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Abstract
The increase in complexity of mathematical models in an attempt to approximate reality and desire to have
near real-time results have emphasized the need for fast numerical simulations. Especially in areas where
classic numerical methods struggle to produce valid solutions in reasonable computational time due to their
complex behaviour on multiple temporal and spatial scales, such as (cardio-vascular) fluid modelling [1],
machine learning techniques can be of help. The aim of this study is to construct a single reduced order
model, based on neural networks, for time-dependent incompressible blood flow through the aorta that can
account for varying velocity inlet conditions, material parameters and geometries (computational domains).
The objectives are to minimize the reduction of accuracy of simulated time series with OpenFoam [2], and to
obtain speedup compared to the OpenFoam simulations.

In this study, aortic blood flow during one heartbeat is modelled by Navier-Stokes equations for incompressible,
Newtonian fluids. Data for training and testing the neural networks was generated using the finite volume
method. The network architecture consists of a convolutional encoder and decoder model for dimensionality
reduction, with an additional neural network for time evolution inserted between the encoder and decoder.
The network takes one time step as input and predicts five consecutive time steps ahead. Three different
networks for time evolution were tested. The best performing network was tested on increasingly complex
computational domains. Thereafter, the network’s ability to generalize to varying inlet velocity patterns and
new variations of the computational domain was tested, for which the network for time evolution was adapted
to take into account varying inlet velocity patterns. The performance of the networks was evaluated on
predicting one to five time steps ahead from one input time step, and using the prediction of one time step
ahead recursively to obtain the prediction of one entire heartbeat.

The best performing architecture found was an encoder, recurrent neural network with long-short term memory
units for time evolution, decoder model combination. The generalizability for the tested material parameter,
blood viscosity, while keeping the inlet velocity pattern fixed, appeared quite good. A relative mean absolute
error (MAE) of around 10% was obtained for straight, bent and bifurcated channel geometries. When testing
the network on varying inlet velocity patterns, the relative MAE in the domain increased considerably to
around 25%. In general, the relative errors were significantly higher in comparison to the absolute errors,
and mainly increased by low velocity parts of the domain and time series. In addition, the full height of the
velocity peak was not always captured and a spike in the domain MAE was seen for rapidly decreasing inlet
velocities. Also, the network was unable generalize to new geometries.

Various attempts to improve the accuracy, including altering the loss function and augmenting the data,
were not successful. However, many choices of data augmentations, normalization techniques and loss func-
tions were not tested and could improve the performance. The generalizability to different computational
domains could be improved by adding more geometries and more variation to the geometries in the data.
Nonetheless, the prediction of one heartbeat was obtained in approximately 20s, which is equivalent to an
achieved speedup of around 20 compared to OpenFoam simulations. In conclusion, this research should be
seen as a basis for time-dependent blood flow predictions in the aorta, from which a multitude of different
paths can be explored.
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1 | Introduction
1.1 Relevance
The increase in complexity of mathematical models in an attempt to approximate reality and desire to have
near real-time results, for example in medical image-guidance [3] or creating digital twins [4], have emphasized
the need for fast numerical simulations. Reduced order models (ROMs) aim to capture the most important
features of a physical phenomenon being simulated, whilst reducing the computational load compared with
full order/high-fidelity models and thus obtaining a speedup in simulation time.

Classic reduced order methods, which will briefly be discussed in chapter 2.1, generally rely on linear basis
functions [5]. In contrast, the underlying dynamics are often non-linear. Also, due to discretizing, they depend
on a fixed computational domain or the ability to find a parametrization. In addition, numerical methods for
solving the full or reduced order model that are not completely implicit are dependent on the Courant number
for convergence. Hence, the more accurate the solution (i.e. a fine mesh), the smaller the time step must
become, which in turn increases simulation time.

Instead of using classical numerical methods, neural networks can be used to learn non-linear relations,
produce lower dimensional representations and perform time evolution of physical phenomena governed by
differential equations. Especially in areas where classic numerical methods struggle to produce valid solutions
in reasonable computational time due to their complex behaviour on multiple temporal and spatial scales,
such as (cardio-vascular) fluid modelling [1], machine learning (ML) techniques can be of help. Preceding
work done in this direction is discussed in chapter 2.2. This thesis will continue on that basis and explore the
boundaries of this approach for predicting the blood flow through the aorta during one heartbeat.

1.2 Aim and objectives
The aim of this study is to construct a single reduced order model, based on neural networks, for time-
dependent incompressible blood flow through the aorta that can account for varying velocity inlet conditions,
material parameters and geometries (computational domains). The objectives are to minimize the reduction
of accuracy of simulated time series with OpenFoam [2], and to obtain speedup compared to the OpenFoam
simulations.

However, for both classic and machine learning based reduced order models there is a trade-off between com-
putational work and thus computation time, accuracy and generalization. To create a more accurate model,
the computational load usually increases and the generalizability decreases. This leads to the research question:

"What is possible in terms of generalizability, whilst minimizing the reduction of accuracy and obtaining
speedup, for time-dependent cardiovascular simulations with the use of state-of-the-art machine learning
techniques?"

This question can be divided into three sub-questions:
1. Which ML network architecture is most accurate at predicting consecutive time steps of time-dependent

flow?
2. Can the ML network produce accurate results for a range of physically relevant boundary conditions

and material parameters?
3. How much can computational domains differ while retaining accuracy?

The answers to these questions will be sought throughout this report. As mentioned above, necessary theory
and relevant preceding work is discussed in chapter 2. Thereafter, the details on the generation of data for
training and testing the network, model architectures, performed tests and performance evaluation, are given
in the chapter 3. The results of the tests are presented and discussed in chapter 4. Finally, the conclusions
and recommendations of this thesis are given in chapter 5.
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2 | Preliminaries & related work
In this chapter, the relevant theory and related research are discussed to set the framework for this study. First,
reduced order models will be introduced in section 2.1. Thereafter all necessary machine learning concepts
will be discussed in section 2.2 and lastly, details on cardiovascular modelling will be presented in section 2.3.

2.1 Reduced order methods
There are two approaches to constructing ROMs. The first approach is to simplify the underlying physics
(known as operational based reduction methods) for example by making assumptions on certain parameters or
symmetry. The second approach is discretizing the continuous equations and thereafter reducing the model,
most commonly using projection-based methods [6].

Some well known projection-based methods are proper orthogonal decomposition (POD), reduced basis (RB)
and proper generalized decomposition (PGD). POD relies, as the name suggests, on orthogonal decomposition
and principal components. The principal components are eigenvectors of the data’s covariance matrix and
hence can be found through eigendecomposition of the covariance matrix or singular value decomposition
(SVD) of the data matrix. The data set may originate from various sources, for example numerical simula-
tions or physical problems. The process of finding principal components is called principal component analysis
(PCA) [7]. RB methods find an approximate solution to a parameterized partial differential equation (PDE)
in a lower dimension subspace. The solution is expressed as a linear combination of problem-dependent basis
functions, generated from a set a solutions to the high-fidelity problem [8]. PGD is an iterative method for
solving boundary value problems, where in each iteration the solution is enriched with a new mode. Taking
only the most relevant PGD modes produces a ROM of the solution. The PGD method requires a variational
formulation of the problem, which is most commonly obtained by the Bubnov-Galerkin method. All Galerkin
methods apply linear constraints to convert a continuous operator to a discrete problem [9].

As mentioned in the introduction, the drawback of using these methods is that they usually rely on linear
basis functions whilst the underlying dynamics are often non-linear and they depend on a fixed computational
domain (fixed geometry) or the ability to find a parametrization. However, work has been done on using
reduced order methods on moving objects inside the computational domain by using the immersed boundary
method and reference meshes [10], [11]. Although much more research can be found on the use of classic
ROMs, this thesis is limited to discussing them further only when used in combination with machine learning
techniques.

2.2 Machine learning framework
As aforementioned, neural networks can be used to learn non-linear relations, produce lower dimension repre-
sentations and perform time evolution of physical phenomena governed by differential equations. Two types of
networks that could be used for creating a reduced order representation are convolutional neural networks and
autoencoders with or without convolutional layers. For time evolution three types of networks, being neural
networks, recurrent neural networks and again convolutional neural networks can be used. To ensure the
networks take into account the underlying physics and increase the chance the networks output is physically
relevant, a network can be physics informed. All the above concepts will be explained and discussed in the
following sections. In addition, a short overview of other ML applications in computational fluid dynamics
(CFD) is given.
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2.2.1 Neural networks
A neural network (NN) is a general machine learning method that has many purposes, from regression and
classification to creating embeddings for text. A NN is built by

Figure 2.1: Neural Network

three sets of neurons: input neurons, (multiple layers of) hidden
neurons and output neurons, as depicted in figure 2.1. How the
neurons are connected determines the architecture of a NN. The
inputs of each neuron (xi) are multiplied by a weight (wij) and
summed, the bias (bi) is added, and the result is passed though
an activation function (act) to determine the output of a neuron
(xj), as represented in equation 2.1a. The output of a neuron is
then again the input of one of n neurons in the next layer, until
the output layer (y ∈ Rk) is reached. Together this creates a
mapping from input to output, as shown in equation 2.1b.

xj = act(
m∑

i=1
(wij ∗ xi) + bi) for j = 1, ..., n (2.1a)

F : X −→ Y for X ∈ Rm, Y ∈ Rk (2.1b)

Choosing the architecture of a NN is a trade-off between making the NN complex enough such that the rela-
tion between input and output can be learned (prevent underfitting) and keeping the NN simple enough to be
able to generalize (prevent overfitting). Generalizability refers to the ability of the NN to make predictions on
input data that does not belong to the training data set, i.e. has not been seen by the network before. There
are multiple techniques to improve generalizability, called regularization techniques. Some of these are early
stopping of training process, parameter norm penalties such as L1 and L2 regularization and adding dropout
probability to layers of neurons [12].

The activation functions used in the network could be linear. However this would entail that multiple layers
of a network can be collapsed back to one single layer, as it is just a complex description of a matrix vector
multiplication. Hence, to learn more complex relations, non-linear activation functions are used. Commonly
used non-linear activation functions are shown below [13].

Figure 2.2: Activation functions

ReLU(x) =
{

x if x > 0
0 if x ≤ 0

LeakyReLU(x) =
{

x if x > 0
ax if x ≤ 0

ELU(x) =
{

x if x > 0
α(ex − 1) if x ≤ 0

SELU(x) = λ

{
x if x > 0
α(ex − 1) if x ≤ 0

σ(x) = 1
1 + e−x

tanh(x) = ex − e−x

ex + e−x

The training process in which the weights of the network are learned can be supervised or unsupervised.
Unsupervised learning is used to discover new patterns from unlabeled data by trying to mimic the data and
correcting based on the error [14]. In supervised learning, inputs are passed through the network and the
output is compared to a ’ground truth’ or label. This research will be mostly limited to supervised learning
strategies, however in some cases (autoencoders) the label will be the input data itself, hence it is technically
unsupervised learning. How the output and label are compared is determined by the loss function (L), for
example the mean squared error (MSE) can be used. Hence the weights (W ) and biases (b) are adjusted,
through the backpropagation algorithm [15], such that a loss function is minimized. This is represented by
the optimization problem shown in equation 2.2.

argmin
W,b L(W, b) (2.2)

3



How much, and in what direction, the weights are adjusted is determined by the optimizer. For deep neu-
ral networks (NNs with many layers), Adam is the optimizer of choice due to faster running time and less
memory usage than other algorithms [16]. Adam is based on stochastic gradient descent (SGD) and utilizes
the concepts of momentum and adaptive learning. Here, momentum (Mt) is defined as using the previous
gradients for determining current gradient (equation 2.3), such that there is less oscillation in finding the
minimum compared to SGD. Thus, the learning rate can be increased, leading to faster convergence [17].
Adaptive learning refers to having a different the learning rate (λ) per parameter at each update time, using
the uncentered variance (Vt) (equation 2.4) [18]. Together, they result in an update of the weights and biases
determined by equation 2.5. In the following equations β and γ are rates of decay, ϵ is a small number to
prevent division by zero and η is a fixed learning rate.

Mt = βMt−1 + (1 − β) ∂Lt

∂wt−1
(2.3)

Vt = γVt−1 + (1 − γ)
( ∂Lt

∂wt−1

)2 (2.4)

wt = wt−1 − λ ∗ Mt with λ = η√
Vt + ϵ

(2.5)

The most naive way of predicting future time steps with machine learning is using a neural network. With a
NN, no assumption on the input data is made (such as the assumed spatial relation in convolutional neural
networks) and there is no mechanism to retain information of previous input data (as in recurrent neural net-
works). However, this approach is still valuable to explore, as making no assumptions on the input data also
means the network has all flexibility to learn undiscovered patterns. Moreover, a NN could be less complex
compared to for example a recurrent neural network, which is desirable as it is more efficient computationally
and memory-wise.

Using a NN for time evolution of the reduced order representation in combination with using ML techniques
for reducing order was explored by Kim et al. [5]. Firstly they trained an autoencoder to create a latent space
representation of smoke and fluid simulations. Thereafter, they implemented a NN to find the subsequent
latent representation. As input for the NN, they used the latent representation found by the autoencoder
concatenated with a control vector. The control vector is defined as the difference between known simulation
input parameters of subsequent time steps. The output of the network is the difference between the current
latent space representation and the next latent representation. Hence the new reduced order representation
can be found by adding the output of the network to the previous reduced order representation.

2.2.2 Convolutional neural networks
A convolutional NN (CNN) is characterized by convolution kernels that slide across the input features creating
feature maps. As depicted in figure 2.3 by the red square, a convolution kernel

Figure 2.3: Convolution1

has a kernel size (in this case 3x3) on which it performs a filter operation. The
filters are the weights of the network, and are learned during the training phase.
Different filters uncover different relations in the input data. For example the
filter (shown in stencil notation)

∣∣ 1 0 −1
1 0 −1
1 0 −1

∣∣ detects vertical edges. The depth of
the kernel is the amount of different filter operations it performs on the input
data, and thus how many feature maps the layer creates. This is depicted in
figure 2.3 by the red arrow. Using a CNN versus a NN reduces the number of
parameters to be learned in a network, as the neurons share weights, i.e. the
same filter is applied to every patch of input neuron to create one feature map.
The kernel also has a stride, defined as the amount of spaces the kernel shifts
per step [19].

