𝑡−𝑧)𝑑𝑧 = 𝜂2

2𝜆(1 − 𝑒
−2𝜆(𝑡−𝑠)). (4.31)

From the Hull-White model we get the following results for functions 𝐴(𝑡, 𝑇) and 𝐵(𝑡, 𝑇) in
the equation for the zero-coupon bond (4.22):

𝐵(𝑡, 𝑇) = 1
𝜆 [1 − 𝑒

−𝜆(𝑇−𝑡)] (4.32)

𝐴(𝑡, 𝑇) = 𝑃𝑚𝑘𝑡(𝑇)
𝑃𝑚𝑘𝑡(𝑡)

exp(𝐵(𝑡, 𝑇)𝑓𝑟(𝑡) − 𝜂
2

4𝜆(1 − 𝑒
−2𝜆𝑡)𝐵(𝑡, 𝑇)2) (4.33)

23



4.3.2. G1++ model
The G1++ model is an equivalent formulation for the Hull-White model and it is given by:

𝑑𝑥(𝑡) = −𝜆𝑥(𝑡)𝑑𝑡 + 𝜂𝑑𝑊(𝑡), 𝑥(0) = 0, (4.34)
𝑟(𝑡) = 𝑥(𝑡) + 𝛽(𝑡), (4.35)

where 𝛽(𝑡) is the deterministic shift having the same role as 𝜃(𝑡). Using Ito’s lemma we can
find the equivalence with the Hull-White model and we can find that:

𝜃(𝑡) = 𝜆𝛽(𝑡) + 𝜕𝛽(𝑡)𝜕𝑡 . (4.36)

Using the same method as before we can find the solution of the model which reads:

𝑟(𝑡) = 𝑥(𝑡) + 𝛽(𝑡) = 𝑥(𝑠)𝑒−𝜆(𝑡−𝑠) +∫
𝑡

𝑠
𝜂𝑒−𝜆(𝑡−𝑧)𝑑𝑊𝑟(𝑧) + 𝛽(𝑡). (4.37)

Therefore 𝑟(𝑡) is again conditionally on F𝑠 normally distributed with mean and variance
given by:

𝔼[𝑟(𝑡)|F𝑠] = 𝑥(𝑠)𝑒−𝜆(𝑡−𝑠) + 𝛽(𝑡), (4.38)

𝕍𝑎𝑟[𝑟(𝑡)|F𝑠] = ∫
𝑡

𝑠
𝜂2𝑒−2𝜆(𝑡−𝑧)𝑑𝑧 = 𝜂2

2𝜆(1 − 𝑒
−2𝜆(𝑡−𝑠)). (4.39)

We see that the variance is indeed the same as the Hull-White model. We can now also
derive the expression of 𝛽(𝑡) such that the expectation is the same:

𝛽(𝑡) = 𝑓𝑟(𝑡) + 𝜂2
2𝜆2 (1 − 𝑒

−𝜆𝑡)2. (4.40)

Following the proof of [12], we can find the expression of 𝑃(𝑡, 𝑇) using the G1++ model.
Using the expression for the ZCB in (4.22), we find:

𝐵(𝑡, 𝑇) = 1
𝜆(1 − 𝑒

−𝜆(𝑇−𝑡)), (4.41)

(4.42)

𝐴(𝑡, 𝑇) = 𝑃𝑚𝑘𝑡(𝑇)
𝑃𝑚𝑘𝑡(𝑡)

𝑒1/2(𝑉(𝑡,𝑇)−𝑉(0,𝑇)+𝑉(0,𝑡)), (4.43)

here 𝑉(𝑡, 𝑇) is the variance of ∫𝑇𝑡 𝑥(𝑠) conditional on F𝑡 given by:

𝑉(𝑡, 𝑇) = 𝜂2
𝜆2 (𝑇 − 𝑡 − 2

1 − 𝑒−𝜆(𝑇−𝑡)
𝜆 + 1 − 𝑒

−2𝜆(𝑇−𝑡)

2𝜆 ) . (4.44)

4.4. Monte Carlo simulation
Throughout this paper we use the Hull-White model for the short rate simulations. Furthermore,
to calculate EAD according to the IMMwe need the EE of different products, where the EE is the
expectation of the exposure. To calculate this expectation we need theMonte Carlo simulation.
Our products depend on the risk factors interest rate and exchange rate which are based on
the stochastic models we discussed in earlier subsections. To calculate EE, we need a few
steps in the Monte Carlo simulation [8]:
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• Simulate sample paths of the underlying variables (short rate, exchange rate).

• Evaluate the cash flows of a product on each sample path.

• Average the cash flows over the sample paths.

The Monte Carlo simulation is used to calculate the expectation of the exposures, and con-
verges because of the law of large numbers, which states that the sample average converges
almost surely to the expected value.

4.5. Simulation algorithms
We will now model the value of the IRS, from which we will calculate the exposure and find the
EE using a Monte Carlo simulation. To model the interest rate we need the Euler discretization
of the short rate process, which is given by:

𝑟(𝑡𝑖+1) = 𝑟(𝑡𝑖) + 𝜆(𝜃(𝑡𝑖) − 𝑟(𝑡𝑖)Δ𝑡 + 𝜂(𝑊(𝑡𝑖+1) −𝑊(𝑡𝑖)). (4.45)

A pseudo code for the algorithm is described in Algorithm 1.

Algorithm 1: Calculation EE for IRS
Start: We determine model parameters 𝜆 and 𝜂, choose the number of paths 𝑁 and
steps 𝑡0, 𝑡1, … , 𝑇 for maturity 𝑇.
Generate standard normal distribution Z
Generate short rate paths 𝑟 and calculate exposure for every path:
for i=t0, … , 𝑇 do

Create the Brownian Motion increments 𝑑𝑊𝑖 = √𝑑𝑡𝑍𝑖;
Make short rate using (4.45);
Generate ZCB with (4.22).;
Calculate value IRS , with 𝑉 in (4.15);
if collateral is True then

𝐸 =max(𝑉 − 𝐶, 0), with 𝐶 as in (3.9)
end
else

𝐸 =max(𝑉, 0)
end

end
Calculate expected exposure of the portfolio as average of 𝑁 scenarios per time
point as in 4.4.

Beside the IRS we also want to have FX products in our portfolio, such as the XCS and FX
Forward. For this we need to model the extra risk factors i.e, the exchange rate and the foreign
short rate. We write the exchange rate 𝑋(𝑡) as a GBM described in section 2.5:

𝑑𝑋(𝑡) = 𝜇𝑋(𝑡)𝑑𝑡 + 𝜎𝑋(𝑡)𝑑𝑊𝑋(𝑡)ℙ, (4.46)

with Euler discretization:

𝑋(𝑡𝑖+1) = 𝑋(𝑡𝑖) exp((𝜇 −
1
2𝜎

2)Δ𝑡 + 𝜎(𝑊(𝑡𝑖+1) −𝑊(𝑡𝑖))) (4.47)

Whitin the GBM we use the real world measure ℙ. To have a better understanding about
the selection of measures we will determine the dynamics under the risk neutral measure ℚ,
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where we use that the process must be a martingale under the risk neutral measure. The proof
is given in A.1, the dynamics in the risk-neutral measure is given by:

𝑑𝑋(𝑡) = (𝑟𝑑 − 𝑟𝑓)𝑋(𝑡)𝑑𝑡 + 𝜎𝑋(𝑡)𝑑𝑊ℚ
𝑋 (𝑡). (4.48)

The triangle relation that we observe in (4.48) does not hold in practice. Furthermore, the
martingale assumption for the risk neutral measure also does not hold in practice. We will thus
use the real world measure ℙ. For the short rate dynamics we can switch to the ℙ measure
when we calibrate the parameters, which wewill do in the next section. The system of equations
in the real world measure ℙ is then given by:

⎧
⎪

⎨
⎪
⎩

𝑑𝑋(𝑡) = 𝜇𝑋(𝑡) + 𝜎𝑋(𝑡)𝑑𝑊ℙ𝑑
𝑋

𝑑𝑟𝑑(𝑡) = 𝜆𝑑(𝜃𝑑(𝑡) − 𝑟𝑑(𝑡))𝑑𝑡 + 𝜂𝑑𝑑𝑊ℙ𝑑
𝑑

𝑑𝑟𝑓(𝑡) = 𝜆𝑓(𝜃𝑓(𝑡) − 𝑟𝑓(𝑡))𝑑𝑡 + 𝜂𝑓𝑑𝑊
ℙ𝑓
𝑓

(4.49)

where we want to write the foreign interest rate dynamics of 𝑟𝑓 in the domestic real world mea-
sure. Using Girsanov’s theorem we find this dynamics and it is shown below, the proof is given
in A.2.

𝑑𝑟𝑓(𝑡) = (𝜆𝑓(𝜃𝑓(𝑡) − 𝑟𝑓(𝑡)) − 𝜂𝑓𝜎𝜌𝑓𝑋)𝑑𝑡 + 𝜂𝑓𝑑𝑊ℙ𝑑
𝑓 . (4.50)

To add FX products to our simulation engine, we need to implement a dependency between
the risk factors. This dependency is driven by the correlation between the Brownian motions.
To include these correlation into our simulation, we need to apply Cholesky decomposition on
the following correlation matrix. Given the vector dW = [𝑑𝑊𝑑 , 𝑑𝑊𝑓 .𝑑𝑊𝑋], the correlation matrix
is given by:

C = dWdW𝑇 = [
1 𝜌𝑑𝑓 𝜌𝑑𝑋
𝜌𝑑𝑓 1 𝜌𝑓𝑋
𝜌𝑑𝑋 𝜌𝑓𝑋 1

] . (4.51)

Similar to the 2D case described in the mathematical framework, we want to change the
system with independent Brownian motions W̃ = [𝑊̃𝑑 , 𝑊̃𝑓 , 𝑊̃𝑋], to one where we have a corre-
lation between the Brownian motions. The Cholesky decomposition gives us a lower triangular
matrix L such that : C = LL𝑇, then we know that the vector with correlated matrices is given
by: W = LW̃. Using the Cholesky decomposition we find the expression for matrix L, which is
given below:

L =

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0
𝜌𝑑𝑓 √1 − 𝜌2𝑑𝑓 0

𝜌𝑑𝑋
𝜌𝑓𝑋−𝜌𝑑𝑓𝜌𝑑𝑋
√1−𝜌2𝑑𝑓

√𝜌2𝑑𝑓−2𝜌𝑑𝑓𝜌𝑑𝑋𝜌2𝑓𝑋+𝜌2𝑑𝑋+𝜌4𝑓𝑋−1
𝜌2𝑑𝑓−1

⎤
⎥
⎥
⎥
⎥
⎦

. (4.52)

The pseudo code for valuing EE of the FX products is given in Algorithm 2.

