
Redesign of
the Solution
Algorithms
in Wanda
L. Huijzer

De
lft

Un
ive

rs
ity

of
Te

ch
no

lo
gy

Redesign of the
Solution

Algorithms in
Wanda

by

L. Huijzer
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Tuesday August 28, 2018 at 11:00 AM.

Student number: 4258878
Project duration: December 5, 2017 – August 31, 2018
Thesis committee: Dr. ir. M.B. van Gijzen, TU Delft, supervisor

Ir. S. van der Zwan, Deltares
Prof. dr. ir. A.W. Heemink, TU Delft
Prof. dr. ir. C. Vuik, TU Delft

An electronic version of this thesis is available at https://repository.tudelft.nl/.

https://repository.tudelft.nl/

Abstract

The Wanda software package developed by Deltares can used for simulating both steady state and transient
fluid flow in pipeline systems. Steady state simulations are used for initial system design and transient flow
simulations are used for doing water hammer analysis in pipeline systems. For both types of simulations a
system consisting of both linear and non-linear equations needs to be solved for the main unknown quanti-
ties, flow rate and head. This system is solved by linearising the equations using the Newton-Raphson method
and solving the resulting system of linear equations. Currently, this is done by using a matrix solver from the
proprietary IMSL numerical library which requires a paid license. The problem is that this solver sometimes
either crashes or gets stuck in an infinite loop when dealing with singular matrices, while the proprietary na-
ture of the library only allows for limited troubleshooting. The solution method therefore requires a redesign
which should improve its robustness and maintainability. On the other hand, no ground should be yielded in
terms of solution accuracy and performance.

The singularity of the matrices are caused by quantities being underdetermined either due to user error in
network design or phase changes such as a closing valve. In this report, a graph-theoretic approach is taken
to detect these structural singularities in the form of determining a maximum size matching in a graph rep-
resenting the system of equations. This approach gives information about which quantity is undetermined
where in the pipeline system. As an alternative, condition number estimation is implemented. Furthermore,
the IMSL library is replaced by LAPACK, which is a lightweight and versatile alternative. The open source na-
ture of LAPACK and its permissive license ensure its maintainability. Since the matrices are banded, the band
version of the LAPACK algorithms can be used. The new solution method is compared to IMSL and evaluated
in terms of robustness, accuracy and performance.

The graph-theoretic method resolves the robustness issues of the IMSL-based method, while showing great
performance. The information it gives is used to either correct the matrix and continue the simulation or
output an appropriate error message, ensuring a user-friendly experience. Condition number estimation is
too slow while also not being useful for further matrix correction purposes and is therefore disregarded. To
improve the accuracy of LAPACK, iterative refinement is used. The maximum relative error measured over
all the test cases was about 2.5%, resulting from an ill-conditioned case. Overall, the accuracy compared to
IMSL is good, so that users will not be able to notice large difference in solution quality between the two so-
lution methods. To improve the performance of LAPACK, Reverse Cuthill-Mckee (RCM) is applied to reduce
the bandwidth of the matrices. Using several test cases, the LAPACK performance is shown to be similar to
that of IMSL when using RCM. In that respect, the transition from IMSL to LAPACK should also be flawless.
A vendor-optimised LAPACK implementation did not yield any significant performance gains. It can be con-
cluded that the new solution method is an improvement in terms of robustness and maintainability, while
showing similar solution accuracy and performance.

Future work can focus on improving the performance by calculating the RCM permutation only once every
time step, as well as keeping the Jacobian constant during each time step. As matrix bandwidth determines
the performance of the matrix solver, better methods to reduce the matrix bandwidth could also yield sig-
nificant improvements. This could be achieved by either ordering the components in the pipeline system
a priori, or simply using matrix bandwidth reduction techniques. Optimised LAPACK libraries as well as a
different numerical library such as MUMPS could improve the performance even further.

i

Acknowledgements

He has made everything beautiful in its time. He has also set eternity in the human heart;
yet no one can fathom what God has done from beginning to end.

– Ecclesiastes 3:11 (NIV)

I would like to show my gratitude to my supervisors, Martin and Sam. Not only have they supported me
greatly with their invaluable advice and ideas, but also through their encouragement and enthusiasm. Fur-
thermore, my gratitude goes out to the people at Deltares who were of great help during my time there. I
would also like to thank my parents for their love and support, for believing in me, and for giving me the
opportunity to study. Last, but not least, I would like to thank the Lord, for where would I be without You?

ii

Nomenclature

Symbol Quantity Unit

A Cross-sectional area of the fluid m2

c Pressure wave propagation speed ms−1

g Gravitational acceleration ms−2

H Hydraulic or piezometric head (pressure) m
K Bulk modulus kg m−1s−2

O Wetted circumference of the fluid m
p Pressure kg m−1s−2

pv Vapor pressure kg m−1s−2

Q Volumetric flow rate m3s−1

t Time s
T Temperature °C
v Velocity (average) ms−1

W Mass flow kg s−1

x Space m
z Elevation level m
η Dynamic viscosity kg m−1s−2

λ Friction coefficient s2m−5

ν Kinematic viscosity m2s−1

ρ Density kg m−3

iii

Contents

Abstract i
Acknowledgements ii
Nomenclature iii
1 Introduction 1

1.1 Research Goal and Approach . 1
1.2 Report Outline . 2
1.3 Notation and Conventions . 2

2 Wanda 3
2.1 Background . 3
2.2 Fluid Dynamics . 4

2.2.1 Pipeline Fluid Dynamics . 4
2.3 The Wanda Model. 5

2.3.1 Component Types . 6
2.4 Steady Flow . 9

2.4.1 Numerical Implementation . 9
2.5 Transient Flow . 11

2.5.1 Numerical Implementation . 12

3 Problem Statement 15
3.1 Steady Flow Singularities . 15

3.1.1 Undetermined Q . 15
3.1.2 Undetermined H . 16

3.2 Transient Flow Singularities . 17
3.3 Current Solution Method . 18
3.4 Test Cases . 19

3.4.1 Singular Test Cases. 19
3.4.2 Large Test Cases . 20

3.5 Wanda Profiling . 22

4 Redesign Requirements 24
4.1 Problem Summary . 24
4.2 Main Research Question . 24
4.3 Detailed Research Questions . 24

4.3.1 Robustness. 24
4.3.2 Efficiency . 25

4.4 Research Approach . 25

5 Numerical Methods 26
5.1 Preliminaries . 26

5.1.1 Sparse and Band Matrices . 26
5.1.2 Norms . 27
5.1.3 Rounding Errors . 28
5.1.4 Quantifying Solution Errors . 28

5.2 Condition Number . 29
5.2.1 Right-Hand Side Perturbation . 29
5.2.2 Definition and Properties . 30
5.2.3 Matrix and Right-Hand Side Perturbation . 31
5.2.4 Ambiguity . 31
5.2.5 Calculating the Condition Number . 31

iv

Contents v

5.3 LU -Factorisation . 31
5.3.1 Computing the LU -Factorisation . 33
5.3.2 Pivoting . 34
5.3.3 Computing the Condition Number . 37
5.3.4 Iterative Refinement . 38

5.4 The LAPACK Library . 39

6 Bandwidth Minimisation 40
6.1 Graphs and Matrices . 40

6.1.1 Reverse Cuthill-McKee . 41
6.1.2 Asymmetric Matrices . 43
6.1.3 Results . 46

7 Structural Singularities 48
7.1 Graph-Theoretic Characterisation . 49
7.2 Application to Wanda . 50
7.3 The Hopcroft-Karp Algorithm. 53

7.3.1 Basic Ideas . 53
7.3.2 The Algorithm . 54
7.3.3 Implementation . 55
7.3.4 Preliminary Results . 56

8 Results 57
8.1 New Solution Method . 57

8.1.1 Singularity Detection . 58
8.1.2 Routines Used . 58

8.2 Robustness . 59
8.2.1 Matrix Correction . 59

8.3 Accuracy . 61
8.3.1 Procedure . 61
8.3.2 Iterative Refinement . 62

8.4 Run Time . 64
8.4.1 Procedure . 64
8.4.2 Iterative Refinement . 65
8.4.3 IMSL vs. LAPACK. 65
8.4.4 Singularity Detection . 67
8.4.5 LU -Decomposition Computation . 68
8.4.6 Solution Method Steps . 68
8.4.7 Matrix Correction Algorithms . 69
8.4.8 Reference LAPACK vs. Vendor-Optimised LAPACK . 70

8.5 Evaluation . 70

9 Conclusions and Recommendations 72
9.1 Conclusions. 72
9.2 Recommendations . 73

Bibliography 74
A Appendix 77

A.1 Conservation Laws . 77
A.1.1 Conservation of Momentum . 77
A.1.2 Conservation of Mass . 78

A.2 Large Test Cases. 78
A.3 Hopcroft-Karp Pseudocode . 80
A.4 Solution Accuracy Test Cases . 82

1
Introduction

Designing a pipeline system such as a drinking water network involves a lot of considerations. The right
pumping equipment and pipeline diameter need to be selected so as to guarantee sufficient drinking water
availability for every household. But these are not the only considerations. What happens, for example, when
a pump trips or a valve unexpectedly closes? These kinds of situations cause pressure waves, called water
hammer, to propagate through the system. Water hammer can cause damages to pumps and other equip-
ment, and can even result in broken pipes. Apart from the economic costs, the public health is also in play
when dirt and other matter leaks into a drinking water network. In order to prevent these kinds of problems
a well designed pipeline system is required which is able to handle potential water hammer scenarios. Since
doing experiments and using analytical methods are infeasible on such a scale, computational methods are
required. This is where Wanda comes into play.

Wanda is a software package developed by Deltares that allows for the design, control and optimisation of
user-built pipeline systems. Both steady state flow and transient flow simulations can be performed. The
first type of simulation is often used during the initial design phase of a pipeline system. Transient flow
simulations are mostly used for investigating the effect of various scenarios such as a pump trip on the per-
formance and safety of a pipeline system. There is, however, one problem: there are pipeline systems for
which the matrix solver either crashes or gets stuck in an infinite loop due to the matrix being singular. This
happens when systems are built which do not contain enough information about their physical properties
for a unique solution to exist. The current matrix solver is a part of a proprietary software library, the IMSL
numerical library, and hence does not lend itself to troubleshooting. It also requires a paid license. There-
fore, the solution method requires a redesign. A move to an open source numerical library with a permissive
license is desirable. Furthermore, a great addition to Wanda would be a method to detect faulty pipeline
systems before trying to run the simulations. Hence improvements can be made in terms of robustness and
maintainability. On the other hand, yielding (much) ground in terms of accuracy and performance is not an
option.

1.1. Research Goal and Approach
The goal of this report is to answer the main research question, which is posed as follows.

How can the maintainability and robustness of the current solution method in Wanda be improved,
without giving in on accuracy and efficiency?

Numerous open source alternatives to IMSL are available. MUMPS [7] and LAPACK [9] are good examples. In
this report LAPACK is considered as an alternative, since the matrix dimensions almost never exceed 10000×
10000 and hence LAPACK is expected to perform well. It also offers a reliable and versatile solution. To
tackle the robustness issue the focus is on detecting faulty pipeline systems by detecting structurally singular
matrices using a graph-theoretic approach [24]. The new solution method is then compared to the original
solution method and evaluated in terms of robustness, performance and accuracy.

1

1.2. Report Outline 2

1.2. Report Outline
Chapter 2 starts out with introducing the Wanda model. The fluid dynamics for the component types will
be treated, after which both the steady state and transient flow models and their numerical implementation
will be covered. Chapter 3 illustrates, using examples, the problem with the current solution method. Test
cases are introduced which are to be used to test both the robustness and performance of solution methods,
as well as some preliminary test results of the current method. The redesign requirements, research ques-
tions and research approach will be posed in Chapter 4. The numerical methods involved in solving systems
of linear equations will be explained in Chapter 5. Chapter 6 expounds on graph-theoretic methods to de-
crease the computational costs of solving systems of linear equations using LAPACK. Chapter 7 introduces
the mathematical theory to detect faulty pipeline systems. Chapter 8 presents the results obtained using the
new solution method and evaluates the new approach. Finally, Chapter 9 gives the final conclusions and
recommendations for future work.

1.3. Notation and Conventions
The following notation and conventions will be used throughout this report.

• Important terms and definitions are written in bold font when introduced for the first time.

• Matrices will be denoted by upper case letters, e.g.,

M =
[

M11 M12

M21 M22

]
(1.1)

and vectors in lower case bold font, e.g.,

u = [u1 u2 . . . un]>. (1.2)

• In pseudo code, the following notation will be used for matrix and vector indices.

Algorithm 1.1 Notation Example

M(i , j) denotes the element Mi j

M(i , :) denotes the i th row
M(:, j) denotes the j th column
u(k : l) denotes the elements k to l
M(k : l , j) denotes the elements k to l of column j
M(i , :) ·M(j , :) denotes the inner product between the i th and j th rows

• Examples are given in boxes.

Example 1.1. This is an example.

2
Wanda

This chapter serves as a general introduction to Wanda. It includes some background information on Wanda,
the description of the physical model and the numerical implementation. The material covered here is based
on the notes on fluid dynamics and Wanda as provided by Deltares [4, 6], which in turn is (partially) based on
the book on fluid dynamics by Wylie and Streeter [50].

2.1. Background
Wanda is a software package that allows for the design, control and optimisation of pipeline systems. It can
be used to simulate gas or oil pipeline systems, drinking water networks, sewage systems and various other
systems involving the transportation of fluids. These systems consist of hydraulic components such as pumps
and reservoirs, as well as pipes. Important aspects of pipeline systems can be studied. These aspects include:

• Flow capacity, velocity and distribution

• Cavitation, water hammer and dynamic behaviour

• Pressure and safety

• Pump efficiency, system characteristics

• Performance monitoring and control induced pressure waves

This shows that Wanda can be used throughout the lifetime of a pipeline system. From initial design up to
real time control and evaluation.

Figure 2.1: Wanda architecture.

As shown in Fig. 2.1, Wanda can be used to simulate liquid flow, heat transfer and multiphase systems. The
control module allows for a system to be linked to a control system. This can be used to monitor and control

3

2.2. Fluid Dynamics 4

the flow in a pipeline system.

Wanda can be used for two types of simulations, steady and transient flow. The steady state flow of a pipeline
network can be used for the design of a pipeline system. A well designed network allows for a balanced flow
and pressure. These type of calculations can be used for component selection, e.g., for the selection of pipe
diameter and pumping equipment. The other simulation type calculates transient (or unsteady) flow in a
pipeline system. This can be used to evaluate a system’s performance and safety by measuring the pressure
and flow in certain situations. These situations can include pump start-up, pump trip and other control
actions such as closing a valve. Phenomena such as water hammer and cavitation are included in the model.
Water hammer is a pressure wave travelling through the system, which can be caused by, e.g., the sudden
closing of a valve. These waves can cause damages to pumps and other parts of the system. Cavitation is the
formation of vapour cavities in liquid, which impacts the flow in a system and implosion of cavities can cause
damages to pumps and other components. For economic and safety reasons, it is of special importance to
evaluate the impact of these phenomena on a pipeline system.

2.2. Fluid Dynamics
The material discussed in this chapter only applies to the liquid module of Wanda. For the other modules the
concepts are similar with the main difference being the relevant quantities and the equations governing the
dynamics.

The Wanda model simulates one-dimensional fluid dynamics. The basic fluid properties are densityρ [kg m−3],
pressure p [kg m−1s−2] and speed v [ms−1]. Related to p is the vapour pressure pv [kg m−1s−2]. Vapour pres-
sure is the absolute pressure at which a fluid vaporises. Vaporisation due to an increase in temperature at a
given pressure is called boiling, whereas vaporisation due to a decrease in pressure at a given temperature
is called cavitation. There are two additional properties of fluids that determine their behaviour. The first is
compressibility K [kg m−1s−2], which is a measure of the relative change in volume to change in pressure.
Secondly, kinematic viscosity η [kg m−1s−2] or dynamic viscosity ν [m2s−1] is relevant. Viscosity is a measure
of resistance to deformation by stress, which can, for example, be caused by friction along the pipe wall. This
slows the fluid down.

For the purposes of which Wanda has been developed viscosity is always relevant, but compressibility not
necessarily. More specifically, compressibility is only relevant when considering transient flow. A more de-
tailed treatment of why this is the case will be given in Sections 2.4 and 2.5.

2.2.1. Pipeline Fluid Dynamics
The Wanda software package models fluid dynamics in pipeline systems. For this purpose the quantities of
interest differ slightly from the ones which are of interests in fluid dynamics in general. Wanda users are pri-
marily interested in the flow through and pressure in pipeline systems. These properties are measured by
the volumetric flow rate Q [m3s−1] and energy head H [m]. Other relevant quantities can be derived from
these two quantities. Volumetric flow rate is actually just a scaling of v since Q = Av , where A denotes the
cross-sectional area of the fluid and v the average speed in A. Note that free-surface flow is not treated here
and that pipelines are assumed to be always completely filled.

The energy head H is given as

H = p

ρg
+ z, (2.1)

where z denotes the height difference between the piezometric reference level and the height level at which
H is measured. Formally H includes the additional term v2/2g , but it is omitted here since it is usually small
compared to the other quantities. Wanda internally does use the full definition for computations. Note that,
since the model is only one-dimensional, p denotes the centreline pressure in the pipeline.

2.3. The Wanda Model 5

Figure 2.2: Hydraulic head.

As shown in Fig. 2.2, H is the sum of pressure head (p/ρg) and elevation head (z), as measured relative to a
fixed reference plane.

These two quantities are the main quantities of interest in the Wanda model. In the heat module, the relevant
quantities are mass flow W [kg s−1], pressure p [kg m−1s−2] and temperature T [°C].

2.3. The Wanda Model
In order to understand how Wanda models fluid dynamics in pipeline systems, it is first necessary to intro-
duce the broad framework of how these pipeline networks are modelled. For this purpose this section starts
with an example.

Example 2.1. Fig. 2.4 depicts an example of a pipeline system configured in Wanda. This system is a
sewage system and consists of two pumping stations which pump the fluid from the two reservoirs B1

and B3 through a pipeline to the outlet wier W1. It consists of five types of components.

(a) Check valve (b) Reservoir (c) Pipeline (d) Pump (e) Outlet weir

Figure 2.3: Sewage system components.

The components used in the sewage system are depicted in Fig. 2.3. The green coloured check valves
and pumps are in operation and the red ones are out of operation. The bottom pumping station
consists of a reservoir B3 from which fluid is pumped by pump P5 through pipeline P3 and P2 to outlet
weir W1. Pump P6 is out of operation. Each pump is protected by a check valve, which prevents
fluid from flowing through the pump in the wrong direction, for example, when the pump is out of

2.3. The Wanda Model 6

operation. At the blue connection points the components are connected via ’edges’, which are referred

Figure 2.4: Typical sewage system.

to as hydraulic nodes, or H-nodes. These H-nodes represent physical connection pieces which have
negligible influence on the flow. In Section 3.2 it will turn out that they are also helpful tools in the
numerical implementation of the model. They will be treated in more detail later on. The green- and
red-coloured points are the control connect points. At these points, components from the control
module can be connected to the hydraulic components.

The next section introduces the basic types of components which are required to translate physical reality
into a mathematical model and some additional definitions and concepts.

2.3.1. Component Types
What Wanda does is compute the unknowns H and Q in each component and in each H-node in the network.
The components in Fig. 2.3 show that they have either one or two connection points with the rest of the
network. This marks the division between fall type and supplier type components.

Fall Type Components
Fall type components are components which cause head loss in the fluid that flows through it and are char-
acterised by having two connection points.