1Adaptation of original figure from [19]
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There exist multiple types of convolutions. Let F : Z2 → R be a discrete function, for example an input
image. Let Ωr = [−r, r]2 ∩Z2 and let k : Ωr → R be a discrete filter of size (2r + 1)2. The first type, normal
convolutions, move over each channel of an input image or one feature map of the previous layer separately, as
depicted in figure 2.3 and equation 2.6. In contrast, pointwise convolutions are 1x1 convolution kernels that
perform a filter operation on the entire depth of the previous layer. Hence the depth of the successive layer can
be controlled, as shown in figure 2.4a and equation 2.7. For time-series forecasting, causal convolutions, with
or without dilatation can be used. Causal convolutions ensure only information from previous points in time are
used by restricting the convolution, as can be seen in figure 2.4b and equation 2.8 [20]. Dilatation is a method
to increase the receptive field whilst decreasing the number of layers and thus the number of parameters to
train [21]. Dilatation can also be applied to normal convolutions. This is done by skipping over certain
steps, as depicted in figure 2.4c and equation 2.9 (where l is the dilatation factor and a dilated convolution
is referred to with ∗l). One of the drawbacks of using dilatation is that it creates gridding artefacts [22].

(F ∗ k)(x, y) =
r∑

dx=−r

r∑
dy=−r

k(dx, dy)F (x − dx, y − dy) (2.6)

xij =
n∑

k=1
wk · xijk (2.7)

[ xt−n

...
xt−1

]
·

[
w1
...

wn−1

]
= ht (2.8)

(F ∗l k)(x, y) =
r∑

dx=−r

r∑
dy=−r

k(dx, dy)F (x − l · dx, y − l · dy) (2.9)

(a) Pointwise convolution2 (b) Causal convolutions in 1D3 (c) Dilated convolutions4

Figure 2.4: Different types of convolution

A CNN can consist of multiple convolutional layers, each reducing the dimension of the input by kernelsize
-1 along each axis, if no padding is used. Padding is defined as adding virtual points along the edges of
the input data. Further reduction of the dimension is achieved by adding pooling layers. For example, the
commonly used max pooling operation returns the max value within it’s pool (same as kernel). By reducing
the dimension and thus the total number of weights, pooling layers reduce the computational and memory
usage of the CNN. As inverse operation to pooling, upsampling can be used, which repeats the input to a
supplied dimension.

A deep CNN with 3D convolutional layers to reduce dimensionality of velocity fields generated by a synthetic
jet simulation was created by Lopez-Martin et al. [24]. Three dimensions in this case are two spatial and one
temporal dimension. The first convolutional layers were used to find temporal-spacial relations and a reduced
order representation. The final layers of the network were used for time evolution. This was achieved by
adding a convolutional layer that controls the final depth dimension of the feature space to be the number
of time steps to be predicted. This vector is reshaped such that it can be broken into the amount of time
steps to be predicted separate vectors. These vectors are then used as input to the fully connected layers,
which learn to perform the time evolution of the velocity field. Noteworthy about this approach, is that the
network was retrained with a small training set of flow past a cylindrical obstacle. After which the network
could successfully predict this flow pattern as well. The domain was not varied and remained a rectangle for
both flow simulations.

2Figure from [23]
3Figure from: https://discuss.pytorch.org/t/causal-convolution/3456
4Figure from: https://medium.com/hitchhikers-guide-to-deep-learning/10-introduction-to-deep-learning-with-computer-

vision-types-of-convolutions-atrous-convolutions-3cf142f77bc0
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2.2.3 Autoencoders
An autoencoder (AE) is a type of NN that consists of an encoder and decoder part. The encoder part of
the network tries to find an embedding or lower dimension representation (depicted in orange in figure 2.5)
of the input data. This is achieved by reducing the amount of neurons in each consecutive layer (purple part
in figure 2.5) until the amount of neurons is equal to the desired latent dimension size. The decoder part
of the network (light blue in figure 2.5) then tries to decode the latent representation back to the full input
dimensionality. This process is used in various applications, for example for denoising input data.

Figure 2.5: Autoencoder structure for RGB image

Also, autoencoders have been used for the purpose of creating reduced order models. Simpson et al. [25]
used a simple autoencoder, consisting of layers of normal neurons, to find a reduced order representation of
systems under forcing. It was noted that dynamics not captured in the training data were not captured by
the produced ROM. Additionally, for high dimensionality input, a convolutional autoencoder was suggested
to prevent long training time and the need for large amounts of training data.

A convolutional autoencoder (CAE) is an autoencoder network structure, using convolutional layers as ex-
plained in the section 2.2.2. Kim et al. [5] and Eichinger et al. [26] used this architecture. Opposed to other
papers reviewed, Eichinger et al. studied steady state fluid flow, using a binary and signed distance function
representations of the input domain and retrieving the velocity field as output. They found a speedup in the
order of 100 comparing their CAE with OpenFoam simulations [26].

Kim et al. [5] used an CAE network to generate smoke and fluid simulations for graphical implementations
(games, videos, etc.). Their approach led to 700x speedup compared to MantaFlow simulations while re-
taining accuracy (on visual inspection) for a variety of fluid behaviour. However, the ability to reconstruct
physically accurate scenarios depended heavily on how closely the scenarios matched the input training data.
Also, no rigorous error analysis was presented in the article as speedup was the main objective.

Due to the depth of the networks, the vanishing gradient problem can occur. The large number of steps in
backpropagation through the network results in the gradient becoming very small. Hence the update of the
weights becomes very small. In other words, learning halts. To prevent this, both studies implemented residual
connections, allowing information to pass certain layers of the network and thus increasing the gradient. This
method was introduced by He et al. [27] as residual networks (ResNets).

A (different) Kim et al. [28] proposed using a shallow masked autoencoder instead of a deep convolutional
autoencoder to improve efficiency. Shallow in this case means the encoder and decoder only consisted of one
hidden layer. In this network knowledge of classic numerical methods for solving PDEs/ODEs was used as
follows. The hidden layer and output layer of the decoder were sparsely connected by multiplying the weight
matrix of this connection by a mask matrix. The mask matrix consists of zeros and ones, and was constructed
to reflect local connectivity as in the central difference scheme of the Finite Difference Method. However,
using such a mask matrix makes the autoencoder computational domain specific.
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2.2.4 Recurrent neural networks
Recurrent NNs (RNNs) have input (x), hidden (h) and output (y) neurons similar to a standard neural
network. However, the neurons are divided in groups belonging to a certain time step. The input neurons are
connected to neurons in the hidden layer belonging to the same time step. Also the neurons within the hidden
layer are fully connected to hidden neurons with the same assigned time step and unidirectionally connected
to hidden neurons of the next time step. The output neurons are again only connected to hidden neurons
belonging to the same time step. This is depicted in figure 2.6, in which A represents a unit. RNNs can be
built with different types of units: standard units, long short-term memory (LSTM) units or gated recurrent
units (GRUs). The specifics of these units will be discussed in the following sections.

Figure 2.6: RNN with n input neurons, m hidden state variables, s output neurons and p time steps

Standard Unit

A standard unit or standard RNN cell has two inputs: xt, the part of the sequence for the current time step,
and ht−1 the hidden state compute from the previous part of the sequence. These are concatenated, multiplied
by the weight matrix, added with the bias vector and the result is passed through an activation function, such
as the hyperbolic tangent function. The outcome is a new hidden state: ht = act(W ∗ x⌢

t ht−1 + b), which
will be used as input for the next time step and/or multiplied with a weight matrix V to obtain the output of
the network. Note that all weight matrices are constant for each time step [29].

Figure 2.7: Standard unit RNN5

However, for standard units, the vanishing gradient problem occurs when the sequence is very long [29]. A
large sequence length is similar to a deep NN, as the gradient is backpropagated many times though the
network. Again, this leads to very small or even no weight updates and learning halts.

5figure from: https://sh-tsang.medium.com/review-empirical-evaluation-of-gated-recurrent-neural-networks-on-sequence-
modeling-gru-2adb86559257
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Long short-term memory unit

The LSTM unit was developed in 1997 to solve the vanishing gradient problem of the RNNs with standard
units [30]. The LSTM unit has three inputs instead of two. Again the current part of the sequence xt

and hidden state of the previous parts of the sequence ht−1 are used. In addition, there is a second state
vector which is the cell state or LSTMs memory ct−1. The cell state passes through the LSTM unit with
less computation, making it easier to pass through unchanged [31]. Similar to the idea of adding residual
connections in deep NNs, this helps preserve the gradient. In the LSTM unit, three gates are computed from
the concatenation x = x⌢

t ht−1, each having their own weight matrix as described in equations 2.10, 2.11
and 2.12.

Forget gate f = σ(Wf x + bf ) (2.10)
Update gate u = σ(Wux + bu) (2.11)
Output gate o = σ(Wox + bo) (2.12)

Here, σ is the sigmoid function which returns values between 0 and 1, killing inputs close to 0 and letting
inputs close to 1 pass nearly unchanged. The new cell state is computed by multiplying the previous cell state
by what was learned to forget (the forget gate) and adding this to what was learned to be remembered (see
equation 2.13). The new hidden state is computed by the cell state scaled between [-1,1] by tanh function
multiplied by what was learned to be exposed to the hidden state (output gate) (equation 2.14) [29]. This
gives the ability to control what to forget from the cell state, what to store from the input in the cell state
and what part of the cell state to expose to the hidden state at a given point in time [31]. From the hidden
state again the output of the network can be computed by multiplying it with weight matrix V .

ct = f ∗ ct−1 + u ∗ tanh(Wc ∗ x + bc) (2.13)
ht = o ∗ tanh(ct) (2.14)

Figure 2.8: LSTM unit RNN6

RNNs with LSTM units have been used in combination with classical reduced order methods for temporal
evolution in simulations of physical phenomena. For example, Hu et al. [32] used POD and SVD together
with an LSTM network for predicting spatial-temporal distribution of floods. They reported a maintained
accuracy in comparison to the full numerical model while CPU cost was reduced three orders of magnitude.
Pawar et al.[33] also merged a classical reduced order approach, POD with Galerkin projection, with LSTM
network for time evolution in vortex merging simulations. An improvement in accuracy by using this method
was reported, compared to a purely data-driven approach. The authors suggested extending their research
by introducing more variation between train and test data. Furthermore, RNNs with LSTM units have been
used in combination with machine learning techniques for order reduction. The aforementioned Simpson et
al. [25] trained an autoencoder for order reduction and LSTM network to predict the response of dynamical
systems in the latent space based on forcing time histories.

6figure taken from: https://sh-tsang.medium.com/review-empirical-evaluation-of-gated-recurrent-neural-networks-on-
sequence-modeling-gru-2adb86559257
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Gated recurrent unit

GRUs are an evolution of LSTM units and introduced quite recently in 2014 [31]. By dropping the output
gate only two gates are retained, as described in equations 2.15 and 2.16:

Reset gate r = σ(Wrx + br) (2.15)
Update gate z = σ(Wzx + bz) (2.16)

The reset gate is similar to the forget gate in the LSTM unit and exists to decide what to forget. The update
gate is to decide what should be passed to the output. First a proposed new hidden state (ĥt) is computed
by multiplying the old hidden state with the reset gate, concatenating this with the new part of the sequence
and scaling between [-1,1] with the tanh function (equation 2.17). Thereafter, the actual new hidden state
is computed by taking a linear sum between the previous hidden state and the proposed new hidden state, in
which the update gate determines how much of the hidden state is updated (equation 2.18) [31].

ĥt = tanh(Wx⌢
t (rt ∗ ht−1) (2.17)

ht = (1 − zt)ht−1 + ztĥt (2.18)

Figure 2.9: GRU RNN 7

With only two gates, there is no mechanism to control which parts of the state is exposed to the output, but
the GRU’s structure is less complex. This makes the units computationally more efficient while it was proven
to have comparable performance to LSTM units [34].

RNN with GRUs for time evolution have been used in combination with classical reduced order techniques.
Wu et al. [35] created a latent representation of flow past a cylinder in a rectangular domain with POD-
Galerkin projection and implemented a CNN with causal convolutional layers and RNNs with LSTM and GRU
for comparison. The temporal convolutional network achieved better performance and needed approximately
five or three times fewer parameters than the LSTM and GRU RNN, respectively.

In addition, GRU RNN has been used in the prediction of blood flow characteristics by Jamil et al. [36]. In
their research, inlet velocity and percentage lumen openings (also called degree of stenosis) at eleven locations
along the blood artery were used to predict velocity, pressure and wall shear stress at those positions. NNs,
LSTM and GRU RNNs were compared. Although the GRU RNN displayed the best overall accuracy, it was
outperformed on individual properties. NNs were found to outperform the RNN structures for predicting
velocity and wall shear stress and LSTM RNN performed best for the highly varying pressure values.

7Adaptation of figure taken from: https://sh-tsang.medium.com/review-empirical-evaluation-of-gated-recurrent-neural-
networks-on-sequence-modeling-gru-2adb86559257
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2.2.5 Physics-informed neural networks
To force NNs to learn the physics instead of overfitting on the input data and thus increasing generalizabil-
ity, one can think of making neural networks for solving problems involving PDEs ’physics informed’. This
means information about the underlying physics of the problem is inserted into the NN, which can be done by
constructing activation and loss functions specific for the underlying differential operator. All network types
mentioned earlier can thus be physics informed, if the activation and/or loss function is tailored to the PDE.

An approach to making networks physics informed is by incorporating the governing equation in the loss
function. This is called physics loss and for Navier-Stokes equations could take the form of equation 2.19.
Using this type of loss function, possibly in addition to a data-driven loss function, results in a Physics Informed
Neural Network (PINN), which was introduced by Raissi et al. [37]. Since this method was introduced, variants
such as fractional PINN [38] and variational PINN [39] have been presented.

Lphysics = ||∇ · u||2 + ||∂u
∂t

+ (u · ∇)u + 1
p

∇p − ν∇2u||2 (2.19)

To ensure conservation of mass (thus non-divergence) for incompressible fluid dynamics, Kim et al. [5]
introduced a stream function based loss function in the decoder part of their network. In the stream loss
function as described in equation 2.20, G(c) is the output of the network and uc is a simulation sample from
the data set.

LG(c) = λu||uc − ∇ × G(c)||1 + λ∇u||∇uc − ∇(∇ × G(c))||1 (2.20)
Making the stream function of the model output the reconstruction target, which is divergence free by con-
struction (∇· (∇×G(c)) = 0) and ensuring the derivatives also match. However, no discussion on comparing
this loss function to purely data loss functions or physical loss was presented in the article.

Above approach of pushing a solution towards one that obeys the physical laws by modification of loss func-
tions can be seen as soft physical constraining the network. Physical laws are not enforced at all times but are
encouraged. Mohan et al. [40] took a different approach, embedding hard physical constraints in the neural
network architecture. This was done by adding non-trainable layers after a CAE structure. The decoder in this
network has the vector potential, by the same reasoning as in above paragraph, as output. The non-trainable
layers consist of a layer enforcing (periodic) boundary conditions (BCs) with ghost cells, a layer which com-
putes all spatial derivatives with use of finite difference stencils and a last layer to compute the curl on the
vector potential to regain the velocity field. The loss function was purely data driven. No total conservation
of mass was found due to the discretization error of the finite difference stencils but improvement compared
to using no hard physical constraint was noted.