4.6. Calibration
To determine the values of the model parameters, we perform a calibration using historical
data, consistent with the ℙ measure assumptions made in FX and IR models. To value this
parameters as accurate as possible, we take into account as much historical data as we can.
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Algorithm 2: Calculation EE for FX products
Start:We determine model parameters 𝜆𝑑, 𝜂𝑑, 𝜆𝑓, 𝜂𝑓, 𝜇 and 𝜎. We choose the number
of paths 𝑁 and steps 𝑡0, 𝑡1, … , 𝑇 for maturity 𝑇.
Generate standard normal distribution matrix Z and apply to the correlation matrix the
Cholesky decomposition matrix to yield lower-triangle L.
Generate paths 𝑟𝑓, 𝑟𝑑, 𝑋 and calculate exposure for every path:
for i=t0, … , 𝑇 do

Make Brownian motions correlated using𝑊 = 𝐿𝑊̃;
Create the Brownian Motion increments 𝑑𝑊𝑖 = √(𝑡)𝑍𝑖;
Generate dynamics 𝑋, 𝑟𝑓 and 𝑟𝑑 using (4.45) and (4.47).;
Generate ZCB with (4.22).;
Calculate value cross-currency products , with 𝑉 in (4.16) and (4.18);
if collateral is True then

𝐸 =max(𝑉 − 𝐶, 0), with 𝐶 as in (3.9)
end
else

𝐸 =max(𝑉, 0)
end

end
Calculate expected exposure of the portfolio as average of 𝑁 scenarios per time
point as in 4.4.

We will first consider the period from 2010 until 2022. However, Basel requires us to also take
into account a stressed period of 3 years for the calibration which is stated in article (CRE 53.51)
[4]. For this we will use the period from 2007 until 2010. We will discuss these stressed results
in section 4.8.

We take the historical data from FRED economics [3]. For the short-rate parameters we will
look at the spot rate observed in the market. We will use the English pound as the example of
the domestic currency, whereby the interest spot rate is represented by the Sterling Overnight
Index Average (SONIA) [6]. For the foreign currency example wewill use the US dollar, whereby
the interest spot rate is represented by the Federal Funds Effective Rate (FFER) which is similar
to the Secured overnight Financing Rate (SOFR) [2]. We then can use historical data of the
spot exchange rate of 1 pound to dollars to calibrate the FX rate model.

4.6.1. Calibration of the short rate model
For the calibration of the short-rate model we will follow the method given by Park [13]. This
method aims to minimize the difference between the volatility of the spot rate increments found
analytically and the volatility of the spot rate increments found in the market. We use the sample
variance to find the daily volatility. We take {Δ𝑅𝑚𝑎𝑟𝑘𝑒𝑡1 , … , Δ𝑅𝑚𝑎𝑟𝑘𝑒𝑡𝑁 } the daily spot rate changes
observed in the market. Using the fact that there are 252 business days in a year we have:

𝜎𝑚𝑎𝑟𝑘𝑒𝑡𝑑𝑅 = √252√ 1
𝑁 − 1

𝑁

∑
𝑖=1
(Δ𝑅𝑚𝑎𝑟𝑘𝑒𝑡𝑖 − 𝔼[Δ𝑅𝑚𝑎𝑟𝑘𝑒𝑡])2, (4.53)
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where we use the sample mean to estimate the expectation:

𝔼[Δ𝑅𝑚𝑎𝑟𝑘𝑒𝑡] = 1
𝑁

𝑁

∑
𝑖=1
Δ𝑅𝑚𝑎𝑟𝑘𝑒𝑡𝑖 . (4.54)

We then want to find the solution to the following optimization problem:

min
𝜂,𝜆
(𝜎𝑚𝑎𝑟𝑘𝑒𝑡𝑑𝑅 − 𝜎𝑑𝑅)2, (4.55)

where 𝜎𝑑𝑅 is the analytical volatility of the spot rate. We use the affine term structure given in
(4.22) and using the definition of the spot rate we see:

𝑅(𝑡, 𝑇) = − ln𝑃(𝑡, 𝑇)
𝑇 − 𝑡 = − ln(𝐴(𝑡, 𝑇)) − 𝐵(𝑡, 𝑇)𝑟(𝑡)𝑇 − 𝑡 . (4.56)

with 𝐴(𝑡, 𝑇) and 𝐵(𝑡, 𝑇) as in (4.33) and (4.32) respectively. Using Ito’s formula we see:

𝑑𝑅(𝑡, 𝑇) =
1
2𝜂
2𝐵2(𝑡, 𝑇) − 𝑟(𝑡)

𝑇 − 𝑡 𝑑𝑡 + 𝜂𝐵(𝑡, 𝑇)𝑇 − 𝑡 𝑑𝑊(𝑡). (4.57)

Since we can write 𝑑𝑊(𝑡) as √𝑑𝑡𝑍(𝑡) with 𝑍(𝑡) the standard normal distribution, we can
write the standard deviation of 𝑑𝑅(𝑡, 𝑇) as:

𝜎𝑑𝑅(𝑡, 𝑇) =
𝜂𝐵(𝑡, 𝑇)
𝑇 − 𝑡 √𝑑𝑡. (4.58)

We can set 𝑇 = 𝑡 + 𝜏, with 𝜏 is the time fraction until the next time point. We can then set 𝜏
to 1/252 and we get the equation:

𝜎𝑑𝑅(𝜏) =
𝜂(1 − 𝑒−𝜆𝜏)

𝜆𝜏 √𝑑𝑡. (4.59)

In the past couple years unusual events have happened which have affected the observed
spot rates in the market, for example the Covid pandemic, it is wise to take into account more
data from the past such that this unlikely event does not have a dominant effect on our calibra-
tion. We use the ”moving window” technique. We minimize over several time periods, where
we take a window of two years per period and move it up one year for each different time pe-
riod. Starting at 2010, we have the time periods: 𝑃1 = [01 − 01 − 2010; 01 − 01 − 2013], 𝑃2 =
[01 − 01 − 2011; 01 − 01 − 2014], 𝑃3 = [01 − 01 − 2012; 01 − 01 − 2015], … , 𝑃10 = [01 − 01 −
2019; 01 − 01 − 2022]. Then the objective function of our minimization problem becomes:

min
𝜂,𝜆

10

∑
𝑗=1
(𝜎𝑚𝑎𝑟𝑘𝑒𝑡𝑑𝑅 − 𝜎𝑑𝑅)2𝑃𝑗 . (4.60)

The calibrated 𝜂 and 𝜆 are shown in table 4.1. Furthermore, we have to think of the corre-
sponding 𝑟0 for the foreign and domestic short rate, for this we will use the spot rate observed
on 01-08-2022.2
2This is the date we started testing the model and used as starting date since then.
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Table 4.1: The parameters for the domestic and foreign short-rate.

𝑟0 𝜆 𝜂
Domestic 0.012 0.89 0.038
Foreign 0.023 0.91 0.056

4.6.2. Calibration of the GBM
We know that the exchange rate 𝑋(𝑡) is usually modelled in the industry by a GBM and we
want to calibrate the parameters based on historical data. This effectively makes the SDE of
𝑋(𝑡) being defined in the real world measure and we have:

𝑑𝑋(𝑡) = 𝜇𝑋(𝑡)𝑑𝑡 + 𝜎𝑋(𝑡)𝑑𝑊ℙ(𝑡). (4.61)

From the GBM we know that 𝑌(𝑡) = ln𝑋(𝑡) is normally distributed, where the increments
of 𝑌(𝑡), 𝑑𝑌(𝑡), are also normally distributed with:

𝑑𝑌(𝑡) = (𝜇 − 12𝜎
2)𝑑𝑡 + 𝜎𝑑𝑊ℙ(𝑡). (4.62)

This means that the increments of 𝑌 are normally distributed with mean = (𝜇 − 1
2𝜎

2) 𝑑𝑡 and
variance = 𝜎2𝑑𝑡. We can then find these variables using the maximum likelihood [15].

We take the exchange rate of 1 dollar to pounds given by FRED [3] over a period from 01-
01-2010 until 01-01-2022. When we have the data of the exchange rate changing over time,
we want to fit the log-normal distribution 𝑋(𝑡) on it. We take the data points of the exchange
rate given by {𝑋(𝑡0), 𝑋(𝑡1), … , 𝑋(𝑡𝑛)} and take the natural logarithms, thus 𝑌𝑖 = ln(𝑋(𝑡𝑖)). Since
the increments are normally distributed we have that the process {𝑌1 −𝑌0, 𝑌2 −𝑌1, … , 𝑌𝑛 −𝑌𝑛−1}
is normally distributed. Using log likelihood we have that:

mean = 1
𝑛

𝑛

∑
𝑖=1
𝑌𝑖 − 𝑌𝑖−1 =

1
𝑛(𝑌𝑛 − 𝑌0). (4.63)

Then the variance is given by:

variance = 1
𝑛 − 1

𝑛

∑
𝑖=1
(𝑌𝑖 − 𝑌𝑖−1 −mean)2. (4.64)

In this way we can fit a normal distribution on the log-increments of our data points using
this mean and variance. This fit can be seen in figure 4.1.

Now from this mean and variance we can extract the parameters we need for the GBM. We
know for the variables that variance = 𝜎2𝑑𝑡 and mean = 𝜇 − 1

2𝜎
2𝑑𝑡, which then gives us:

𝜎 = √variance/𝑑𝑡, (4.65)

𝜇 = mean/𝑑𝑡 + 12𝜎
2. (4.66)

The calibrated results can be observed in table 4.2. Furthermore we again take 𝑋0 as the
exchange rate observed at 01-08-2022.

29



Figure 4.1: Calibration of normal distribution on the log increments of the historical exchange rate data.