Example 2.2. The symbols used in Wanda for some of the fall type components are given in Fig. 2.5.

Figure 2.5: Fall type components: Check valve, pump and valve.

2.3. The Wanda Model 7

The fluid is assumed to be incompressible in fall type components. This assumption can be justified by the
fact that in general the volume of other hydraulic components is very small compared to the volume of a
pipe. Therefore, for these components, the change in flow due to compression is negligible. This entails that
each fall type component can be described by a formula relating the volumetric flow rate Qi through the
component to the head loss ∆H = Hi −Hi+1 over the length of the component, which has the general form

f (Hi , Hi+1,Qi , t) = 0, (2.2)

where Hi and Hi+1 denote the head at points i and i +1 at the opposite ends of the component.

Example 2.3. An example of an equation describing a fall type components is the equation

Hi −Hi+1 =CQi |Qi |, (2.3)

which describes the flow through an opened check valve. C can be considered to be the valve loss
coefficient.

Note that H and Q are, in the transient case, time-dependent. For each fall type component Eq. (2.2) is
supplemented by

Qi =Qi+1, (2.4)

i.e., inflow is equal to outflow. These components cannot add or withdraw fluid from the network. Note that
each fall type component adds two points (i and i +1), with in each point two unknowns (H and Q), and two
equations to the network. In steady flow pipes too are fall type components, as fluid compressibility is no
concern, and are described by the Darcy-Weisbach equation

∆H = λL

8A/O

Qi |Qi |
g A2 , (2.5)

where λ denotes the friction coefficient, L the length of the pipe and O the pipe’s cross-sectional perimeter
[50]. How pipes are handled in transient flow will be described in Section 2.5.

Supplier Type Components
Supplier type components are components which add fluid to or withdraw fluid from the network and are
characterised by having only one connection point.

Example 2.4. The reservoir, surge tower and vent are instances of supplier type components.

Figure 2.6: Supplier type components: Reservoir, surge tower and vent.

Supplier type components are described by a relation between the head level Hi and the in- or outgoing flow
rate Qi at the connection point. These equations have the general form

g (Hi ,Qi) = 0 (2.6)

In Wanda, reservoirs can be of either finite or infinite size and can be used as a boundary condition to pre-
scribe the H or Q at some point.

Example 2.5. The reservoir of infinite size is described by

Hi = ci , (2.7)

2.3. The Wanda Model 8

where ci ∈R is constant.

In fact, each supplier type component acts as a boundary condition; they allow fluid flow into or out of the
network. Note that each supplier type component provides one point, with two unknowns, and one equation.

Component Phases
It is important to note that components can have different phases, that is, states. This entails that compo-
nents may be described by different equations at different points in time.

Example 2.6. For a valve V Eq. (2.2) takes the following form

fV (Hi , Hi+1,Qi , t) =
{

Hi −Hi+1 −d(θ)|Qi |Qi , if V is not closed at t
Qi , if V is closed at t

, (2.8)

where d ∈R is a known variable which depends on the parameter θ which denotes how far opened the
valve is.

Supplier type components such as outlets can also have different phases.

Hydraulic Nodes
In addition to these two hydraulic components, additional equations are provided by the ’edges’. As can be
seen in Fig. 2.4, the components are not directly linked to each other. For example, pipe P2 is connected to
outlet W1 via an ’edge’ H. H is actually an example of a hydraulic node (H-node).

Example 2.7. In this system, N1, N2 and N3 are the H-nodes which connect the components.

Figure 2.7: H-node example.

In principle, each H-node can be connected to an unlimited number of components. It was mentioned that
fall type components only provide two equations for a total of four unknowns and supplier type components
provide one equation for two unknowns. In other words, not enough equations to determine the unknowns.
The other required equations are provided by the H-node(s) connected to the component and, in relation
to this, each component provides one additional equation per H-node it is connected to. Each H-node N
provides the equations

QN + ∑
i∈N +

Qi − ∑
j∈N -

Q j = 0

QN = 0
, (2.9)

where N + and N - denote the sets of in- and outflow points connected to N , respectively. For each point
connected to N Wanda chooses whether it is an in- or outflow point, i.e., this is just a convention and has
nothing to do with the actual flow direction. These equations together enforce that the volumetric flow rates
of the components connected to N are coupled, so N simply serves a middleman which connects the com-
ponents, but does not of itself have any influence on the fluid flow. Furthermore, each component provides
an equation of the form

Hi = HN (2.10)

2.4. Steady Flow 9

for each of its end points i connected to H-node N . This simply enforces H to be equal in the points con-
nected to N of the relevant components. Section 3.2 illustrates why adding these equations for each H-node
is helpful. Note that an elevation level can be set for each H-node. This elevation level is also applied to the
connected components. The elevation level of an H-node serves as a reference level for the head H in the
connected components. It is easy to check that the total number of equations and unknowns for Fig. 2.7 in
steady flow are both equal to 24, if it is assumed that the two points at the extremities of the pipes are not
connected to any other components.

Nodal Sets
Every pipeline system is divided into nodal sets and pipelines. A nodal set is simply a set of non-pipe compo-
nents and H-nodes in between pipes. Both ends of a pipe are connected to nodal sets, which are formed by
H-nodes and components such a pumps and reservoirs, but also, for example, pipe branches or changes in
pipe diameter. This concept plays a role in the solution method for transient flow in Section 2.5. The sewage
system example of Fig. 2.4 consists of three pipelines and four nodal sets between pipelines. Each pumping
station forms a nodal set and G with pipe junction and H are also nodal sets. As illustrated by this system,
these nodal sets can contain numerous different components.

Variable Ordering
At each physical connect point and each H-node, there are two unknowns variables Hi and Qi . The number-
ing of the physical connection points and H-nodes and thus the ordering of the equations and variables, is
determined as follows. The starting point is the component which is added first in the Wanda user interface;
from there on, a breadth-first search is done through the network where at each step an H-node and the phys-
ical connection points of the connected components are numbered. This equation and variable numbering
is the ordering used by the solution method.

2.4. Steady Flow
A steady flow is, as the name suggests, a flow that does not change over time, i.e.,

∂ρ

∂t
= ∂p

∂t
= ∂v

∂t
= 0 (2.11)

Hence these properties can only vary with place. The fluid is assumed to be viscous, but compressibility is
not taken into account. After all, if it were that case that ρ(x1) > ρ(x2), then the fluid would tend to an equilib-
rium state where ρ is homogeneous, i.e., it would be unsteady. The steady flow is mainly used for designing a
pipeline system as well as providing an initial value for transient flow.

As mentioned before, fluid flow in pipes is described by the Darcy-Weisbach equation

∆H = λL

8A/O

Q|Q|
g A2 (2.12)

in case of steady state flow. Here Q|Q| is used instead of Q2 to be able to determine the direction of the flow.
These equations coupled with equations describing the flow in components such as pumps and reservoirs
lead to a system of equations that should be solved to obtain information about the characteristics of the
flow (most importantly Q, H) through the network. Section 2.4.1 will describe the solution method in more
detail.

2.4.1. Numerical Implementation
To summarise, in the steady flow case each fall type component provides Eq. (2.2), Eq. (2.4) and Eq. (2.10),
which gives a total of four equations for the same number of unknowns. In steady flow, pipes are also con-
sidered fall type components since the fluid is incompressible. Supplier type components bring Eq. (2.6) and
Eq. (2.10) to the table. Finally, each H-node provides the system of equations as given in Eq. (2.9). This results
in a system of equations with the same number of equations as unknowns.

Equations are in general non-linear. The Newton-Raphson method is applied to obtain a solution to the
system of equations. First the non-linear equations of the form Eq. (2.2) are linearised.

2.4. Steady Flow 10

f (H (k+1)
i , H (k+1)

i+1 ,Q(k+1)
i) = f (H (k)

i , H (k)
i+1,Q(k)

i)+
(
∂ f

∂Hi

)(k)

[H (k+1)
i −H (k)

i] (2.13)

+
(

∂ f

∂Hi+1

)(k)

[H (k+1)
i+1 −H (k)

i+1]+
(
∂ f

∂Qi

)(k)

[Q(k+1)
i −Q(k)

i]+h.o.t.

Here k denotes the iteration number. Equations of the form Eq. (2.6) are linearised in a similar manner, if
necessary. The higher order terms are ignored, resulting in quadratic convergence behaviour. Now, by setting

f (H (k+1)
i , H (k+1)

i+1 ,Q(k+1)
i) = 0, (2.14)

an iterative procedure is obtained. For the whole system of equations this procedure can be written as

f(u(k+1)) ≈ f(u(k))+ J(u(k))
[

u(k+1) −u(k)
]
= 0 (2.15)

where u(k) = [Q(k)
1 H (k)

1 . . . Q(k)
n H (k)

n]> and J(u(k)) denotes the Jacobian matrix. Using some initial guess, the
iterative process is continued until for each pipe Pm and each point j the condition H (k+1)

j −H (k)
j < ε1

Q(k+1)
m −Q(k)

m < ε2

(2.16)

holds for chosen ε1,ε2 ∈R.

Example 2.8. Consider the following pipeline system.

Figure 2.8: Small pipeline system.

The small pipeline system given in Fig. 2.8 leads to the following system of equations.

H1 = c1

Q A +Q1 −Q2 = 0
Q A = 0
HA = H1

HA = H2

H2 −H3 = λL

8A/O

Q2|Q2|
A2g

Q2 =Q3

HB = H3

HB = H4

QB = 0
QB +Q3 +Q4 = 0

H4 = c2

(2.17)

After linearisation, this system can be written in matrix form as

2.5. Transient Flow 11

0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 −1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 −1 0 0 0 0 0 0 0 0
0 0 0 −1 0 1 0 0 0 0 0 0
0 0 0 0 −c3 1 0 −1 0 0 0 0
0 0 0 0 1 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 −1 0 0
0 0 0 0 0 0 0 0 0 −1 0 1
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

Q1

H1

Q A

HA

Q2

H2

Q3

H3

QB

HB

Q4

H4

=

c1

0
0
0
0
c4

0
0
0
0
0
c2

, (2.18)

where c3,c4 can be determined using Eq. (2.13).

In general, each system can be written as

Mu = b, (2.19)

where M ∈ Rn×n , b,u ∈ Rn and n denotes the number of unknowns. The matrix and right hand side vector
change each iteration of the Newton-Raphson method. The matrices are generally asymmetric, sparse and
banded. Note that a (unique) solution need not exist, even though the number of unknowns is equal to the
number of equations. If in Eq. (2.17) Q1 = Q4 = 0 were prescribed on the boundaries instead of H1 and H4,
the equation

H2 −H3 = λL

8A/O

Q2|Q2|
A2g

(2.20)

has an infinite number of solutions. So at least one point with prescribed H is required for a unique solution
to exist. Even then, as will be shown in Section 3.1, a unique solution need not exist for some pipeline systems.

2.5. Transient Flow
Transient flow can change in place and time. As mentioned before, the only components in which compress-
ibility is taken into account are pipes. This allows transient flow to incorporate the phenomena cavitation and
water hammer, which are caused by pressure waves in the network. Changes in v in a network lead to changes
in pressure, which propagate through the network as pressure waves. If, for example, a valve suddenly closes,
an overpressure wave will propagate upstream of the valve through the network. The momentum of the fluid
will cause it to be compressed at the upstream side and decompressed at the downstream side of the valve.
Compressibility of the fluid entails that the fluid density can vary throughout the pipe, hence the pipe’s in-
ternal points need to be simulated as well. Note that in Wanda the cavitation is assumed to stay at the same
place, whereas in reality it is possible that cavitation moves along with the flow. This assumption results in a
much simpler model, while staying accurate enough to be useful.

In transient flow, the fluid flow in pipes is described by two conservation laws. First there is the conservation
of momentum.

∂v

∂t
+ g

∂H

∂x
+ λ

8A/O
v |v | = 0 (2.21)

The friction term results from the Darcy-Weisbach equation. This equation is derived from Eq. (A.1). The full
derivation can be found in [47] and [50].

Secondly, the law of conservation of mass applies, as given by

∂v

∂x
+ g

c2

∂H

∂t
= 0, (2.22)

where

2.5. Transient Flow 12

c = 1√√√√ρ

(
1

K
+ 1

A

dA

dp
+ 1

∆x

d∆x

dp

) , (2.23)

denotes the (pressure) wave propagation speed. It is derived from the equation Eq. (A.2). One of the assump-
tions in the derivation is that changes in ρ have little effect on flow compared to changes in A and ∆x (i.e.
the element volume), hence ρ is assumed to be constant. Change in ∆x means that the pipe either stretches
or shrinks in length due to pressure. Changes in A mark the expansion or contraction of a cross-section of
the pipe. In case of overpressure in stiff, thick-walled pipes and in case of under-pressure in all pipes, the
changes in A and ∆x are linearly dependent on the change in p. In other words, in these cases dA/dp and
d∆x/dp are constant and hence c is constant. In general though, c will be a non-linear function of p. For the
full derivation of the equation, the reader is referred to [4] or [50].

The system of Eqs. (2.21) and (2.22) consists of two equations. Note that Q can easily be obtained from these
equations via the identity Q = Av . The quantities in c are known as ρ is constant and change in volume to
pressure is a known property of the pipeline, hence the two unknowns H and v (or Q) can, in principle, be
solved from this system. The solution method will be explained in the next section.

2.5.1. Numerical Implementation
The only difference between steady flow and transient flow is that in transient flow the fluid is compressible
in pipes. This may seem like a small difference, but it actually has a big impact on the model. Now the fluid
flow in each pipe is described by the system of equations

∂v

∂t
+ g

∂H

∂x
+ λ

8A/O
v |v | = 0

∂H

∂t
+ c2

g

∂v

∂x
= 0

. (2.24)

This system of equations will be transformed into one ordinary differential equation to which the method of
characteristics is applied. Consider the linear combination

∂v

∂t
+ g

∂H

∂x
+ λ

8A/O
v |v |+β

(
∂H

∂t
+ c2

g

∂v

∂x

)
= 0, (2.25)

for β ∈R. Any two distinct values of β again yield a system of equations which is equivalent to Eq. (2.24). The
goal is to find two specific values for which Eq. (2.25) can be simplified. Rearrangement of the terms yields(

∂v

∂t
+βc2

g

∂v

∂x

)
+β

(
∂H

∂t
+ g

β

∂H

∂x

)
+ λ

8A/O
v |v | = 0 (2.26)

The total derivatives for H and v , assuming x = x(t), are given by

dH

dt
= ∂H

∂t
+ ∂H

∂x

dx

dt
(2.27)

dv

dt
= ∂v

∂t
+ ∂v

∂x

dx

dt
(2.28)

Now, by comparing these total derivatives with the expressions between brackets in Eq. (2.26), it is observed
that if

dx

dt
=βc2

g
= g

β
(2.29)

Eq. (2.26) becomes

β
dH

dt
+ dv

dt
+ λ

8A/O
v |v | = 0, (2.30)

an ordinary differential equation. Eq. (2.29) yields the two solutions

2.5. Transient Flow 13

β=± g

c
(2.31)

for β. By substituting these solutions into Eq. (2.29), the relation

dx

dt
=±c (2.32)

is obtained. Substituting these values into Eq. (2.30) results in the following two systems of equations.

g

c

dH

dt
+ dv

dt
+ λ

8A/O
v |v | = 0

dx

dt
= c

C+ (2.33)

− g

c

dH

dt
+ dv

dt
+ λ

8A/O
v |v | = 0

dx

dt
=−c

C− (2.34)

Consider a fixed point x ′ in a pipe. The equations C+ and C− describe that the H and v in x ′ are determined
by changes in H and v from the points to the left and right of x ′, respectively. These changes travel as pressure
waves with propagation speed ±c through the pipe.

A finite difference approach will be used to solve the equations above. The pipeline is discretised into parts
of equal size∆x. The resulting internal pipeline nodes are called water hammer nodes (W-nodes). The time-
step is given as ∆t =∆x/c.

Figure 2.9: The x-t plane for constant c.

If c is constant, the x-t grid of a pipeline can be visualised as in Fig. 2.9. Note that the image uses s instead of
x to denote place. Starting at t = 0, the Q and H in the pipeline are given by initial values which are obtained

2.5. Transient Flow 14

by computing the steady flow. The diagonal lines have slope c and −c. Along the line between P1 and P3 with
slope c, the first equation of Eq. (2.33) holds, so integrating that equation from P1 to P3 results in an equation
which can be solved for the unknowns in P3.

g

c

∫ P3

P1

dH

dt
dt +

∫ P3

P1

dv

dt
dt +

∫ P3

P1

λ

8A/O
v |v |dt = 0 (2.35)

The first two terms can directly be integrated. The third term, however, is problematic since v along the
characteristics is unknown. To solve this issue, a first order approximation for v is used, namely, simply the
value of v in point P1 will be used. Now, by denoting Hi and vi as H and v in point Pi , respectively, the
following equation is obtained.

H3 + c

g
v3 −H1 − c

g
v1 =− c

g

λ

8A/O
v1|v1|∆t

2
(2.36)

Similarly, along the line from point P2 to P3, Eq. (2.34) holds, which can be integrated from P2 to P3 and
results in an additional equation for solving the two unknowns in P3.

H3 − c

g
v3 −H2 + c

g
v2 = c

g

λ

8A/O
v2|v2|∆t

2
(2.37)

From these two equations, H3 and v3 at the next time step t +∆t/2 can be computed. By iterating over the
grid points at each time step, a solution is obtained by solving the system of two equations given as above at
each grid point.

Fig. 2.9 shows that, after calculating the state at t +∆t/2, there is a problem with calculating the unknowns at
time t +∆t for boundary points. Only one equation is available for these points. For a point at the left bound-
ary of the plane the first equation of C− will be added to the equations describing the nodal set connected to
the left side of the pipe, similarly, the first equation of C+ will be added to the equations describing the nodal
set at the right side. The systems of equations describing the nodal sets, supplemented by the equations of
the end points of the pipelines, are solved using the Newton-Raphson method. At every time step t this leads
to a system of linear equations which can be written as

M(t)u(t) = b(t) (2.38)

This matrix now has a block structure. For every nodal set S, M(t) includes a block M_S(t) of size 2k ×2k,
where k denotes the sum of the number of points in S and the number of pipe end points connected to S.
Each block is linearly independent from each other block, since they are separated by pipes. These blocks,
and the matrix itself, are again asymmetric, banded and sparse.

To summarise, the solution method for transient flow requires the following steps to calculate the unknowns
at time step t +∆t from the previous solution at time t .

1. First H and v for the W-nodes in each pipe will be calculated at time t +∆t/2 using the C+ and C−
equations.

2. Next, the unknowns for the internal W-nodes in each pipe will be calculated at time t +∆t , based on
the solution at time t +∆t/2, again using the C+ and C− equations. The end points of the pipes cannot
be calculated in this step.

3. Now the solution at t +∆t for the components in the nodal sets as well as the points at the extremities
of a pipe will be calculated. The equations governing the components in the nodal sets will be supple-
mented by a C+ or C− equation for the boundary point(s) of the pipe(s) connected to the relevant nodal
set.

In case c is not constant, obtaining a solution requires a bit more work, but the main idea remains the same.
The solution method used in this case is simply an adjusted method of characteristics. A detailed treatment
can be found in [50].

3
Problem Statement

The matrices produced by Wanda for solving steady or unsteady state problems are usually non-singular,
however, matrices can be singular. There are two situations in which this happens. The first case is when
the error occurs during steady state flow simulation. The other case is singularities due to phase changes in
components during transient flow simulations. Both cases will be illustrated using examples. Furthermore,
it will be explained why these cases are a problem for the current solution method. Finally, test cases are
introduced which form the minimal set of problems a new solution method should perform well on.