A combination of hard and soft physical enforcement was implemented by Sun et al. [41] in a data-free deep
NN for cardiovascular modelling. In their approach the governing equations (Navier-Stokes equations) and
Neumann BC are taken into the loss equation. However, initial conditions (ICs) and Dirichlet BC are enforced
by constructing the NN ansatz û and p̂ with a particular solution as described in equation 2.21,

û(t, x) = upar(t, x) + D(t, x)ũ(t, x)
p̂(t, x) = ppar(t, x) + D((t, x)p̃(t, x)

(2.21)

where ũ and p̃ are predictions from the NN, upar and ppar are particular solutions satisfying the IC and BCs
and D is a globally defined smooth function from internal points to the boundary in a space-time sense.
That is, upar(x, 0) = u0(x), ppar(x, 0) = p0(x), upar(x, t)|x∈∂Ω = ub(x, t), ppar(x, t)|x∈∂Ω = pb(x, t) and
D(x, t) = 0 on ∂Ω for [0, T ] and in Ω for t = 0. For simple geometries upar, ppar and D can be constructed
analytically, but for more complex problems the authors suggest using pre-trained NNs to find these functions.
Only implementation of steady-state flow and Dirichlet BCs was done as proof-of-concept. When compared
to a purely data-driven approach the latter was slightly more accurate.

Physics can also be injected in a time-series forecasting network. For example, by taking a reduced order
representation, created either by classical methods or ML techniques, and concatenating this with computed
hidden state vectors of a recurrent neural network [33].
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2.2.6 Related work: machine learning & computational fluid dynamics
Machine learning has not only been used to produce reduced order representations and perform time evo-
lution. Other attempts have been made using ML to counter increased complexity of mathematical models
and create more computationally efficient algorithms in CFD. For example, the accuracy of a coarse grid
CFD simulation was enhanced using ML [42]. Also, ML was used for hyperreduction, in situations were
dimensionality reduction by projection-based ROMs does not lead to computation speedup. This occurs when
the computation of reduced-order operators is expensive [43]. Yet another example is creating a network to
recover full CFD solutions for any time instance in between saved time steps, hereby reducing the storage
overhead [44]. Similarly, ML was also used to reconstruct missing or faulty flow fields in CFD simulations [45].

Besides improving the performance of numerical methods, ML has also been used in model discovery and error
analysis. Examples of these use-cases are discovering wall models in turbulence modelling with reinforcement
learning [46] and estimating the output error and performing mesh adaptation for CFD simulations [47].

2.3 Cardiovascular modelling
As use case this research will apply ML ROM on cardio-vascular simulations, specifically blood flow through the
aorta during one heartbeat. To generate simulation data for training, validation and testing, some background
knowledge on cardiovascular modelling is necessary and provided in this section. Also, a brief discussion is
presented on other ML applications in cardiovascular modelling.

2.3.1 Modelling blood flow in large arteries
Blood is a non-Newtonian fluid, showing all characteristics including deformation rate dependency, viscoelas-
ticity, yield stress and thixotropy, mainly due to presence of red blood cells [48]. However it was found that
the non-Newtonian impact in big arteries, such as the aorta, is negligible [49]. Thus for the scope of this
research blood is perceived as Newtonian. The flow of blood was modeled by Navier-Stokes equations as
proposed in [50], adapted from 3D to 2D (equation 2.22).

∇ · u = 0
∂

∂t
(u) + (∇u)u + ∇p

ρ
− ∇ · (2νD(u)) = 0

(2.22)

In which u is the velocity, p is the (mechanical) pressure, ν is the kinematic viscosity (ν = µ
ρ , with µ the

dynamic viscosity) and D the strain-rate tensor (D = 1
2 (∇u + (∇u)T ))). The dynamic viscosity of blood is

reported between 3,5 and 5,5 cP, which is equal to 0,0035 and 0,0055 Ns
m2 . However, in reality, the viscosity

of blood has a much larger range dependent on hemodynamic conditions [51]. Similarly, blood density differs
depending on gender and moreover, body position. It was set to the average blood density of 1.060 kg

m3 [52].
The artery walls are modeled as rigid, which is again a simplification of reality. To model artery walls more
accurately, hyperelastic and viscoelastic material models can be incorporated [53].
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2.3.2 Synthetic artery model problem
The aorta can roughly be divided into three segments; the ascending aorta and aortic arch (1), descending
aorta (2) and bifurcation of the aorta into iliac arteries (3), as shown in figure 2.10. This research will
constrict itself to modeling these segments with one inlet and one or two outlets, as shown in section 3.1.3.
The bifurcation of the aorta will have the two common iliac arteries as outlets. The diameter of the aorta
differs per segment, per person and per measuring method. In table 2.1 ranges of the diameter each segment
in healthy, adult population (male and female) as measured in [54],[55],[56] and [57] are shown.

Aorta segment diameter range in mm
Aortic arch (1) 22 - 36
Descending aorta (2) 20 - 30
Bifurcation aorta (3) 10 - 23
Iliac common artery (3) 6,5 - 16,5

Table 2.1: Aorta dimensions

Figure 2.10: Anatomy aorta8

The inlet velocity during one heartbeat ranged from 0 - 71 cm/s depending on the stage of the cardiac cycle,
as measured in [58]. This was used for all segments. The pressure range during one heartbeat was taken
to be 80 - 120 mmHg for all segment as reported in [59]. More details on implementation of the boundary
conditions can be found in section 3.1.2.

2.3.3 Related work: machine learning in cardiovascular modelling
Due to the complex nature of cardiovascular modelling and intrusiveness of velocity and pressure measurements
in the human body, ML has been applied to predict velocity and pressure fields from aortic geometries [60].
Also hemodynamic parameters, such as static pressure, wall-shear-stress, secondary flow degree and specific
kinematic energy, were predicted using NNs [61]. In both studies, no time dependence was taken into account.
Hence, these type of networks could be used in union with a network that performs time evolution based on
a velocity field instance.

8Adaptation of figure from: https://m.ufhealth.org/uf-health-aortic-disease-center/aorta-anatomy
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3 | Methodology
In this chapter, all details of the methodology are described. It is useful to think of the general procedure
as being cyclic. Each cycle starts with data generation (as described in section 3.1), then the network(s) are
designed, trained and tested (as described in section 3.2), thereafter the error metrics are computed. How
the performance of the networks is quantified is described in section 3.3. Lastly the results are analyzed and
adjustments that need to be made to the data set(s) or network(s) are determined. After each cycle the
complexity of the data and thus networks is increased. In total the cycle is repeated three times.

In the first cycle, different network architectures for time evolution (’time networks’) are tested on a data set
containing variations of a straight channel. The results are shown in section 4.1. In the second cycle, the best
performing network is tested on data with more complex domains, namely a bent channel and a bifurcated
channel. These results are shown in section 4.2. In the third and last cycle, the bifurcation domain is taken
and the inlet velocity boundary condition is varied. Also, not all domain variations are included in the training
data. The results of the last cycle are referred to as ’generalizability’, and the results are shown in section 4.3.
Finally, some experiments concerning loss functions, data augmentation and amount of data are performed to
further understand the results and to improve the performance on generalizability. This is described in section
3.2.3.

3.1 Data generation
To solve the mathematical problem stated in section 2.3 numerically, OpenFoam 9 software [2] was used.
Specifically, the PimpleFoam solver [62], for incompressible, Newtonian fluids was chosen. This solver al-
lows for dynamic time stepping and turbulence modelling. All code to generate data can be found on
https://github.com/SylleH/Thesis/tree/master/Code/DataGeneration. In each section the corresponding
file, implementing that section, on GitHub is mentioned in italic font.

3.1.1 Equations
The PimpleFoam solver solves the following form of the Navier-Stokes equations for incompressible, Newtonian
fluids [62]:

∇ · u = 0 (3.1)
∂

∂t
(u) + ∇ · (u ⊗ u) − ∇ · R = −∇pk (3.2)

The equation 3.1, is known as the continuity equation and equation 3.2 is known as the momentum equation,
in which u is the velocity in m

s , pk is the kinematic pressure (pk = p
ρ , with ρ the density) in m2

s2 and R is
the stress tensor. For incompressible fluids, R reduced to 2νD(u) [63]. As ∇ · (u ⊗ u) = (∇u)u, which is
shown below, the set of equations 2.22 and the set of equations 3.1 and 3.2 are equivalent.

∇·(u ⊗ u) = ∇ ·
[

ux

uy

]
[ux uy] = ∇ ·

[
u2

x uxuy

uxuy u2
y

]
=

[
∂

∂x (u2
x) + ∂

∂y (uxuy)
∂

∂y (u2
y) + ∂

∂x (uxuy)

]
=

[
2ux

∂ux

∂x + ux
∂uy

∂y + uy
∂ux

∂y

2uy
∂uy

∂y + ux
∂uy

∂x + uy
∂ux

∂x

]

=
[

ux
∂ux

∂x + uy
∂ux

∂y + ux( ∂ux

∂x + ∂uy

∂y )
uy

∂uy

∂y + ux
∂uy
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∂y + ∂ux

∂x )

]
1=
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∂ux

∂x + uy
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1) Use ∇ · u = ∂ux

∂x + ∂uy

∂y = 0
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3.1.2 Boundary conditions
For all simulation the pressure boundary conditions (BCs) at the walls, inlet and outlet are equal. The pressure
BCs are all defined as zero gradient ( ∂p

∂n = 0, with n the normal vector to the boundary), except for the
outlet boundary. Thus, it is assumed that the walls are rigid and the force exerted by the wall on the fluid is
equal to the force exerted by the fluid on the wall. For the inlet, the zero gradient BC entails the assumption
is made that the pressure is constant at the inlet boundary. The outlet BC is a function of time, shown
in figure 3.1 by the red line, created to simulate the aortic pressure during one heartbeat. A general aortic
blood pressure graph [64] was sampled, converted to tabular values, exported to a csv file, as can be seen in
bloodflow_function.py, and referred to as ’UniformFixedValue’ type BC in the openfoam/0/p file. All files
can be found in the aforementioned GitHub repository.

For the velocity inlet condition, a time dependent combina-
tion of parabolic functions was chosen to approximate the
velocity pattern during one heartbeat of real measurements
[58]. The blue line in figure 3.1 shows the change in ve-
locity U0 over time. U0 is the center velocity, used to cre-
ate a parabolic, time-dependent function for inlet boundary.
This is shown in equation 3.3 with r the radius of the chan-
nel. Note that here the assumptions are made that the inlet
geometry is always circular and the velocity profile is fully
developed at the inlet boundary.

uy|inlet = U0(−1 + x2

r2 ) (3.3) Figure 3.1: Time dependent velocity inlet and pressure
outlet boundary conditions

The parabolic, time-dependent inlet condition is implemented in OpenFoam [2] as ’codedFixedValue’ type BC
for the inlet boundary, which is shown in the openfoam/0/U file. The outlet condition for the velocity is set
to zero gradient, again defined as the (Neumann) BC: ∂u

∂n = 0. No slip boundary conditions are implemented
for all walls. This is defined as the (Dirichlet) BC: u = 0.

In the final data set, the temporal evolution of the inlet velocity is varied for different simulations. The
variation in the inlet condition was determined by six parameters; Umax, the height of the first parabola,
Umin, the depth of the second parabola, Uthree, the height of the third parabola, tb, the duration of the first
parabola, td, the duration of the second parabola and tp, the duration of the third parabola. The parameters
are also shown in figure 3.2.

Firstly, five predefined velocity patterns (vp’s) are created (vp0-4). Secondly, two series of random veloc-
ity pattern simulations are done by choosing a value from a predetermined range of values for each parameter
(vp5-6). This is depicted in figure 3.2 and described in table 3.1 and equation 3.4. Figures 3.3 and 3.4
show the random generated velocity patterns. In green the vp’s in the training set are depicted and in blue,
magenta and red the vp’s generated for testing are shown.

parameter vp0 vp1 vp2 vp3 vp4 vp5 vp6
Umax 0,4 0,4 0,4 0,4 0,3 0,2-0,4 0,2-0,4
Umin 0,02 0 0 0,08 0,04 0-0,08 0-0,08
Uthree 0 0 0 0 0 0 0,05-0,2

tb 0,35 0,1 0,6 0,2 0,3 0,1-0,3 0,1-0,3
td 0,25 - - 0,1 0,6 0,01-0,3 0,01-0,3
tp - - - - - - 0,01-0,3

Table 3.1: parameters of different inlet velocity patterns

U0 =



0, 08 + Umax ∗ (1 − (t− tb
2 )2

tb
2

2 ) t ≤ tb

0, 08 + Umin ∗ (−1 + (t−(tb+ td
2 ))2

td
2

2 ) tb < t ≤ tb + td

0, 08 + Uthree ∗ (1 − (t−(tb+td+ tp
2 ))2

tp
2

2 ) tb + td < t ≤ tb + td + tp

0, 08 t > tb + td + tp

(3.4)
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Figure 3.2: Velocity patterns from left to right: vp0-4, general form of vp5 and general form of vp6 with parameters

Figure 3.3: Variations of vp5 Figure 3.4: Variations of vp6 Figure 3.5: Realistic velocity pattern aorta

Finally, a more realistic velocity pattern was used to test the network. This pattern is an adaptation of the
inlet flow rate as described for the aorta on HeMoLab [69, 68, 67, 66, 65]. The flow rate values were sampled,
converted to velocities and Fourier analysis was used to obtain a function. The resulting inlet velocity pattern
is shown in figure 3.5.

3.1.3 Geometries
Three different types of geometries, shown in figure 3.6, are created to approximate the three aorta segments
described in section 2.3. The geometries are varied in channel width and if applicable in secondary outlet
width. The meshes are created using the GMSH python library [70] and by implementing the following steps:

1. Define the mesh size as 2mm (straight), 2.5mm (bend) and 1.5mm (bifurcation)
2. Define the 2D mesh by defining points, lines and a surface in the xy-plane to obtain the desired geometry
3. Extrude the surface in the z-direction by one cell (this is necessary as OpenFoam [2] only allows for 3D

meshes)
4. Add all surfaces to appropriate Physical Groups and name these groups, such that it is clear which part

of the mesh is which in OpenFoam [2] (for example, the inlet and outlet surface)
5. Save the mesh as .msh2 file (this is compatible with gmshToFoam function)
6. In OpenFoam [2], run gmshToFoam on mesh file
7. Set front and back patches to ’empty’ type in constant/polyMesh/boundary file (this is necessary to

run 2D simulations)
8. Set inflow and outflow boundaries to patch type and set other remaining boundaries to wall type

The code to create the meshes can be found in create_mesh.py and all OpenFoam[2] commands are listed
in the Allrun script, which are both available in the aforementioned GitHub repository.