Table 4.2: Results of the calibration of the GBM.

𝑋0 𝜇 𝜎
Exchange rate 0.82 0.019 0.089

If we implement the parameters as in the table in our GBM and take a look at the distribution
of the log increments, we should see the model distribution match the empirical distribution. To
visualize this see figure 4.2:

Figure 4.2: Normal distribution with parameters from table 4.2 fitted on the log-increments of the GBM modeled
with the same parameters.

4.6.3. Calibration of correlation
Lastly, we want to calibrate the correlations between our risk factors given in (4.51). Using the
expression of the spot rate (4.56), we get an expression of the short rate using the spot rate
observed in the market:

𝑟(𝑡) = 𝑅(𝑡, 𝑇) ⋅ (𝑇 − 𝑡) + ln(𝐴𝑟(𝑇, 𝑡))
𝐵𝑟(𝑇, 𝑡)

. (4.67)

Using the short rate and exchange rate observed in the market we can extract the informa-
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tion about the random part 𝑑𝑊(𝑡𝑖+1) = 𝑊(𝑡𝑖+1) − 𝑊(𝑡𝑖). We use the Euler discretization in
(4.45) and (4.47), we see:

𝑑𝑊(𝑡𝑖+1)𝑟 =
𝑟(𝑡𝑖+1) − 𝑟(𝑡𝑖) − 𝜆(𝜃(𝑡𝑖) − 𝑟(𝑡𝑖))Δ𝑡

𝜂 (4.68)

𝑑𝑊(𝑡𝑖+1)𝑋 =
ln (𝑋(𝑡𝑖+1)𝑋(𝑡𝑖)

) − (𝜇 − 1
2𝜎

2)Δ𝑡
𝜎 (4.69)

We can then extract the correlation directly using the build-in function in python for finding
the correlation, this gives us the Pearson product-moment correlation coefficients. The results
are presented in table 4.3

Table 4.3: Results of the calibration of the correlations.

𝜌𝑋𝑓 𝜌𝑋𝑑 𝜌𝑓𝑑
Correlation 0.61 -0.22 0.5

4.7. Results
Now that we have found all the parameters which we need in the algorithms 2 and 1, we can
then look at an example of the EE. For the IRS and XCS products we choose maturity 𝑇 = 5,
starting date 𝑇𝑖 = 1, end date 𝑇𝑚 = 5, 10 cash flows, notional 𝑁 = 10000 and we set 𝐾 equal
to 𝑟0. The results can be observed in figure 4.3 and 4.4.

Figure 4.3: EE with and without collateral. Here we use 10000 paths, 252*𝑇 steps, and parameters 4.1. For the
exposure with collateral we have set 𝑀𝑃𝑂𝑅 = 10, 𝑇𝐻 = 40,𝑀𝑇𝐴 = 10.

Each time a payment is made we see that the exposure increases, when we pay the fixed
leg. When we receive the fixed leg, the exposure will decrease every time a payment is made.
The spikes within the collateral exposure are given because of the MPOR. When the MPOR is
0, we would see that the exposure is capped by VM+TH. However, because of the time delay
in the collateral valuation, we see these spikes when the payments are made.

For the FX Forward we take a maturity 𝑇 = 5 and notional 𝑁𝑑 = 10.000. The results are
shown in figure 4.5.
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Figure 4.4: Expected exposure with and without collateral. Here we use 10000 paths, 252*𝑇 steps, and
parameters 4.1, 4.2, 4.3. For the exposure with collateral we have set 𝑀𝑃𝑂𝑅 = 10, 𝑇𝐻 = 60,𝑀𝑇𝐴 = 10.

Figure 4.5: Expected exposure with and without collateral. Here we use 10000 paths, 252*𝑇 steps, and
parameters 4.1, 4.2, 4.3. For the exposure with collateral we have set 𝑀𝑃𝑂𝑅 = 10, 𝑇𝐻 = 40,𝑀𝑇𝐴 = 10.

4.8. Sensitivity analysis and stressed parameters.
To see if our implementation is correct we have performed various sensitivity analysis. We could
for example see when we increase 𝜂 in our short rate model the exposure quickly increases,
also when we decrease 𝜆 the exposure would again increase. This is what we expect, when
we increase the volatility, more extreme paths can be observed and our exposure will increase.
This effect can then be limited by increasing 𝜆, as stated before, a large value for 𝜆 will reduce
the long-term volatility.

In the FX Forward we can observe significant sensitivity in the exchange rate. In the ex-
ample above, we pay the domestic leg and receive the foreign leg. When the exchange rate
increases, or if we increase the drift and volatility, we see an increase in the exposure of the
FX Forward. The same holds for the XCS, only this difference is less prominent as in the FX
Forward.

To see this effect more clearly, we will look at the stressed parameters. As said before, Basel
requires us to take into account a stressed period of three years to estimate these parameters.
We will use the period between 2007 and 2010 when the credit crisis took place. Using the
calibration methods above, the stressed parameters can be observed in table 4.4. To see
the effect of these stressed parameters we again show the expected exposure of the three
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products as described above. However, this time we will see a clear increase in EE because
of the stressed parameters.

Table 4.4: Parameters calibrated by stressed data.

Stressed 𝜆 𝜂 𝜇𝑋 𝜎𝑋
Domestic short rate 2.05 0.3
Foreign short rate 2.1 0.37
Exchange rate 0.075 0.13

Figure 4.6: Expected exposure of the three same products as in figures 4.3, 4.4 and 4.5 using the stressed
parameters observed in table 4.4.
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5
Simulation Framework with WWR

In this chapter we set up the framework for the EAD simulation whereby theWWR is integrated.
First we describe a method to extract the probability of default using a Credit Default Swap
(CDS) spread. After that we can use the probability of default in a Copula model to include the
WWR in the EAD calculation.

5.1. Extracting Probability of default from CDS spreads
The goal of this section is to extract the probability of default of a counterparty using credit
default swaps. We will use the pricer of a CDS to make an estimation about the probability of
default for our counterparty. The idea is to search for the parameter values, with which the CDS
pricer returns a theoretical CDS price that matches the market CDS quote. The pricing method
we select for CDSs are based on the industry-standard reduced-form model, or the hazard-rate
model. One of the input parameters of this model is the hazard rate, which corresponds to the
intensity of a Poisson process which we assume the arrival of the default event to follow. With
this hazard rate we can then construct the probability of default.

5.1.1. CDS
A CDS is a financial instrument, which to the buyer of the swap is a protection against the
default of the issuer of a bond the CDS buyer holds. The seller of the CDS is usually a bank or
insurance company [28]. In the case of a default, the seller of the CDS is obligated to buy back
the debt security for it’s face value from the buyer of the CDS in case of a physical settlement,
and in return get the defaulted debt. The exact amount that the seller is obligated to pay to the
buyer is calculated as a LGD multiplied by the notional amount. LGD can also be expressed
as one minus the recovery rate 𝑅, with the recovery rate being prescribed in the contract if it is
a fixed-recovery CDS or otherwise being decided by the market (via an auction after default).
In practice, the market convention is to assume 𝑅 equal to 40% for the purpose of valuing the
CDSs. The notional value of a CDS refers to the face value of the underlying security. The
premium, also known as the contractual spread, that is paid by the buyer to the CDS sellers is
expressed in a percentage of the notional value. This percentage is then given in basis points,
e.g., 10000 basis point is 1%.

Following the Big Bang Protocol, the contractual spreads are standardized these days. The
CDS spreads quoted in the market are not the contractual spreads but the spread values which
equalize the default legs and the related premium legs. The higher the CDS spreads, the
worse the credit worthiness of the corresponding bond issuers. One can imagine that when
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the credit rating of a counterparty changes, its credit spreads move up accordingly. In general
ratings made by credit agencies are lagged behind of the spreads. The best known credit rating
agencies are Moody’s, S&P and Fitch [29]. According to a research [21], the ratings of Moody’s
and Fitch are linked to this default spread, which we can see in table 5.1.

Moody’s rating Fitch Rating Default spread
Aaa AAA 0
Aa1 AA+ 25
Aa2 AA 50
Aa3 AA- 70
A1 A+ 85
A2 A 100
A3 A- 115

Baa1 BBB+ 150
Baa2 BBB 175
Baa3 BBB- 200
Ba1 BB+ 240
Ba2 BB 275
Ba3 BB- 325
B1 B+ 400
B2 B 500
B3 B- 600
Caa CCC 700
Ca CC 850
C D 1000

Table 5.1: Default spreads linked to ratings according to [21].

5.1.2. Extracting the hazard rate
In the reduced form model, it is assumed that default is a Poisson process with hazard rate
ℎ(𝑡). If the default time is 𝜏, the probability of default over a small time period 𝑑𝑡 conditional on
no default to time 𝑡 is:

ℙ(𝑡 < 𝜏 ≤ 𝑡 + 𝑑𝑡|𝜏 > 𝑡) = ℎ(𝑡)𝑑𝑡. (5.1)

The probability of surviving to at least time 𝑇 > 𝑡 assuming no default has occurred up to
time 𝑡 is given by:

𝑄(𝑡, 𝑇) = 𝑒−∫
𝑇
𝑡 ℎ(𝑠)𝑑𝑠. (5.2)

From this probability of survival we can then extract the probability of default within [𝑡, 𝑇]
with:

𝑃(𝑡, 𝑇) = 𝑄(0, 𝑡) ⋅ (1 − 𝑄(𝑡, 𝑇)). (5.3)

To price a CDS we need to value both the protection leg and the premium leg. For the
protection leg we know that at some default time 𝜏, we receive 𝑁(1 − 𝑅). We assume that the
recovery rate is independent of the interest rate and hazard rate. Furthermore, we assume that
the interest rate is independent of the hazard rate, and that the valuation date of the CDS is at
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time 0. The protection leg is now equal to:

𝑉𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑙𝑒𝑔 = 𝑁(1 − 𝑅)𝔼 [𝑃(0, 𝜏)𝟙𝜏<𝑇] = 𝑁(1 − 𝑅)∫
𝑇

0
𝑃(0, 𝑠)𝑑𝑄(0, 𝑠)𝑑𝑠 𝑑𝑠 (5.4)

= 𝑁(1 − 𝑅)∫
𝑇

0
𝑃(0, 𝑠)𝑑𝑄(0, 𝑠). (5.5)