3.1. Steady Flow Singularities
Systems which cannot be solved in steady state flow are usually systems which make no sense in the physical
world. These errors often occur due to user error. Two steady flow examples will be given.

3.1.1. Undetermined Q

Figure 3.1: System leading to singular matrix due to user error.

Fig. 3.1 gives an example of such a system. This system consists of two boundary conditions B1 and B2 with
prescribed H , which are connected by a hydraulic node A. It makes no physical sense, as it simply consists
of two reservoirs directly connected to each other. In steady state this system leads to the following set of
equations.

H1 = c1

H1 = HA

Q A +Q1 +Q2 = 0
Q A = 0
H2 = HA

H2 = c2

(3.1)

15

3.1. Steady Flow Singularities 16

In each hydraulic component and in each hydraulic node there are two unknowns Q and H , hence there are
a total of six unknown variables. The system also gives rise to six linear equations. If c1 = c2 the system has an
infinite number of solutions. There is no a priori preference for any particular solution. If c1 6= c2 the system
has no solution at all. In both cases the program should return an error message in which the user is notified
of the mistake. The current matrix solver, however, simply crashes or gets stuck in an infinite loop on singular
matrices and does not return an error message, hence a more robust matrix solver is desired.

3.1.2. Undetermined H
This example is a revisit of Example 2.8.

Figure 3.2: Small pipeline system.

The boundary conditions are intentionally left blank in Fig. 3.2. The system of equations is given as follows.

f1(H1,Q1) = 0
Q A +Q1 −Q2 = 0

Q A = 0
HA = H1

HA = H2

H2 −H3 = λL

8A/O

Q2|Q2|
A2g

Q2 =Q3

HB = H3

HB = H4

QB = 0
QB +Q3 +Q4 = 0

f2(H4,Q4) = 0

, (3.2)

where f1 and f2 denote the B1 and B2 boundary conditions, respectively. Assume the boundary conditions
are chosen such that, if a flow exists, it flows from B1 to B2. There are now three cases to consider for the
boundary conditions. Both boundary conditions prescribe H , exactly one prescribes Q and the other H , or
both prescribe Q.

1. As in Eq. (2.17), both boundary conditions prescribing H results in a unique solution for the system. All
the Hi ’s are determined by the boundary conditions and the Qi ’s are determined by the Darcy-Weisbach
equation.

2. If one boundary prescribes H and the other Q, the system is also uniquely determined. On one side of
the pipe all Hi ’s are determined and at the other all Qi ’s. The Darcy-Weisbach equations couples the
variables on both sides.

3. There is, however, a problem with prescribing Q on both sides. Assume Q1 = c1 and Q4 = c4. Now H
cannot be determined, as opposed to Q in the previous example. If c1 6= −c4, the system has no solution
at all. If c1 =−c4, it has an infinite number of solutions.

3.2. Transient Flow Singularities 17

In this case Wanda asks to prescribe H on one of the H-nodes such that H becomes determined. The next
section will describe in more detail how this problem is handled.

3.2. Transient Flow Singularities
A different matter is singularity due to, e.g., a closing valve or tripping pump. These actions can make (parts
of) the pipeline system undetermined (without considering additional information) in transient flow. This
issue should be avoided by Wanda itself as it is not due to user error. The following example illustrates how
Wanda handles undetermined systems due to phase changes.

Figure 3.3: System leading to singular matrix due to phase transitions.

The pipeline system given in Fig. 3.3 consists of two supplier type components, three fall type components
and four hydraulic nodes. This results in a total of twenty-four unknowns and the same number of equations.
The system of equations describing the network is given by

H1 = c1

H1 = HA

Q A +Q1 −Q2 = 0
Q A = 0
H2 = HA

f1(H2, H3,Q2, t) = 0
Q2 =Q3

H3 = HB

QB +Q3 −Q4 = 0
QB = 0
H4 = HB

f2(H4, H5,Q4, t) = 0
Q4 =Q5

H5 = HC

QC +Q5 −Q6 = 0
QC = 0
H6 = HC

f3(H6, H7,Q6, t) = 0
Q6 =Q7

H7 = HD

QD +Q7 +Q8 = 0
QD = 0
H8 = HD

H8 = c2

, (3.3)

where

3.3. Current Solution Method 18

f j (Hi , Hi+1,Qi , t) =
{

Hi −Hi+1 −d(θ)|Qi |Qi , if V j is not closed at t
Qi , if V j is closed at t

(3.4)

for a known d(θ) which depends on how far opened the valve is. Assume, if a flow exists, it flows from B1

to B2. Suppose that all valves are open at t = 0. If at most one of V1 and V3 is closed at the next time step
t = ∆t , the system is fully determined. If both are closed at t = ∆t , H becomes undetermined in the part of
the system between V1 and V3. This part of the system is described by

Q2 =Q3

H3 = HB

QB +Q3 −Q4 = 0
QB = 0
H4 = HB

f2(H4, H5,Q4, t) = 0
Q4 =Q5

H5 = HC

QC +Q5 −Q6 = 0
QC = 0
H6 = HC

Q6 =Q7

, (3.5)

If V1 and V3 are closed, it is given that Q2 =Q6 = 0. From Eq. (3.5) it follows that

Q3 =QB =Q4 =Q5 =QC =Q6 = 0 (3.6)

If V2 is (partly) opened, it also follows that

H3 = HB = H4 = H5 = HC = H6, (3.7)

but there is no way to determine H from the linear system. Since V1 and V3 were open at t = 0, there is
information available from the previous time step. Closing these valves leads to no change in the amount
of fluid in the part in between these valves, so it seems reasonable that H will stay the same as well. That is
exactly what Wanda does. It replaces one of the H-node equations QB = 0 or QC = 0 with

HB (t =∆t) = HB (t = 0) or HC (t =∆t) = HC (t = 0) (3.8)

Now both Q and H are fully determined in the system. If V2 is also closed at t =∆t , a similar thing happens,
but now in both node B and C the H from the previous time step should be prescribed.

By replacing equations in this manner, Wanda can adjust singular matrices to make them non-singular. For
the example in Section 3.1.2 the system becomes undetermined if both boundary conditions prescribe Q.
When calculating steady state flow, Wanda will take H equal to the elevation level of the H-node. Using this
information Wanda will calculate a solution, but it will also return an error that H is prescribed on a node. To
obtain a suitable solution, the user is prompted to prescribe H on the H-node. If node HB is prescribed and
c1 6= −c4, the equation

QB = 0 (3.9)

will fail to hold. It means that an H-node does have its own flow, which makes no sense physically. Wanda
returns an additional error to notify the user of this.

3.3. Current Solution Method
These examples show that an underdetermined system where H is undetermined is modified in such a way
that it becomes determined.1 The method of determining if H is undetermined is run after every phase
change. It is an expensive routine, hence it could be worth optimising.

1Similarly, in the heat module pressure p and/or T can become undetermined and are handled appropriately.

3.4. Test Cases 19

The main problem is the case where Q is undetermined. Wanda does not have a routine in place to detect
this problem in all cases. The current matrix solver sometimes detects singular matrices, but when it does
not it either crashes without giving any useful feedback or it gets stuck in an infinite loop. The current solver
is the LSLXG routine from the Fortran-based, proprietary International Mathematics and Statistics Library
(IMSL) provided by Rogue Wave Software. This routine obtains an LU -decomposition using a Markowitz
pivoting strategy of the matrix, which is used to solve the system of linear equations [3]. Next chapter will
include more detail on how a solution is obtained using the LU -decomposition. Another drawback of the
IMSL routine is that it requires a paid license. The primary goal is to find a method to detect and appropriately
handle singular matrices and a matrix solver that is at least as fast as the current one without requiring paid
licenses. I.e., the desire is to find and implement a robust, maintainable and fast solution method. In order to
evaluate and compare solution methods test cases are required. The next section introduces test cases which
are to be used as benchmarks.

3.4. Test Cases
The main goal is handling singular matrices, hence test cases resulting in singular matrices are required. The
cases where H is undetermined are already handled, hence especially cases where Q is undetermined are
of interest. Tests for singular matrices are given in Section 3.4.1. Since speed is also important, large, non-
singular test cases are included in Section 3.4.2. All these test cases together form a minimal set of problems
on which a solution method should perform well.

3.4.1. Singular Test Cases
The following table shows the test cases and their most important characteristics.

Name Type Undet. H-components n nnz

H boundary Steady Q 2 6 10
Shaft Steady Q 3 12 21
Unsteady shaft Transient Q 3 12 21
Q boundary with pipe Steady H 3 12 23
Valve phase changes Transient H 5 24 49

Table 3.1: Singular test cases.

Here n denotes the number of unknowns and nnz denotes the number of non-zero elements in the matrix
for the steady state flow. Due to phase changes, in transient flow nnz can change per time step, hence it is
omitted from the table. For each of the test cases a visualisation and a short description follows.

H Boundary
This is the problem as discussed in Section 3.1.1.

Shaft

Figure 3.4: Shaft test case.

3.4. Test Cases 20

The network is given in Fig. 3.4. It consists of two boundary conditions with prescribed H and in between a
shaft. It is given by the following system of equations.

H1 = c1

HC = H1

Q1 +QC +Q2 = 0
QC = 0
HC = H2

f (H2, H3) = 0
Q2 =Q3

HD = H3

Q3 +QD −Q4 = 0
QD = 0
HD = H4

H4 = c4

, (3.10)

where

f (H2, H3) =
{

H2 −H3, if S2 is submerged
H3 − c3, if S2 is partially filled

(3.11)

If S2 is partially filled the upstream and downstream H are decoupled and c1 = c3 is required for a solution
to exist. If S2 is submerged, both boundary conditions should be equal, i.e. c1 = c4, for a solution to exist. In
both cases Q cannot be determined from the system.

Unsteady Shaft
The shaft example can also cause Q to become undetermined when doing transient flow simulations. Since
no algorithm is in place to detect whether Q is undetermined due to phase changes, this issue should be
handled appropriately by the solution method by producing a clear error message. In unsteady state the
equations governing the shaft are given by Q2 −Q3 = A

dH2

dt
f (H2, H3,Q2, t) = 0

(3.12)

where

f (H2, H3,Q2, t) =

H2 −H3, if S2 is submerged at t
H3 − c3, if S2 is partially filled at t

Q2 if S2 is drained at the top at t
(3.13)

If the shaft is drained at the top at t = 0 and either submerged or filled at some time step ∆t > 0, Q becomes
undetermined.

Q Boundary With Pipe
This is the example as given in Section 3.1.2.

Valve Phase Changes
See Section 3.2.

3.4.2. Large Test Cases
The table below shows some large test problems with their most important characteristics. These test cases
are larger than any other cases used in practice, hence these cases serve as excellent benchmarks for measur-
ing the Wanda run time.

3.4. Test Cases 21

Name H-components n nnz bl bu

Filter 654 3516 8487 203 204
Noord-Holland 1 1543 6342 14264 308 310
Noord-Holland 2 1178 10718 23829 632 634

Table 3.2: Large test cases.

Here bl and bu denote the lower and upper bandwidth of the steady state matrix, respectively. The definitions
of bl and bu are given in Section 5.1 and their significance is explained in Section 5.3.2.

Filter
This case, which is not aimed at modelling a realistic situation, consists of one boundary condition prescrib-
ing H and 654 resistance components configured in a honeycomb grid. A visualisation of the network is given
by Fig. A.3. Its sparsity pattern is visualised in Fig. 3.5a. The transient flow simulation spans 1000 seconds with
a 1 second time step. No phase changes occur during the simulation.

Noord-Holland 1
The Noord-Holland 1 (NH1) test case is a large test case representing a part of the drinking water network in
Noord-Holland. A visualisation is given in Fig. A.4. The sparsity pattern of the steady state matrix is given in
Fig. 3.5b. The transient flow simulation spans 200 seconds with a time step of 0.2 seconds and includes phase
changes.

Noord-Holland 2
The Noord-Holland 2 (NH2) case also represents part of the drinking water network in Noord-Holland. A
visualisation is given in Fig. A.5. The sparsity pattern of the steady state matrix is given in Fig. 3.5c. The
simulation of transient flow spans 200 seconds with a time step of 0.1 seconds and includes phase changes.

0 500 1000 1500 2000 2500 3000 3500

nz = 8487

0

500

1000

1500

2000

2500

3000

3500

(a) Filter

0 1000 2000 3000 4000 5000 6000

nz = 14019

0

1000

2000

3000

4000

5000

6000

(b) Noord-Holland 1

3.5. Wanda Profiling 22

0 2000 4000 6000 8000 10000

nz = 23829

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

(c) Noord-Holland 2

Figure 3.5: Sparsity pattern large test cases

3.5. Wanda Profiling
Profiling results of the current solution method of Wanda for each of the large test cases are given here. The
results are obtained by simulating the transient flow scenario of each large test case, and taking the average
time over five runs using the Fortran GETTIM routine for measuring elapsed clock time. The transient flow
scenario details can be found in the previous section. During the simulation the results of each second of
simulation time will be written to an output file. This way of testing reflects the average Wanda usage.

Matrix fix IMSL solver Matrix build Miscellaneous
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

P
er

ce
nt

ag
e

of
 r

un
 ti

m
e

Total run time: 9.5s

(a) Filter

Matrix fix IMSL solver Matrix build Miscellaneous
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
er

ce
nt

ag
e

of
 r

un
 ti

m
e

Total run time: 75.6s

(b) Noord-Holland 1

3.5. Wanda Profiling 23

Matrix fix IMSL solver Matrix build Miscellaneous
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
P

er
ce

nt
ag

e
of

 r
un

 ti
m

e

Total run time: 999.4s

(c) Noord-Holland 2

Figure 3.6: Elapsed run time results for each test case.

Fig. 3.6 shows the percentage of the total run time divided into four categories.

• ’Matrix fix’ is the routine that searches for nodes where H is undetermined after phase changes have
occurred and, if applicable, tries to fix this by prescribing H on an H-node. For the NH1 case, this rou-
tine takes a significant amount of time, as its simulation includes lots of phase changes. This indicates
that there exist cases involving so many phase changes that it may be worth optimising this algorithm,
although the absolute time is still limited. For the Filter and NH2 cases, this routine is insignificant. For
the Filter problem this is a direct consequence of having no phase changes during the simulation.

• The ’IMSL solver’ is the part which solves the systems of linear equations in the Newton-Raphson it-
erations. For the filter case this part of the solution method takes about 45% of the time. Due to the
numerous phase changes the ’matrix fix’ takes about the same amount of time as the matrix solver for
the NH1 case. Less phase changes would result in a larger chunk of time spent in the matrix solver. For
the NH2 case the IMSL solver takes about two-thirds of the total run time. This is rather significant.

• The ’matrix build’ routine is the routine which gathers all the relevant information from the compo-
nents and builds the actual matrix. In the current version of Wanda, the matrix is built from scratch
every iteration.

• The ’miscellaneous’ category includes all the other routines. Most of these routines are computational
routines that are not IMSL routines and other routines that deal with the logistics of carrying out the
simulation.

Overall, the results show that a small increase in computation time, if necessary to increase robustness, would
not be such a big problem since the total run times are still limited. Especially since these large test case are
bigger than seemingly any other Wanda case used in practice; the average user is not likely to be bothered
with a small increase in run time. A large increase is, however, undesirable.

4
Redesign Requirements

This chapter states the redesign requirements, describes the scope of the research in the form of research
questions and proposes an approach to solving these questions.

4.1. Problem Summary
The current solution method applies the Newton-Raphson to linearise the system of equations. The result-
ing matrices are solved by the LSLXG routine of the proprietary IMSL numerical library which requires a paid
license. The problem with this matrix solver is that it sometimes either crashes or gets stuck in an infinite
loop when dealing with singular matrices. The proprietary nature of this library makes troubleshooting diffi-
cult. Both the robustness and maintainability of the current matrix solver leave much to be desired. For these
reasons, Deltares wants to move away from this library to a robust and easily maintainable solution method,
while not giving in on accuracy and performance.

In other words, a redesign of the solution method should be sufficiently robust, accurate, fast and maintain-
able.

4.2. Main Research Question
The main research question can be stated as follows.

How can the maintainability and robustness of the current solution method in Wanda be improved,
without giving in on accuracy and efficiency?

The focus is on improving the part of the solution method that solves the systems of linear equations as this
would require a minimal change in the Wanda code. A robust solution method should always either find
a solution or return a clear error message. This could be achieved by first checking for singularities before
trying to solve the system of equations. Public domain libraries such as LAPACK can be used to satisfy the
maintainability requirement. As a constraint, the solution method should be efficient, that is, at least as
fast time-wise as the current solution method. Improvements are always welcome, but the emphasis is on
robustness. Furthermore, the solution method should be sufficiently accurate.

4.3. Detailed Research Questions
The main research question shows that the research should focus on four things: maintainability, robustness,
accuracy and performance. To zoom in on the main research question and set the scope for the research,
more detailed questions will be given here for the robustness and efficiency criteria. The accuracy and main-
tainability requirements are viewed as constraints, hence they do not require their own research questions.

4.3.1. Robustness
The following questions focus on robustness.

24

4.4. Research Approach 25

1. Is it possible to detect undetermined systems via a graph representation and is it feasible to implement
this in Wanda?

2. Is it possible to prevent undetermined systems from occurring by adjusting the physical model?

3. Is it possible to reliably detect singular matrices using condition number estimation techniques?

4. Can rank-revealing decompositions be used to both efficiently solve matrix-vector equations and detect
singular matrices?

4.3.2. Efficiency
The following questions focus on efficiency, that is, the speed of the solution method.

5. Which numerical library (or LAPACK implementation) offers the best performance?

As explained at the end of Section 2.3.1, components in a pipeline systems are ordered using breadth-first
search which determines the matrix structure. Exploring alternative methods to order the components could
therefore be beneficial.

6. Can fill-in be reduced by using another algorithm to order the components in the pipeline system?

7. What fill-in reduction techniques can be used to improve the matrix solver performance?

8. Are there more efficient alternatives to the Newton-Raphson method for solving the system of non-linear
equations which yield sufficiently accurate solutions?

Some of these questions are more important than others. For example, some questions are expected to yield
a bigger performance improvement than others. Some also require large modifications in the Wanda code,
while others require little effort. It follows naturally that some questions have a higher priority than others.

4.4. Research Approach
The first step is researching the mathematical theory behind the methods used in the LAPACK library. Con-
dition number estimation will be considered for singular matrix detection. Iterative refinement is considered
as a method to increase the solution accuracy. Chapter 5 covers the topics described here.

The second step will be to investigate whether it is possible to detect undetermined systems a priori, that
is, before trying to solve them. A graph-theoretic approach is taken to detect underdetermined variables in
the system of equations. This information can then also be used to either correct the system of equations or
output an informative error message. This is approach is considered in Chapter 7.

The third step is to implement LAPACK and improve its performance. Since the matrices in Wanda are
banded, performance improvements can be made by reducing the matrix bandwidth. More specifically, the
Reverse Cuthill-Mckee heuristic will be considered within the context of asymmetric matrices. This is de-
scribed in Chapter 6.

Finally, all the methods covered in this report will be brought together and implemented in Wanda. Each
part of the solution method is compared to its alternatives and the final solution method is then evaluated in
terms of maintainability, robustness, accuracy and performance in Chapter 8.

5
Numerical Methods

Last chapter illustrated the problem with the current solution method. The goal of this chapter to introduce
the numerical methods used in LAPACK, both for detecting singular matrices as solving systems of linear
equations. The content of this chapter is for a significant part based on Golub and Van Loan [25].

5.1. Preliminaries
Let M ∈Rn×n and b,u ∈Rn . This chapter is centred around finding a solution u to the equation

Mu = b. (5.1)

First some preliminary concepts are introduced.