Figure 3.6: Meshes of three geometries representing three aortic segments. From left to right: aortic arch = channel bend,
descending aorta = channel straight, and bifurcation aorta = channel bifurcation

15



3.1.4 Schemes
To represent and solve the equations numerically, the Finite Volume Method (FVM) is used. The FVM is
based on integration of the governing differential equation, in this research the momentum equation described
in equation 3.2, over a 3D control volume (small volume around a point in the unstructured mesh). The
divergence terms in the equation are converted to surface integrals using Gauss’s theorem, and the terms are
evaluated as fluxes at the boundary of each volume. These steps are shown for a general conservation law in
equations 3.5 to 3.8 . The method is conservative, meaning it produces a solution that obeys the physical
conservation laws (such as conservation of momentum, mass or energy).

∂u
∂t

+ ∇ · f(u) = 0 (3.5)
∫

vi

∂u
∂t

dv +
∫

vi

∇ · f(u)dv = 0 (3.6)

vi
∂ūi

∂t
+

∫
Si

f(u) · ndS = 0 (3.7) dūi

dt
+ 1

vi

∫
Si

f(u) · ndS = 0 (3.8)

To discretize the equations, various numerical schemes are used for different terms in the equations and are
specified in the openfoam/system/fvSchemes file. There are many options, which can be found in OpenFoam
documentation [71]. In this research, the numerical scheme used for the time derivative is the Euler implicit
method and for the gradient, divergence and Laplacian terms Gauss integration is used. As the fluxes are
evaluated at the boundaries of the control volume, an interpolation scheme is needed for transforming cell-
centre quantities to surface centres. This was set as linear for all terms with the exception of the divergence
term. There, linear-upwind was chosen [72]. In addition, the Laplacian term needs a surface-normal gradient
scheme, which was set to ’corrected’ [73]. Details on the use of the FVM and these numerical schemes for
the momentum equation are specified in appendix A.

3.1.5 Solver
As mentioned before, PimpleFoam from Openfoam 9 [2] was chosen as the solver, which implements the
PIMPLE algorithm. This is a combination of the Pressure Implicit with Splitting Operators (PISO) [74] and
Semi-Implicit Method for Pressure Linked Equations (SIMPLE) [75] algorithms. However, the number of
outer correctors for the PIMPLE algorithm was set to 1, thus the algorithm acts as the PISO algorithm.
The PISO algorithm is characterized by decoupling the operations on pressure from those on velocity in the
solving process. More details on the PIMPLE algorithm can be found in appendix B. For solving the linear
equations obtained after applying the discretization schemes, iterative methods are used. The preconditioned
conjugate gradient (PCG) with simplified Diagonal-based Incomplete Cholesky (DIC) as preconditioner was
used to solve the pressure equations and the symmetric Gauss-Seidel method was used to solve the velocity
equations. These options are specified in the openfoam/system/fvSolution file.

PimpeFoam allows for dynamic time stepping and the implementation of turbulence models if necessary.
However, for these simulations, either a time step of 0.001s or 0.0001s was sufficient for ensuring convergence
(retaining a maximum Courant number below 1) and the flow did not become turbulent (Reynold’s numbers
below 3000 [76]) by design. This was determined by the use of equations 3.9 and 3.10 [77].

vcritical = Rµ

ρd
(3.9) veffective = vmax

2 (3.10)

In the equation above vcritical is the critical velocity in m
s at which blood flow becomes turbulent, R is

the experimentally found maximum Reynold’s number at which flow is not turbulent, µ is the dynamic vis-
cosity in Ns

m2 , ρ the density in kg
m3 and d the diameter in m of the channel. Simulations were run for 3s, thus

3 heartbeats, of which the last second was used as input data. Hence the flow pattern was fully developed.
The output of the simulations was saved for every 0.01s, which resulted in 101 unique images per simulation.
These settings can be found in the openfoam/system/controlDict file.

3.1.6 Image creation
The PimpleFoam solver’s output was stored as VTK (Visualization Toolkit [78]) data with the "foamToVTK
-allPatches" command and thereafter converted to PNG image files by the VTKtoPNG.py script. The script
combines the value of the velocity on nodes of the mesh (stored in the VTK data) with the node coordinates
(stored in the GMSH mesh file) to obtain the velocity value at (Cartesian) coordinates. The velocity values at
the coordinates are interpolated with cubic interpolation and mapped onto a pixel grid with resolution 384x515.
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The velocity values are converted using a gray scale color map. This entails the values are normalized between
the minimum and maximum velocity (0 and 0,7 m

s , respectively). The PNG image files are the output of the
data generation pipeline.

3.1.7 Data generation pipeline
Combining all described steps in this section (3.1), an automated data pipeline was created such that input
for the NNs can be generated swiftly. The pipeline requires as input which scenario to run (a choice between
’bend’, ’straight’ or ’bifurcation’) and geometry parameters, that is, channel width and secondary channel
outlet width, if applicable. In addition, the material parameter blood viscosity is given as input. It is chosen
from [3.5, 4.0, 4.5, 5.0, 5.5]∗10−6 ( Ns

m2 ) for all scenarios. All geometry input parameters are shown in table
3.2 as well as the velocity pattern (vp), and the total number of simulations (in the last columns).

scenario channel width (mm) outlet width (mm) vp # sim
straight [20.0, 22.0, 24.0, 26.0, 28.0, 30.0] - vp0 30
bend [22.0, 24.0, 26.0, 28.0,30.0, 32.0, 34.0, 36.0 ] - vp0 40
bifurcation [14.0, 16.0, 18.0, 20.0, 22.0] [6.5, 8.5, 10.5, 12.5] vp0 100
bifurcation [14.0, 16.0, 18.0, 20.0, 22.0] [6.5, 8.5, 10.5, 12.5] vp0 - vp6 70
varied vp

Table 3.2: Input parameters for data generation pipeline

To summarize, the geometry input parameters are used iteratively to create an unstructured mesh (and set
the correct radius for parabolic velocity inlet BC). The pressure outlet(s) values for each time step (stored in
a csv file) together with the GMSH mesh file are loaded into the OpenFoam Docker image. In the Docker
image, the GMSH mesh is converted to a Foam polymesh and the OpenFoam files are adjusted as described
in previous sections. Next, the PimpleFoam solver is run. The output of the solver is stored in VTK files and
thereafter converted to PNG image files (one for each time step). The PNG image files are the outputs of
the data generation pipeline and used as inputs for the NNs. An example of the output of the pipeline for
each scenario is shown in figure 3.8. The whole data pipeline is depicted in figure 3.7.

Figure 3.7: Data Generation Pipeline, icons from: Flaticons.com

Figure 3.8: Output of three scenarios. From left to right: bend, straight, and bifurcation
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3.2 Machine learning methodology
Taking into account the possibilities for different network architectures discussed in chapter 2 and given the
high dimensionality of the input data and desired flexibility in the computational domain, a convolutional
encoder-decoder model was chosen for dimensionality reduction and expansion. Three general network ar-
chitectures in this category are proposed: an encoder-decoder model with a NN for time evolution and an
encoder-decoder with a RNN using GRUs and one using LSTM units for time evolution. Also, for incorpo-
rating information on the varying inlet velocity pattern in the final phase, three time network variations are
tested. The specific network architectures are discussed in section 3.2.1. The training protocol and tests are
described in sections 3.2.2 and 3.2.3.

3.2.1 Network architectures
To obtain the final architecture, the encoder and decoder models were first built similar to the design in [5].
Different numbers of filters per layer and dimensions of the latent space were tested to evaluate the influence
of these hyperparameters. Then, a separate NN was inserted in between in the encoder and decoder to take
one step ahead in time. Training the encoder-decoder part of the model and time NN part separately yielded
no usable results. The encoder and decoder models were able to encode and decode the flow fields to a
latent space of dimension 150. However, the time NN was not able to perform any time evolution, even when
changing number of nodes per layer, number of layers and adding known inlet velocity and outlet pressure in
the latent space. This was concluded from the fact that the decoded output of the neural network was an
average over all time steps. This result can be explained as the encoder and decoder model have no indication
of time. Hence, the hypothesis is that geometry and flow variables are mixed in the latent space, which
implies trying to propagate only the flow variables in time (since the geometry variables are constant), is not
possible. This was confirmed by manually altering the encoded features in the latent space and checking what
this changed when decoded. Examples of the results of these experiment are shown in appendix C.

Training the network as a whole yielded viable results. It’s hyperparameters were tuned using the Hyper-
band algorithm [79]. All hyperparameters, options, and results from the hypertuning algorithm are shown in
table 3.3. However, this resulted in an increase in the number of parameters in the order of 10 and small
decrease in the overall loss. Thus the hypertuned architecture was not used at this stage. The chosen hyper-
parameters are noted in the last column.

hyperparameter range step size result chosen
filters 8 - 32 8 24 16
kernel size 2 - 4 1 3 3
conv2d layers before skip 2 - 5 1 3 3
conv2d - concatenate - maxpooling repeats 2 - 6 2 2 4
latent dimension 25 - 150 25 75 150
NN layers 2 - 5 1 2 2
nodes per layer NN 250 - 1.000 250 1.000 512

Table 3.3: Hyperparameters

Unfortunately, there is no way to ensure which part of the this network is responsible for encoding, decoding
and time propagation. Hence this network architecture has limited use, it can only predict one time step
ahead for a straight channel time series. It does however indicate the network structure is complex enough
to learn the relation between consecutive time steps through a latent encoding of size 150.

The final architecture consists of an encoder, a ’time network’ which was either a reused NN (the output of
the NN was reused as input to the NN to predict further time steps ahead), or a RNN to predict multiple
time steps ahead, and the decoder model (implemented as multiple networks sharing weights) to decode the
latent vectors produced by the time network. One velocity field image was provided as input and predictions
were made five time steps ahead, as depicted in figure 3.9. This structure ensures that most time dependent
variations happen in the reused or recurrent network. The resolution of the input image was 192x256. This
was chosen as it is the closest value of the halved original resolution (384x515), which is divisible by two
multiple times. The resolution was halved to reduce the number of parameters in the network.
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Figure 3.9: General architecture

The encoder and decoder models are shown in figure 3.10 (below). It may be noted that encoder and decoder
models are symmetric except for the type of skip connection. The encoder has concatenation, whilst the
decoder has addition skip connections. The concatenation skip connection allow for reusing earlier represen-
tations, hence keeping more information, whilst the main advantage of addition skip connections is that they
keep the number of features fixed. The legend on the right shows what the colors represent. The convolutional
2D layers are described by s, k and f parameters, being stride, kernel size and number of filters, respectively.
The max pooling and up sampling layers show the pool size in between the brackets. These parameters and
type of layers are explained in section 2.2.2.

Figure 3.10: Encoder and Decoder architecture

The tested options for the time network, inserted between the encoder and decoder, are a reused NN, and
LSTM and GRU RNNs. These are depicted in 3.11 (below). The numbers after the letter n indicate the
number of nodes in the layer. In all time networks a dropout layer, as explained in section 2.2.1, with a
dropout probability of 0.1 was implemented. The RepeatVector5 layer before the LSTM and GRU layers
copies the output of the encoder five times, which is used as input to the LSTM and GRU layer for the five
different time steps. This is necessary for these layers to return five predictions, as explained in section 2.2.4.
As mentioned before, the performance of the total network with different time networks is compared first, of
which the results are shown in 4.1.

Figure 3.11: Time Network architectures, from left to right: NN, RNN with LSTM units, RNN with GRUs
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In the last phase, the time network is altered to incorporate information on the inlet velocity pattern. This
is implemented in three different ways. Firstly, the inlet velocity for the predicted time step is given as extra
input, additional to the latent representation produced by the encoder. This variant of the time network will
be referred to as the velocity variant. Secondly, the difference between the current inlet velocity and inlet
velocity of the predicted time step is used as extra input. This variant will be referred to as the difference
variant. Thirdly, the difference between inlet velocities is also used as extra input, but the output of the time
network is added to the input. This forces the network to learn the difference between old and new latent
representations instead of the new latent representation directly. This variant of the time network will be
referred to as the delta variant. In all variations the number of nodes in the hidden layer was equal to the
number input nodes, being 151. All the variations are shown in figure 3.12 and the results on comparing the
variants of the time network are shown in section 4.3.1.

Figure 3.12: Time network variations, from left to right: velocity variant, difference variant and delta variant

3.2.2 Training and tests
As described at the start of this chapter, the general procedure is cyclic and consists of three cycles. In the
first cycle, the best time network architecture is chosen. In the second cycle that network is tested on more
complex geometries and the last cycle the generalizablity to new geometries and inlet velocity patterns is
tested. As described in section 3.1, the simulated time series contain 101 time steps. As the final architecture
uses one image as input and five images as output, 96 input-output groups could be made from one time
series. All training was performed with 90/10 training/validation split.

In the first cycle, all three time networks in the final architecture are trained on the straight channel data
set containing 29 different simulation. The data set is extended by data augmentation, that is, shifting the
channel through the domain and flipping the image around the y-axis, resulting in 27.840 unique input-output
groups. In the second cycle, a data set containing bent channels and a data set containing bifurcated channels
are used to train the best performing architecture separately. The bent data set is extended only by flipping,
resulting in 7.488 unique input-output groups for training. The bifurcation data set is not flipped nor shifted
and contained a total of 9.504 unique input-output groups in the training set. One time series was excluded
from training and reserved for testing.

In the final cycle, testing generalizability of the NNs, random geometries from the total (training, valida-
tion and test) bifurcation data set are combined with an inlet velocity pattern (see section 3.1.2). This gives
a new training/validation data set consisting of fourteen geometries with vp0, ten with vp1, nine with vp2,
nine with vp4, eight with vp5 and eight with vp6. As vp5 and vp6 are random variations of a pattern, each
unique variation occurs only once in the training data. For testing, three new variations of vp5 and vp6 are
simulated on geometries present in the training set and a closer approximation to the real-life inlet velocity
pattern (again, see section 3.1.2) is simulated on a known geometry as well. Besides this, three vp’s that
were present in the training set were simulated on geometries not present in the training set to test geometry
generalizability.
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On the test time series the performance is analysed by making predictions on individual input images (the
task the network is trained on), as well as predicting one whole heartbeat from t=0 as the only input image.
This was done by taking the prediction one time step ahead and feeding this back into the network 95 times,
giving the first 96 time steps. Then, the heartbeat is finalized with the last predictions of two, three, four
and five time steps ahead. Results on using other time step sizes to predict one heartbeat can be found in
appendix D. The test data set was never shifted nor flipped.

Early stopping was implemented for the training with patience set to 10, together with a maximum amount
of epochs of 250. The batch size was 18. As optimizer Adam (AMSGrad variant) [80] was used. All training
was done on the DelftBlue [81] supercomputer, using one Tesla V100S-PCIE-32GB GPU.