The premium leg consists of two parts: regular premium payments up to the expiry of the
CDS which cease if a default occurs and a single payment of accrued premium in the event of
a default. For simplicity, we won’t take the last term into consideration. If there are𝑀 remaining
payments with payment times 𝑡1, 𝑡2, … , 𝑡𝑀, period end times 𝑒1, 𝑒2, … 𝑒𝑚 and year fractions of
Δ1, Δ2, … , Δ𝑀, then the present value of the premium leg is:

𝑉𝑝𝑟𝑒𝑚𝑖𝑢𝑚 𝑙𝑒𝑔 = 𝑁𝐶𝔼 [
𝑀

∑
𝑖=1
Δ𝑖𝑃(0, 𝑡𝑖)𝟙𝑒𝑖<𝜏] = 𝑁𝐶

𝑀

∑
𝑖=1
Δ𝑖𝑃(0, 𝑡𝑖)𝑄(0, 𝑒𝑖). (5.6)

We can write this as 𝐶⋅𝑉𝑝𝑟𝑒𝑚𝑖𝑢𝑚 with 𝑉𝑝𝑟𝑒𝑚𝑖𝑢𝑚 = 𝑁∑
𝑀
𝑖=1 Δ𝑖𝑃(0, 𝑡𝑖)𝑄(0, 𝑒𝑖) and 𝐶 the percent-

age of the notional amount which need to be paid as premium, thus the spread. The present
value of the CDS can now be summarized as follows:

𝑉𝐶𝐷𝑆 = 𝑉𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑙𝑒𝑔 − 𝐶 ⋅ 𝑉𝑝𝑟𝑒𝑚𝑖𝑢𝑚. (5.7)

We are now looking for 𝐶 such that 𝑉𝐶𝐷𝑆 = 0. This is also known as the par spread and we
have:

𝐶 =
𝑉𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑙𝑒𝑔
𝑉𝑝𝑟𝑒𝑚𝑖𝑢𝑚

. (5.8)

Using the equation above, we can for a given spread andmaturity bootstrap the hazard rate.
We can use common approximation for the integral and assume that any payment resulting
from a default is made on the next scheduled payment date. We can then approximate the
protection leg as:

𝑉𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑙𝑒𝑔 ≈ 𝑁(1 − 𝑅)
𝑀

∑
𝑖=1
𝑃(0, 𝑡𝑖)(𝑄(0, 𝑡𝑖−1) − 𝑄(0, 𝑡𝑖)), (5.9)

where 𝑡𝑖 is a payment date. In addition, if we assume that on average default happens mid-way
through the period we can approximate:

𝑉𝑝𝑟𝑒𝑚𝑖𝑢𝑚 ≈ 𝑁
𝑀

∑
𝑖=1
Δ𝑖𝑃(0, 𝑡𝑖) [𝑄(0, 𝑡𝑖) +

𝑄(0, 𝑡𝑖−1) − 𝑄(0, 𝑡𝑖)
2 ] , (5.10)

= 𝑁
𝑀

∑
𝑖=1
Δ𝑖𝑃(0, 𝑡𝑖) [

𝑄(0, 𝑡𝑖−1) + 𝑄(0, 𝑡𝑖)
2 ] . (5.11)

Given a spread 𝑆 for a CDS with maturity 𝑇 and notional 𝑁, we can find the hazard rate by
bootstrapping the following equation:

0 = 𝑁(1−𝑅)
𝑀

∑
𝑖=1
𝑃(0, 𝑡𝑖)(𝑄(0, 𝑡𝑖−1)−𝑄(0, 𝑡𝑖))−𝑆⋅𝑁

𝑀

∑
𝑖=1
Δ𝑖𝑃(0, 𝑡𝑖) [

𝑄(0, 𝑡𝑖−1) + 𝑄(0, 𝑡𝑖)
2 ] . (5.12)
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We can now distinguish two cases, one whereby the hazard rate is constant for the maturity
and the other whereby the hazard rate is piece-wise constant for different maturities. If we take
the hazard rate constant we see 𝑄(0, 𝑡𝑖) as:

𝑄(0, 𝑡𝑖) = 𝑒−∫
𝑡𝑖
0 𝜆(𝑠)𝑑𝑠 = 𝑒−𝑡𝑖𝜆. (5.13)

In practise the piece-wise constant hazard rate curve is bootstrapped as follows. Suppose
there are three CDSs available of maturity 1, 3 and 5 years for a bond, we then assume three
different hazard rates for the maturities in years from 0 to 1, 1 to 3 and 3 to 5. Given respectively
by ℎ0,1, ℎ1,3 and ℎ3,5 with corresponding spreads of 100, 200 and 400 basis points. We can then
bootstrap these hazard rates in order, from the short tenors to long tenors. Take the valuation
of the 5-year CDS as an example: if the hazard rate curve is 0.01 for year 0 to 1 and 0.02 for
year 1 to 3 then we insert 0.01 and 0.02 into the pricing formula for the valuation of the cash
flows to occur before and on 1 year and 3 years, respectively, and then back out the hazard
rate level for year 3 to 5. Suppose in this example, we obtain 0.075 for the hazard rate between
3 and 5 year from bootstrapping.

This we will compare with the case whereby we have a constant hazard rate and a spread
equal to 400 basis points from 0 to 5 years. Furthermore we take 𝑁 = 10.000, Δ𝑖 = 0.25 and
𝑅 = 0. We can see the impact of having a term structure in the hazard rate in the figure below.

Figure 5.1: Results for constant hazard rate and piece-wise constant hazard rate.

From the piece-wise constant hazard rates we can subtract a constant hazard rate by taking
the weighted mean over the piece-wise constant hazard rates: ℎ𝑚𝑒𝑎𝑛 =

ℎ0,1+ℎ1,3∗2+ℎ3,5∗2
5 . We

can observe in figure 5.1 that this has a similar value as the constant hazard rate. However,
this could be a coincidence because of the choice for the spreads in the piece-wise constant
hazard rate. For computational time purposes we will from now on assume that the hazard rate
is constant.

Using a constant hazard rate we can find a simple relation between the hazard rate and
the par spread. We can prove that, if assuming a flat hazard rate curve, the hazard rate is
equal to 𝑆/(1 − 𝑅), with 𝑆 being the par spread. If we assume that the premium leg were paid
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continuously, we get from equation (5.8) that for spread 𝑆:

𝑆 = (1 − 𝑅) ∫
𝑇
0 𝑃(0, 𝑠)𝑑𝑄(0, 𝑠)
∫𝑇0 𝑃(0, 𝑠)𝑄(0, 𝑠)𝑑𝑠

(5.14)

= (1 − 𝑅)ℎ ∫
𝑇
0 𝑃(0, 𝑠)𝑒−ℎ𝑠𝑑𝑠
∫𝑇0 𝑃(0, 𝑠)𝑒−ℎ𝑠𝑑𝑠

= (1 − 𝑅)ℎ (5.15)

5.2. Copula model
In this section we introduce the Copula model to integrate the WRR in the calculation for EAD.
Especially, we want to remove the factor 𝛼 in the IMM by implementing a correlation between
the probability of default and the exposures in the simulation engine of IMM. There are different
ways to do this, one way would be to directly correlate the probability of default and the risk
factors that drive the exposures. We can, for example, model the CDS spread of a counter-
party as a GBM variable and then add a correlation structure between the risk factors and the
Brownian motion in the GBM model. Another method to link the hazard rate and the portfolio
value is described in [19]. Both methods still require a risk measure to directly measure the de-
fault loss, which involves both the exposure and probability of default. In this thesis we decided
to only focus on the EAD and compare the EAD values obtained from SA-CCR, IMM and our
integrated simulation method, the Copula model.

Using the Copula model we can link the probability of default to exposures to make a new
estimation for the EAD that takes into account the WWR. The Copula model is inspired by [23]
and [25].

We are interested in the joint distribution of time to default and the exposure. Since the
marginal default distributions are not normal we need to use a copula to preserve the marginal
distributions while imposing a correlation structure to all random variables involved. For con-
venience we use the Gaussian copula approach. We say that the counterparty defaults at 𝑡
if a latent variable 𝑌, which represents the credit worthiness of the counterparty, falls below a
threshold corresponding to the rating of this counterparty, i.e.,

𝑌 ≤ Φ−1(𝑃(𝑡)). (5.16)

where Φ is the standard normal cumulative distribution function and 𝑌 is a standard normal
random variable and 𝑃(𝑡) represents the unconditional probability of default, where for default
time 𝜏 we have:

𝑃(𝑡) = ℙ(𝜏 ≤ 𝑡) = 1 − exp−∫
𝑡
0 ℎ(𝑠)𝑑𝑠 . (5.17)

Here we assume the hazard rate to be constant over time and it is based on the counter-
party’s creditworthiness, then the hazard rate can be easily obtained as in (5.15).

Furthermore, 𝑌 is constructed with two independent standard normal variables 𝑍 and 𝜖,
where 𝑍 is a global parameter, indicating the global economic cycle for example, and 𝜖 is the
idiosyncratic risk factor of this counterparty, 𝑌 is then given by:

𝑌 = 𝜌𝑍 + √1 − 𝜌2𝜖. (5.18)

We now say that we have 𝑀 exposure paths indicated by 𝜔𝑖 , 𝑖 = 1,… ,𝑀. Then for every
path we generate a random number 𝑌𝑖 using (5.18) and check if the inequality (5.16) holds.
When the inequality holds, a default has occurred on time 𝑡 of exposure path 𝜔𝑖.
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We now want to simulate the WWR by introducing a market factor 𝑋. We can see 𝑋 as
the distribution of all exposure paths 𝜔𝑖 , 𝑖 = 1,… ,𝑀.. The market factor 𝑋 is then uniformly
distributed since the probability of every event is equal to 𝑞𝜔 =

1
𝑀 .

We then order the exposures paths in descending order on their EPE (average expo-
sure over time). Thus we have EPE(𝜔1) ≥ EPE(𝜔2) ≥ … ≥ EPE(𝜔𝑀). We then have
𝑋 = 𝐹−1EPE(−𝑥), where 𝐹EPE(⋅) is the cumulative distribution function of EPE, i.e.,:

𝐹−1EPE(𝑥) = inf{𝑦 ∶ 𝐹EPE(𝑦) ≥ 𝑥}. (5.19)

In other words, 𝐹−1(−EPE(𝜔𝑖)) = 𝑖/𝑀. Since 𝐹−1EPE(−𝑥) is a monotonically decreasing
function in 𝑥, it holds that the exposures will be higher when 𝑋 is low.