5.1.1. Sparse and Band Matrices
A matrix M ∈Rm×n is called sparse if only a small number of its entries are non-zero. There is no formal def-
inition of sparsity. Sparse matrices are interesting since, compared to dense matrices, they generally require
less storage space and usually less operations are required for computations involving sparse matrices.

Example 5.1. The IMSLa numerical library uses the coordinate format for storing matrices [3, 5]. For
example, the matrix 0 1 0

2 0 3
0 4 5

 (5.2)

is stored as
i 1 2 2 3 3
j 2 1 3 2 3

value 1 2 3 4 5
(5.3)

including the dimension n and nnz(M), which are equal to 3 and 5, respectively. For this example the
storage is ordered by row and column, but for the IMSL solver this is not necessary.

aSee Section 3.3.

A band matrix is a special type of sparse matrix. The upper and lower bandwidth of a matrix is defined as
follows [25].

Definition 5.2. Let M ∈ Rn×n . The lower bandwidth bl of M is given as the minimum number such that
Mi j = 0 whenever i − j > bl . Similarly, the upper bandwidth bu is the minimum number such that Mi j = 0
whenever j − i > bu .

26

5.1. Preliminaries 27

Example 5.3. The matrix 1 2 0
3 4 5
6 0 7

 (5.4)

has lower bandwidth 2 and upper bandwidth 1.

A nice property of band matrices is that only the values within the band need to be stored. Let M ∈Rm×n . The
transformation

i 7→ bu + i − j +1, max(1, j −bu) ≤ i ≤ min(1, j +bl)
j 7→ j , 1 ≤ j ≤ n

(5.5)

defines the band matrix storage, such that M can be stored in Mb ∈ R(bl+bu+1)×n . This storage format is, for
example, used in LAPACK1 routines for band matrices [9].

Example 5.4. The matrix
M11 M12 0 0 0
M21 M22 M23 0 0
M31 M32 M33 M34 0

0 M42 M43 M44 M45

0 0 M53 M54 M55

 (5.6)

with bl = 2 and bu = 1 can be stored in band matrix format as
0 M12 M23 M34 M45

M11 M22 M33 M44 M55

M21 M32 M43 M54 0
M31 M42 M53 0 0

 (5.7)

5.1.2. Norms
A measure of distance between, and size of matrices and vectors is required for, among other purposes, error
analysis. This is formalised in the concept of vector and matrix norms. An example of a vector norm is the
p-norm [25, 48].

Definition 5.5. Let p ∈ [1,∞) and u ∈Rn . The p-norm of u is given by

‖u‖p =
[

n∑
i=1

|ui |p
]1/p

The most regularly used norms are the 1-,2- and ∞-norms.

‖u‖1 =
n∑

i=1
|ui | (5.8)

‖u‖2 =
(

n∑
i=1

|ui |2
)1/2

(5.9)

‖u‖∞ = max
1≤i≤n

|ui | (5.10)

Using the vector norm it is possible to define a measure of distance between matrices and a measure of size
of matrices.

Definition 5.6. Let ‖ ·‖p denote the p-norm on Rn and M ∈Rm×n . The matrix norm is defined by

‖M‖p = sup
u∈Rn \{0}

‖Mu‖p

‖u‖p
1See Section 5.4.

5.1. Preliminaries 28

The matrix norm has the submultiplicative property

‖M1M2‖p ≤ ‖M1‖p‖M2‖p (5.11)

for M1 ∈ Rm×k and M2 ∈ Rk×n . This property will turn out to be important in perturbation analysis. The
matrix equivalents of Eqs. (5.8) to (5.10) for M ∈Rm×n can be computed using the following formulas.

‖M‖1 = max
1≤ j≤n

m∑
i=1

|Mi j | (5.12)

‖M‖2 =
√
λmax(M>M) (5.13)

‖M‖∞ = max
1≤i≤m

n∑
j=1

|Mi j | (5.14)

Here λmax(·) denotes the largest eigenvalue of a matrix. Eqs. (5.12) and (5.14) represent the maximum abso-
lute column and row sums, respectively.

5.1.3. Rounding Errors
Analytically, it is possible to solve Eq. (5.1) exactly. When using numerical methods it is usually not possible
to obtain an exact solution, rather, the goal is to approximate the solution as well as possible and necessary.
Computers use finite precision arithmetic where numbers are stored as floating point numbers, which are
of the form

±0.d1d2 . . .dt ·βe , (5.15)

where d1 > 0 and 0 ≤ di <β. Here 0.d1d2 . . .dt ,β and e are called the mantissa, base and exponent respectively
[49]. For numerical calculations Wanda mostly uses double precision numbers, which means that t = 53,
β= 2 and −1024 ≤ e ≤ 1023. Rounding errors occur when a real number x is rounded to the nearest floating
point number f l (x). Now

f l (x) = x(1+ε), (5.16)

where

|ε| ≤ 1

2
β1−t = ε0 (5.17)

and ε0 is called the machine precision. For double precision this means

|ε| ≤ 1

2
β1−53 ≈ 10−16, (5.18)

so double precision is accurate up to about 16 decimal digits.

Each operation of adding, subtracting, multiplying and dividing two floating point numbers is called a float-
ing point operation, or flop. Flops provide a good way to quantify the computational complexity of an algo-
rithm.

5.1.4. Quantifying Solution Errors
Vector norms can be used to quantify the error between a solution u to Eq. (5.1) and its (numerical) approxi-
mation û. The absolute error is given as

‖u− û‖ (5.19)

and the relative error is given as

‖u− û‖
‖u‖ (5.20)

Since u is generally unknown, a more practical way to quantify the error is via the residual and relative resid-
ual, which are defined by

5.2. Condition Number 29

‖b−M û‖ and
‖b−M û‖

‖b‖ , (5.21)

respectively. Note, however, that a small residual does not necessarily mean that the absolute (and relative)
error is also small.

5.2. Condition Number
The goal is to find a method to detect singular matrices. Analytically, one could use the determinant to find
out whether a given matrix is singular. Due to rounding errors it is in general impossible to determine whether
a given matrix is singular in finite precision. The determinant of a singular matrix in finite precision may not
be exactly equal to zero, so determining whether a matrix is singular amounts to determining whether the
determinant is close enough to zero. However, a small determinant does not imply singularity. On the other
hand, a small determinant may appear to be zero in finite precision, but the matrix may be invertible. The
following example illustrates that a small determinant does not mean that the matrix is in fact singular.

Example 5.7. Consider the matrix a · In ∈Rn×n where In denotes the identity matrix [25]. Now det(a ·
In) = an . Choosing a arbitrarily small results in an arbitrarily small determinant, however, the matrix
is just a scaling of the identity matrix. It is easy to scale this matrix such that the determinant becomes
zero in finite precision arithmetic, while a is still a non-zero number in the same precision, certainly
for large n.

It is clear that determinants are not an option for determining singularity in finite precision arithmetic. De-
termining when the determinant of a matrix equals zero is infeasible due to the presence of rounding errors.
Alternative methods are required.

Since there is no clear way of distinguishing singular matrices from non-singular matrices in finite precision
arithmetic, matrices with ’bad properties’ are often referred to as nearly singular matrices. Consider the
following example.

Example 5.8. Consider the following equation.

Mu =
[

0 0.01
1 1

][
u1

u2

]
=

[
0
1

]
= b (5.22)

Intuitively, M is nearly singular as row 1 is almost a scalar multiple of row 2. The solution is given as
u = [1 0]>. Now, if a perturbation b → b+∆b of the form

Mu′ =
[

0 0.01
1 1

][
u′

1
u′

2

]
=

[
0.01

1

]
= b+∆b (5.23)

were to occur, the solution becomes u′ = [0 1]>. Now ‖∆b‖2 = 0.01, but ‖u′−u‖2 =
p

2, which illustrates
that a small perturbation in b can result in a large perturbation in u.

The aim is now to find out some method to determine when matrices are nearly singular.

5.2.1. Right-Hand Side Perturbation
Using the matrix and vector norms, it is possible to quantify effect of a perturbation in M or b on u [48]. First
assume only b is affected by a perturbation of the form

b → b+∆b, (5.24)

where ‖∆b‖p ≤ δ‖b‖p for some δ> 0. The perturbed system is solved by

M(u+∆u) = b+∆b, (5.25)

hence by linearity

M∆u =∆b. (5.26)

5.2. Condition Number 30

This implies that ∆u = M−1∆b and hence by submultiplicativity

‖∆u‖p = ‖M−1∆b‖p ≤ ‖M−1‖p‖∆b‖p (5.27)

From Eq. (5.25) it also follows by linearity that

‖b‖p = ‖Mu‖p ≤ ‖M‖p‖u‖p , (5.28)

which implies that

1

‖u‖p
≤ ‖M‖p

1

‖b‖p
. (5.29)

By combining Eqs. (5.27) and (5.29) the following bound is obtained.

‖∆u‖p

‖u‖p
≤ ‖M‖p‖M−1‖p

‖∆b‖p

‖b‖p
‖ ≤ δ‖M‖p‖M−1‖p (5.30)

The quantity ‖M‖p‖M−1‖p determines the sensitivity of u to a perturbation in b. A small perturbation in b
could potentially cause a large perturbation in u.

5.2.2. Definition and Properties
Definition 5.9. Let M ∈Rn×n . The condition number of M using the p-norm is defined as [25]

κp (M) = ‖M‖p‖M−1‖p

Note that by submultiplicativity

κp (M) = ‖M‖p‖M−1‖p ≥ ‖M M−1‖p = ‖In‖p = 1 (5.31)

A problem involving matrix with a small condition number is called well-conditioned (or stable) and one
with a large condition number is called ill-conditioned (or unstable) [25]. This is dependent on what one
defines as small and large. Furthermore, it also depends on which norm is used, although any two condition
numbers κp1 and κp2 are equivalent in the sense that there exist c1,c2 ∈R such that for all M ∈Rn×n

c1κp1 (M) ≤ κp2 (M) ≤ c2κp2 (M). (5.32)

For a singular matrix, κp (M) =∞.

Example 5.10. Consider again Example 5.7. Calculating the condition number of a−1In shows that

κ∞(M) = ‖a · In‖∞‖(a · In)−1‖∞ = a−1‖In‖∞a‖In‖∞ = 1, (5.33)

hence indeed this scaling of the identity matrix is (very) well-conditioned.

Example 5.11. Consider Example 5.8. M and M−1 are given as[
0 0.01
1 1

]
and

[−100 1
100 0

]
, (5.34)

respectively. Now
κ∞(M) = ‖M‖∞‖M−1‖∞ = 2 ·101 = 202 (5.35)

and given the perturbation of size ‖∆b‖∞/‖b‖∞ = 0.01/1 = 0.01

‖∆u‖∞
‖u‖∞

≤ 202 ·0.01 = 2.02, (5.36)

which explains the large perturbation in u of size
p

2.

5.3. LU -Factorisation 31

5.2.3. Matrix and Right-Hand Side Perturbation
Now consider a perturbation in both M and b of the form

b → b+∆b (5.37)

M → M +∆M (5.38)

where ‖∆b‖p ≤ δ‖b‖p and ‖∆M‖p ≤ δ‖M‖p for some δ> 0. Now the perturbed solution v = u+∆u satisfies

(M +∆M)v = b+∆b. (5.39)

Assuming that δκp (M) < 1 (which prevents M +∆M from becoming singular), it can be shown that [25]

‖∆u‖p

‖u‖p
≤ 2δ

1−δκp (M)
κp (M) (5.40)

Example 5.12. Consider a small perturbation bounded by δ= 0.5·10−6 and assume κp (M) = 106. Now
the relative perturbation in u is bounded by

‖∆u‖p

‖u‖p
≤ 2 ·0.5 ·10−6

1−0.5 ·10−6106 106 = 2 (5.41)

illustrating that a small perturbation in both M and b can cause a relatively large perturbation in u.

5.2.4. Ambiguity
The trouble with the condition number is that there is still some ambiguity involved. There is no general rule
for when κp (M) is too large, i.e., for determining when M is ill-conditioned. A useful heuristic states that, if
ε0 ≈ 10−r and κ∞(M) ≈ 10q , then Gaussian elimination gives a solution which is accurate up to about q − r
decimal digits [25]. According to this heuristic, what really determines whether M is ill-conditioned with
respect to the machine precision depends on the accuracy required for the underlying problem. Ultimately,
to detect (nearly) singular matrices, some arbitrary cut-off value is required to qualify matrices as (nearly)
singular or not.

5.2.5. Calculating the Condition Number
The definition of the condition number immediately poses a big problem since ‖M−1‖ is required. If M−1

were known, it could be used to immediately solving Mu = b without having to resort to matrix solvers, how-
ever, matrix inversion is computationally expensive. The next section will show how to estimate κp (M) using
the LU -factorisation of M , without requiring M−1 to be known.

5.3. LU -Factorisation
Solving a system of linear equations by hand typically amounts to applying Gaussian elimination. Similarly,
for small systems as the ones in Wanda, direct solution methods are used as they offer sufficient performance.
Direct solution methods use Gaussian elimination techniques to solve a system of the form Eq. (5.1). Using
Gaussian elimination M is factored into

M = LU , (5.42)

where L,U ∈ Rn×n are lower and upper triangular matrices, respectively. Solving Eq. (5.1) now amounts to
solving the forward step

Ly = b (5.43)

and backward step

U u = y (5.44)

such that

5.3. LU -Factorisation 32

Mu = LU u = Ly = b. (5.45)

In Section 5.3.3 it will be shown how the LU -decomposition can be used to estimate the condition number of
a matrix.

Example 5.13. Consider the following system of linear equations.

u1 +2u2 = 1 (5.46)

3u1 +4u2 = 1 (5.47)

Subtracting 3 times Eq. (5.46) from Eq. (5.47) results in the triangular system

u1 +2u2 = 1 (5.48)

−2u2 =−2 (5.49)

which can easily be solved. Similarly, the matrix equivalent to this system can be factored into

M =
[

1 2
3 4

]
=

[
1 0
3 1

][
1 2
0 −2

]
= LU (5.50)

and can be used to obtain a solution using the forward and backward steps.

The main idea behind the LU -factorisation is applying Gaussian transformations G1, . . . ,Gn−1 to M , such that
it is reduced to row echelon form, i.e. U = Gn−1Gn−2 . . .G1M . Applying transformation Gk will set the ele-
ments of column k of M below the diagonal to zero. It is assumed that each transformation only includes
adding a scalar multiple of one row to another. No row scaling or row interchanges are applied. The matrix L
contains information about what Gaussian transformations are used at each step.

Let M ∈Rn×n and let M (k) denote M after applying the first k Gaussian transformations, i.e.

M (k) =GkGk−1 . . .G1M , k = 1, . . . ,n −1 (5.51)

Furthermore, let M (0) = M .

Definition 5.14. The kth Gauss-vector αk ∈Rn is defined as [48]

α(k) = [0, . . . ,0︸ ︷︷ ︸
k

,α(k)
k+1, . . . ,α(k)

n], (5.52)

where α(k)
i = M (k−1)

i k /M (k−1)
kk . The element M (k−1)

kk is called the kth pivot element.

The kth Gaussian transformation Gk can now be defined as

Gk = I −α(k)e>k (5.53)

From this definition it is immediately clear that an LU -decomposition is only possible if M (k−1)
kk 6= 0 for

1 ≤ k ≤ n −1. In finite precision a bound away from 0 is required. It can be proved that the LU -factorisation
of M exists if M and all its principal submatrices are non-singular [25]. A principal submatrix M ′ ∈Rk×k of M
is a matrix that can be obtained from M by removing n −k rows and the same n −k columns from M . This is
also enough to guarantee that the pivot elements are non-zero in finite precision. The LU -decomposition is
unique.

Now define

U =Gn−1Gn−2 . . .G1M . (5.54)

It is not hard to show that

G−1
k = I +α(k)e>k (5.55)

5.3. LU -Factorisation 33

and

(Gn−1Gn−2 . . .G1)−1 =G−1
1 G−1

2 . . .G−1
n−1 =

n−1∏
k=1

(
I +α(k)e>k

)
= I +

n−1∑
k=1
α(k)e>k (5.56)

Finally, if L is defined as

L = I +
n−1∑
k=1
α(k)e>k , (5.57)

then M = LU [25]. At each iteration k, the matrix M (k) can be partitioned into

M (k) =
[

N (k)
11 N (k)

12
0 N (k)

22

]
, (5.58)

where N (k)
11 ∈Rk×k , N (k)

12 ∈Rk×(n−k) and N (k)
22 ∈R(n−k)×(n−k).

5.3.1. Computing the LU -Factorisation
In practice, to limit the storage space required, the LU decomposition is usually computed in such a way that
it is stored in the original matrix M . Assume M is a banded matrix with lower and upper bandwidth bl and
bu , respectively. The following algorithm computes the LU decomposition of M [25].

Algorithm 5.1 LU Factorisation

for k = 1 → n −1 do
if M(k,k) = 0 then

Error: zero pivot
end if
for i = k +1 → min{k +bl ,n} do

M(i ,k) ← M(i ,k)/M(k,k)
end for
for j = k +1 → min{k +bu ,n} do

for i = k +1 → min{k +bl ,n} do
M(i , j) = M(i , j)−M(i ,k)M(k, j)

end for
end for

end for

Note that the diagonal elements of L are all equal to 1, hence they do not need to be stored. The algorithm re-
quires about 2bl bun flops. After factorisation, the solution to Eq. (5.1) can be obtained by solving the forward
and backward steps as in Eqs. (5.43) and (5.44). The following versions of the forward and backward steps
overwrite the right-hand side b with the solution of the substitution steps.

Algorithm 5.2 LU Forward Substitution Step

for j = 1 → n do
for i = j +1 → min{ j +bl ,n} do

b(i) ← b(i)−L(i , j)b(j)
end for

end for

5.3. LU -Factorisation 34

Algorithm 5.3 LU Backward Substitution Step

for j = n → 1 do
b(j) ← b(j)/U (j , j)
for i = max{1, j −bu} → j −1 do

b(i) ← b(i)−U (i , j)b(j)
end for

end for

The forward and backward substitution steps for a banded matrix cost about 2nbl and 2nbu flops, respec-
tively.

5.3.2. Pivoting
The current LU -factorisation algorithm has two drawbacks. One is that in finite precision rounding errors
can cause a large perturbation in the matrix M , i.e. the algorithm is unstable. The other is the loss of sparsity.
Both these problems can be (partially) avoided by a technique called pivoting.

Pivoting for Stability

Example 5.15. LU factorisation cannot be applied to the matrix

M =
[

0 1
1 0

]
(5.59)

as it has a zero pivot, while the matrix is well-conditioned [48].

Example 5.16. Consider the following equation in β= 10, t = 3 floating point arithmetic [25].[
0.001 1

1 2

]
u =

[
1
3

]
(5.60)

The matrix is well-conditioned as κ∞(M) = 3. The LU decomposition is given by

L̂ =
[

1 0
1000 1

]
, Û =

[
0.001 1

0 −1000

]
(5.61)

and

L̂Û =
[

0.001 1
1 0

]
(5.62)

Solving the system using this decomposition results in the solution û = [0 1]>, while the exact solution
is given by u = [1.002. . . 0.998. . .]>.

Consider the LU -decomposition of M in finite precision arithmetic. It can be shown (see [25]) that the com-
puted L̂ and Û satisfy

L̂Û = M +∆M , (5.63)

where

‖∆M‖ ≤ nε0‖L̂‖‖Û‖ (5.64)

For small problems, as is the case Wanda, nε0 is small. What could be problematic is large elements in L̂ or
Û . If one of the pivot elements is very small Definition 5.14 shows that elements of L can become very large.
This could result in a solution û to L̂Û û = b which does a bad job at solving the original equation M û = b. In
order to avoid this, Gaussian elimination in combination with a technique called pivoting is applied.