3.2.3 Optimization and analysis of the network
To optimize the performance of the network for generalizabilty and analyze the behaviour of the network
further, multiple experiments were done. Firstly, two paths were explored to increase the performance, being
alteration of the loss function and transformation of the data. As the data contains large differences between
high velocity and low velocity within one image, between time steps and between time series, there is a
difference in size of the error between these cases as well. Moreover, by using the standard MSE as loss
function these differences are amplified because the velocity values are below one. Squaring values below one
entails small differences become even smaller compared to larger differences. Hence, different loss functions
to counter this are tested. The loss functions tested are MSE + MAE and using the arctan function to trans-
form absolute error before computing the mean (MatanE). MAE stands for mean absolute error and is also
given in equation 3.13. The loss functions are shown in equations 3.11 and 3.12 in the before mentioned order.

MSE + MAE = 1
n

n∑
i=0

(yi − ŷi)2 + 1
n

n∑
i=0

|yi − ŷi| (3.11)

MatanE = 1
n

n∑
i=0

tanh(|yi − ŷi|) (3.12)

The difficulties arising from high and low velocity differences could also be tackled by transforming the
input data. Histogram equalization of the input images could be an option following from this line of thought.
This transformation scales the image across the whole range of values such that the cumulative distribution
function is roughly linear, see [82].

Also, simply adding more time series to the data set could improve performance. This was tested by in-
crementally training the network on more data and examining the error versus amount of data. Besides this,
adding more information to the network by letting it predict more than five time steps ahead might increase
performance. This was tested by training the network to predict ten time steps ahead.

In terms of stability, predicting one entire heartbeat by using the prediction of one time step ahead already
gives an indication of how the error builds up over repeated predictions. To extend this idea, the prediction
of one time step ahead can be used to predict multiple heartbeats, whilst monitoring the error per additional
prediction.
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3.3 Error measures
To quantify the performance of the network architectures, the boundaries and domain errors are investigated
separately. The boundary is defined as the pixels at the very edge of the domain and is one pixel wide. The
domain is defined as all the remaining pixels inside the domain. The domain error metrics are root mean
square error (RMSE), mean absolute error (MAE) and maximum error (ME). The RMSE is used instead of
MSE for interpretability, as the dimension is velocity instead of velocity squared. The RMSE and MAE are
calculated for each image and thereafter averaged over all images in the test time series. The maximum error
is also calculated for each image and before the maximum over all images in the time series is taken. The
boundary error metrics measure the flow on the boundary, i.e., violation of the no slip boundary condition.
This is measured as maximum over all pixels (ME) and all images and as mean over all pixels (MAE) and
all images, calculated in the same way as for the domain. All errors (with the exception of the RMSE) were
computed absolute and relatively to the true value (i.e., the value of the input image) and are represented in
equations 3.13,3.14,3.15, 3.16 and 3.17. In all equations y is the true value, ŷ is the predicted value, and n
is either the number of pixels on the boundary or the number of pixels in the domain.

MAE = 1
n

n∑
i=0

|yi − ŷi| (3.13)

ME = max(|yi − ŷi|) (3.14)

RMSE =

√√√√ 1
n

n∑
i=0

(yi − ŷi)2 (3.15)

RMAE = 1
n

n∑
i=0

(
|yi − ŷi|

yi

)
(3.16)

RME = max

(
|yi − ŷi|

yi

)
(3.17)

In addition, the conservation of flow was measured by computing the in and out flow from the in- and
outlet velocities for each image, adding all in and out flow for one time series and thereafter taking the dif-
ference between total in and out flow. This was done for the input time series and the predicted time series,
after which the difference was computed to give the error.
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4 | Results
As described in chapter 3, three cycles were passed. In the first cycle, three different time networks were
tested, of which the results are shown in section 4.1. In the second cycle, the best performing architecture
was tested on more complicated domains. These results are shown in section 4.2. Thirdly, three variations of
the time network were implemented and the generalizability of the network was tested, with the results shown
in section 4.3. Lastly, the network was optimized and further analyzed, of which the results can be found in
section 4.4.

The error metrics, as described in section 3.3, are presented throughout this chapter in multiple ways. The
tables, for example table 4.1, show all error metrics for the predictions of individual input images (the task
the network was trained on), in columns ’t+1’ until ’t+5’. Besides these error metrics, the errors made on
predicting one whole heartbeat, as described in section 3.2.2, are presented in the column ’one beat’. In
addition to the tables, various figures are shown to highlight specific findings.

4.1 Networks for time evolution
The same encoder-decoder model was tested with three different networks for time evolution. First of all, a
reused NN, secondly an RNN with LSTM units and lastly an RNN with GRUs, as described in section 3.2.1,
was evaluated. The resulting errors are shown in the tables 4.1, 4.2 and 4.3. The red cells mark the worst
performing time network and the green cells mark the best performing time network in the comparison on
that error metric and prediction. Thus, the tables should be viewed together and every cell is either red, green
or white in one of the three tables.

t+1 t+2 t+3 t+4 t+5 One beat
boundary 0,36477 0,29985 0,29752 0,27985 0,28926 0,38589AVG domain 0,07459 0,07388 0,07338 0,07670 0,07796 0,17432
boundary 15,0 8,0 9,0 5,0 7,0 23,0RELATIVE

MAX domain 19,0 19,0 18,0 18,0 17,0 76,0
boundary 0,00331 0,00263 0,00247 0,00216 0,00214 0,00348AVG domain 0,00301 0,00312 0,00309 0,00326 0,00325 0,00995
boundary 0,04902 0,02941 0,04118 0,03137 0,03725 0,04902MAX domain 0,07451 0,07059 0,07843 0,07843 0,07843 0,21569

ABSOLUTE

domain RMSE 0,00618 0,00635 0,00630 0,00660 0,00666 0,01665
net flow error 0,000117 0,000104 0,000126 0,000103 0,000121 0,000124

Table 4.1: Error metrics for the encoder-decoder model with the reused NN for time evolution. Columns t+1 to t+5 show the
error metrics for individual input images and the last column shows the error metrics for one whole heartbeat.

t+1 t+2 t+3 t+4 t+5 One beat
boundary 0,18307 0,17199 0,16679 0,16669 0,17314 0,19807AVG domain 0,04775 0,04424 0,04295 0,04273 0,04362 0,07376
boundary 7,0 6,0 6,0 6,0 5,0 7,0RELATIVE

MAX domain 18,0 18,0 18,0 17,0 17,0 20,0
boundary 0,00160 0,00141 0,00130 0,00127 0,00129 0,00157AVG domain 0,00191 0,00174 0,00163 0,00158 0,00162 0,00347
boundary 0,02745 0,02157 0,02353 0,03137 0,04510 0,02353MAX domain 0,05098 0,05294 0,05490 0,05294 0,05490 0,07843

ABSOLUTE

domain RMSE 0,00393 0,00362 0,00346 0,00339 0,00344 0,00900
net flow error 7,14E-05 7,46E-05 7,05E-05 6,91E-05 6,76E-05 0,000095

Table 4.2: Error metrics for the encoder-decoder model with the RNN containing LSTM units for time evolution. Columns t+1
to t+5 show the error metrics for individual input images and the last column shows the error metrics for one whole heartbeat..
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t+1 t+2 t+3 t+4 t+5 One beat
boundary 0,34480 0,29026 0,27702 0,27002 0,27217 0,30068AVG domain 0,05214 0,05030 0,05020 0,05104 0,05245 0,10887
boundary 14,0 12,0 12,0 13,0 13,0 11,0RELATIVE

MAX domain 17,0 18,0 18,0 17,0 17,0 37,0
boundary 0,00213 0,00203 0,00207 0,00207 0,00213 0,00178AVG domain 0,00208 0,00195 0,00190 0,00189 0,00192 0,00617
boundary 0,03529 0,03137 0,03137 0,03137 0,03137 0,03137MAX domain 0,12745 0,07647 0,07059 0,06471 0,08824 0,11569

ABSOLUTE

domain RMSE 0,00422 0,00401 0,00393 0,00392 0,00395 0,01122
net flow error 0,000099 0,000098 0,000098 0,000100 0,000098 0,000111

Table 4.3: Error metrics for the encoder-decoder model with the RNN containing GRUs for time evolution. Columns t+1 to
t+5 show the error metrics for individual input images and the last column shows the error metrics for one whole heartbeat.

As can be seen in tables 4.1, 4.2 and 4.3, the encoder-decoder model combined with the RNN containing LSTM
units for time evolution performs best overall, although the model with GRUs has comparable performance on
some error metrics. The model with the reused NN as time network has the largest or second largest errors in
nearly all cases. The absolute errors for all networks are small, in contrast with the large relative errors, which
indicates the most significant errors are made when the blood velocity is low. This is confirmed by looking at
the relative MAE in the domain per time step when predicting one whole heartbeat, shown in figure 4.1.

(a) reused NN (b) RNN with LSTM units (c) RNN with GRUs

Figure 4.1: Comparison of the realtive domain MAE per time step (from left to right: reused NN, RNN with LSTM units and
RNN with GRUs as time network). The red line shows the relative MAE in the domain and the blue line the inlet velocity in
[m/s] versus time in [s].

Also, for all networks, it is noted that the maximum error on the boundary as well as in the domain is large
compared to the average error. Further investigation of the location of these maximum errors uncovers that
they occur in the same area for all predictions and networks, namely the corners of the domain. This can
be seen in figure 4.2 for the prediction of five time steps ahead. The orange dots represent the location of
the relative ME in the domain and the blue dots the location of relative ME on the boundary for the 96
predictions of five time steps ahead. The size of the dots represent how often the relative ME occurs on that
exact location. An image is added in the background to show the domain outline of the straight channel from
the test time series.

Figure 4.2: Relative ME locations of the different time networks for the predictions of five time steps ahead (from left to right:
reused NN, RNN with LSTM units and RNN with GRUs)
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4.2 Bent and bifurcated channels
The best overall performing architecture, using the LSTM network for time evolution, was trained on the
more complex domains, being bent and bifurcated channels, separately. Training the network on all domains
in one data set was also tested. This gave no viable results.

t+1 t+2 t+3 t+4 t+5 One beat
boundary 0,42746 0,40887 0,40167 0,40250 0,40365 0,42041AVG domain 0,03665 0,03421 0,03371 0,03425 0,03502 0,06909
boundary 43,0 37,0 36,0 36,0 36,0 43,0RELATIVE

MAX domain 22,0 18,0 17,0 16,0 15,0 37,0
boundary 0,01502 0,01437 0,01426 0,01426 0,01429 0,01504AVG domain 0,00164 0,00152 0,00146 0,00152 0,00153 0,00510
boundary 0,11176 0,10784 0,10980 0,11373 0,10980 0,11176MAX domain 0,05098 0,04118 0,03922 0,03922 0,03922 0,12157

ABSOLUTE

domain RMSE 0,002946 0,002713 0,002633 0,002698 0,002726 0,00841
net flow error 3,41E-06 5,59E-06 0,000024 3,29E-05 3,46E-05 6,84E-05

Table 4.4: Error metrics for the encoder-decoder model with LSTM network for time evolution on the bent channel data set.
Columns t+1 to t+5 show the error metrics for individual input images and the last column shows the error metrics for one
whole heartbeat.

t+1 t+2 t+3 t+4 t+5 One beat
boundary 0,27063 0,25478 0,25038 0,24826 0,24748 0,27806AVG domain 0,04298 0,04175 0,04141 0,04189 0,04317 0,15201
boundary 24,0 28,0 26,0 26,0 27,0 24,0RELATIVE

MAX domain 23,0 20,0 21,0 21,0 22,0 40,0
boundary 0,01187 0,01136 0,01123 0,01116 0,01111 0,01163AVG domain 0,00125 0,00122 0,00121 0,00122 0,00120 0,00389
boundary 0,18235 0,15490 0,14118 0,13529 0,13333 0,17647MAX domain 0,04510 0,04118 0,04118 0,04118 0,04314 0,08627

ABSOLUTE

domain RMSE 0,00272 0,00268 0,00264 0,00264 0,00264 0,00840
net flow error 3,51E-06 6,59E-06 5,46E-06 6,06E-06 7,86E-06 4,97E-06

Table 4.5: Error metrics for the encoder-decoder model with LSTM network for time evolution on the bifurcated channel data
set. Columns t+1 to t+5 show the error metrics for individual input images and the last column shows the error metrics for one
whole heartbeat.

Again, what is noted from tables 4.4 and 4.5 is that the maximum errors are large compared to the average
errors and the relative errors are large compared to the absolute errors. The latter illustrates once more
the low velocity areas are predicted worse than high velocity areas. This is supported by the location of
the maximum errors, as they occurred near the boundary of the domain, which is shown in appendix E. It
is also noteworthy that the model has more difficulty predicting the boundary values of the bent channel
accurately. When comparing the errors in predicting one whole heartbeat and the errors made predicting on
individual images, the error only increases around a factor 3 for the relative MAE in the domain whilst the
relative boundary MAE increases even less. This shows the network is complex enough to learn the flow over
time. Visually, this is confirmed, as shown in figure 4.3 for the bent channel and figure 4.4 for the bifurcated
channel. However, as only one inlet velocity pattern is used, the network could be overfitted on that specific
inlet velocity pattern.
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Throughout the results section, certain time steps during the prediction of one heartbeat are presented as
shown in the figures below. The left column shows the inlet velocity pattern, with the time step marked by
a dot, the second column shows the true velocity field, the third column shows the predicted velocity field,
then the color scale for the velocity field images is shown and in the last column the difference between the
true and predicted images (the absolute error) is shown together with it’s color scale.

TRUE PREDICTED ERROR

Figure 4.3: Three time steps (from top to bottom t = 0.1, t = 0.2, and t = 0.8) in predicting one heartbeat for the bent
channel. The first column shows the inlet velocity with the moment in time marked, the second column the true velocity fields,
the third column the predicted velocity fields and the last column shows the difference between true and predicted values.

TRUE PREDICTED ERROR

Figure 4.4: Three time steps (from top to bottom t = 0.1, t = 0.2, and t = 0.5) in predicting one heartbeat for the bifurcated
channel. The first column shows the inlet velocity with the moment in time marked, the second column the true velocity fields,
the third column the predicted velocity fields and the last column shows the difference between true and predicted values.
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4.3 Generalizabilty of the neural networks
The previous network could be overfitted, as only one inlet velocity pattern is used and all geometries are
present in the training data set. Hence, the generalizability of the network is tested in various ways. Firstly by
introducing more inlet velocity patterns and testing it on a more realistic reconstruction of the inlet velocity
of the aorta during a heartbeat, of which the results are shown in section 4.3.2. Secondly, the network was
tested on geometries excluded from the training data set, meaning the specific combination of channel width
and outlet width did not occur in the training data, of which the results are shown in section 4.3.3. First,
the results are presented in section 4.3.1 of three ways to adjust the time network, to take into account the
variation of velocity pattern (vp), as described in section 3.2.1.