The model is then concluded by taking 𝑍 = Φ−1(𝑋) in (5.18). Now 𝑌 and Φ−1(𝑋) have a bi-
variate normal distribution with correlation 𝜌. Intuitively we can see that when 𝑌 is low, a default
is more easily triggered. As a consequence, 𝑋 is also low and the EPE of the corresponding
exposure path is high. Thus, via the Guassian copula we have correlated default probability
with exposure.

5.2.1. Expected exposure
We now want to include the WWR into the calculations of EAD. When we find the EE with the
WWR integrated, we can make an expression of the effective EE and the EEPE given by (3.25)
and (3.26) respectively. The EAD is then given by only the EEPE, since we have integrated the
WWR we do not need the alpha factor as in (3.24).

We can calculate this EE where the WWR is integrated in two ways, which we will name as
the defaulted paths method and the exact method. For the exact method we will need the EE
conditional on the counterparty’s default at 𝑡, i.e. CEE. We can then write the EE where the
WWR is integrated as:

CEE(𝑡 = 𝜏) = 𝔼(𝐸(𝑡)|𝜏 = 𝑡) =
𝑀

∑
𝑖=1
𝐸(𝑡, 𝜔𝑖)ℙ(𝜔 = 𝜔𝑖|𝜏 = 𝑡), (5.20)

where, following the article [24], we can find an expression for the probability ℙ(𝜔 = 𝜔𝑖|𝜏 = 𝑡)
using bivariate normal assumptions. For the derivation please refer to Appendix A.3. The
analytical expression for the default probability is copied below:

ℙ(𝜔 = 𝜔𝑖|𝜏 = 𝑡) = Φ(
Φ−1(𝑖/𝑀) − 𝜌Φ−1(𝑃(𝑡))

√1 − 𝜌2
) − Φ(

Φ−1(𝑖 − 1/𝑀) − 𝜌Φ−1(𝑃(𝑡))
√1 − 𝜌2

) .

Another way of calculating the conditional expected exposure CEE is to use Monte Carlo
simulation. In our Copula model, we do not distinguish at which time point per path the default
happens. To be consistent to this set-up, we calculate CEE by taking the average of the ex-
posures from defaulted paths only. To see the behaviour of this defaulted paths method we
conduct a sensitivity analysis.

5.2.2. Sensitivity analysis Copula model
We have defined the main risk factors for our products as the interest and exchange rate and
developed a Copula model that links the exposures to the probability of default of the concerned
counterparty. The main risk factors involved in the Copula model are the spreads from which

40



the probability of default is bootstrapped, and the correlation 𝜌 between 𝑌 and Φ−1(𝑋). In this
subsection we perform sensitivity analysis on both risk factors with the use of the IRS with
parameters described in section 4.6. First we will check the effect of the default correlation, the
results can be observed in figure 5.2.

Figure 5.2: Conditional expected exposure using the Copula model with different values of 𝜌. We have taken a
spread equal to 400 and IRS parameters from the calibration described in section 4.6.

We observe in figure 5.2 that, when we increase the correlation between 𝑌 and Φ−1(𝑋),
the conditional expected exposure increases as well. This is as expected: the more the EPE
and default are correlated, the higher the conditional EE, and thus, the higher the EAD. Fur-
thermore, we can obtain a first comparison between the the conditional EE profile and the one
corresponding to IMM, which is based on the factor 𝛼 = 1.4. This comparison indicates that
with 𝜌 = 0.3, the EE where the WWR is integrated behaves similarly as the EE multiplied by 𝛼.

Regarding the impact of the CDS spread on the defaulted path, the results are summarized
in figure 5.3.

Figure 5.3 indicates that, the model gives a lower EE when we increase the spread. This
is counter-intuitive because we connect high spreads with low credit ratings, using WWR we
would expect the exposure to be higher when the spreads get higher. However, when we look
at the corresponding default curves and expected loss given by the product of the CEE and
probability curve, we observe the behaviour that we would expect. Namely, the expected loss
increases when the spread increases.

The reason of the spread effect on the CEE is as follows: using higher spreads, more
paths would go into default and the correlation impact is less prominent. When all paths go
into default, the correlation impact is not present anymore. However, when a small amount of
paths go into default we only use a small amount of paths in the simulation of the CEE and the
correlation effect is much more prominent. To see this effect even better, we tested different
values of the correlation for a high spread of 1000 and a low spread of 10. The results can be
seen in figure 5.4.
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Figure 5.3: Conditional expected exposures using the Copula model for different spread values with
corresponding probability of default curve and expected loss. We have taken 𝜌 equal to 0.3 and IRS parameters

from the calibration described in section 4.6
.

Figure 5.4: Comparison between the effect of 𝜌 on the Copula model using a low spread of 10 on the left and a
high spread of 1000 on the right.
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6
Numerical results

In this chapter, we conduct intensive tests to check: 1) how conservative the SA-CCR is com-
pared to the IMM, and 2) if the Copula model can be a good benchmark for the IMM, or in other
words, whether using an alpha factor of 1.4 is a good approximation method to account for
WWR.

6.1. Comparing SA-CCR with IMM
First we use single trades to compare SA-CCR with IMM, via which we try to understand how
the parameters are chosen for the SA-CCR by the regulators. Furthermore, we will check the
impact of a stressed and normal calibration.

We first consider the case of three different portfolio’s consisting of one single trade, then
we test on the portfolio of all three trades combined. Using the products with parameter values
calibrated in section 4.6, we can compare EAD from the SA-CCR with the EAD from IMM.

For the SA-CCR we have the following results:

Table 6.1: Parameters for SA-CCR.

Product 𝑉0 𝑑 𝛿 EN ∗ SF
IRS 1.23 34485.73 1 172.43
XCS -26.23 34485.73 1 172.43
FX -503.98 10000 1 400

Furthermore, 𝑀𝑓 is equal to 1 when there is no collateral and 𝑀𝑓 is equal to (3.22) when the
collateral is not zero. We can now calculate the EAD for SA-CCR as in (3.10). Note that for
the single trade portfolio’s we have PFE =multiplier ∗EN ∗SF. For the FX Forward and XCS
products the multiplier is activated as these product start with a negative initial value. We also
distinguish the cases, whereby we pay collateral with a threshold value of 60 and a minimal
transfer amount of 10. The results are shown in table 6.2.

The results demonstrate that the SA-CCR is much more conservative than the IMM with
normal parameters, i.e. from a calibration based on a long history of the past 12 years. How-
ever, when we use the IMM with parameters from a stressed calibration, i.e, calibration using
the most stressful 3 years, we observe that the SA-CCR is less conservative. Indeed, the dif-
ference between SA-CCR and IMM with normal parameters ranges between a factor of 2 and
5, while for a stressed calibration, this difference ranges between a factor of 1 and 1.5.
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Table 6.2: Comparison EAD from SA-CCR and EAD IMM for single trades.

Without Collateral With Collateral
Product SA-CCR IMM IMM stress SA-CCR IMM IMM stress
IRS 243.12 86.85 167.84 170.13 44.58 68.6
XCS 223.76 125.36 206.98 154.027 49.39 75.7
FX 302.1 64.97 275.02 123.64 21.85 70.5

Portfolio 733.85 148.9 485.66 198.31 42.81 124.13

In the presence of collateral, it can be seen that the SA-CCR tends to be even more con-
servative than IMM, e.g. between 3 and 6 times more conservative than EAD from IMM with
normal parameters; and between 1.5 and 2.5 times more conservative than EAD from IMMwith
stressed parameters.

The most conservative situation for SA-CCR is when we have all three types of products
in a single portfolio. Since these three products are from different asset classes, the PFE add-
ons of the single product type have to be aggregated to yield the PFE add-on for the portfolio.
This additional layer of conservatism in SA-CCR is, however, not in IMM, i.e. when we add the
values of the products together and take the exposure for the IMM these exposures within the
same netting set can be netted.

To summarize, SA-CCR tends to be at least 1.5 times more conservative than IMM in the
presence of collateral (which is usually the case in practice), even with stressed model pa-
rameters. And the level of conservatism is even higher because no diversification is allowed
between different asset classes.

In the next section, we will set up the same tests for portfolios of multiple trades and also
include the Copula model.

6.2. Comparison on testing portfolios
At first we compare three portfolios which consist of 10 trades of the same product. Then we
test one portfolio with the 30 trades of three different product types combined, and in the end
another portfolio with 90 trades of different product types. For each trade we assign a random
starting date, maturity date, and notional. Note that per hedging set we constructed roughly the
same amount of payer and receiver products. An overview of the portfolios is given in appendix
B. For collateral we set TH = 200 and MTA = 50. We set the value of the coupon rate of the
IRS and XCS to 𝐾 = 𝑟0.

Lastly, we have to choose the parameters in the Copula model. We assume a credit spread
of 200 basis points. Then, we conduct a sensitivity analysis similar as done in subsection 5.2.2
on the the IRS portfolio of 10 trades. We then choose a correlation of 𝜌 = 0.4 as this value
seems to be a good benchmark for the comparison with IMM, which is different from the corre-
lation that we observed in figure 5.2. We further test IMM using normal parameters (table 6.3)
and using stressed parameters (table 6.4).

First, we again observe a clear difference between the IMM with normal parameters and
stressed parameters. EAD’s from the SA-CCR are a factor of 3 to 4.5 times of EAD’s from the
IMM when using normal parameters, whereas this ratio drops to 1 to 2.5 when using stressed
parameters. Furthermore, we again observe that in the presence of collateral SA-CCR is even
more conservative than IMM, e.g. between 4 and 8 times more conservative than EAD from
IMM with normal parameters; and between 1.5 and 3.5 more conservative than EAD from IMM
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Table 6.3: Comparison SA-CCR, IMM and Copula model using normal parameters.