Popular strategies are partial and complete pivoting. In complete pivoting, prior to applying the Gaussian
transformation Gk , permutation matrices Pk and Qk are applied to M (k−1),

5.3. LU -Factorisation 35

Pk M (k−1)Qk , (5.65)

such that the kth pivot element (Pk M (k−1)Qk)kk is the largest entry in absolute value in the matrix partition
N (k−1)

22 (see Eq. (5.58)) [25]. The matrices Pk and Qk represent the row and column interchange necessary to
achieve this, respectively. In other words, Algorithm 5.1 becomes [25]

Algorithm 5.4 LU Factorisation With Complete Pivoting

for k = 1 → n −1 do
Determine a and b such that |M(a,b)| is the maximum element in M(k : n,k : n)
M(k, :) ↔ M(a, :)
M(:,k) ↔ M(:,b)
if M(k,k) = 0 then

Error: zero pivot
end if
for i = k +1 → min{k +bl ,n} do

M(i ,k) ← M(i ,k)/M(k,k)
end for
for j = k +1 → min{k +bu ,n} do

for i = k +1 → min{k +bl ,n} do
M(i , j) = M(i , j)−M(i ,k)M(k, j)

end for
end for

end for

Complete pivoting thus requires the comparison of (n −k)2 numbers at each iteration k. Partial pivoting is
similar, but it only determines a and hence only applies the permutation Pk at each iteration. Partial pivoting
requires the comparison of n −k numbers at each iteration k.

The question now, of course, is if these pivoting strategies increase stability.

Definition 5.17. Let M ∈Rn×n . The growth factor γ of the Gaussian elimination of M is defined as

γ= max{σ,σ1, . . . ,σn−1}

σ
, (5.66)

where σ= maxi , j |Mi j | and σk = maxi , j |M (k)
i j |.

Note that |Ui j | = |M (n−1)
i j | ≤ γ ·maxi , j |Mi j |, which motivates the definition. It can be shown that with partial

pivoting

L̂Û = M +∆M , (5.67)

where

‖∆M‖∞ ≤ 6n3ε0γ‖M‖∞ (5.68)

and ε0 denotes the machine precision [25]. In practice, γ is usually of order 10.

Complete pivoting results in an LU -factorisation of the form

PAQ = LU (5.69)

For partial pivoting Q = In , the identity matrix.

Pivoting for Sparsity
Another reason to apply pivoting is to keep LU as sparse as possible. If M has lower bandwidth of bl and an
upper bandwidth of bu , L has a lower bandwidth of bl and U an upper bandwidth of bu [25]. The problem is
that within their respective bandwidths, L and U usually become almost completely dense, hence more stor-
age space is required and solving systems of linear equations using the LU -decomposition is not so efficient.

5.3. LU -Factorisation 36

Example 5.18. Consider the discretisation matrix of the Laplacian in 2D [48].

Figure 5.1: Sparsity pattern 2D Laplacian discretisation matrix

The matrix has an upper and lower bandwidth of 7, with numerous zero entries inside the band and
only a total of 217 non-zero entries. The LU -decomposition is depicted below.

(a) L (b) U

Figure 5.2: Sparsity pattern LU -decomposition 2D Laplacian discretisation

The LU -decomposition contains a lot more non-zero elements inside the band, in fact, the L and U
matrices are almost completely dense within the band.

Pivoting strategies are applied to prevent this so-called fill-in from occurring. Note that these strategies are
all heuristics.

The currently used IMSL routine LSLXG uses Markowitz pivoting [3]. Let r (k)
i denote the number of non-

zero elements in row i of N (k)
22 , given as in Eq. (5.58), and let c(k)

j denote the number of non-zero elements of

column j of the same matrix. Now compute

χ(k)
i j = (r (k)

i −1)(c(k)
j −1) (5.70)

for each element in N (k)
22 . Apply row and column permutations such that the element which minimises χ(k)

i j
becomes the pivot element. In case of a tie, one can pick the largest element. During the iteration k of the

5.3. LU -Factorisation 37

LU -factorisation this pivot selection will cause χ(k)
i j entries to be modified, which will not all result in fill-in,

hence this choice is a local optimum for creating the least fill-in. In order to not get in trouble with stability,

not all elements of N (k)
22 are considered. For 0 < δ< 1 only the elements

(
N (k)

22

)
i j

such that∣∣∣N (k)
22

∣∣∣
i j
≥ δ

∣∣∣N (k)
22

∣∣∣
ab

(5.71)

for all k ≤ a,b ≤ n are considered [39].

5.3.3. Computing the Condition Number
As mentioned in Section 5.2.5, the definition of the condition number requires ‖M−1‖p to be known. Com-
puting the inverse is expensive; it requires O (n3) flops. The goal is to compute an estimate of ‖M−1‖p in O (n2)
flops. This section is restricted to computing an estimation of ‖M−1‖∞ as proposed in [16]. This method is
based on the observation that

Mu = b =⇒ ‖M−1‖∞ ≥ ‖u‖∞/‖b‖∞ (5.72)

This inequality states that ‖u‖∞/‖b‖∞ provides a lower bound on ‖M−1‖∞. The method provides a heuristic
that tries to maximise ‖u‖∞/‖b‖∞ in order to estimate ‖M−1‖∞. The final goal is to use the LU -decomposition
for condition number estimation.

Let T ∈Rn×n be upper triangular and consider the following column version of solving T y = d using backward
substitution [25].

Algorithm 5.5 Column Version Backward Substitution

p(1 : n) ← 0
for k = n → 1 do

Choose d(k)
y(k) ← [d(k)−p(k)]/T (k,k)
p(1 : k −1) ← p(1 : k −1)+T (1 : k −1,k)y(k)

end for

This algorithm does not use the usual backward substitution method, but it uses an auxiliary vector p to
calculate the element y(k) at each step. One way to heuristically maximise ‖y‖∞/‖d‖∞ is to choose d(k) ∈
{−1,1}. This ensures that ‖d‖∞ = 1, hence from Eq. (5.72) it follows that ‖y‖∞ provides the estimation for
‖T −1‖∞. This way of choosing d can be applied in such a way that both y(k) and p(1 : k − 1) grow at each
iteration. Algorithm 5.6 is a version of Algorithm 5.5 that implements this heuristic [25].

Algorithm 5.6 Triangular Condition Estimation

p(1 : n) ← 0
for k = n → 1 do

Choose d(k) ← 1
y(k)+ ← [d(k)−p(k)]/T (k,k)
p(k)+ ← p(1 : k −1)+T (1 : k −1,k)y(k)+
Choose d(k) ←−1
y(k)− ← [d(k)−p(k)]/T (k,k)
p(k)− ← p(1 : k −1)+T (1 : k −1,k)y(k)−
if |y(k)+|+‖p(k)+‖1 ≥ |y(k)−|+‖p(k)−‖1 then

y(k) ← y(k)+
p(1 : k −1) ← p(1 : k −1)+

else
y(k) ← y(k)−
p(1 : k −1) ← p(1 : k −1)−

end if
end for
y ← y/‖y‖∞

5.3. LU -Factorisation 38

This algorithms considers both options d(k) = 1 and d(k) = −1 and uses the one which results in the most
growth in y(k) and p(k). The heuristic chooses the local optimum at each iteration which hopefully ap-
proaches the global optimum.

It turns out that the lower bound that the estimate ‖y‖∞/‖d‖∞ provides for ‖T −1‖∞ can be made even sharper
[16, 28]. This can be done using the following steps.

1. Apply the lower triangular version of Algorithm 5.6 to T >y = d.

2. Solve T x = y.

3. Estimate ‖T −1‖∞ by ‖x‖∞/‖y‖∞.

The motivation for step 2 is that a singular value decomposition analysis shows that if ‖y‖∞/‖d‖∞ is large
then ‖x‖∞/‖y‖∞ is almost certainly at least as large and often produces an even better estimate [16].

Consider again the general matrix M with P M = LU and assume for simplicity that P = In . Similar to the ar-
gument above, producing a large-norm solution to (LU)>r = d and solving LU z = r produces a sharp estimate
for ‖M−1‖∞, namely ‖z‖∞/‖r‖∞. A slight adjustment to the procedure is required as Algorithm 5.6 can only
be applied to triangular matrices. This motivates the following procedure.

1. Apply the lower triangular version of Algorithm 5.6 to U>y = d.

2. Solve L>r = y.

3. Solve Lw = r.

4. Solve U z = w.

5. Estimate ‖M−1‖∞ by ‖z‖∞/‖r‖∞.

Step 1 and 2 produce a large-norm solution r and estimate ‖r‖∞/‖d‖∞. Step 3 and 4 produce the sharper
estimate ‖z‖∞/‖r‖∞.

Note that other estimations techniques are also available, see, e.g., [28].

5.3.4. Iterative Refinement
Assume the solution u(k) to Eq. (5.1) is obtained using the factorisation

P M = L̂Û −∆M (5.73)

in finite precision arithmetic. The goal is to improve the accuracy of the solution u(k).

Algorithm 5.7 Iterative Refinement [25]

for k = 1, . . . ,kmax do
r(k) ← b−Mu(k)

Solve Ly = Pr(k)

Solve U z(k) = y
u(k+1) ← u(k) +z(k)

end for

Assume, for simplicity, P = In . In exact arithmetic

Mu(k+1) = Mu(k) +Mz(k) = b− r(k) + r(k) = b (5.74)

However, in finite precision, things are a little more complicated. Applying Algorithm 5.7 results in

u(k+1) = u(k) +z(k) (5.75)

5.4. The LAPACK Library 39

= u(k) + (L̂Û)−1r(k) (5.76)

= u(k) + (L̂Û)−1[b−Mu(k)] (5.77)

Additionally, the exact solution u satisfies

u = u+ (L̂Û)−1[b−Mu] (5.78)

Subtracting Eq. (5.77) from the identity above yields

u−u(k+1) = [I − (L̂Û)−1M](u−u(k)) (5.79)

So whether u(k) → u depends on how well L̂Û approximates M . More precisely, if

‖I − (L̂Û)−1M‖ < 1 (5.80)

then iterative refinement converges. In finite precision, iterative refinement usually stops yielding improve-
ment after a few iterations.

5.4. The LAPACK Library
The previous sections describe the mathematical theory of solution methods for systems of linear equations.
For Wanda an actual implementation of these methods is required. Numerous libraries are available. LAPACK
will be considered here. The Linear Algebra Package (LAPACK) is one of the most prominent numerical li-
braries. The library is written in Fortran and is primarily intended for solving equations involving large, dense
matrices. One disadvantage of LAPACK is that it cannot directly handle matrices in coordinate format. This
format, which is currently used in Wanda, must be converted to band matrix storage. LAPACK relies on the
Basic Linear Algebra Subroutines (BLAS) implementation on the system, which handle the operations such
as matrix-vector multiplication, vector addition, etc. This makes it worthwhile to use an optimised BLAS im-
plementation.

Mathematical operation LAPACK routine

Matrix norm DLANGB

Condition number DGBCON

LU factorisation step DGBTRF

LU solve step DGBTRS

Iterative refinement DGBRFS

Table 5.1: LAPACK routines.

Table 5.1 shows the mathematical operations and their corresponding LAPACK computational routines [9].
The routine names start with ’D’ which stands for double precision, as computations in Wanda are done in
double precision. Note that LAPACK often uses block versions of algorithms which are rich in matrix-matrix
multiplications [25]. This usually leads to better performance on computers. The DGBTRF routine uses a block
version of the LU -decomposition with partial pivoting, as explained in Section 5.3.2. The condition number
estimation technique used in the DGBCON routine is the one explained in Section 5.3.3.

Bandwidth Minimisation
Since LAPACK uses the bandwidth format for matrix storage, the flops count of matrix operations depends
heavily on the bandwidth. Therefore, bandwidth minimisation is of the utmost importance. For this reason
a bandwidth minimisation heuristic is considered in combination with LAPACK. More on this will follow in
Chapter 6.

6
Bandwidth Minimisation

In Section 5.3.1 it was mentioned that the LU -decomposition of a banded matrix M costs O (bl bun) flops and
the solve step involves O (n(bl +bu)) flops. This immediately suggests a way of minimising the computational
costs by minimising the bandwidth of the matrix M . In this chapter techniques for reordering the matrix M
to minimise bandwidth are discussed.

6.1. Graphs and Matrices
For simplicity, in this section upper and lower bandwidth of matrices are summarised by the bandwidth.

Definition 6.1. Let M ∈ Rn×n and let bl and bu denote the lower and upper bandwidth of M , respectively.
The bandwidth of M is defined as

b(M) = max{bl ,bu}

The bandwidth minimisation problem for matrices can be formulated as follows.

Find a permutation matrix P which satisfies P = argmin
Q

b(QMQ>). (6.1)

In total there are n! possible permutation matrices1, so even for modest values of n checking all options is
infeasible. Unfortunately, the bandwidth minimisation problem turns out to be NP-hard [26]. The good news
is that there exist heuristics which tend to produce good results in practice. The bandwidth minimisation
problem for matrices is usually considered from a graph-theoretic point-of-view. For this reason, some ele-
mentary concepts and definitions are required.

Let M ∈ Rn×n be a symmetric matrix and let G = (V ,E) be an undirected graph with V = {v1, v2, . . . , vn} and
vi v j ∈ E if Mi j 6= 0 and i 6= j [10]. In other words, ignoring the diagonal entries, the matrix M is the adjacency
matrix of G . Let f : V → {1,2, . . . ,n} be a labelling of the vertices of G .

Definition 6.2. The bandwidth of G under labelling f is defined by

b f (G) = max
vi v j ∈E

| f (vi)− f (v j)|

The bandwidth minimisation problem for graphs is given as follows.

Find a labelling f of G which satisfies f = argmin
g

bg (G). (6.2)

The graph and matrix bandwidth minimisation problems are equivalent. In fact, the permutation matrix P
and labelling f both correspond to the same permutation σ in Sn . An example will be given to illustrate that
both formulations are equivalent.

1Permutation matrices can be defined in terms of the permutation group Sn which contains n! permutations (see Section 7.1).

40

6.1. Graphs and Matrices 41

Example 6.3. Consider the following matrix

M =

0 1 1 0 0 1
1 1 0 1 0 0
1 0 1 1 1 0
0 1 1 0 1 0
0 0 1 1 0 1
1 0 0 0 1 1

 (6.3)

with b(M) = 5. The corresponding graph G , with the (identity) labelling f (vi) = i shown in red, is given
by

1,1

2,2 3,3

4,4

5,56,6

Figure 6.1: Labelled graph.

Indeed, b f (G) = 5 = b(M). The permutationσ= (1 2 5 3 4 6), corresponding to the permutation matrix
defined by Pσ(i)i = 1 and 0 elsewhere, results in

P MP> =

0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0

M

0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0

>

=

1 1 1 0 0 0
1 0 0 1 1 0
1 0 0 1 0 1
0 1 1 1 0 1
0 1 0 0 1 1
0 0 1 1 1 0

 (6.4)

where b(P MP>) = 3. The labelling g corresponding to σ is defined by g (vi) = σ(i) and results in the
graph

1,2

2,5 3,4

4,6

5,36,1

Figure 6.2: Relabelled graph

which also has bg (G) = 3.

6.1.1. Reverse Cuthill-McKee
Since the bandwidth minimisation problem is NP-hard, it is necessary to resort to heuristics for trying to min-
imise the bandwidth within polynomial time. The most widely used heuristic is the Reverse Cuthill-McKee
(RCM) [18, 19]. The version of the algorithm discussed here is the version as described by George and Liu [22].
This version includes an adjusted Gibbs-Poole-Stockmeyer method [23] of finding a node from which to start
the labelling process. The GPS version of the RCM algorithm offers a good balance between computation

6.1. Graphs and Matrices 42

time and bandwidth reduction and hence is a good candidate for usage in Wanda [34]. Other algorithms do
not offer a larger bandwidth reduction for similar computation times (see, e.g., [33]). The basic idea, within
the context of an undirected graph G = (V ,E), of the algorithm is to find a suitable starting node v and label
the nodes in order of which they are visited during a breadth-first search starting from v .

First an algorithm is required to find a suitable starting node. Some notation is required. For u, v ∈ V and
W ⊆V let deg(v) denote the degree of v , Adj(W) the set of nodes adjacent to the nodes in W , and d(u, v) the
number of edges in the shortest path between u and v (if such a path exists).

Definition 6.4. For v ∈V the eccentricity ε(v) is defined by

ε(v) = max
w∈V

d(v, w)

Definition 6.5. The diameter δ(G) of a graph G = (V ,E) is defined by

δ(G) = max
v∈V

ε(v)

Definition 6.6. A vertex v ∈V is called a peripheral node if ε(v) = δ(G).

Definition 6.7. A vertex v ∈ V is called a pseudo-peripheral node if for all w ∈ V such that d(v, w) = ε(w) it
holds that ε(v) = ε(w).

A pseudo-peripheral node is a node for which the eccentricity is (usually) close to the diameter, i.e., it can be
seen as an approximation of a peripheral node. Finding peripheral nodes is expensive, as it would require the
computation of the shortest paths between every pair of nodes in a graph. A pseudo-peripheral node offers
a relatively cheap approximation. It has been observed that using pseudo-peripheral nodes as starting nodes
for the breadth-first search often results in a lower bandwidth [22]. The next definitions introduces a concept
that is used for finding a pseudo-peripheral node.

Definition 6.8. For a graph G and v ∈V the level structure rooted at v is defined as the partitioning

L (v) = {L1(v),L2(v), . . . ,Lk (v)}

of V which satisfies

1. L1(v) = {v} and L2(v) = Adj(L1(v))

2. Li (v) = Adj(Li−1(v))\Li−2 for i = 3,4, . . . ,k

The length of L (v) is given as ε(v) and the width is given as max{|Li (v)| : Li (v) ∈L (v)}.

Example 6.9. The level structure rooted at v6 in Example 6.3 is given by L (v6) = {L1(v6),L2(v6),L3(v6)}
where L1(v6) = {V6}, L2(v6) = {v1, v5} and L3(v6) = {v2, v3, v4}. Both the depth and width of L (v6) are
equal to 3.

A level structure rooted at a pseudo-peripheral node with low degree tends to result in a structure with
low width and hence high depth. The following algorithm describes a process for finding a good pseudo-
peripheral node.

Algorithm 6.1 Finding a Pseudo-Peripheral Node

Initialise root vertex r
Generate level structure L (r) = {L1(r),L2(r), . . . ,Lkr (r)}
Choose node v ∈ Lkr (r) of minimum degree
while ε(v) > ε(r) do

r ← v
Generate level structure L (r) = {L1(r),L2(r), . . . ,Lkr (r)}
Choose node v ∈ Lkr (r) of minimum degree

end while

The algorithm above stops when the eccentricity stops growing and returns the latest root node r . Its running
time is O (|E |) [22].

6.1. Graphs and Matrices 43

Example 6.10. Running Algorithm 6.1 with root v6 returns the pseudo-peripheral node v6. From the
level structure in Example 6.9 the algorithm picks node v2 and generates the level structure rooted at
this node. But ε(v2) = ε(v6) = 3, hence the algorithm terminates and returns v6. It is not hard to check
that v6 is a pseudo-peripheral node. In fact, all nodes in the graph are pseudo-peripheral nodes.

Note that the graph representation of a matrix need not be connected, hence ordering all nodes requires
ordering each connected component. Now all the ingredients for describing the RCM algorithm are present.