4.3.1 Time network variations
Tables 4.6, 4.7 and 4.8 show the average error metrics over the three test time series, vp5.9, vp5.10 and
vp5.11, shown in figure 3.3, for the three variations, velocity, difference and delta, described in section 3.2.1,
of the time network. Again, the red and green cells mark the highest and lowest errors, respectively.

t+1 t+2 t+3 t+4 t+5 One beat
boundary 0,26913 0,25667 0,25600 0,26019 0,26515 0,28774AVG domain 0,13750 0,14037 0,14622 0,15451 0,16430 0,41834
boundary 34,7 35,7 34,0 39,0 46,7 40,3RELATIVE

MAX domain 17,3 19,3 22,3 29,0 39,7 64,0
boundary 0,01527 0,01478 0,01451 0,01468 0,01482 0,01641AVG domain 0,00369 0,00409 0,00450 0,00496 0,00536 0,01418
boundary 0,15830 0,14641 0,14732 0,15190 0,16013 0,15007MAX domain 0,06954 0,08235 0,10889 0,14092 0,17203 0,29373

ABSOLUTE

domain RMSE 0,00675 0,00735 0,00799 0,00869 0,00931 0,02479
net flow error 0,000014 0,000044 0,000057 0,000068 0,000081 0,000075

Table 4.6: Error metrics for the velocity variant of the time network, averaged over three variations of vp5. Columns t+1 to t+5
show the average error metrics for individual input images and the last column shows the average error metrics for one whole
heartbeat.

t+1 t+2 t+3 t+4 t+5 One beat
boundary 0,25126 0,24407 0,24222 0,24374 0,24639 0,24342AVG domain 0,13186 0,13911 0,14764 0,15335 0,16062 0,26533
boundary 34,3 36,0 42,7 34,7 35,7 27,3RELATIVE

MAX domain 22,7 23,3 23,7 23,3 23,7 24,7
boundary 0,01414 0,01371 0,01352 0,01354 0,01366 0,01385AVG domain 0,00301 0,00341 0,00386 0,00424 0,00462 0,00994
boundary 0,16379 0,14092 0,15647 0,16837 0,17660 0,15281MAX domain 0,06314 0,07229 0,07778 0,08693 0,10797 0,15647

ABSOLUTE

domain RMSE 0,00572 0,00635 0,00699 0,00755 0,00815 0,01814
net flow error 0,000040 0,000020 0,000021 0,000033 0,000044 0,000158

Table 4.7: Error metrics for the difference variant of the time network, averaged over three variations of vp5. Columns t+1 to
t+5 show the average error metrics for individual input images and the last column shows the average error metrics for one whole
heartbeat.

t+1 t+2 t+3 t+4 t+5 One beat
boundary 0,20907 0,21131 0,21183 0,21199 0,21257 0,30708AVG domain 0,10592 0,12168 0,13701 0,14830 0,15850 1,11154
boundary 42,3 42,0 37,7 36,7 36,0 41,0RELATIVE

MAX domain 16,3 18,3 19,0 21,3 23,0 75,7
boundary 0,01469 0,01470 0,01478 0,01491 0,01502 0,02086AVG domain 0,00289 0,00358 0,00419 0,00460 0,00494 0,03577
boundary 0,18941 0,18575 0,18118 0,18026 0,18026 0,21412MAX domain 0,05765 0,06863 0,08235 0,09150 0,09699 0,26170

ABSOLUTE

domain RMSE 0,00523 0,00626 0,00716 0,00779 0,00832 0,05790
net flow error 0,000035 0,000045 0,000051 0,000057 0,000061 0,000603

Table 4.8: Error metrics for the delta variant of the time network, averaged over three variations of vp5. Columns t+1 to t+5
show the average error metrics for individual input images and the last column shows the average error metrics for one whole
heartbeat.
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All variants are given the same amount of extra information but the information is supplied in different
ways. As can be seen in the tables, this results in comparable performance on the prediction of one to five
time steps ahead. The difference variant of the time network performs best, especially when looking at the
whole heartbeat prediction. It is noteworthy that, although the delta network performs better on nearly all
metrics compared to the velocity network, and even better on the relative average metrics compared to the
difference network, it performs much worse when predicting one whole heartbeat. The delta network grossly
overestimates the low velocity part of the heartbeat. Whilst the velocity network recovers from overestimating
the velocity much better, it still overestimates the velocity more than the difference network. As there is no
correction mechanism, the overestimated velocity is propagated during the rest of the heartbeat, resulting in
higher errors. This is shown in figure 4.5 for vp5.9. Hence, the following tests on generalizability and network
optimization will be done with the difference variant of the time network.

(a) velocity variant (b) difference variant (c) delta variant

Figure 4.5: Comparison of the absolute domain MAE per time step on vp5.9 (from left to right: velocity, difference and delta
variant of the time network). The red line shows the absolute MAE in the domain in [m/s] and the blue line the inlet velocity in
[m/s] versus time in [s].

In addition, the hypothesis that the previous network was overfitted on one inlet velocity pattern is supported
by the results presented in this section. The error for the prediction of one to five time steps ahead increased
from around 4% to about 15% and the error on predicting one heartbeat nearly doubled from 15% to 26%
(domain relative MAE). Although, it should be noted, the size of the training data set decreased whilst the
variation increased. This could also have contributed to the reduction in performance.

4.3.2 Velocity pattern variation
Besides the three variations of velocity pattern 5, the difference variant of the time network was also tested
on three variations of velocity pattern 6, being vp6.8, vp6.10 and vp6.11, see figure 3.4. The average over
these velocity patterns is shown in table 4.9.

t+1 t+2 t+3 t+4 t+5 One beat
boundary 0,25968 0,25551 0,25370 0,25626 0,25925 0,26182AVG domain 0,13114 0,14338 0,15729 0,16859 0,17892 0,46395
boundary 33,7 34,0 39,3 44,0 47,0 27,7RELATIVE

MAX domain 29,3 27,0 26,3 27,0 29,3 33,3
boundary 0,01401 0,01373 0,01352 0,01360 0,01375 0,01424AVG domain 0,00340 0,00413 0,00499 0,00570 0,00625 0,01675
boundary 0,16654 0,14732 0,15007 0,16196 0,17020 0,16196MAX domain 0,12810 0,12627 0,12444 0,12353 0,12353 0,17843

ABSOLUTE

domain RMSE 0,00627 0,00740 0,00866 0,00974 0,01059 0,02773
net flow error 0,000034 0,000013 0,000014 0,000027 0,000042 0,000261

Table 4.9: Error metrics for the difference variant of the time network, averaged over three variations of vp6. Columns t+1 to
t+5 show the average error metrics for individual input images and the last column shows the average error metrics for one whole
heartbeat.

Compared to the results of the difference network on the variations of velocity pattern 5, it can be noted that
the average relative domain error has significantly increased from 26% to 46%, whilst the average absolute
MAE only increased from around 0,010 to 0,015. This was mainly caused by the prediction of vp6.8, which
has a spike as second velocity peak, see figure 3.4. The network overestimated the velocity after the spike,
creating a relative domain MAE of 85% during one heartbeat. If the prediction of vp6.8 is excluded, an
average relative MAE of 27% was found on the remaining two variations of vp6. The full results are shown
in appendix F.

28



Again, it can be seen the network’s prediction is worse in low velocity areas, as it is stagnant at the end of
the heartbeat, even if there is a low velocity peak. An example of this behaviour is shown in figure 4.6 at t
= 0.48 (the third row). In addition, the network does not always capture the full height of the velocity peak.
An example of this behaviour is shown for velocity pattern 5.10 in figure 4.7 at t = 0.06 (the first row). It
can also be seen in figures 4.8 and 4.9, that the MAE in the domain spikes during the descent of the velocity
peaks. The spike in the error when the inlet velocity is decreasing originates from the model overestimating
the velocity, as can be seen in figures 4.6 and 4.7 at t = 0.12 (the second row).

This could be caused by the information which is passed to the RNN, being the difference in inlet veloc-
ity between time steps, in combination with the use of a batch normalization layer. The differences are
negative when the inlet velocity is decreasing. Thus, when normalizing the data between 0 and 1 in the
batch normalization layer, negative differences become a value close to 0. Hence, the model might give more
importance to areas with increasing velocity.

TRUE PREDICTED ERROR

Figure 4.6: Three time steps (from top to bottom: t=0.09, t = 0.12, and t = 0.48) in predicting one heartbeat for vp6.10.
The first column shows the inlet velocity with the moment in time marked, the second column the true velocity fields, the third
column the predicted velocity fields and the last column shows the difference between true and predicted values.

TRUE PREDICTED ERROR

Figure 4.7: Three time steps (from top to bottom: t=0.06, t = 0.12, and t = 0.75) in predicting one heartbeat for vp5.10. The
first column shows the moment in the time series, the second column the true velocity fields, the third column the predicted
velocity fields and the last column shows the difference between true and predicted values.
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Figure 4.8: Absolute MAE in the domain for vp5.10. The
red line shows the absolute error in [m/s] and the blue line
the inlet velocity in [m/s] versus time in [s].

Figure 4.9: Absolute MAE in the domain for vp6.10. The
red line shows the absolute error in [m/s] and the blue line
the inlet velocity in [m/s] versus time in [s].

Figure 4.10: Absolute MAE in the domain for realistic inlet ve-
locity pattern. The red line shows the absolute MAE in the
domain in [m/s] and the blue line the inlet velocity in [m/s] ver-
sus time in [s].

Finally, the inlet pattern of a realistic heartbeat, de-
scribed in section 3.1.2, was used to test the model.
As shown in table 4.10, the network shows reasonable
performance on the task it was trained on, i.e., pre-
dicting five time steps ahead, with a relative MAE
between 11% and 13% in the domain. However,
again a big increase to 28% relative MAE in the
domain was found when predicting one whole heart-
beat. This performance is comparable to the perfor-
mance on variations of velocity pattern 5. Also, for
this velocity pattern the same behaviour, capturing
the duration but not the total height of the veloc-
ity peak and performing worse on low velocity areas,
as for variations of vp5 and vp6, was encountered.
However, the underestimation of the velocity peak is
worse than previously encountered. This is shown in
figure 4.11. Nonetheless, this does indicates that the
network is not overfitted on the training inlet veloc-
ity patterns. Moreover, the error does not spike during the descent of the velocity peak, which can be seen in
figure 4.10. The absence of the error spike during inlet velocity descent and the gross underestimation of the
peak velocity could be explained by the more gradual ascent and descent of the velocity peak, compared to
the parabolic inlet velocity patterns. The differences during ascent are smaller compared to the parabolic inlet
patterns, which might lead to less increase of the velocity field. The differences during descent are smaller
negative values, leading to larger values after normalization, compared to the parabolic inlet patterns.

t+1 t+2 t+3 t+4 t+5 One beat
boundary 0,40117 0,34966 0,34635 0,35531 0,36485 0,32377AVG domain 0,11805 0,12059 0,12600 0,13014 0,13374 0,28873
boundary 45,0 35,0 35,0 36,0 42,0 37,0RELATIVE

MAX domain 19,0 20,0 20,0 22,0 21,0 34,0
boundary 0,01426 0,01319 0,01251 0,01254 0,01278 0,01231AVG domain 0,00815 0,00903 0,00973 0,01020 0,01059 0,03132
boundary 0,26902 0,14549 0,16471 0,16745 0,15647 0,37333MAX domain 0,12902 0,12902 0,13726 0,15373 0,18941 0,40078

ABSOLUTE

domain RMSE 0,01399 0,01527 0,01629 0,01702 0,01770 0,05275
net flow error 0,000092 0,000117 0,000126 0,000129 0,000131 0,000403

Table 4.10: Error metrics for the difference variant of the time network on realistic velocity pattern. Columns t+1 to t+5 show
the error metrics for individual input images and the last column shows the average error metrics for one whole heartbeat.

In general, it can be noted that low velocity areas in an image, low velocity parts of the time series and entire
time series with low velocities are predicted worse than their high velocity counterparts. This can be explained
by the fact that, in high velocity areas, the pixel intensities are also around one order of magnitude higher,
thus the loss in these areas is relatively higher. Moreover, the MSE was used as loss function for all training,
which amplifies this behaviour due to squaring values below one.
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Figure 4.11: Three time steps (from top to bottom: t=0.10, t = 0.25, and t = 0.60) in predicting one heartbeat for realistic
velocity pattern. The first column shows the moment in the time series, the second column the true velocity fields, the third
column the predicted velocity fields and the last column shows the difference between true and predicted values.

4.3.3 Geometry variation
When making predictions on three geometries that were not present in the training data set, it can be seen
the network cannot generalize to new geometries at all. The new geometries are all interpolations of existing
geometries in the training data set. The domain is predicted incorrectly, more specifically, the network chooses
the domain in the training set that is closest to the new geometry. Evidently, this could be related to the fixed
number of geometric variations of the domain in the training data. With five different channel widths and
four different outlet widths possible, there are only 20 possible geometries. Hence, the network could have
learned to encode these possibilities, instead of encoding actual domain parameters, i.e. overfitting on the
training domains. In addition, the velocity field is entirely off in all predictions. Examples of these findings are
shown in figure 4.12, in which the top row shows the true values and the bottom row the predicted values.
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Figure 4.12: Three new geometries (from left to right) during various moments in the time series. The top row shows the true
velocity field and the bottom row shows the corresponding predicted velocity field.
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4.4 Network optimization and analysis
In an attempt to improve the performance of the network, various alternatives were tested. The variation
of the loss function, of which results are shown in section 4.4.1, and data augmentation, of which results
are shown in section 4.4.2, could counter the difference in importance between high an low velocities learned
by the network. In addition, it was tested whether increasing the data set size and increasing the number
of predicted time steps would improve the performance. The results of these experiments are also shown in
section 4.4.2. Lastly, the stability of the model was tested by predicting three heartbeats, of which results are
shown in section 4.4.3.

4.4.1 Loss function variation
As mentioned in the section 3.2.3, various loss functions were tested to increase the performance on low
velocity areas. From the two options MSE+MAE and MatanE, only the MatanE loss function gave viable
results. The error metrics for the MatanE loss function are shown below in table 4.11. The absolute MAE in
the domain per time step can be compared for the different loss functions in figure 4.13. The full results of
the MSE+MAE loss function can be found in appendix G.