Without Collateral With Collateral
Portfolio SA-CCR IMM Copula SA-CCR IMM Copula

10 IRS trades 648.88 212.98 197.95 531.71 125.59 112.95
10 XCS trades 833.83 249.06 244.46 598.70 138.13 112.59
10 FX trades 257.80 63.92 60.17 374.22 45.16 48.07
30 trades 1644.21 518.56 445.81 822.50 201.31 171.57
90 trades 2210.98 502.26 397.35 925.17 213.51 177.59

Table 6.4: Comparison SA-CCR, IMM and Copula model using stressed parameters.

Stressed Without Collateral With Collateral
Portfolio SA-CCR IMM Copula SA-CCR IMM Copula

10 IRS trades 648.88 268.3 214.73 531.71 151.71 119.45
10 XCS trades 833.83 628.41 577.75 598.70 246.07 206.15
10 FX trades 257.80 247.25 216.68 374.22 126.31 110.32
30 trades 1644.21 1003.13 775.8 822.50 342.57 275.7
90 trades 2210.98 1977.38 1447.28 925.17 636.60 490.50

with stressed parameters. However, there seems no direct connection between the size of the
portfolio and the conservative factor of SA-CCR over IMM, as this diverges per asset type and
size of the portfolio.

To better observe the difference between the IMM and Copula model we plot the conditional
EE of the Copula model with the EE of IMM multiplied with the 𝛼 factor of 1.4 for the normal
parameters. The results can be observed in 6.1 and 6.2.

The parameters used in the Copula model are based on the sensitivity analysis of the IRS
portfolio of 10 trades. With those parameter values, especially the default correlation of 40%,
we can see that the Copula model gives comparable results to IMM for all testing portfolios.
However, when we increase the size of the portfolios, the results of the Copula model tend to
be less conservative than the results of the IMM, especially when we use the IMM with stressed
parameters and fix the default correlation value. As seen in figure 5.2, different portfolios might
need different correlations to have comparable EAD values with IMM. This indicates that the
alpha value of 1.4 is a reasonable and not very conservative value to account for WWR in the
framework of IMM.
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(a) Comparison expected exposure of 10 IRS products without
collateral.

(b) Comparison expected exposure of 10 IRS products with
collateral.

(c) Comparison expected exposure of 10 XCS products
without collateral.

(d) Comparison expected exposure of 10 XCS products with
collateral.

(e) Comparison expected exposure of 10 FX products without
collateral.

(f) Comparison expected exposure of 10 FX products with
collateral.

Figure 6.1: Comparison of Internal Model Method and Copula method for portfolio’s consisting of 10 same type of
products using normal parameters.
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(a) Comparison expected exposure of 30 products without
collateral.

(b) Comparison expected exposure of 30 products with
collateral.

(c) Comparison expected exposure of 90 products without
collateral.

(d) Comparison expected exposure of 90 products with
collateral.

Figure 6.2: Comparison of Internal Model Method and Copula method for portfolio’s consisting of 30 and 90
products using normal parameters.
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7
Conclusions and Discussion

In this thesis we developed a benchmark model that models WWR directly, and compared this
model with both SA-CCR and IMM methods on the EAD metric for regulatory capital for CCR.
This benchmark model is built on top of the IMM simulation framework but uses a Gaussian
copula for integrating the WWR, i.e. the correlation between default and exposures is included
in the EE simulation.

The research in this thesis focuses on the calculation of EADs. SA-CCR is implemented
according to the Basel framework [5]. For EADs of IMM and EADs of the Copula model, we
built a Monte Carlo simulation framework also following the corresponding Basel requirements
[4]. For IR risk factors, we choose the Hull-White model and for FX a GBM. Next, a calibration
framework is developed to estimate the parameters used in these models. We distinguished
two types of calibration, one with a long period of the past 12 years and the other with a shorter,
stressed period of 3 years. Furthermore, we established the pricing functions of IRS, XCS and
FX Forward, which are the most liquid product types in the market and are also the product
types included in our testing portfolios.

Both SA-CCR and IMM account for the WWR via an alpha factor of 1.4, which is to be
multiplied to the EAD values for the regulatory capital calculations. Our integrated simulation
framework based on copula takes into account the WWR directly inside the simulation. More
precisely, we derived the formula for backing out the probability of default using CDSs and then,
via a Gaussian copula, we include a correlation between the exposures and default probability.
Lastly, we tested these three models on testing portfolios, using both the stressed and normal
parameters and compared between with and without collateral.

The SA-CCR relies on a few variables which can be determined at the start date of a port-
folio. The IMM and Copula model rely on the model assumptions and model parameter values
of the risk factors. Testing results indicate that, SA-CCR tends to be at least 1.5 times more
conservative than IMM in presence of collateral, even with stressed model parameters. And
the level of conservatism is even higher because no diversification is allowed between different
asset classes.

To include the WWR in the EAD without the factor 𝛼 we introduced the Copula model. The
goal for this implementation was to see if we could find amethod that captures theWWRdirectly
and in case yes compare to the EADs from IMM multiplied by the 𝛼 factor. Via a copula, we
directly link the EPE with the probability of default, such that the higher the WWR, the higher
the resulting EE conditional on defaults. Using the parameter values either from the calibration
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or as indicated by sensitivity analysis, we noticed that when we used larger test portfolios the
Copula model values tend to be less conservative than the IMM. It is therefore hard to use one
set of parameters for the Copula model so as to return comparable EAD values as EADs from
IMM multiplied by 1.4 for different portfolios.

In the end, in view of the regulations, it is wise to have a conservative standard approach
to account for the CCR. If a bank can show that it can provide an IMM that accounts for all the
risks, they can be allowed to use this model instead. This can reduce the regulatory capital
significantly as demonstrated by our analysis results. They would however have to use this
𝛼 factor of 1.4. Using the parameters backed out from calibration and a default correlation
of about 30 to 40%, our integrated benchmark model based on copula returns more or less
comparable EADs of IMM times the alpha factor of 1.4. The Copula model results indicate that
the alpha factor of 1.4 is a reasonable value in general.
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A
Proofs

A.1. Change of measure exchange rate
We have the exchange rate as a GBM in the real world measure ℙ.

𝑑𝑋(𝑡) = 𝜇𝑋(𝑡)𝑑𝑡 + 𝜎𝑋(𝑡)𝑑𝑊(𝑡)ℙ. (A.1)

We will proof that the dynamics in the risk-neutral measure are given by:

𝑑𝑋(𝑡) = (𝑟𝑑 − 𝑟𝑓)𝑋(𝑡)𝑑𝑡 + 𝜎𝑋(𝑡)𝑑𝑊ℚ
𝑑 (𝑡). (A.2)

Proof. We take the money savings account in the foreign currency 𝐵𝑓(𝑡), where the value in the
domestic currency is then given by 𝑋(𝑡)𝐵𝑓(𝑡). We know that for the risk-neutral measure, any
discounted asset must be a martingale. The discounted value of the foreign saving account in
domestic currency is then given by:

𝜒(𝑡) =
𝐵𝑓(𝑡)
𝐵𝑑(𝑡)

𝑋(𝑡). (A.3)

This must be a martingale under the domestic measure ℚ. Using Ito’s lemma we look at
the dynamics and see:

𝑑𝜒(𝑡) = (𝑟𝑓 − 𝑟𝑑)
𝐵𝑓(𝑡)
𝐵𝑑(𝑡)

𝑋(𝑡)𝑑𝑡 +
𝐵𝑓(𝑡)
𝐵𝑑(𝑡)

𝑑𝑋(𝑡) (A.4)

= (𝑟𝑓 − 𝑟𝑑)
𝐵𝑓(𝑡)
𝐵𝑑(𝑡)

𝑋(𝑡)𝑑𝑡 +
𝐵𝑓(𝑡)
𝐵𝑑(𝑡)

𝜇𝑋(𝑡)𝑑𝑡 +
𝐵𝑓(𝑡)
𝐵𝑑(𝑡)

𝜎𝑋(𝑡)𝑑𝑊(𝑡)ℙ (A.5)

= (𝑟𝑓 − 𝑟𝑑)𝜒(𝑡)𝑑𝑡 + 𝜇𝜒(𝑡)𝑑𝑡 + 𝜎𝜒(𝑡)𝑑𝑊(𝑡)ℙ. (A.6)

For 𝜒 to be a martingale under the risk neutral probability the dynamics must be free of drift.
To have this we must have:

𝑑𝑊(𝑡)ℙ = −
((𝑟𝑓 − 𝑟𝑑) + 𝜇)

𝜎 𝑑𝑡 + 𝑑𝑊ℚ. (A.7)

Filling this in for (A.1), we get the dynamics under the risk-neutral measure:

𝑑𝑋(𝑡) = 𝜇𝑋(𝑡)𝑑𝑡 + 𝜎𝑋(𝑡) (−
((𝑟𝑓 − 𝑟𝑑) + 𝜇)

𝜎 𝑑𝑡 + 𝑑𝑊ℚ) (A.8)

= (𝑟𝑑 − 𝑟𝑓)𝑋(𝑡)𝑑𝑡 + 𝜎𝑋(𝑡)𝑑𝑊ℚ. (A.9)
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A.2. Change of measure foreign to domestic
We will do the proof for the risk neutral measure since we can then use the no-arbitrage princi-
ple. In the end, we can return to the real world measure for the short rate since we determine
the parameters according to a calibration. Using the risk neutral dynamics for the foreign and
domestic short rate:

⎧
⎪

⎨
⎪
⎩

𝑑𝑋(𝑡) = (𝑟𝑑 − 𝑟𝑓)𝑋(𝑡) + 𝜎𝑋(𝑡)𝑑𝑊ℚ𝑑
𝑋

𝑑𝑟𝑑(𝑡) = 𝜆𝑑(𝜃𝑑(𝑡) − 𝑟𝑑(𝑡))𝑑𝑡 + 𝜂𝑑𝑑𝑊ℚ𝑑
𝑑

𝑑𝑟𝑓(𝑡) = 𝜆𝑓(𝜃𝑓(𝑡) − 𝑟𝑓(𝑡))𝑑𝑡 + 𝜂𝑓𝑑𝑊
ℚ𝑓
𝑓

(A.10)

we want to write the foreign interest rate dynamics of 𝑟𝑓 in the domestic measure resulting in:

𝑑𝑟𝑓(𝑡) = (𝜆𝑓(𝜃𝑓(𝑡) − 𝑟𝑓(𝑡)) − 𝜂𝑓𝜎𝑋𝜌𝑓𝑋)𝑑𝑡 + 𝜂𝑓𝑑𝑊ℚ𝑑
𝑓 . (A.11)

Proof. Because of the no-arbitrage principle we can use the following expression for the Radon-
Nikodyn derivative:

ℚ𝑓
ℚ𝑑
|
F𝑡

=
𝐵𝑓(𝑡)𝑋(𝑡)
𝐵𝑑(𝑡)𝑋(0)

. (A.12)

Where for the money market accounts we can write:

𝐵𝑑(𝑡) = 𝑒∫
𝑡
0 𝑟𝑑𝑑𝑡 (A.13)

𝐵𝑓(𝑡) = 𝑒∫
𝑡
0 𝑟𝑓𝑑𝑡 . (A.14)

Using the dynamics of the exchange rate, we can find an expression for 𝑋(𝑡) using Ito’s
lemma with 𝑓(𝑋) = ln(𝑋). We find:

ln(𝑋(𝑡)) = ln(𝑋(0)) + ∫
𝑡

0

1
𝑋(𝑡)𝑑𝑋(𝑡) +

1
2 ∫

𝑡

0
− 1
𝑋2𝑑[𝑋(𝑡)] (A.15)

= ln(𝑋(0)) + ∫
𝑡

0
(𝑟𝑑 − 𝑟𝑓)𝑑𝑡 + ∫

𝑡

0
𝜎𝑑𝑊ℚ𝑑

𝑋 − 12 ∫
𝑡

0
𝜎2𝑑𝑡 (A.16)

= ln(𝑋(0)) + ∫
𝑡

0
𝑟𝑑 − 𝑟𝑓 −

1
2𝜎

2𝑑𝑡 + ∫
𝑡

0
𝜎𝑑𝑊ℚ𝑑

𝑋 . (A.17)

By taking the exponential on both sides we see:

𝑋(𝑡) = 𝑋(0) exp(∫
𝑡

0
𝑟𝑑 − 𝑟𝑓 −

1
2𝜎

2𝑑𝑡 + ∫
𝑡

0
𝜎𝑑𝑊ℚ𝑑

𝑋 ) . (A.18)

If we fill this in for our Radon Nikodyn derivative we have:

ℚ𝑓
ℚ𝑑
|
F𝑡

= exp(∫
𝑡

0
𝑟𝑓 − 𝑟𝑑𝑑𝑡) exp(∫

𝑡

0
𝑟𝑑 − 𝑟𝑓 −

1
2𝜎

2𝑑𝑡 + ∫
𝑡

0
𝜎𝑑𝑊ℚ𝑑

𝑋 ) (A.19)

= exp(∫
𝑡

0
−12𝜎

2𝑑𝑡 + ∫
𝑡

0
𝜎𝑑𝑊ℚ𝑑

𝑋 ) (A.20)

= exp(𝜎𝑊ℚ𝑑
𝑋 − 12𝜎

2𝑡) = ℰ(𝜎𝑊ℚ𝑑
𝑋 ), (A.21)
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where ℰ is the stochastic exponential, because of Girsanov’s theorem we can now define𝑊ℚ𝑓
𝑓

a Brownian motion under the risk-neutral domestic measure by:

𝑊ℚ𝑓
𝑓 = 𝑊ℚ𝑑

𝑓 − [𝑊ℚ𝑑
𝑓 , 𝜎𝑊ℚ𝑑

𝑋 ] = 𝑊ℚ𝑑
𝑓 − 𝜌𝑋,𝑓𝜎𝑡. (A.22)

We can fill this in for the dynamics of the foreign short rate and see:

𝑑𝑟𝑓(𝑡) = 𝜆𝑓(𝜃𝑓(𝑡) − 𝑟𝑓(𝑡))𝑑𝑡 + 𝜂𝑓(𝑑𝑊ℚ𝑑
𝑓 − 𝜌𝑋,𝑓𝜎𝑑𝑡) (A.23)

= (𝜆𝑓(𝜃𝑓(𝑡) − 𝑟𝑓(𝑡)) − 𝜂𝑓𝜌𝑋,𝑓𝜎)𝑑𝑡 + 𝜂𝑓𝑑𝑊ℚ𝑑
𝑓 . (A.24)

A.3. Copula model exact method
We want an expression for the probabilities for the events conditional on default exactly at each
time point expressed by the probability ℙ(𝜔 = 𝜔𝑖|𝜏 = 𝑡). Remember that when we order the
exposure paths in descending order on their EPE, we choose event 𝑖 when (𝑖−1)/𝑀 < 𝑋 < 𝑖/𝑀.
Then we know we have a default exactly at 𝑡, when 𝑌 = Φ−1(𝑃(𝑡)). This gives us the following
expression for the probability:

ℙ(𝜔 = 𝜔𝑖|𝜏 = 𝑡) = ℙ((𝑖 − 1)/𝑀 < 𝑋 ≤ 𝑖/𝑀|𝑌 = Φ−1(𝑃(𝑡))) (A.25)
= ℙ[Φ−1((𝑖 − 1)/𝑀) < Φ−1(𝑋) ≤ Φ−1(𝑖/𝑀)|𝑌 = Φ−1(𝑃(𝑡))] (A.26)
= ℙ[Φ−1(𝑋) ≤ Φ−1(𝑖/𝑀)|𝑌 = Φ−1(𝑃(𝑡))] (A.27)
− ℙ[Φ−1(𝑋) ≤ Φ−1((𝑖 − 1)/𝑀)|𝑌 = Φ−1(𝑃(𝑡))]. (A.28)

We now will rewrite the inequality Φ−1(𝑋) ≤ Φ−1((𝑖 − 1)/𝑀) using that 𝑌 and Φ−1(𝑋)
have a bivariate normal distribution with 𝜌 and we take 𝑌 = Φ−1(𝑃(𝑡)). We see Φ−1(𝑋) =
𝜌Φ−1(𝑃(𝑡)) + √1 − 𝜌2𝜖 and we can write for the following inequality:

Φ−1(𝑋) ≤ Φ−1((𝑖 − 1)/𝑀) (A.29)
𝜌Φ−1(𝑃(𝑡)) + √1 − 𝜌2𝜖 ≤ Φ−1((𝑖 − 1)/𝑀) (A.30)

𝜖 ≤ Φ−1((𝑖 − 1)/𝑀) − 𝜌Φ−1(𝑃(𝑡))
√1 − 𝜌2

. (A.31)

From this we have:

ℙ[Φ−1(𝑋) ≤ Φ−1((𝑖 − 1)/𝑀)|𝑌 = Φ−1(𝑃(𝑡))] = Φ(Φ
−1((𝑖 − 1)/𝑀) − 𝜌Φ−1(𝑃(𝑡))

√1 − 𝜌2
) . (A.32)

Combining this result with the expression for probability ℙ(𝜔 = 𝜔𝑖|𝜏 = 𝑡) we see:

ℙ(𝜔 = 𝜔𝑚|𝜏 = 𝑡) = Φ(
Φ−1(𝑖/𝑀) − 𝜌Φ−1(𝑃(𝑡))

√1 − 𝜌2
) − Φ(

Φ−1((𝑖 − 1)/𝑀) − 𝜌Φ−1(𝑃(𝑡))
√1 − 𝜌2

) .

(A.33)
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B
Portfolio’s

In this section we will show the portfolio’s used in chapter 6. Here we have tested the models
first on 3 portfolio’s consisting of the IRS, XCS and FX products respectively from the portfolio
with 30 derivatives. After that, we have tested the model on the portfolio with 30 products and
90 products.

55



TradeID ProductTypePayOrReceiveFixed(Dom)LegFixedLegDomesticNotional Coupon StartDate NumberOfCouponsMaturity

1 IRS 1 True 10000 1 10 6

2 IRS 1 True 30000 2 8 5

3 IRS 1 True 5000 0 6 8

4 IRS 1 False 15000 2 7 10

5 IRS 1 False 25000 1 10 6

6 IRS 1 False 7000 0 5 5

7 IRS -1 True 15000 2 8 7

8 IRS -1 True 13000 1 9 8

9 IRS -1 False 9000 0 6 9

10 IRS -1 False 12000 1 5 10

11 XCCY 1 True 10000 1 10 5

12 XCCY 1 True 3000 0 7 8

13 XCCY -1 True 15000 2 6 6

14 XCCY -1 True 5000 1 9 9

15 XCCY 1 True 17000 2 5 7

16 XCCY 1 False 8000 0 7 9

17 XCCY 1 False 20000 1 4 5

18 XCCY -1 False 2000 0 3 10

19 XCCY -1 False 30000 2 9 6

20 XCCY 1 False 15000 2 10 7

21 FX 1 10000 5

22 FX 1 4000 8

23 FX 1 2000 7

24 FX 1 6000 6

25 FX 1 3500 9

26 FX -1 8000 5

27 FX -1 3500 8

28 FX -1 2000 10

29 FX -1 4000 6

30 FX -1 6000 10

B.1. Portfolio with 30 derivatives
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TradeID ProductTypePayOrReceiveFixed(Dom)LegFixedLegDomesticNotional Coupon StartDate NumberOfCouponsMaturity