Algorithm 6.2 Reverse Cuthill-McKee

for each connected component GC do
Find a pseudo-peripheral node v in GC

Initialise L1(v) ← {v} and i ← 2.
while there exist unlabelled nodes do

Construct level set Li (v)
Label all u ∈ Li (v) in increasing order of degree
i ← i +1

end while
Reverse the labelling

end for

In essence, RCM tries to minimise the bandwidth by making locally optimal choices. Assuming linear inser-
tion is used for sorting the nodes in each level set in order of degree and a pseudo-peripheral starting node is
provided, the running time of the algorithm is O (η|E |) where η is the maximum degree of any node [22].

Example 6.11. Running Algorithm 6.2 with pseudo-peripheral node v6 on the graph in Example 6.3
finds the level structure as given in Example 6.9. At each level set, RCM labels the vertices in the set in
increasing order of degree. After all nodes have been visited and labelled, it reverses the order found.
This results in the following labelling.

1,2

2,4 3,5

4,6

5,36,1

Figure 6.3: Labelled graph.

This labelling corresponds to the permutation σ= (1 2 4 6)(3 5) and yields the permuted matrix

P MP> =

1 1 1 0 0 0
1 0 0 1 1 0
1 0 0 0 1 1
0 1 0 1 0 1
0 1 1 0 1 1
0 0 1 1 1 0

 (6.5)

where b(P MP>) = 3.

6.1.2. Asymmetric Matrices
The previous sections only considered bandwidth within the context of symmetric matrices. The Wanda
matrices, however, are asymmetric. There are three basic approaches to tackle this problem [42]. The main

6.1. Graphs and Matrices 44

idea is to use M to obtain a symmetric matrix which is in turn used to obtain the permutation.

1. Use M +M>. The inequality b(P MP>) ≤ b(P MP>+P M>P>) = b(P (M +M>)P>) shows that the band-
width of the permuted matrix M cannot be worse than that of the symmetric matrix which is used to
obtain the permutation.

2. Use the matrix

M̂ =
[

0 M
M> 0

]
(6.6)

which is the adjacency matrix of a bipartite graph which has a node for each row and each column of M .
If Mi j 6= 0, then row node i is connected to column node j . Applying RCM to M̂ results in the permuted
matrix P M̂P> of the form

P M̂P> =

0 M11

M>
11 0 M>

21
M21 0 M22

M>
22 0 M>

23
. . .

. . .
. . .

Mkl−1 0 Mkl

M>
kl 0

(6.7)

where each Mpq is a submatrix of M corresponding to the row level set p and column level set q . Now
permuting the rows of M by the ordered row level sets and the columns of M by the ordered column
level sets yields the block bidiagonal form

M ′ =

M11

M21 M12

M32 M33

. . .
. . .

Mkl−1 Mkl

 (6.8)

3. Use the graph corresponding to M M>, where numerical cancellation in the multiplication is not taken
into account. The resulting permutation is then used to order the rows of M and, subsequently, the
columns are ordered according to their last non-zero entry.

The permutation matrix obtained from applying bandwidth minimisation to one of the matrices above usu-
ally also does a good job in minimising the bandwidth of the original matrix M . The third option is the most
expensive to compute.

Example 6.12. Consider the asymmetric matrix.

M =

0 1 1 0 0 0
1 1 0 1 0 1
1 0 1 1 1 0
0 1 1 0 1 0
0 0 1 1 0 1
1 0 0 0 1 1

 (6.9)

with b(M) = 5. Applying RCM to the matrix M̂ results in the following graph labelling (given in red).

6.1. Graphs and Matrices 45

1,1

2,8

3,7

4,6

5,5

6,12

7,11

8,4

9,2

10,3

11,10

12,9

Figure 6.4: Labelled bipartite graph.

This corresponds with the (reversed) level sets

L1(v6) = {v1}, L2(v6) = {v8, v9, v10}, L3(v6) = {v2, v3, v4, v5}, L4(v6) = {v7, v11, v12}, L5(v6) = {v6}

The odd numbered levels sets are the row level sets and the even ones are the column level sets. The
permuted matrix M̂ of the form Eq. (6.7) is given as follows. Here the submatrices corresponding to
the row and column level sets are highlighted in blue (cf. Eq. (6.7)).

P M̂P> =

0 1 0 1 0 0 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 1 0 1 1 0 0 0 0
1 0 0 0 0 1 0 1 0 0 0 0
0 1 1 0 0 0 0 0 1 0 0 0
0 1 0 1 0 0 0 0 0 1 0 0
0 1 1 0 0 0 0 0 0 1 1 0
0 0 1 1 0 0 0 0 1 0 1 0
0 0 0 0 1 0 0 1 0 0 0 1
0 0 0 0 0 1 1 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 1
0 0 0 0 0 0 0 0 1 1 1 0

(6.10)

The permutation on M̂ is given by

σ=
(
1 2 3 4 5 6 7 8 9 10 11 12
1 8 7 6 5 12 11 4 2 3 10 9

)
(6.11)

This notation should be interpreted as σ(1) = 1, σ(2) = 8, etc. From the definition of M̂ and Eq. (6.7)
it can be seen that for the row permutation the ordered row level sets and as the column permutation
the ordered column level sets should be taken.

σrow = (1)(6)(2 5)(3 4), σcol = (11)(7 9 8 10 12) (6.12)

By ’translating’σcol back to a permutation on 1,2, . . . ,6 and applying the permutations to the rows and
columns of M , respectively, the resulting matrix M ′ of the form Eq. (6.8) and with b(M ′) = 3 is given by

M ′ =

1 0 1 0 0 0
1 1 0 1 0 0
1 0 1 0 1 0
1 1 0 0 1 1
0 1 1 1 0 1
0 0 0 1 1 1

(6.13)

6.1. Graphs and Matrices 46

6.1.3. Results
The Fortran implementation used is the one provided by Burkardt [13]. Since the goal of bandwidth reduction
is to minimise the operation count during the LU -factorisation, bandwidth reduction is mostly relevant for
large matrices. For this reason, results are shown only for the large test cases. The results in Table 6.1 are
obtained using the Matlab version of the RCM implementation provided by Burkardt.

Test case n nnz b M +M> M̂ M M>

Filter 3516 8487 204 64 63 63
Noord-Holland 1 6342 14264 310 177 14 16
Noord-Holland 2 10718 23829 634 368 249 249

Table 6.1: RCM results.

Table 6.1 shows the results of applying RCM to the test cases using the strategies explained in Section 6.1.2.
The original bandwidth is denoted by b. The results clearly indicate that applying RCM to M̂ and M M> yield
the best results. A major downside of using the M M> matrix is that it is expensive to obtain as it requires a
matrix-matrix multiplication. Therefore, the best strategy is applying RCM to M̂ .

0 2000 4000 6000 8000 10000

nz = 23829

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

(a) Before

0 2000 4000 6000 8000 10000

nz = 23829

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

(b) After

Figure 6.5: Sparsity pattern NH2 before and after applying RCM.

As illustrated by Fig. 6.5, the permuted matrix not only tends to have a smaller bandwidth, but the upper
bandwidth also tends to be smaller than the lower bandwidth. This is because minimising the bandwidth of
M̂ , by definition of M̂ , gives a higher priority to minimising the upper bandwidth of M .

Case bl bu

Filter 63 50
Noord-Holland 1 14 10
Noord-Holland 2 249 180

Table 6.2: Upper and lower bandwidth after applying RCM.

Indeed, for all three test cases the lower bandwidth is larger than the upper bandwidth. Furthermore, apply-
ing RCM to the steady state matrix for each of the cases as presented in Section 8.3 shows that 53 out of 55

6.1. Graphs and Matrices 47

cases have a lower bandwidth which is larger than or equal to the upper bandwidth.

The reason why this is of importance is the following. Suppose M has a lower and upper bandwidth of bl and
bu , respectively. Computing the LU -decomposition with row interchanges (partial pivoting) results in L keep-
ing the bl lower bandwidth and U having upper bandwidth bl+bu [25]. So the total bandwidth equals 2bl+bu .
Now, if the LU -decomposition of M> is computed, the total bandwidth is given by bl + 2bu . Since usually,
though not necessarily, bl > bu , it is more efficient to solve the linear system using the LU -decomposition
of M>. Table 6.2 shows that the difference can be significant. LAPACK has the built-in capability of solving
the transposed system of equations using a given LU -decomposition, so their is no overhead for using the
transposed matrix. This motivates the following procedure for solving Mu = b.

1. Obtain P and Q by applying RCM to M̂ , and permute the transposed matrix N =Q>M>P>.

2. Obtain the LU -decomposition of N , i.e., N = LU (ignoring the pivoting).

3. Solve U>L>v = Pb.

4. Obtain the solution to Mu = b by setting u =Qv (i.e. de-permute v).

This tends to be less computationally expensive than using the LU -decomposition of M .

7
Structural Singularities

The methods in Chapter 5 relied on detecting underdetermined systems of equations by considering the
matrix resulting from linearisation. Another interesting approach is to look at the network topology and the
resulting system of equations to determine whether or not a solution exists. These equations can be either
linear or non-linear. Consider the following definition [40].

Definition 7.1. Let M ∈ Rn×n . M is called structurally singular if every N ∈ Rn×n , with Ni j = 0 whenever
Mi j = 0, is singular.

The following example will illustrate the use of this concept.

Example 7.2. Consider again the system of Section 3.1.1.

Figure 7.1: Steady state singularity.

This system is described by the following system of equations.

H1 = c1

H1 = HA

Q A +Q1 +Q2 = 0
Q A = 0
H2 = HA

H2 = c2

(7.1)

Let the matrix M ∈R6×6 be defined by

Mi j =
{

1, if variable j is present in equation i
0, otherwise

(7.2)

Note that the matrix is defined in such a way that it can also represent non-linear systems of equations.
For this particular system the matrix is given as

48

7.1. Graph-Theoretic Characterisation 49

M =

0 1 0 0 0 0
0 1 0 1 0 0
1 0 1 0 1 0
0 0 1 0 0 0
0 0 0 1 0 1
0 0 0 0 0 1

 (7.3)

when using the variable ordering (Q1, H1,Q A , HA ,Q2, H2). This matrix is structurally singular; no mat-
ter what values are substituted in for the non-zeros of M , it will remain singular. After all, column 2
and 6 are always scalar multiples of each other. In other words, the singularity of M is determined by
its sparsity pattern. When this is the case, the underlying system of equations is also called structurally
singular. So a different approach to detecting if a system is undetermined is by determining whether
it is structurally singular.

Example 7.2 claims that the system of Section 3.1.1 is not only singular, but also structurally singular. Intu-
itively, this makes sense as there are only two equations available to solve the three Qi ’s in the system. This
chapter will describe a graph-theoretic characterisation of structurally singular matrices. Furthermore, using
the test cases introduced in Section 3.4, it will be illustrated that the singular matrices produced by Wanda are
in fact structurally singular. These examples are also used to illustrate that this characterisation can be used
to detect where an additional prescription of H (or p or T) is required. Finally, a practical method to detect
structural singularities will be discussed.

7.1. Graph-Theoretic Characterisation
For M ∈ Rn×n , a bipartite graph representation will be used, which is defined as follows. Let G = (U ∪V ,E)
be a bipartite graph where U = {u1,u2, . . . ,un} represents the rows of M , V = {v1, v2, . . . , vn} the columns and
ui v j ∈ E if Mi j 6= 0. Now consider the following definition [17].

Definition 7.3. A matching in a graph G = (V ,E) is a set F ⊆ E of edges such that every v ∈V is incident with
at most one edge in F . A perfect matching is a matching F ⊆ E such that every v ∈V is incident with exactly
one edge in F .

Note that a perfect matching need not be unique. In fact, a matching of any size need not be unique.

The following theorem states the characterisation of structurally singular matrices based on the bipartite
graph representation.

Theorem 7.4. Let M ∈ Rn×n and let G = (V ∪U ,E) be its bipartite graph representation. M is structurally
singular if and only if there does not exist a perfect matching in G.

Because of the insightful nature and beauty of the proof, a sketch will be given here. A more formal proof can
be found in [37] or [38]. The proof makes use of the following definition of the determinant, where M ∈Rn×n .

det M = ∑
σ∈Sn

ε(σ)
n∏

i=1
Mσ(i)i (7.4)

Here Sn denotes the permutation group containing all permutations τ : {1,2, . . . ,n} → {1,2, . . . ,n}. For example,
for n ≥ 3 the permutation (1 3 2) ∈ Sn represents the map 1 7→ 3, 3 7→ 2 and 2 7→ 1. Sn contains n! elements.
Each element τ ∈ Sn can be non-uniquely written as

τ= (k1 k2)(k3 k4) . . . (km−1km), (7.5)

the product of m/2 transpositions. If m/2 is even ε(τ) = 1 and ε(τ) =−1 if m/2 is odd. Although the transpo-
sition expansion of τ is not unique, the parity m/2 is.

7.2. Application to Wanda 50

Example 7.5. Consider the matrix

M =
M11 M12 M13

M21 M22 M23

M31 M32 M33

 (7.6)

The determinant is defined as

det M = M11M22M33︸ ︷︷ ︸
(1)(2)(3)

−M11M32M32︸ ︷︷ ︸
(1)(2 3)

−M12M21M33︸ ︷︷ ︸
(1 2)(3)

+M12M31M23︸ ︷︷ ︸
(1 2 3)

+M13M21M32︸ ︷︷ ︸
(1 3 2)

−M13M31M22︸ ︷︷ ︸
(1 3)(2)

(7.7)

The graph G corresponding to the matrix above is given by

u3

u2

u1

v3

v2

v1

Figure 7.2: Bipartite graph representation.

From the example above it can be seen that each product corresponding to a τ ∈ Sn in the determinant for-
mula represents a perfect matching in the graph G . The following observations can be made.

• In general, terms in the determinant formula do not cancel due to the uniqueness of each permutation.

• If Mi j = 0, then ui v j ∉ E .

From these two observations it can be concluded that if det M = 0 for any value assignment of the Mi j ’s,
then no perfect matching in G exists. And if no perfect matching in G exists, then det M ≡ 0 for any value
assignment of the Mi j ’s. The theorem thus provides a powerful tool for the detection of structurally singular
matrices. As the theorem does not rely on any finite precision numbers, there is no ambiguity involved such
as in case of condition number estimation for detecting structurally singular matrices.

7.2. Application to Wanda
The question now is how this result can be applied to Wanda. Consider the system of (non-linear) equations

u1(v1, v2, . . . , vn) = 0
u2(v1, v2, . . . , vn) = 0

...
un(v1, v2, . . . , vn) = 0

(7.8)

describing a pipeline system in Wanda. The Jacobian Ju ∈Rn×n of this system is given by

[Ju(v)]i j = ∂ui

∂v j
(v) (7.9)

Observe that [Ju(v)]i j = 0 if equation ui does not contain variable v j , so the Jacobian provides information
about the system of non-linear equations that are solved. It is used in the Newton-Raphson method in Wanda
to solve the system of equations. Checking for structural singularity in the Jacobian then amounts to checking
whether a necessary condition for the existence of a unique solution in the linearised system, and therefore
also in the non-linear system, is met. The systems can, of course, still be numerically singular. It will be
illustrated using examples that the singular matrices resulting from faulty systems in Wanda are in fact struc-
turally singular. Similar applications are given in [24].

The matchings that will be given in the examples can be proved to be maximum size matchings using König’s
theorem [17].

7.2. Application to Wanda 51

Definition 7.6. Let G = (V ,E). C ⊆V is called a cover if every e ∈ E has at least one end point in C .

Theorem 7.7 (König’s theorem). For a bipartite graph G,

max{|F | : F a matching} = min{|C | : C a cover}

Hence, given a matching F , to prove F is indeed maximum a cover C of the same size is required. Consider
the bipartite graph G = (U ∪V ,E). Let F be a maximum size matching in G and let W ⊆ U denote the set
of unmatched vertices. Now let X ⊆ U ∪V denote the set of vertices reachable from some w ∈ W via an F -
alternating path, that is, a path alternating between edges in F and edges not in F . Finally, let Y = W ∪ X .
Then

C = (U \Y)∪ (V ∩Y) (7.10)

is a minimum size cover [17]. This way of constructing C will be used to prove the optimality of F in the given
examples.

Example 7.8. Consider the system as given in Example 7.2. The Jacobian of the system is given by

Ju =

0 1 0 0 0 0
0 1 0 −1 0 0
1 0 1 0 1 0
0 0 1 0 0 0
0 0 0 −1 0 1
0 0 0 0 0 1

 (7.11)

using the variable ordering (Q1, H1,Q A , HA ,Q2, H2). This results in the following graph G .

6

5

4

3

2

1

Q2

H2

Q A

HA

Q1

H1

Figure 7.3: Bipartite graph representation.

Here a maximum matching F of size 5 is given in red. The cover C consisting of the blue vertices proves
the optimality of F . It can be concluded that the Jacobian is structurally singular.

The example above suggests that the variable nodes which are not incident to an edge in the matching cor-
respond to the undetermined ones. If either some Qi or Hi is unmatched, it means there are not enough
independent equations to determine either the Q j ’s or H j ’s. So not only does computing a maximum match-
ing in G show whether or not the Jacobian is structurally singular, but it also shows where one should adjust
the equations to make the matrix non-singular. Of course, the perfect matching in the graph above is not
unique, but the unmatched variable is always found in the underdetermined part. In the particular example
above, Q2 is unmatched, showing that the problem resides with the Qi ’s which are all connected.

Example 7.9. Consider again the system as given in Section 3.1.2

7.2. Application to Wanda 52

Figure 7.4: Small pipeline system.

which is described by the system of equations

Q1 = c1

Q A +Q1 −Q2 = 0
Q A = 0
HA = H1

HA = H2

H2 −H3 = λL

8A/O

Q2|Q2|
A2g

Q2 =Q3

HB = H3

HB = H4

QB = 0
QB +Q3 +Q4 = 0

Q4 = c4

(7.12)

The bipartite graph corresponding to the Jacobian of the system above is in Fig. 7.5a.

12

11

10

9

8

7

6

5

4

3

2

1

H4

Q4

HB

QB

H3

Q3

H2

Q2

HA

Q A

H1

Q1

(a) Original system

12

11

10

9

8

7

6

5

4

3

2

1

H4

Q4

HB

QB

H3

Q3

H2

Q2

HA

Q A

H1

Q1

(b) Adjusted system

Figure 7.5: Q Boundary with Pipe System.

7.3. The Hopcroft-Karp Algorithm 53

The red edges denote the edges of a maximum matching of size 11 in Fig. 7.5a. The vertex cover in blue
is also of size 11, proving the optimality of F . Again it can be concluded that the Jacobian is structurally
singular. In this system H4 is undetermined. From H4 the first H-node that can be reached via edges
in E is B . Prescribing HB will result in a matrix that is not structurally singular. Fig. 7.5b shows that the
adjusted system does contain a perfect matching, hence the corresponding Jacobian is not structurally
singular. It could still be singular, but structural singularities form the primary issue in Wanda.

Example 7.10. Consider again the system presented in Section 3.1.2.

Figure 7.6: System leading to singular matrix due to phase transitions.

Assume all valves are open at t = 0 and at t = 1 valves V1 and V3 are closed. The system consists of 48
equations and unknowns. At t = 1, the graph corresponding to this situation consists of disconnected
parts. The Hi ’s between the valves are disconnected from the Hi ’s outside the valves. Due to its size the
graph will be omitted here. Using Matlab a matching of size |F | = 23 is obtained, which is of maximum
size. H6 is unmatched and hence undetermined. From H6 the first H-node that can be reached is C .
Prescribing HC at t = 1 with the solution at t = 0 gives a fully determined system and the corresponding
graph does contain a perfect matching.