(a) MSE loss function (b) MatanE loss function (c) MSE+MAE loss function

Figure 4.13: Absolute MAE in the domain using various loss functions (from left to right: MSE, MatanE and MSE+MAE) for
vp5.9. The red line shows the absolute error in [m/s] and the blue line the inlet velocity in [m/s] versus time in [s].

t+1 t+2 t+3 t+4 t+5 One beat
boundary 0,42649 0,44269 0,44350 0,44598 0,44602 0,42768AVG domain 0,10660 0,11494 0,12118 0,12733 0,13363 0,37920
boundary 66,7 68,7 68,7 73,7 77,7 69,3RELATIVE

MAX domain 21,0 22,7 25,0 24,3 21,7 42,3
boundary 0,03375 0,03533 0,03557 0,03622 0,03652 0,03414AVG domain 0,00296 0,00337 0,00373 0,00407 0,00443 0,01241
boundary 0,40810 0,37791 0,37791 0,39621 0,41177 0,37425MAX domain 0,07046 0,08418 0,09242 0,10248 0,10248 0,16562

ABSOLUTE

domain RMSE 0,00546 0,00609 0,00663 0,00713 0,00770 0,02251
net flow error 0,000070 0,000071 0,000081 0,000090 0,000100 0,000119

Table 4.11: Error metrics for the difference variant of the time network using the MatanE loss function, averaged over three
variations of vp5. Columns t+1 to t+5 show the average error metrics for individual input images and the last column shows
the average error metrics for one whole heartbeat.

Although no general improvement in the error metrics can be seen, the relative domain MAE decreased
very slightly from 13% - 16% to 10% - 13% for predicting one to five time steps ahead, indicating similar
performance on low velocity areas. Interestingly, for predicting the entire heartbeat, the increased attention
to small errors results in underestimating the flow in high velocity areas. The network tends to predict a low
velocity fields for all time steps. An example of this behaviour can be seen in figure 4.14.
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Figure 4.14: Three time steps (from left to right: t=0.12, t = 0.50, and t = 0.75) in predicting one heartbeat for vp5.11 using
loss function MatanE. The first column shows the moment in the time series, the second column the true velocity fields, the
third column the predicted velocity fields and the last column shows the difference between true and predicted values.

4.4.2 Data augmentation and network alteration
First the results of histogram equalization, in which the contrast is enhanced by spreading the pixel intensi-
ties within one image, are shown in table 4.12 and figure 4.15. Histogram equalization should increase the
importance of low velocity areas in the domain, compared to no histogram equalization.

t+1 t+2 t+3 t+4 t+5 One beat
boundary 0,22286 0,21259 0,20939 0,21087 0,21363 0,40107AVG domain 0,15102 0,15523 0,15931 0,16306 0,16871 1,60866
boundary 54,3 40,3 39,7 44,3 46,3 74,3RELATIVE

MAX domain 21,0 21,3 23,0 23,7 24,3 116,3
boundary 0,01746 0,01615 0,01569 0,01585 0,01609 0,02184AVG domain 0,00481 0,00525 0,00560 0,00579 0,00598 0,06780
boundary 0,18484 0,17477 0,16928 0,16837 0,16928 0,23699MAX domain 0,07686 0,08784 0,08693 0,09608 0,10706 0,35961

ABSOLUTE

domain RMSE 0,00871 0,00941 0,00995 0,01025 0,01056 0,11497
net flow error 0,000116 0,000143 0,000156 0,000164 0,000171 0,001275

Table 4.12: Error metrics when using histogram equalization as data augmentation, averaged over three variations of vp5.
Columns t+1 to t+5 show the average error metrics for individual input images and the last column shows the average error
metrics for one whole heartbeat.

In table 4.12 it can be seen that the error metrics on individual input-output sets (the error metrics on t+1 up
to and including t+5) are quite comparable to the error metrics of the model without histogram equalization.
The average error on the boundary is even decreased by 5%, which was expected as this is a low velocity area
for all time steps. However, when one entire beat is predicted, the error metrics are much larger. On visual
inspection, the velocity increases rapidly during the incline of the inlet velocity peak, but fails to decrease
again and stagnates on predicting high velocity in the centre of the channel and low velocity at the boundaries.
It seems the relation between areas within one image is learned, i.e. high velocity in the centre of the channel
and low velocity at the boundaries. In contrast, the relation between consecutive time steps seems lost. This
is shown in figure 4.15.
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Figure 4.15: Three time steps (from left to right: t=0.03, t = 0.06, and t = 0.75) in predicting one heartbeat for vp5.10 using
histogram equalization. The first column shows the moment in the time series, the second column the true velocity fields, the
third column the predicted velocity fields and the last column shows the difference between true and predicted values.

Figure 4.16: MSE (left, red dots) and MAE (right, blue
stars) when increasing data set size.

To see if adding more data would improve the perfor-
mance of the network, it was trained on various data set
sizes. The training data set size was increased from in-
cluding 15 time series to including the full set of 67 time
series. The errors drop significantly when including 28
versus 15 time series, then plateau for including 41 and
53 time series but drop again when including all data.
This is shown in figure 4.16, with on the left axis the
MSE and on the right axis the MAE. The figure gives
no definitive answer to the question if adding even more
time series would improve the performance, as the data
points confirm neither a plateau nor a linear decrease in
error values. Nevertheless, the general trend shows increasing the data set size would improve the performance.

Lastly, an experiment was done to see if predicting more time steps ahead, giving the model more infor-
mation, would improve the performance. The results of training the model to predict ten time steps ahead
are shown in tables 4.13 and 4.14.

t+1 t+2 t+3 t+4 t+5
boundary 0,25949 0,24073 0,23930 0,23667 0,23422AVG domain 0,15254 0,15043 0,15772 0,16394 0,16923
boundary 48,0 45,3 45,0 45,0 46,7RELATIVE

MAX domain 21,7 21,3 20,3 21,7 22,0
boundary 0,01706 0,01596 0,01563 0,01555 0,01554AVG domain 0,00417 0,00451 0,00483 0,00508 0,00528
boundary 0,16562 0,15647 0,16196 0,16471 0,16562MAX domain 0,07229 0,07137 0,08327 0,08144 0,08418

ABSOLUTE

domain RMSE 0,00768 0,00821 0,00871 0,00908 0,00938
net flow error 0,000073 0,000090 0,000103 0,000101 0,000103

Table 4.13: Error metrics when training the model to predict 10 time steps ahead, averaged over three variations of vp5. Columns
t+1 to t+5 show the average error metrics for individual input images.
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t+6 t+7 t+8 t+9 t+10 One beat
boundary 0,23132 0,22863 0,22572 0,22191 0,21767 0,35508AVG domain 0,17391 0,17850 0,18355 0,18896 0,19479 1,19212
boundary 46,7 46,3 42,7 40,7 37,3 42,3RELATIVE

MAX domain 23,0 23,7 25,7 30,7 35,3 70,7
boundary 0,01555 0,01556 0,01559 0,01561 0,01563 0,01888AVG domain 0,00545 0,00562 0,00579 0,00592 0,00600 0,04399
boundary 0,16379 0,16562 0,16562 0,16745 0,16196 0,14915MAX domain 0,09242 0,10065 0,11621 0,14183 0,16105 0,30288

ABSOLUTE

domain RMSE 0,00964 0,00990 0,01018 0,01040 0,01057 0,07069
net flow error 0,000106 0,000110 0,000114 0,000117 0,000120 0,000648

Table 4.14: Error metrics when training the model to predict 10 time steps ahead, averaged over three variations of vp5. Columns
t+6 to t+10 show the average error metrics for individual input images and the last column shows the average error metrics for
one whole heartbeat.

Figure 4.17: MAE in the domain for vp5.10 using the model
trained on predicting 10 time steps. The red line shows the
absolute error in [m/s] and the blue line the inlet velocity in
[m/s] versus time in [s].

The tables show the errors do not significantly
increase when predicting ten time steps ahead
versus predicting five time steps ahead. The
largest relative domain MAE for five time steps
model is 16% at t+5, whilst this is 19% for
the ten time steps model at t+10. How-
ever, this is not true when predicting one
whole heartbeat, for which the errors are much
higher. Figure 4.17 shows absolute MAE per time
step when predicting one heartbeat for vp5.10.
The model generally predicts too much veloc-
ity, which is shown in more detail in appendix
H.

4.4.3 Three heartbeats
Finally, the network was tested by repeatedly taking the prediction of t+1 and using it as new input for the
network until three heartbeats, or three seconds, were predicted. In figure 4.18, the blue line again shows the
inlet velocity pattern in [m/s] and the red line the absolute MSE in [m/s] versus time in [s]. As can be seen,
the mean absolute error for the boundary as well as for the domain shows the same pattern at the start of
each heartbeat, following the the high velocity peak. Thereafter the boundary error decreases and becomes
constant until the next heartbeat, whilst the domain error shows a significant peak when the inlet velocity
drops, before gradually decreasing. It can also be noted, that the boundary MAE as well as the domain MAE
are stable for three heartbeats, i.e., they show the same magnitude and pattern for each heartbeat. Hence, the
model seems to be stable for a periodic inlet velocity pattern. The final prediction is equal for each heartbeat,
as shown in figure 4.19.

Figure 4.18: Absolute MAE in three heartbeats of vp5.9 for boundary (left) and domain (right). The red line shows the absolute
error in [m/s] and the blue line the inlet velocity in [m/s] versus time in [s].
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Figure 4.19: Last prediction for each heartbeat (from left to right: t=1, t=2 and t=3)

When predicting three heartbeats, the prediction time can be compared to the simulation time with OpenFoam
[2], as all simulations were also run for three heartbeats. A simulation time of approximately 1600s was found,
whilst the prediction time was approximately 70s, using the same computer (CPU). Hence the prediction of
three heartbeats can be done in around one minute and is about 20 times faster than the OpenFoam simulation.
Predictions of one heartbeat took around 20s. However, it should be noted the simulations with OpenFoam
were not optimized for time and further decrease of simulation time could be achieved.
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5 | Conclusions and recommendations
The aim of this study was to construct a single reduced order model, based on NNs, for time-dependent
incompressible blood flow through the aorta that can account for varying inlet velocity conditions, mate-
rial parameters and geometries (computational domains). The objectives were to minimize the reduction of
accuracy of simulated time series with OpenFoam [2], and to obtain speedup compared to the OpenFoam
simulations. Three research questions were proposed to support this aim and objective. Firstly, which ML
network architecture is most accurate at predicting consecutive time steps of time-dependent aortic blood
flow? Secondly, can the ML network produce accurate results for a range of physically relevant boundary
conditions and material parameters? Thirdly, how much can computational domains differ while retaining
accuracy? All these questions will be discussed in the following paragraphs.

The best performing architecture found from all tested networks and variations was the encoder, RNN with
LSTM units, difference variant, decoder model. This network consists of a convolutional encoder, which
reduced the dimensions of the input image, being 192x256, to a latent vector of size 150. The latent vector
is then repeated five times and each vector is concatenated with the difference in inlet velocity between the
current time step and one to five time steps ahead. These vectors are provided as input to an RNN with
LSTM units, which returns the latent vectors for five consecutive time steps. These are all decoded by the
same convolutional decoder, which is symmetrical to the encoder with exception of the skip connection.

The hyperparameters of the RNN with LSTM units were not tuned, which could optimize the architecture.
Additionally, of course, not all possible architectures have been tested. Other interesting architectures that
could be investigated in future research are using 3D convolutions over two spatial and one time dimension
instead of separate spatial and time networks. In the opposite direction, the explainability and generalizability
might improve if further separation of geometry and flow features can be achieved, for example by forcing
certain latent variables to remain constant during time evolution. In addition, novel methods for sequence-
to-sequence problems (time evolution) could be implemented, such as the transformer models with attention
mechanism. Transformer models have led to significant improvements in the field of natural language pro-
cessing and show promising results for time series forecasting [83].

For all networks, it was observed that all error metrics increased when moving from the task the network
was trained on, i.e. predicting five time steps ahead, to predicting one whole heartbeat. In general, from
the tested architectures, the networks that showed overestimation of the velocity performed worse on predict-
ing one whole heartbeat. As aforementioned, there is no control mechanism implemented when predicting
one entire heartbeat, meaning one wrong prediction could alter the rest of the sequence. Implementing a
control mechanism, for example a Kalman-filter, using new observations whenever they are available, might
significantly improve the results for one heartbeat. Nevertheless, the error metrics stabilized when extending
the prediction of one heartbeat to multiple heartbeats. The same pattern was used for three consecutive
heartbeats, varying the inlet velocity pattern per heartbeat could still be explored.

The generalizability for the tested material parameter, blood viscosity, while keeping the inlet velocity pattern
fixed, appeared quite good for various geometries. For a straight channel, an average relative MAE of 8%
was obtained in the domain. For a bent and a bifurcated channel, the MAE was 9% and 15%, respectively.
The relative errors were considerably higher in comparison to the absolute errors, and mainly increased by low
velocity parts of the domain and time series. Also, large maximum errors occurred at the boundaries of the
domain, where the velocities are low for every times step.

When testing the network on varying inlet velocity patterns, the relative MAE in the domain increased
considerably to 26% for variations of vp5, 27% for variations of vp6 (excluding vp6.8) and 28% when looking
at a more realistic inlet velocity pattern of the aorta. The network showed the same shortcomings as before,
that is, under-performing on low velocity areas of the domain and time series. This could be explained by
the fact that in high velocity areas, the pixel intensities are also around one order of magnitude higher, thus
the loss in these areas is relatively higher. The use of MSE as loss function amplifies this behaviour, due to
squaring values below one.
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In addition, the network did not always capture the full height of the velocity peak and a spike in the domain
MAE was seen for rapidly decreasing inlet velocities, originating from the network overestimating the velocity
field. This could be caused by the combination of supplying the differences in inlet velocity between time steps
as information to the RNN and using a batch normalization layer. Negative differences, when the inlet velocity
is decreasing, become values close to zero. Hence, the network might give more importance to increasing
velocities.

Various attempts to improve the performance, including altering the loss function and augmenting the data,
were not successful. However, many choices of loss functions, including loss functions incorporating physics,
and other data augmentations were not tested. Besides loss functions incorporating physics, a loss function
comparing the mean of the velocity fields could lead to a performance increase, as it was found to be a key
indicator for long-term prediction accuracy [84]. Other data transformations that may improve the results are
transformations, that unlike histogram equalization, have an inverse, such as the log transform. With such a
transformation the network might attribute more importance to low velocity parts of the time series and learn
how to relate the transformed velocity fields to the original velocity fields. As decreasing velocities during the
prediction of one heartbeat were challenging for the networks, other normalization methods (besides batch
normalization between 0 and 1) could additionally improve the performance. Also, supplying information of
the change in velocity in more than one way and the hard enforcement of boundary conditions were not tested.

Another approach to create a model that can predict both high and low velocities accurately may be us-
ing an ensemble model. The ensemble model could include separate networks for high and low velocity fields
or even separate networks for certain areas of the computational domain, such as the center of the channel or
the boundary. Depending on the application, one might also be interested in a specific case, for example high
velocity near the boundary, to determine the maximum wall shear stress, for which a model could be finetuned.