1 IRS 1 True 23000 2 9 10

2 IRS 1 True 6000 1 6 9

3 IRS 1 True 16000 0 8 6

4 IRS 1 True 3000 0 10 5

5 IRS 1 True 18000 1 5 7

6 IRS 1 True 30000 1 7 5

7 IRS 1 True 15000 2 10 9

8 IRS 1 True 9000 1 8 10

9 IRS -1 True 16000 2 5 8

10 IRS -1 True 7000 1 7 5

11 IRS -1 True 29000 2 5 6

12 IRS -1 True 8000 0 8 7

13 IRS -1 True 20000 1 5 10

14 IRS -1 True 14000 1 10 9

15 IRS -1 True 3000 1 6 6

16 IRS 1 False 7000 0 10 7

17 IRS 1 False 18000 2 8 8

18 IRS 1 False 27000 2 7 10

19 IRS 1 False 18000 0 10 7

20 IRS 1 False 4000 1 6 8

21 IRS 1 False 19000 2 9 5

22 IRS 1 False 20000 1 10 6

23 IRS 1 False 4000 1 3 10

24 IRS -1 False 13000 0 6 5

25 IRS -1 False 27000 1 6 5

26 IRS -1 False 3000 0 8 6

27 IRS -1 False 29000 2 10 9

28 IRS -1 False 10000 2 5 5

29 IRS -1 False 24000 1 5 5

30 IRS -1 False 20000 2 7 8

31 XCCY 1 True 8000 1 9 10

32 XCCY 1 True 29000 2 5 7

33 XCCY 1 True 14000 0 9 9

34 XCCY 1 True 16000 1 5 8

35 XCCY 1 True 27000 1 9 9

36 XCCY 1 True 8000 0 7 6

37 XCCY 1 True 10000 1 10 9

38 XCCY 1 True 17000 2 6 8

39 XCCY -1 True 8000 1 6 10

40 XCCY -1 True 20000 2 7 9

41 XCCY -1 True 17000 1 8 5

42 XCCY -1 True 30000 2 9 6

43 XCCY -1 True 6000 0 8 8

44 XCCY -1 True 18000 1 6 10

45 XCCY -1 True 16000 1 6 9

46 XCCY -1 True 5000 0 9 10

47 XCCY 1 False 24000 1 4 5

48 XCCY 1 False 13000 0 5 6

49 XCCY 1 False 3000 1 10 10

B.2. Portfolio with 90 derivatives
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50 XCCY 1 False 10000 0 10 8

51 XCCY 1 False 20000 1 5 6

52 XCCY 1 False 30000 2 5 7

53 XCCY 1 False 8000 0 3 8

54 XCCY -1 False 4000 2 5 9

55 XCCY -1 False 18000 0 7 7

56 XCCY -1 False 9000 1 9 5

57 XCCY -1 False 26000 2 8 8

58 XCCY -1 False 17000 2 6 7

59 XCCY -1 False 3000 1 5 10

60 XCCY -1 False 24000 2 6 8

61 FX 1 4000 8

62 FX 1 6500 7

63 FX 1 2500 8

64 FX 1 9000 10

65 FX 1 1500 9

66 FX 1 4500 4

67 FX 1 9500 4

68 FX 1 4000 9

69 FX 1 8500 8

70 FX 1 10000 6

71 FX 1 8000 3

72 FX 1 4500 10

73 FX 1 3500 8

74 FX 1 2000 5

75 FX 1 7500 6

76 FX 1 4500 3

77 FX -1 3500 3

78 FX -1 7500 6

79 FX -1 6000 5

80 FX -1 5500 8

81 FX -1 4500 4

82 FX -1 9500 7

83 FX -1 2500 9

84 FX -1 7000 9

85 FX -1 4000 8

86 FX -1 10000 8

87 FX -1 5500 9

88 FX -1 4500 10

89 FX -1 7000 7

90 FX -1 6500 3



Bibliography

[1] Cre50 - counterparty credit risk definitions and terminology. URL https://www.bis.
org/basel_framework/chapter/CRE/50.htm.

[2] Effective federal funds rate - federal reserve bank of new york. URL https://www.
newyorkfed.org/markets/reference-rates/effr.

[3] Federal reserve economic data | fred | st. louis fed. URL https://fred.stlouisfed.
org/.

[4] Cre53 - internal models method for counterparty credit risk. URL https:
//www.bis.org/basel_framework/chapter/CRE/53.htm?inforce=
20220101&published=20191215.

[5] Cre52 - standardised approach to counterparty credit risk. URL https://www.bis.
org/basel_framework/chapter/CRE/52.htm.

[6] Sonia interest rate benchmark | bank of england. URL https://www.bankofengland.
co.uk/markets/sonia-benchmark.

[7] Leif B. G. Andersen, Michael Pykhtin, and Alexander Sokol. Rethinking margin period of
risk. SSRN Electronic Journal, 1 2016. doi: 10.2139/SSRN.2719964.

[8] Phelim Boyle, Mark Broadie, and Paul Glasserman. Monte carlo methods for security
pricing. Journal of Economic Dynamics and Control, 21:1267–1321, 6 1997. ISSN 0165-
1889. doi: 10.1016/S0165-1889(97)00028-6.

[9] D Brigo and F Mercurio. Interest rate models: theory and practice. Springer, 2001.

[10] Damiano Brigo and Massimo Morini. Counterparty risk faq: Credit var, pfe, cva, dva,
closeout, netting, collateral, re-hypothecation, wwr, basel, funding, ccds and margin lend-
ing. SSRN Electronic Journal, 11 2011. doi: 10.48550/arxiv.1111.1331.

[11] CA de Kam Tijdschrift voor Openbare Financiën and undefined 2009. Van financiële crisis
naar depressie? wimdreesfonds.nl, 2009. ISSN 1875-8401.

[12] Marco Di Francesco. A general gaussian interest rate model consistent with the current
term structure. International Scholarly Research Notices, 2012, 2012.

[13] F.C.Park. Implementing interest rate models: A practical guide. Capital markets Portfolio
Research, Inc., 2004.

[14] Jean-François Le Gall. Brownian motion, martingales, and stochastic calculus. Springer,
2016.

[15] Brenda Faith Ginos. Parameter estimation for the lognormal distribution. International
Scholarly Research Notices, 2012, 2012.

59

https://www.bis.org/basel_framework/chapter/CRE/50.htm
https://www.bis.org/basel_framework/chapter/CRE/50.htm
https://www.newyorkfed.org/markets/reference-rates/effr
https://www.newyorkfed.org/markets/reference-rates/effr
https://fred.stlouisfed.org/
https://fred.stlouisfed.org/
https://www.bis.org/basel_framework/chapter/CRE/53.htm?inforce=20220101&published=20191215
https://www.bis.org/basel_framework/chapter/CRE/53.htm?inforce=20220101&published=20191215
https://www.bis.org/basel_framework/chapter/CRE/53.htm?inforce=20220101&published=20191215
https://www.bis.org/basel_framework/chapter/CRE/52.htm
https://www.bis.org/basel_framework/chapter/CRE/52.htm
https://www.bankofengland.co.uk/markets/sonia-benchmark
https://www.bankofengland.co.uk/markets/sonia-benchmark


[16] Kathrin Glau, Ricardo Pachon, and Christian Pötz. Speed-up credit exposure calculations
for pricing and risk management. Quantitative Finance, 21:481–499, 2021. doi: 10.1080/
14697688.2020.1781236.

[17] Jong Gregory. Counterparty Credit Risk and Credit Value Adjustment, Second Edition.
John Wiley Sons Ltd, 2012.

[18] Allan Gut. Probability: A Graduate Course, volume 75. Springer New York, 2013. ISBN
978-1-4614-4707-8. doi: 10.1007/978-1-4614-4708-5.

[19] John C. Hull and Alan White. Cva and wrong-way risk. Financial Analysts Journal, 68:
58–69, 9 2012.

[20] Fsi Connect Financial Stability Institute. Counterparty credit risk in basel iii – executive
summary. 2018.

[21] Johann Jacobs and Gary van Vuuren. Is regulatory capital a legitimate, comparable and
objective global standard? evidence from 51 institutions across 17 countries. South
African Journal of Economic and Management Sciences, 17:266–283, 2014. ISSN
22223436. doi: 10.4102/SAJEMS.V17I3.568.

[22] Cornelis W Oosterlee and Lech A Grzelak. Mathematical Modeling Computation in Fi-
nance. World Scientific Publishing Europe Ltd., 2020.

[23] Dan Rosen and David Saunders. Cva the wrong way. Journal of Risk Management in
Financial Institutions, 5(3):252–272, 2012.

[24] Sheldon Ross. The multivariate normal distribution and copulas. Simulation, pages 97–
109, 2013. doi: 10.1016/B978-0-12-415825-2.00006-1.

[25] Anna Schlösser. One factor gaussian copula model. pages 95–127, 2011. doi: 10.1007/
978-3-642-15609-0_4.

[26] P Shakdwipee, M Mehta Journal of New Technology, Research …, and undefined 2017.
From basel i to basel ii to basel iii. academia.edu.

[27] J. Michael Steele. Stochastic Calculus and Financial Applications. Springer New York,
2001. doi: 10.1007/978-1-4684-9305-4.

[28] Yuan Wen and Jacob Kinsella. Credit default swap-pricing theory, real data analysis and
classroom applications using bloomberg terminal. JOURNAL OF ECONOMICS AND FI-
NANCE EDUCATION, 2013.

[29] Lawrence J. White. Markets: The credit rating agencies. Journal of Economic Perspec-
tives, 24:211–26, 3 2010. ISSN 0895-3309. doi: 10.1257/JEP.24.2.211.

[30] Steven H. Zhu and Michael Pykhtin. A guide to modeling counterparty credit risk. GARP
Risk Review, July/August, 2007.

60


	List of Abbreviations
	List of Figures
	List of Tables
	Introduction
	Mathematical Framework
	Probability theory
	Copula
	Stochastic processes
	Changing measures
	GBM
	Dependent Brownian motions

	Counterparty Credit Risk (CCR) and CCR Measures
	Financial Risk
	Exposure
	Wrong Way risk
	Mitigation of CCR
	Netting set
	Collateral
	Margin

	EAD under Standardized Approach.
	RC
	PFE add-on
	Effective Notional

	EAD under the Internal Model Method

	Simulation Framework without WWR
	Various interest rate definitions
	Forward interest rate
	IRS swap

	Foreign exchange derivatives
	Interest rate models
	Hull-White model
	G1++ model

	Monte Carlo simulation
	Simulation algorithms
	Calibration
	Calibration of the short rate model
	Calibration of the GBM
	Calibration of correlation

	Results
	Sensitivity analysis and stressed parameters.

	Simulation Framework with WWR
	Extracting Probability of default from CDS spreads
	CDS
	Extracting the hazard rate

	Copula model
	Expected exposure
	Sensitivity analysis Copula model


	Numerical results
	Comparing SA-CCR with IMM
	Comparison on testing portfolios

	Conclusions and Discussion
	Proofs
	Change of measure exchange rate
	Change of measure foreign to domestic
	Copula model exact method

	Portfolio's
	Portfolio with 30 derivatives
	Portfolio with 90 derivatives

	Bibliography