7.3. The Hopcroft-Karp Algorithm
The matchings in the examples, except for the last one, in the previous section were obtained by inspec-
tion. Theorem 7.7 was used to prove the optimality of the matchings. In the Wanda setting an algorithm
for computing a maximum size matching is required. Bipartite graphs, as a special case of general graphs,
are favourable in the sense that their structure allows for (relatively) simple methods of computing maxi-
mum matchings. Two (rather old) Fortran implementations for calculating maximum size matchings were
found: GRAFPACK [12] and LAUPACK [31]. Both packages are freely available and use O (|V |3) algorithms
[32, 41]. After some tests it became clear that both packages offer insufficient performance. For this reason,
an alternative is required. The algorithm offering the best known theoretic performance is the Hopcroft-Karp
algorithm with O (

p|V ||E |) run time [17, 29]. Another advantage of this algorithm is its (relative) simplicity,
which makes it an excellent candidate for an actual implementation in Fortran.

7.3.1. Basic Ideas
In order to explain how the algorithm works a few concepts and definitions are required. All definitions and
theorems are obtained from [17].

Definition 7.11. Let G = (V ,E) be a graph, v ∈ V and F a matching in G . The vertex v is called F -covered if
there exists an e ∈ M such that e = v w . v is called F -exposed if no such edge exists.

Definition 7.12. Let G be a graph and F a matching in G . A path P is called F -augmenting if it is an F -
alternating path and both its end nodes are distinct and F -exposed.

Theorem 7.13 (Berge). A matching F in a graph G is maximum if and only if there is no F -augmenting path.

7.3. The Hopcroft-Karp Algorithm 54

This theorem suggests a way of finding a maximum matching in a graph, namely, by iteratively finding aug-
menting paths and thereby iteratively expanding the matching, until no more augmenting path exists. Con-
sider a matching F in a graph G and an F -augmenting path P with end nodes v, w . Then M∆E(P), where ∆
denotes the symmetrical difference, is a matching that covers all nodes covered by F , as well as v and w , i.e.,
F∆E(P) is a larger size matching.

Example 7.14. Fig. 7.7a shows a small network with a matching of size 1 and an F -augmenting path.
After augmentation, as depicted in Fig. 7.7b, the graph contains a matching of size 2.

4

3

2

1

(a) Original

4

3

2

1

(b) Augmented

Figure 7.7: Augmenting path.

The question now is how to find F -augmenting paths. Given a matching F in a graph G , the first step is to look
for an F -exposed node r . Starting from this node the idea is to built an F -alternating tree. Let A,B ⊆V such
that each node in A is at the other end of an odd-length F -alternating path starting at r , and each node in B is
at the other end of an even-length F -alternating path starting from r . These sets are built up iteratively. Now,
if there exists an edge v w ∈ E such that v ∈ B and w ∉ A∪B is F -exposed, then the F -alternating path from r
to v plus the edge v w forms an F -augmenting path. Starting from A =∅ and B = {r } the rule

If v w ∈ E , v ∈ B , w ∉ A∪B , w z ∈ M , then add w to A and z to B .

produces such sets A and B . The set A∪B and the corresponding edges form a tree T with root r .

Example 7.15. From the graph depicted in Fig. 7.3 in Example 7.8 the following tree can be con-
structed starting from the F -exposed node 5.

6

5

2

H2

HA

Figure 7.8: F -alternating tree.

No edge v w exists in the graph depicted in Fig. 7.3 such that v ∈ B and w ∉ A∪B is F -exposed, i.e., no
augmenting path exists. Therefore, the matching is of maximum size.

7.3.2. The Algorithm
Hopcroft-Karp is based on the idea of building F -alternating trees from F -exposed nodes. From a bird’s-eye
view the pseudocode of the algorithm is given as follows.

Algorithm 7.1 Hopcroft-Karp

Initialise F ←∅.
while F is not a maximum matching do

Find {P1, . . . ,Pk }, a maximal set of vertex-disjoint shortest F -augmenting paths.
Set F ← F∆(E(P1)∪·· ·∪E(Pk))

end while

Let G = (U ∪V ,E) be a bipartite graph and F a matching in G . In Algorithm 7.1 it can be seen that at each
phase of the while loop the Hopcroft-Karp algorithm comes up with a maximal set of vertex-disjoint shortest

7.3. The Hopcroft-Karp Algorithm 55

F -augmenting paths. The algorithm uses a breadth-first search starting from each F -exposed u ∈U to build
the F -alternating trees. It then uses a depth-first search to augment the matching along the augmenting path.
It does this in such a way that in each phase this set of augmenting paths is maximal and the paths are vertex-
disjoint.

The full pseudocode of the actual implementation in Fortran is given in Algorithms A.1 to A.3 and is based
on the Python code from the NetworkX package [21, 27]. Instead of explicitly building the sets A and B , the
actual implementation of Hopcroft-Karp uses a distance function to construct the trees. It includes an extra
node, the null vertex, to which all v ∈ V are connected. Note that the distance is only defined for the null
vertex and for all u ∈U . Starting from an F -exposed node r , the breadth-first search labels nodes u ∈U in the
F -alternating tree with a distance equal to the number of even nodes between r and u, plus 1. If at some point
the breadth-first search ends at some v ∈ V , the distance of the null-vertex is set equal to the distance of the
vertex paired with v , plus 1. Nodes are only considered in the breadth-first search if their distance from the
root is smaller than the current distance of the null vertex. After building the F -alternating trees, the depth-
first search looks for shortest F -augmenting paths in the trees. If the distance of the null vertex is equal to
the distance of the current path explored by the depth-first search plus 1, then the F -augmenting path found
is a shortest one and hence the matching is augmented along this path. After augmentation the vertices in
that path cannot be considered again in subsequent depth-first searches, because the distance of the node
paired with a node v ∈V on the path now equals the distance of u. This ensures the vertex-disjointness of the
augmenting paths. If no shortest augmented path can be found starting from a vertex u, the distance of u will
be set to infinity in order to avoid considering that node again. The maximality of the set of vertex disjoint
shortest F -augmenting paths is ensured by the fact that depth-first search will find a shortest augmenting
path from each F -exposed u ∈U , if it exists, and hence no more augmenting paths can be added.

It can be proven that the algorithm terminates after at most 2
p|V | phases. Furthermore, each phase can be

carried out in O (|E |) time. Therefore, the algorithm achieves O (
p|V ||E |) running time [17].

7.3.3. Implementation
A Matlab implementation of the algorithm showed promising performance, hence the algorithm was imple-
mented in Fortran. As mentioned in Example 5.1, the matrices in Wanda are stored in the coordinate format
which includes the dimension n, the number of non-zero elements m and the indices and values of the non-
zero elements. The nice thing about this is that the indices of the non-zero elements form the edge-list of the
bipartite graph. The available data hence does not require transformation to represent the bipartite graph.
The Hopcroft-Karp implementation takes as input n, m and the row and column indices of the non-zero
elements denoted by I and J , respectively. In order to be able to efficiently determine which nodes are adja-
cent to a u ∈U , the (unsorted) coordinate format I , J is transformed into the compressed sparse row (CSR)
format) I A, J A using SPARSKIT2 [43, 44].

Example 7.16. The array I A is of length n + 1 and is defined by I A(1) = 0 and I A(k) =
I A(k − 1) + nnz(M(k − 1, :)) for 2 ≤ k ≤ n + 1. The array J A is of size m and contains the column
indices sorted by row.

The CSR format of the matrix in Example 5.1 is given by

I A = [0 1 3 5] and J A = [2 1 3 2 3] (7.13)

For any node 1 ≤ u ≤ n in U , the array J A((I A(u)+1) : I A(u +1)) contains the nodes in V which are
adjacent to u.

To speed up the algorithm, an initial matching is obtained using a Greedy type algorithm, i.e., an algorithm
that makes a locally optimal choice at each stage. In this case, the algorithm simply checks for each u ∈U if it
there exists a uv ∈ E such that v is F -exposed and, if so, it adds uv to F .

7.3. The Hopcroft-Karp Algorithm 56

Algorithm 7.2 Initial Greedy Matching

Initialise F ←∅
for u in U do

for v adjacent to u do
if v is F -exposed then

F ← F ∪ {uv}
break

end if
end for

end for

7.3.4. Preliminary Results
The algorithm is able to detect the structural singularity of each of the test problems as given in Table 3.1. The
large test cases, as given in Table 3.2, all passed the test, as expected.

8
Results

This chapter first gives an overview of the new solution method. Then comparisons are made between the
original IMSL solver and several variants of the newly implemented LAPACK solver in terms of robustness,
solution accuracy and run time. The new solution method will be evaluated based on these results.

8.1. New Solution Method
The new solution method involves two phases.

Before attempting to solve the system of linear equations, at the first iteration of the steady / transient flow
simulation, or after a phase change occurring during the simulation, a check is done to detect whether the
matrix is singular by estimating the condition number or by finding a maximum size matching in the corre-
sponding graph. If the matrix is singular, try to fix the error. If no fix is possible, break off the simulation and
return an appropriate error message.

The second phase is the actual solving of the system of linear equations. For each iteration, the system of
linear equations Mu = b is solved using the following steps:

1. Generate row and column permutations P and Q to reduce the matrix bandwidth using the RCM algo-
rithm on the bipartite matrix

M̂ =
[

0 M
M> 0

]
.

Since often bu < bl for P MQ and partial pivoting increases the bandwidth of the LU -decomposition by
bl it is more efficient to compute the LU -decomposition of the transposed matrix N =Q>M>P>.

2. Convert the matrix from coordinate format to band matrix format.

3. Obtain the LU -decomposition of N , i.e. N = LU (ignoring the permutation matrix resulting from piv-
oting).

4. Permute the right-hand side vector b to Pb and obtain the solution v to U>L>v = Pb.

5. Apply iterative refinement to v: Compute r = Pb−N>v; solve U>L>w = r for w; set vnew = v+w. It is
possible to do this step multiple times.

6. Obtain the solution u to Mu = b by setting u =Qvnew (i.e. de-permute vnew).

57

8.1. New Solution Method 58

To solve: Mu=b

Q or W
 undetermined?

M needs
correction?

Yes
Output error

Yes

Fix matrix

 No

1. Minimise
 bandwidth

 No

2. Convert M to
band storage

3. Obtain LU
decompositon

4. Solve using LU
decomposition

Apply iterative
refinement?

5. Apply iterative
refinement

Yes

6. Obtain solution u

 No

 Solving phase

 Correction phase

Figure 8.1: Solver steps flowchart

Fig. 8.1 is a visual representation of the steps given above. The correction phase is only executed at the begin-
ning of a steady or unsteady simulation and after a phase change. Iterative refinement is given as an option
here since the idea is to make the number of iterative refinement iterations an option in the accuracy window
in Wanda. By default this will be set to one iteration.

8.1.1. Singularity Detection
The LU -decomposition subroutine can detect singular matrices via pivots being exactly zero. The singularity
is detected for each of the test cases. Since row operations, used in computing the LU -decompositions, do
not preserve the structural singularity of a matrix, and numerically singular matrices do not necessarily have
an exactly zero pivot, this does not seem to be a good strategy overall. Nevertheless, to see how the different
methods of singularity detection compare in terms of performance, the internal detection is tested as well.
The other two methods use condition number estimation and maximum size matchings, respectively.

8.1.2. Routines Used
The great thing about the new solution method is that only relatively few routines are required. This makes it
a lightweight and versatile solution method, which should be easily maintainable.

For computing a maximum size matching self-written code is used (see Section 7.3.3). The LAPACK routines
used are given in Table 5.1. There is also a LAPACK iterative refinement routine available, however, this rou-
tine will not be used. Implementing iterative refinement using DGBTRS and the BLAS routines DGBMV and
DAXPY is more efficient.

8.2. Robustness 59

Furthermore, for bandwidth reduction the RCM routines provided by Burkardt are used [13]. For the matrix
conversion from coordinate format to CSR format an adjusted conversion routine based on a routine from
SPARSKIT2, provided by Saad, is used [43, 44].

Both RCM and SPARSKIT2 are licensed under the GNU LGPL. LAPACK uses the Modified BSD License.

Heat Module Routines
The heat module still depends on the DNEQNF and NEQNF IMSL routines for computing the root of a system
of non-linear equations. The IMSL manual mentions that these routines are based on the HYBRD1 MINPACK
routine [3]. For this reason these routines are replaced by the double and single precision version of HYBRD1,
respectively [36]. After this modification, Wanda is free of IMSL routines.

8.2. Robustness
Robustness can be improved by using the maximum size matching for detecting which variables are undeter-
mined, if any. The current solution method only has a routine in place that checks whether the quantities H
in liquid and p and T in heat are undetermined. Not only can the new method do this much faster, but it can
also detect singularities in the Q (liquid) and W (heat) quantities. This information can be used to output an
error which shows the user where the problem resides in the network. With some physics and Wanda knowl-
edge these problems can often be resolved by adding or removing some component in the system. This solves
the issue explained in Chapter 3 where Q being undetermined resulted in Wanda either crashing or getting
stuck in an infinite loop.

8.2.1. Matrix Correction
In Section 7.2 it was argued that unmatched variables correspond to undetermined variables. This creates an
opportunity to replace the current matrix fixing routine by a more efficient and less complex one. At the start
of the steady and unsteady simulation and after each phase change a matrix correction algorithm is required
to correct the matrix, if necessary.

There seem to be two cases in which a matrix correction is required. First, in case of a structurally singular
matrix, and secondly, in case of an isolated loop in the system.

Loops in Pipeline Systems
Not only is it necessary to fix the matrix if it is structurally singular, it is also necessary to prescribe the H (or p)
if a pipeline system contains an isolated loop. That is, a loop that is not connected to any other components
where H (or p) is known. This will be illustrated using the following example.

Example 8.1. Consider the following system.

Figure 8.2: Pump loop.

8.2. Robustness 60

This system is governed by the following equations.

H2 −H1 = c1Q1|Q1|
Q1 =Q2

−Q1 +QB +Q4 = 0
Q2 +Q A −Q3 = 0

H1 = HB

H2 = HA

QB = 0
Q A = 0

H3 −H4 = c2Q3|Q3|
Q3 =Q4

H3 = HA

H4 = HB

(8.1)

The curious thing about this system is that the both the Qi ’s and Hi ’s cannot be determined from the
system. All the Qi ’s are coupled, and all the Hi ’s are coupled, but they cannot be determined. In fact,
the system is singular, though not structurally singular. From

−Q1 +QB +Q4 = 0 and QB = 0 and Q4 =Q3

it follows that
Q1 =Q3

Furthermore, from
Q2 +Q A −Q3 = 0and Q A = 0

it follows that Q2 = Q3. Combining this with the previous observation yields Q1 = Q2. This is exactly
the second equation in the system, hence the system has an infinite number of solutions. To see
that the system is not structurally singular, observe that if the first equation is replaced with H2 =
c1Q1|Q1| and the second equation is replaced with Q1+Q2 = 0, the derivation above yields Hi =Qi = 0
everywhere. If the valve were to be closed, the ninth equation would be replaced by Q3 = 0. In that
case, the corresponding matrix is structurally singular. The system is perfectly determined if Q A = 0
or QB = 0 is replaced by Hi = c3, i.e., by prescribing H on one of the H-nodes. This is also the solution
that makes the most sense physically.

In an isolated loop, all the Hi ’s (or pi ’s) are coupled, but none are prescribed. This illustrates the necessity
of checking for each group of connected Hi ’s whether at least one of them is prescribed. The original matrix
correction algorithm fixes the issue by simply prescribing H on one of the H-nodes. The same thing will be
done in the new version. Using Breadth-First Search (BFS) the connected Hi ’s will be grouped and a check
will be done whether each group includes and equation of the form H j = c j . This approach can be carried
out in O (|E |) time [20].1 Another advantage is that the BFS principles can also be used in other parts of the
matrix correction algorithm.

Algorithm
First the Hopcroft-Karp algorithm is run to check for any structural singularities. This algorithm returns the
matching size and an array which for each variable v contains the equation matched to it (if any). In broad
terms, the algorithm can be described as follows. The actual implementation involves a number of subtleties,
but in order to not make it unnecessarily complicated a broad overview is given.

1An alternative would be to use cycle detection the bipartite graph representation of the matrix using Depth-First Search, which has the
same complexity.

8.3. Accuracy 61

Algorithm 8.1 Matrix Correction

if MSize < n then
for each variable v do

if v is unmatched then
if v =Q or v =W then

return Error
else if v = T then

Do BFS starting from v for H-node
Prescribe v at H-node found

end if
end if

end for
end if
for each variable v do

if (v = H or v = p) and v is not grouped then
Do BFS starting from v grouping the connected variables
if v is not prescribed in current group then

Do BFS starting from v for H-node
Prescribe v at H-node found

end if
end if

end for

Note that W , p and T denote the mass flow, pressure and temperature quantities used in the heat module,
respectively. The checks for H and p will always be carried out, since these can be caused by numerical
singularities such as in case of isolated loops. The checks for the other quantities can only be caused by
structural singularities.

8.3. Accuracy
Next to robustness, the solution accuracy or solution quality is another very important factor. In this section
the solutions produced by the LAPACK solver are compared to the solutions yielded by the IMSL solver. This
also presents an opportunity to optimise the number of iterative refinement iterations.

8.3.1. Procedure
The accuracy test consists of running a test set consisting of cases from the liquid and heat module. Both the
steady and transient simulations are carried out. The liquid set consists of 37 Wanda cases from the liquid
module. The heat set consists of 18 cases from the heat module. More details on the test cases and their
correspondence to the case names shown in the bar graphs can be found in Tables A.1 and A.2.

First the test cases are run using the original IMSL solver. Then the LAPACK version with various numbers of
iterative refinement iterations is run on the test set. The solutions of each LAPACK variant will be compared
to the IMSL solutions.

Error Definition
For running the test set a Python script is used in combination with the PyWanda module. The way it works
is that, after running the test cases, the script loops over all nodes in a given Wanda test case and com-
pares the solutions per node and per quantity. The solution for a node is given as a time series. Let u(i , j) =
[u(i , j)

1 u(i , j)
2 . . . u(i , j)

k]> denote the IMSL solution for quantity j in node i and v(i , j) = [v (i , j)
1 v (i , j)

2 . . . v (i , j)
k]> the

corresponding LAPACK solution. The number of time steps is denotes by k. The ∞-norm provides a good
starting point for a comparison, because the main interest is the overall solution accuracy.

The absolute error is given as

εabs = max
(i , j)∈N×Q

‖u(i , j) −v(i , j)‖∞ (8.2)

8.3. Accuracy 62

and the relative error as

εrel = max
(i , j)∈N×Q

‖u(i , j) −v(i , j)‖∞
‖u(i , j)‖∞

(8.3)

where N denotes the set of nodes, and Q denotes the set of quantities. The relative error is taken relative to
the solution u, as large deviations from the IMSL solution method are undesirable. The Wanda users should
not be able to notice much difference between the IMSL and LAPACK solutions. That does, however, not
mean that the IMSL solution is necessarily closer to the exact solution than the LAPACK solution.

8.3.2. Iterative Refinement
The LAPACK solver will be tested with different numbers of iterative refinement iterations. The solution er-
ror with respect to the IMSL solution will be measured using zero, one, two and three iterations of iterative
refinement.

H1 H2 H3 H4

Case

10 0

10 -5

10 -10

10 -15

10 -20

R
el

at
iv

e
er

ro
r

0 iterations
1 iteration
2 iterations
3 iterations

Figure 8.3: The error εrel for heat cases.

