Contour Detection in Multi-Angle Time-Lapse Images of Growing Plants

Merel te Hofsté Supervisor: Neil Budko

Quantifying growth

Six potato varieties
2 Climate rooms
Dry and wet sections

Problem

table

moving camera

Overview

Traditional Snakes

• Active contours to detect outline in image

Traditional Snakes

• Energy functional of a traditional snake parameterized by $\mathbf{q}(s) = [u(s), v(s)]$

$$E_{\text{snake}}^* = \int_0^1 E_{\text{snake}} \left(\mathbf{q}(s) \right) \, \mathrm{d}s$$
$$= \int_0^1 E_{\text{int}} \left(\mathbf{q}(s) \right) + E_{\text{ext}}(\mathbf{q}(s)) \, \mathrm{d}s$$

• α and β control parameters for amount of stretch and curvature

$$E[\mathbf{q}] = \int_0^1 \frac{1}{2} \left(\alpha \|\mathbf{q}'(s)\|^2 + \beta \|\mathbf{q}''(s)\|^2 \right) + E_{\text{ext}}(\mathbf{q}(s)) \, \mathrm{d}s$$

• Assume local minimum of E in \mathbf{q} to derive the Euler-Lagrange equation

$$\alpha \mathbf{q}'' - \beta \mathbf{q}'''' - \nabla E_{\text{ext}}(\mathbf{q}) = 0$$

Traditional Snakes

• Typical external energy $E_{\text{ext}}(\mathbf{q}) = -|\nabla I(\mathbf{q})|^2$ which points towards regions of interest in image I

Gradient Vector Flow

• New external force field $\mathbf{w}(u, v) = [\phi(u, v), \psi(u, v)]$ which minimizes the functional $\mathcal{E}[\mathbf{w}] = \iint \mu \left(\phi_u^2 + \phi_v^2 + \psi_u^2 + \psi_v^2\right) + |\nabla f|^2 |\mathbf{w} - \nabla f|^2 \, \mathrm{d}u \, \mathrm{d}v$

$$\mu {\rm smoothing} {\rm \, term} {\rm \, and} {\rm \, edge} {\rm \, map} {\rm \, } f {\rm \, derived} {\rm \, from} {\rm \, image}$$

• GVF Snake

$$\alpha \mathbf{q}'' - \beta \mathbf{q}'''' + \mathbf{w} = 0$$

Gradient Vector Flow

μ=0.1

GVF-Snakes

• Solve for $\frac{\partial \mathbf{q}}{\partial t} = \alpha \frac{\partial^2 \mathbf{q}}{\partial s^2} - \beta \frac{\partial^4 \mathbf{q}}{\partial s^4} + \mathbf{w}(\mathbf{q})$

with time-integration method

• Initial contour

Results

(c) t = 5

(d) t = 10

Results

(a) Angle -1

(b) Angle 0

(c) Angle +1

Contour detection

)

GVF-Snakes

- Algorithm to detect outline
- Success ensured by initial contour and preprocessing steps

Pinhole camera model

Pinhole camera model

- Point in camera reference frame:
 - $\mathbf{r}' = [x',y',z']$
- Projection equations:

$$f\frac{x'}{z'} = u - u_0$$
$$f\frac{y'}{z'} = v - v_0$$

 (u_0, v_0) center of image plane

Pinhole camera model

- Point in camera reference frame:
 - $\mathbf{r}' = [x', y', z']$
- Normalized image coordinates:

$$rac{1}{z'}\mathbf{r}' = egin{bmatrix} x'/z' \\ y'/z' \\ z'/z' \end{bmatrix} = \mathbf{y}$$

Two-view geometry

- Two camera's aiming at the same point $\, {f P} \,$

$$\mathbf{r'} = [x', y', z']$$

 $\mathbf{r''} = [x'', y'', z'']$
 $\mathbf{t} = [t_1, t_2, t_3]$

$$\mathbf{r}'' = R\mathbf{r}' + \mathbf{t}$$

Essential Matrix

•
$$\mathbf{r}'' = R\mathbf{r}' + \mathbf{t}$$

 $z''\mathbf{y}'' = z'R\mathbf{y}' + \mathbf{t}$
 $0 = (\mathbf{y}'')^T E\mathbf{y}'$

3D Contour Reconstruction

Essential Matrix

•
$$\mathbf{r}'' = R\mathbf{r}' + \mathbf{t}$$

 $z''\mathbf{y}'' = z'R\mathbf{y}' + \mathbf{t}$
 $0 = (\mathbf{y}'')^T E\mathbf{y}'$

• Where E is a 3x3 matrix called the Essential Matrix defined by $E = [\mathbf{t}]_{\times}R$

$$\mathbf{t} \times R = [\mathbf{t}]_{\times} R, \quad [\mathbf{t}]_{\times} = \begin{bmatrix} 0 & -t_3 & t_2 \\ t_3 & 0 & -t_1 \\ -t_2 & t_1 & 0 \end{bmatrix}$$