In addition, the network was unable generalize to new geometries. This could be improved by adding more
geometries and more variation to the geometries in the data. This could be done by making the inlet and
outlet widths of the domain random instead of choosing values from a predetermined set of values. Moreover,
including more realistic geometries, such as geometries with more wiggles, multiple inlets, more outlets, chan-
nels containing aneurysms or stenosis, could be an interesting extension of the data set. Research continuing
in this direction could also incorporate geometries of smaller arteries, trees of arteries or possibly real medical
data. One network might not suffice for the suggested level of complexity, thus the use of multiple networks
interacting and depending on each other could also be explored.

Besides improvements that can be made to the network, there are certain aspects that were not investi-
gated in this research. For example, variations of the image resolutions (in relation to the time step size),
using multiple images as input and having a time step size larger than one between inputs, input and pre-
dictions and between predictions, were not analyzed in this research. Moreover, the errors could be analyzed
further, for example the divergence of the flow was not evaluated in the domain. The error metrics could also
be split in a different way than boundary and domain, for example in low and high velocity areas.

Furthermore, the number of simplifications made could be reduced in future research. One can think of
varying the pressure outlet boundary condition, including fluid-structure interaction to account for deforma-
tion of the artery walls, allowing for turbulent flow, incorporating non-Newtonian properties of blood and
extending the model from 2D to 3D.

In conclusion, this research should be seen as a basis for time-dependent blood flow predictions in the aorta,
from which a multitude of different paths can be explored. What should also not be forgotten, is that although
a speedup of 20 (using a CPU) was achieved between OpenFoam [2] simulations and the predictions, the time
to train the final network was about 12 hours. On top of that, a total of 168.429 CPU minutes were used on
a supercomputer during this research. This is a staggering 117 days. Hence, the implementation of machine
learning algorithms should be considered with care and should not be assessed without the underlying cost of
experimentation and training.
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A | Details numerical schemes
∂u
∂t

+ ∇ · (uu) − ∇ · (ν∇u) = −∇p

Evaluate for each volume :∫
vi

∂u
∂t

dv +
∫

vi

∇ · (uu)dv −
∫

vi

∇ · (ν∇u)dv = −
∫

vi

∇pdv

Use Gauss theorem and trick constant vector pressure gradient, average u over volume for time derivative:
∂ūi

∂t
vi +

∫
si

u(u · n)ds −
∫

si

ν(∇u · n)ds = −
∫

si

pnds

Split surface integral over the K faces of the control volume:

∂ūi

∂t
vi +

K∑
j=1

∫
sj

uj(uj · nj)dsj −
K∑

j=1

∫
sj

νj(∇uj · nj)dsj = −
K∑

j=1

∫
sj

pjnjdsj

Using Gauss integration and assuming linear variation on the surface, to evaluate the surface integrals:

∂ūi

∂t
vi +

K∑
j=1

ufj (ufj · nj)sj −
K∑

j=1
νfj (∇ufj · nj)sj = −

K∑
j=1

pfj njsj

Using Euler implicit method for the time derivative and assuming the value at the centre of the volume ui

is the average value of the volume ūi:

ui − ut−∆t
i

∆t
vi +

K∑
j=1

ufj
(ufj

· nj)sj −
K∑

j=1
νfj

(∇ufj
· nj)sj = −

K∑
j=1

pfj
njsj

In which ui is the velocity for volume i in the current time step at time t and ut−∆t
i is the velocity in the

previous time step , with ∆t the time step size. The terms containing an fj as subscript denote the value at
the centre of the corresponding face j and sj is the area of the surface. To evaluate the values presented in
the equation above we need interpolation schemes. We will look at each term separately.

Linear interpolation was used to obtain the value of the kinematic viscosity, νfj
, for face j (of volume i

and neighbour volume k) in the diffusion term and the value of the kinematic pressure, pfj
in the pressure

gradient term.

νfj
= νi − νk

d (A.1)

pfj
= pi − pk

d (A.2)

In which d is the vector from the centre of volume i to the centre of a neighbour volume k. LinearUpwind was
used to obtain the value of the velocity on the face centre for face j, ufj

, between volume i and a neighbour
volume k in the convection term.

ufj
=

{
ui + (∇u)i · r Ffj

> 0
uk + (∇u)k · r Ffj

< 0
(A.3)

In which r is the vector from the centre of volume i to face j. Ffj is the mass flux over face j defined as
Ffj

= ρfj
∗sj(ufj

·nj). The second part of this equation, (∇u) ·r, and the mass flux are computed explicitly
from the initial guess or the value from the previous iteration. The gradient term ∇u is again computed by
linear interpolation as shown in equations A.1 and A.2. To obtain the value of ∇ufj

orthogonal to the face
normal vector nj for face j between volume i and neighbour volume k in the diffusion term, the ’corrected’
scheme was used (correcting for non-orthogonality in the mesh). Corrected uses linear interpolation for the
part which is orthogonal to the vector between the centre of volume i and neighbour volume k, dj , and
an explicit correction (using the value of the initial guess or previous iteration of ∇ufj

) to account for the
non-orthogonality.

∇ufj
· nj = 1

cos(θ)
ui − uk

|dj |
+ (nj − 1

cos(θ)dj) · ∇ufj
(A.4)
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B | Details numerical solvers
All discretized terms described in appendix A are combined in the matrix M . This reflects connectivity
between all volumes, gathered in the vector U. The discretized pressure gradient and explicitly calculated
parts, see equations A.3 and A.4, are contained in the vector P, such that

MU = P (B.1)

All coefficients in M are known from the discretization schemes and an initial guess or values from the previous
iteration of P are used to solve this equation for U. This is called the momentum predictor stage. Note that
we have completely ignored the continuity equation in the Navier-Stokes equations until now. Thus we obtain
an solution U of equation B.1 which does not satisfy the continuity equation.

To rectify this, first a diagonal matrix A is formed with the diagonal elements of M and the residual matrix
H is defined such that

H = AU − MU (B.2)

As MU = P, AU − H = P, which can be rewritten as

U = A−1H − A−1P (B.3)

and substituted in the continuity equation to obtain an equation for the vector P

∇ · (A−1H) = ∇ · (A−1P) (B.4)

Now the velocity field can be corrected with the computed pressure field (satisfying the continuity equation)
from equation B.4, by solving equation B.3. However, U is now different, thus the matrix H is different,
changing the solution of equation B.4. Hence, the pressure field needs updating.

As mentioned in 3.1.5, the PIMPLE algorithm is a combination of the SIMPLE algorithm and PISO al-
gorithm. The difference between these algorithms is how they correct the pressure field. The SIMPLE
algorithm returns all the way to the momentum predictor stage, equation B.1 to correct the pressure field
and continues from there. this is defined in the PIMPLE algorithm as outer corrections. The PISO algorithm
starts from recalculating the matrix H, equation B.2, and continues from there, which is defined as inner
corrections in the PIMPLE algorithm.

1) Solve for U MU = P
2) Compute the mass fluxes at the cell faces
3) Compute the matrix H H = AU − MU
4) Solve for P ∇ · (A−1P) = ∇ · (A−1H)
5) Correct mass fluxes
6) Correct U U = A−1H − A−1P

inner
correc-
tor

outer
correc-
tor
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C | Changing latent variables
To see the influence of one specific latent variable over time, the feature was multiplied by a factor 100 in
the latent space before decoding. This was done for multiple time steps throughout one heartbeat (10 time
steps from t=0 to t=1 with time step size 0,1s). The results were checked for all 150 latent variables, all of
which changed over time. Hence, no latent variable contained only information on the geometry, as this was
fixed over time, and all latent variables contained information on the flow (and possibly geometry). Some
examples of the results of this experiment are shown in figures C.1, C.2 and C.3.

Figure C.1: Results of multiplying feature 1 by 100 and decoding. The top row contains the original input image, the second
row the decoded image with alteration of the latent feature and the bottom row the decoded image without alteration of the
latent feature.

Figure C.2: Results of multiplying feature 15 by 100 and decoding. The top row contains the original input image, the second
row the decoded image with alteration of the latent feature and the bottom row the decoded image without alteration of the
latent feature.

Figure C.3: Results of multiplying feature 104 by 100 and decoding. The top row contains the original input image, the second
row the decoded image with alteration of the latent feature and the bottom row the decoded image without alteration of the
latent feature.
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D | One heartbeat using various time step
sizes

As described in section 3.2.2, one whole heartbeat was predicted using t+1. All networks were also tested by
using t+5 to predict one whole heartbeat for the straight channel test set. This implies one heartbeat contains
20 time steps, versus 100 time steps when using t+1. As shown in table D.1, the network with LSTM units
also performs best on this task. This is in agreement with the results on each individual prediction shown in
tables 4.1, 4.2 and 4.3.

NN LSTM GRU
boundary 0,29225 0,16860 0,27700AVG domain 0,10049 0,05145 0,07660
boundary 8,0 5,0 9,0RELATIVE

MAX domain 17,0 18,0 21,0
boundary 0,00213 0,00104 0,00183AVG domain 0,00534 0,00216 0,00307
boundary 0,03137 0,04902 0,02745MAX domain 0,08431 0,05882 0,08431

ABSOLUTE

domain RMSE 0,00986 0,00445 0,00639
net flow error 0,000166 0,000094 0,000118

Table D.1: One heartbeat predictions using t+5 for straight channel

For the network with the RNN containing LSTM units for time evolution, predicting one heartbeat was also
done using the remaining time steps (t+2, t+3 and t+4) for the straight channel test time series. The
results are shown in table D.2. No clear pattern can be seen in the errors when increasing the time step size.
However, using t+5 does give the lowest errors on nearly all metrics.

t+1 t+2 t+3 t+4 t+5
boundary 0,19805 0,16866 0,15205 0,15616 0,16860AVG domain 0,08784 0,07701 0,09486 0,13214 0,05145
boundary 7,0 5,0 5,0 4,5 5,0RELATIVE

MAX domain 20,0 22,0 46,0 63,0 18,0
boundary 0,00153 0,00155 0,00108 0,00109 0,00104AVG domain 0,00454 0,00306 0,00331 0,00399 0,00216
boundary 0,02353 0,02157 0,01961 0,02941 0,04902MAX domain 0,40196 0,10000 0,10196 0,14902 0,05882

ABSOLUTE

domain RMSE 0,00900 0,00657 0,00629 0,00725 0,00445
net flow error 0,000095 0,000080 0,000103 0,000100 0,000094

Table D.2: Encoder - RNN LSTM - decoder network, straight data set, one heartbeat prediction using different time steps
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E | Maximum error locations bent and bi-
furcated channel

The maximum error locations for the bent and bifurcated channel were also investigated. Again the orange
dots represent the relative ME in the domain and the blue dots the ME error on the boundary. The size of
the dots represent the number of occurrences of the maximum error in that exact location. For all time step
predictions (t+1, ... t+5) the maximum error most frequently occurred at the edges of the domain, as shown
in figure E.1.

Figure E.1: Maximum error locations for bent channel (left) and bifurcated channel (right)
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F | Predictions on vp6.8
The full results on predicting the time series with inlet vp6.8 and the average of the remaining two variations
on vp6 are shown in the tables below.

t+1 t+2 t+3 t+4 t+5 One beat
boundary 0,26537 0,25904 0,25815 0,26218 0,26637 0,24468AVG domain 0,12710 0,14158 0,15546 0,16742 0,17812 0,27223
boundary 32,0 35,5 44,5 52,5 58,0 25,5RELATIVE

MAX domain 22,5 22,5 21,0 21,5 24,0 23,5
boundary 0,01503 0,01435 0,01428 0,01444 0,01462 0,01479AVG domain 0,00349 0,00443 0,00539 0,00616 0,00671 0,01189
boundary 0,17020 0,14137 0,15098 0,16882 0,17980 0,15235MAX domain 0,11941 0,11941 0,12078 0,11941 0,11804 0,18667

ABSOLUTE

domain RMSE 0,00652 0,00796 0,00938 0,01056 0,01142 0,02108
net flow error 0,000031 0,000014 0,000015 0,000025 0,000038 0,000203

Table F.1: Average error metrics on vp6.10 and vp6.11

t+1 t+2 t+3 t+4 t+5 One beat
boundary 0,24830 0,24846 0,24481 0,24444 0,24501 0,29611AVG domain 0,13923 0,14697 0,16095 0,17091 0,18050 0,84738
boundary 37,0 31,0 29,0 27,0 25,0 32,0RELATIVE

MAX domain 43,0 36,0 37,0 38,0 40,0 53,0
boundary 0,01198 0,01249 0,01200 0,01192 0,01201 0,01313AVG domain 0,00320 0,00354 0,00418 0,00478 0,00533 0,02647
boundary 0,15922 0,15922 0,14824 0,14824 0,15098 0,18118MAX domain 0,14549 0,14000 0,13177 0,13177 0,13451 0,16196

ABSOLUTE

domain RMSE 0,00578 0,006275 0,007221 0,008118 0,00893 0,04103
net flow error 0,000041 0,000011 0,000014 0,000032 0,000051 0,000379

Table F.2: Error metrics on vp6.8

TRUE PREDICTED ERROR

Figure F.1: Three time steps (from left to right: t=0.38, t = 0.40, and t = 0.65) in predicting one heartbeat for vp6.8. The first
column shows the moment in the time series, the second column the true velocity fields, the third column the predicted velocity
fields and the last column shows the difference between true and predicted values.
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G | MSE+MAE loss function
The average error metrics for vp5.9, vp5.10 and vp5.11 are shown in table G.1.

t+1 t+2 t+3 t+4 t+5 One beat
boundary 0,46177 0,47846 0,46985 0,47482 0,47647 0,48089AVG domain 0,09862 0,10254 0,10875 0,11510 0,12209 0,63772
boundary 90,0 95,7 87,7 87,3 91,7 73,3RELATIVE

MAX domain 22,3 22,7 24,0 25,0 27,3 56,0
boundary 0,03516 0,03507 0,03472 0,03494 0,03514 0,03534AVG domain 0,00283 0,00315 0,00355 0,00380 0,00404 0,01886
boundary 0,31294 0,31386 0,32118 0,33399 0,34954 0,31111MAX domain 0,07778 0,07869 0,09150 0,09791 0,10157 0,23608

ABSOLUTE

domain RMSE 0,00527 0,00579 0,00637 0,00677 0,00719 0,03202
net flow error 0,000051 0,000069 0,000084 0,000093 0,000099 0,000220

Table G.1: Average error metrics on variations of vp5 using MSE+MAE loss function
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H | Predicting ten time steps
Various moments in the time series for vp5.10 are shown using the model trained on predicting 10 time steps
in figure H.1. It can be concluded the model largely overestimates the flow at the end of the heartbeat.

TRUE PREDICTED ERROR

Figure H.1: Three time steps (from left to right: t=0.06, t = 0.50, and t = 0.75) in predicting one heartbeat for vp5.10. The
first column shows the moment in the time series, the second column the true velocity fields, the third column the predicted
velocity fields and the last column shows the difference between true and predicted values.
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