3D Contour Reconstruction

Essential Matrix

- Determine E from $(\mathbf{y}'')^T E \mathbf{y}' = 0$
- $Y\mathbf{e}=\mathbf{0}$, nx9 matrix Y
- Minimum of 8 point correspondences
- Find nullspace of Y using Singular Value Decomposition $U, D, V^T = \operatorname{svd}(Y)$ in column of V

Point matching

(a) Image and contour 1

(b) Image and contour 2

24

Point matching

- Rough alignment
- Choose 8 random points on contour and find the corresponding closest points
- Compute E and check $(\mathbf{y}'')^T E \mathbf{y}' < \varepsilon$
- Continue until satisfied

- Obtain rotation and translation via another Singular Value Decomposition of E
- Retrieve depth coordinate

$$\mathbf{y}'' = \frac{1}{z''} \mathbf{r}'' = \frac{R\mathbf{r}' + \mathbf{t}}{\mathbf{e}_3^T (R\mathbf{r}' + \mathbf{t})}$$
$$\mathbf{y}'' = \frac{Rz'\mathbf{y}' + \mathbf{t}}{\mathbf{e}_3^T (Rz'\mathbf{y}' + \mathbf{t})}$$
$$z' = -\frac{\mathbf{y}'^T R^T \left(\mathbf{y}'' \mathbf{e}_3^T - I\right)^T \left(\mathbf{y}'' \mathbf{e}_3^T - I\right) \mathbf{t}}{\mathbf{y}'^T R^T \left(\mathbf{y}'' \mathbf{e}_3^T - I\right)^T \left(\mathbf{y}'' \mathbf{e}_3^T - I\right) R\mathbf{y}'}$$

3D Contour Reconstruction

 $R = \begin{bmatrix} 1 & 0.015 & -0.010 \\ -0.014 & 1 & 0.025 \\ 0.011 & -0.025 & 1 \end{bmatrix}$

 $\mathbf{t} = \begin{bmatrix} 0.08 \\ 0.99 \\ -0.11 \end{bmatrix}$

Observation of growth

3D Contour Reconstruction

Misalignment

- $\mathbf{r}'(\tau_1) = aR\mathbf{r}'(\tau_2) + \mathbf{t}$
- Alignment based solely on corner points

Observation of growth

3D Reconstruction

- 3D reconstruction up to scale
- In camera reference frame
- SVD
- Alignment of plant's container

Double Snakes

- Combine previous problems
- Evolve both snakes simultaneously and match points on contour
- Minimize the functional

$$\Phi[\mathbf{y}_1, \mathbf{y}_2] = \int_0^1 \left[\frac{\alpha}{2} \left(\|\mathbf{y}_1'\|^2 + \|\mathbf{y}_2'\|^2 \right) + \frac{\beta}{2} \left(\|\mathbf{y}_1''\|^2 + \|\mathbf{y}_2''\|^2 \right) + \frac{1}{2} \left(\mathbf{y}_2^T E \mathbf{y}_1 \right)^2 \right] \, \mathrm{d}s$$

$$\frac{\partial \mathbf{y}_1}{\partial t} = \alpha \frac{\partial^2 \mathbf{y}_1}{\partial s^2} - \beta \frac{\partial^4 \mathbf{y}_1}{\partial s^4} - E^T \mathbf{y}_2 \mathbf{y}_2^T E \mathbf{y}_1 + \mathbf{F}(\mathbf{y}_1),$$

$$\frac{\partial \mathbf{y}_2}{\partial t} = \alpha \frac{\partial^2 \mathbf{y}_2}{\partial s^2} - \beta \frac{\partial^4 \mathbf{y}_2}{\partial s^4} - E \mathbf{y}_1 \mathbf{y}_1^T E^T \mathbf{y}_2 + \mathbf{F}(\mathbf{y}_2).$$

Double Snakes

Convexity

- When does $(\mathbf{y}'')^T E \mathbf{y}' = 0$ hold?
- $(\mathbf{y}'')^T E = \mathbf{0}$ $E\mathbf{y}' = \mathbf{0}$

The left and right nullspace of ${\cal E}$

Double Snakes

Double Snakes

- Simultaneously updating both contours
- Convexity of the essential matrix

Conclusion

- GVF-Snakes algorithm to detect contour
- 3D contour reconstruction up to scale
- Observation of growth due to alignment of plant's container
- Introduction of Double Snakes

Conclusi

Recommendations

- Stabilizing the estimation of the essential matrix
- More advanced camera model
- Improve alignment of plant's container
- Explore convexity of the coplanarity constraint

Questions?