Fig. 8.3 shows the error εrel for the heat cases. Only the cases where the results are non-zero for at least one
of the four different numbers of iterative refinement iterations are shown; 14 out of 18 cases have an exactly
zero error for each variant. Note that the larger the bar, the lower the error, and hence the better the solution
(compared to IMSL). Absent bars correspond to εrel = 0.

Case H4 shows that iterative refinement can yield good improvements compared to no iterative refinement.2

Case H1 shows irregular behaviour. Without iterative refinement, the LAPACK routine detects a singular ma-
trix; no solution is determined. The matrix is, however, not structurally singular. When using iterative refine-
ment, no singularity is detected. It turns out that the matrices for this case are poorly conditioned. Through-
out the transient simulation, the condition number estimation shows that κ∞(M) ≥ 1011 and at some point
the estimation even shows that κ∞(M) ≥ 5 ·1022. The bound in Section 5.3.4 shows that iterative refinement
yields improvement if

‖I − (L̂Û)−1M‖ < 1 (8.4)

However, if M is badly conditioned, L̂Û tends to be a poor approximation of M , hence the condition above is
unlikely to hold. This results in erratic behaviour, as illustrated in Fig. 8.3.

2The case names corresponding to the case symbols displayed here can be found in Table A.2.

8.3. Accuracy 63

L
1

L
2

L
3

L
4

L
5

L
6

L
7

L
8

L
9

L
10

L
11

L
12

Case

10 0

10 -5

10 -10

10 -15

10 -20

10 -25

10 -30

10 -35

R
el

at
iv

e
er

ro
r

0 iterations
1 iteration
2 iterations
3 iterations

(a) Part I

L
13

L
14

L
15

L
16

L
17

L
18

L
19

L
20

L
21

L
22

L
23

Case

10 0

10 -5

10 -10

10 -15

10 -20

10 -25

10 -30

10 -35

R
el

at
iv

e
er

ro
r

0 iterations
1 iteration
2 iterations
3 iterations

(b) Part II

Figure 8.4: The error εrel for liquid cases.

The results for the liquid cases are shown in Fig. 8.4. Only the cases for which the error is non-zero for at
least one of the four different numbers of iterative refinement iterations are shown; 14 out of 37 cases have
no error. Again, the larger the bar, the better the solution and absent bars correspond to εrel = 0.

The thing that stands out the most is that the cases L1, L2 and L16 show somewhat erratic behaviour.3 Inves-
tigation shows that during the simulation the estimated κ∞(M) do not exceed 106, 108 and 1010, respectively.

3The case names corresponding to the case symbols displayed here can be found in Table A.1.

8.4. Run Time 64

The L1 is not considered ill-conditioned. The other two cases are not well-conditioned, but also not as ill-
conditioned as case H1. The erratic behaviour of these cases therefore cannot be explained by their condi-
tioning. A possible explanation is that this is an artefact resulting from using the ∞-norm as opposed to, e.g.,
the Euclidean norm. Convergence may happen in the 2-norm, but not in the ∞-norm. Investigations shows
that this is not the case; in 2-norm erratic behaviour is apparent as well. Another explanation may be that the
solution is compared with the IMSL solution, which may not be close to the exact solution. I.e., convergence
may occur with respect to the exact solution, but not with respect to the IMSL solution.

For most cases, doing more than one iteration of iterative refinement does not yield significant further im-
provements. There are exceptions, however, namely the cases L2, L7 and L16. The good news is that for all
three cases the error for one iteration is still within acceptable limits. L7 has the largest error of about 0.1%,
which is still an acceptable error in practice.

Number of iterations 0 1 2 3

Average error 2 ·10−5 4 ·10−5 9 ·10−4 2 ·10−7

Maximum error 4 ·10−4 10−3 2 ·10−2 3 ·10−6

Error improvement - 13 6 2

Table 8.1: Error statistics over all test cases per number of iterative refinement iterations.

Table 8.1 displays the number of cases where εrel using i iterations improves εrel using i −1 iterations by at
least a factor 10. Furthermore, the average and maximum error for each number of iterative refinement iter-
ations are shown. Both the heat and liquid cases are included in the results. The average and maximum error
suggest that three iterations results in the most accurate solutions (at least compared to IMSL), however, the
error improvement shows that there are only 2 cases for which three iterations yield significant improvements
over two iterations. In practice, measurement errors in the input are likely to dominate numerical errors, so
iterative refinement as a whole could be superfluous were it not that the H1 case requires iterative refinement
for a solution to be found. For this reason at least one iteration of iterative refinement will be used. A pos-
sibility is to adding an option for the user in Wanda to set the number of iterative refinement iterations with
the default being one. Overall, the solution accuracy of LAPACK seems sufficient.

8.4. Run Time
The last factor of importance is the run time of the solution method. This will be evaluated in the current
section.

8.4.1. Procedure
The benchmarks are performed on an HP ProBook 6750B. It contains an Intel i5-3210M dual core CPU run-
ning at 2.5 GHz. This laptop is representative for the average Wanda user.

The results are obtained using the GETTIM Fortran routine to measure the elapsed (clock) time. The resolution
of this routine is 10ms. During the test runs only the results of the last time step will be written to an output
file. Normally, the solution for every second of the simulation is written to an output file. For the purpose of
this chapter, evaluating the performance of the new solution method, this does not matter. Only the relative
running times of the different matrix solvers are relevant. For all tests, all three large test cases, as presented
in Section 3.4.2, are run. More specifically, the run time of the transient flow scenarios are measured. As a
starting solution, a steady state solution is computed using the matrix solver version that is being tested. The
results shown are an average over five runs for the Filter and NH1 test cases, and three runs for the NH2 test
case. Note that, unless explicitly mentioned, the current matrix correction algorithm is used for the tests.

The following tests will be carried out.

• Comparison of the number of iterative refinement iterations.

• IMSL vs. LAPACK solution method

8.4. Run Time 65

• LAPACK with internal singularity detection vs. condition number estimation vs. maximum size match-
ing.

• Blocked vs. unblocked implementation of computing the LU -decomposition.

• Time consumption per step of the LAPACK solution method.

• Comparison of matrix correction algorithms.

• Reference LAPACK vs. vendor-optimised LAPACK

8.4.2. Iterative Refinement
In this section the run times per number of iterative refinement iterations will be evaluated.

0 iterations 1 iteration 2 iterations 3 iterations
0

2

4

6

8

10

12

14

16

18

R
un

 ti
m

e
in

 s
ec

on
ds

12.9

14.1

16.2
16.9

(a) Filter

0 iterations 1 iteration 2 iterations 3 iterations
0

10

20

30

40

50

60

70

80

90

R
un

 ti
m

e
in

 s
ec

on
ds

74.5

80.2
84.2 85.6

(b) Noord-Holland 1

0 iterations 1 iteration 2 iterations 3 iterations
0

100

200

300

400

500

600

700

800

900

1000

1100

R
un

 ti
m

e
in

 s
ec

on
ds

779.8

848.9

922.3

1003.4

(c) Noord-Holland 2

Figure 8.5: Run times per number of iterative refinement iterations.

The results in Fig. 8.5 show that using one iteration of iterative refinement already adds a relatively big amount
of time. The relative time additions are 9.3%, 7.7% and 8.9% for the three cases, respectively. As discussed in
Section 8.3, iterative refinement is necessary since there are test cases that fail when not using it. The best
practice is to add an option in Wanda for setting the number of iterations, with the default being one iteration.
The absolute run times are still limited, and, as will be shown in the next section, are still comparable to the
IMSL run times.

8.4.3. IMSL vs. LAPACK
For the comparison between IMSL and LAPACK one iteration of iterative refinement is used for the LAPACK
solution method.

8.4. Run Time 66

IMSL LAPACK
0

2

4

6

8

10

12

14

16

R
un

 ti
m

e
in

 s
ec

on
ds

9

14.1

(a) Filter

IMSL LAPACK
0

10

20

30

40

50

60

70

80

90

R
un

 ti
m

e
in

 s
ec

on
ds

73

80.2

(b) Noord-Holland 1

IMSL LAPACK
0

100

200

300

400

500

600

700

800

900

1000

1100

R
un

 ti
m

e
in

 s
ec

on
ds

994.8

845.1

(c) Noord-Holland 2

Figure 8.6: Run time comparison between IMSL and LAPACK.

The time addition of the LAPACK run times relative to IMSL amount to 57%, 9.9% and -15%, respectively. The
difference for Filter may seem very large, however, the absolute run times are still very low. For the largest
case, LAPACK is even significantly faster.

Test Bench
Running IMSL and LAPACK on the 55 test cases presented in Section 8.3.1 results in LAPACK being on average
3% faster than IMSL, while the worst result is about 3% slower. Most of these cases are relatively small test
cases with matrices smaller than 1000×1000. These cases should resemble the average usage of Wanda more
than the three large test cases above. The results indicate that the average user will not be affected by much
change in computation times.

Profile
To get a better idea of how the run time of the LAPACK solution method itself compares to IMSL, the run time
for the four categories as presented in Section 3.5 are measured and compared with IMSL. Note that, for this
result, the solution of every time step is written to a file.

8.4. Run Time 67

Matrix fix Matrix solver Matrix build Miscellaneous
0

1

2

3

4

5

6

7

8

9

10

R
un

 ti
m

e
in

 s
ec

on
ds

IMSL (9.5s)
LAPACK (14.9s)

(a) Filter

Matrix fix Matrix solver Matrix build Miscellaneous
0

5

10

15

20

25

30

35

R
un

 ti
m

e
in

 s
ec

on
ds

IMSL (75.6s)
LAPACK (83.4s)

(b) Noord-Holland 1

Matrix fix Matrix solver Matrix build Miscellaneous
0

100

200

300

400

500

600

700

R
un

 ti
m

e
in

 s
ec

on
ds

IMSL (999.4s)
LAPACK (853.6s)

(c) Noord-Holland 2

Figure 8.7: Run time profile IMSL vs. LAPACK.

Fig. 8.7 shows the run time of the four categories for IMSL and LAPACK. For the Filter case the LAPACK solver
takes significantly more time than IMSL for the actual solving of the system of linear equations. For NH1
LAPACK is also slightly slower. There is also a significant difference in the matrix build run time. This is
because IMSL only requires 6276 iterations, while LAPACK requires 6742 iterations for the whole simulation.
For NH2 the difference in run time is now in favour of LAPACK. Both methods require the same number of
iterations: 92819. The time difference in matrix build may be explained by the allocation and deallocation of
arrays used by IMSL. The cases for which LAPACK is slower the absolute time difference is still limited.

8.4.4. Singularity Detection
For this comparison, only the NH1 test case will be considered. The reason for this is that this case contains
the most phase changes, hence a high number of singularity checks will be performed (after all, the singu-
larity checks are done at the start of the simulation and after phase changes). Fig. 8.7 shows that the matrix
fix algorithm run time is negligible for both other cases. Note that the original matrix correction algorithm is
used in this test; only the singularity detection methods differ.

Fig. 8.8 shows the results. Singularity detection using maximum size matching only adds about 0.5 seconds to
the run time. Condition number estimation is about 9 seconds slower than internal detection. Clearly, if addi-
tional singularity detection methods are required, maximum size matchings are the best choice performance-
wise. The additional advantage is that the matching provides information about where the matrix is singular
and where to fix it, as explained and implemented in Section 8.2.

8.4. Run Time 68

Internal Matching Condition number
0

10

20

30

40

50

60

70

80

90

100

R
un

 ti
m

e
in

 s
ec

on
ds

81.9 82.5

90.9

Figure 8.8: Total run time for each method of matrix structural singularity detection.

8.4.5. LU -Decomposition Computation
The LAPACK LU -decomposition subroutine DGBTRF checks whether the upper bandwidth of the input matrix
is greater than 64. If so, the blocked version of the algorithm is used. Otherwise the unblocked routine DGBTF2
is used. When using the block version, the majority of the flops come from matrix multiplications. These
operations can usually be performed efficiently on actual computer hardware. As a result, a block version
should be faster, especially for large matrices. The only test case with a bandwidth bigger than 64 (after
permutation), is the NH2 test case. To see whether the blocked version yields a performance improvement a
benchmark is performed.

Unblocked Blocked
0

100

200

300

400

500

600

700

800

900

R
un

 ti
m

e
in

 s
ec

on
ds

845.1 848.6

Figure 8.9: Run time for the blocked vs. unblocked LU -decomposition computation.

Fig. 8.9 shows no significant performance difference between the two methods, therefore the unblocked ver-
sion will be used in the new solution method.

8.4.6. Solution Method Steps
In this section the run times for the first five steps presented in Section 8.1 will be measured. This will give a
good overview of which steps are the most time-consuming within the LAPACK solution method. The times
will be measured for both Noord-Holland cases. The Filter case will be neglected since the GETTIM routine
will, due to its accuracy of 10ms, not yield accurate results. To summarise, the LAPACK solution method
involves the following steps.

1. Obtaining the RCM permutations and their inverses.

2. Matrix coordinate format to band storage format conversion.

3. LU factorisation step.

8.4. Run Time 69

4. LU solve step.

5. Iterative refinement (one iteration).

Misc. Miscellaneous operations not directly part of the other steps (allocating/deallocating memory, copying
vectors and permuting the matrix and vectors).

1 2 3 4 5 Misc.

Step

0

0.05

0.1

0.15

0.2

0.25

0.3

P
er

ce
nt

ag
e

of
 r

un
 ti

m
e

Noord-Holland 1
Noord-Holland 2

Figure 8.10: Percentage of run time per step of the LAPACK solution method.

Both the results for NH1 and NH2 are depicted in Fig. 8.10. Step 1, obtaining the RCM permutations, is
the most time-consuming in both cases. This indicates that a more efficient RCM implementation would
be beneficial. Step 2, converting the matrix to band format takes a significant amount of the time. This
is mostly due to the fact that the band matrix first needs to be initialised to 0, which is responsible for the
vast majority of the run time. Steps 3-5 and miscellaneous show no real surprises. The factorisation step
consumes more time than the solve step, while iterative refinement sits between these two steps in terms of
time consumption.

8.4.7. Matrix Correction Algorithms
A comparison is made between the original and new ’matrix fix’ algorithms as presented in Section 8.2. Only
the Noord-Holland 1 case is considered here, as in this case the algorithms are used often due to the high
number of phase changes.

Matrix fix LAPACK solver Matrix build Miscellaneous
0

5

10

15

20

25

30

35

R
un

 ti
m

e
in

 s
ec

on
ds

Original
New

Figure 8.11: Matrix fix algorithms comparison.

Fig. 8.11 shows a significant time reduction when using the new algorithm. In fact, the average total run time
is reduced from 82.4 seconds to 57.3 seconds which is a time reduction of about 30%.

8.5. Evaluation 70

8.4.8. Reference LAPACK vs. Vendor-Optimised LAPACK
The LAPACK implementation currently used is the reference version of LAPACK including the required refer-
ence BLAS routines. It is advised to use an optimised BLAS/LAPACK implementation that is tuned for specific
hardware as this usually results in better performance. Various optimised implementations are available such
as PLASMA [2], MAGMA [1], OpenBLAS and MKL. To measure the performance benefit, the Intel Math Kernel
Library (MKL) is compared to reference LAPACK. MKL is available in two versions: a sequential and parallel
version. Both versions will be tested.

LAPACK MKL sequential MKL parallel
0

2

4

6

8

10

12

14

16

R
un

 ti
m

e
in

 s
ec

on
ds

14.2 13.9

15.1

(a) Filter

LAPACK MKL sequential MKL parallel
0

10

20

30

40

50

60

70

80

90

R
un

 ti
m

e
in

 s
ec

on
ds

82.7 82.2
86.2

(b) Noord-Holland 1

LAPACK MKL sequential MKL parallel
0

100

200

300

400

500

600

700

800

900

1000

R
un

 ti
m

e
in

 s
ec

on
ds

868.5 866.2

946.8

(c) Noord-Holland 2

Figure 8.12: Run time of reference LAPACK vs. MKL.

The results, as depicted in Fig. 8.12, show that the MKL sequential version is only marginally faster than ref-
erence LAPACK. Perhaps the typical problem size is too small to yield significant performance benefits. Ad-
ditionally, since the reference LAPACK library is compiled with order 3 optimisation, compiler optimisations
may already significantly boost the performance of reference LAPACK. In all three cases the parallel MKL is
the slowest. Communication overhead likely dominates any performance benefits yielded by parallelising
the computations, resulting in overall worse performance. The test shows that the performance of reference
LAPACK is already sufficient in the context of Wanda. The additional benefit is that reference LAPACK is open
source, while MKL is not. Optimised open source libraries do exist. Examples are PLASMA, MAGMA and
OpenBLAS.

8.5. Evaluation
The results show that the LAPACK solver would be a good successor to IMSL. Taking both accuracy and run
time into consideration, one iteration of iterative refinement seems to be the best trade-off between the afore-

8.5. Evaluation 71

mentioned aspects. The run times using one iteration indicate that during extreme usage, but even more so
during average usage, the user should not be able to notice large differences in computation time compared
to IMSL.

To improve robustness, the current matrix correction algorithm is replaced by one that uses the maximum
size matching property of a matrix. Using this method, any quantity being underdetermined can be detected
and a correction can be applied. If no correction can be applied, a suitable error message is produced which
indicates where in the pipeline system the problem lies. The correction algorithm is also significantly faster
than the previous version.

In conclusion, the new solution method based around LAPACK offers a welcome improvement in terms of
maintainability and robustness, while showing similar, and sometimes even improved, results in terms of
accuracy and performance.

9
Conclusions and Recommendations

9.1. Conclusions
The main research question concerned how the maintainability and robustness of the solution method could
be improved, without giving in on accuracy and efficiency. To this end, the LAPACK library together with a
method for detecting singularities was implemented. The following conclusions can be drawn.

Maintainability
The open source nature and permissive license of LAPACK together with the fact that only the routines that
are used need to be supplied make it an excellent solver in terms of maintainability.

Robustness
The method of detecting structural singularities can in practice detect the underdetermination of any vari-
able, except in isolated loops. Underdetermined variables in isolated loops were detected the presence of an
equation prescribing the variable. Just as in the old solution method, a correction can be applied in case H ,
p or T are undetermined, but the new method is much faster. Additionally, if Q or W are undetermined, an
error message is shown indicating the location of the problem in the pipeline system. This was not possible
in the old method, therefore resulting in crashes or infinite loops in the IMSL routines. This new addition
ensures a user-friendly Wanda experience. Condition number estimation was also considered. This method
proved to be reliable, but too slow in practice while also not being usable for correcting the matrix, therefore
this method is neglected.

Accuracy
Since LAPACK has been a standard numerical library for many years, it should be trustworthy in terms of
solution accuracy. Tests were done using different numbers of iterative refinement iterations on a test set
of 55 cases. The results showed that, compared to IMSL, there was only one case for which the results were
somewhat concerning, as the relative error was about 2.5%. These results can be explained by the cases be-
ing ill-conditioned, in fact, without iterative refinement LAPACK detects a singular matrix while running that
case. Overall, the numerical errors are likely to be dominated by input errors and the accuracy compared
to IMSL is good, ensuring that users will not notice large differences in solution quality between IMSL and
LAPACK. Optionally, the number of iterative refinement iterations can be set to sacrifice run time for perfor-
mance or vice versa.

Efficiency
To improve the performance of LAPACK, the Reverse Cuthill-McKee (RCM) heuristic was applied to reduce the
bandwidth of the matrices before trying to solve the systems. Test results on the three large test cases showed
that, when applying RCM, the LAPACK solution method run time is similar to that of IMSL. This result is con-
firmed by comparing the performance on the test set consisting of 55 cases. By default, one iteration of iter-
ative refinement will be used. Using maximum size matchings for detecting singularities proved much faster
than using condition number estimation. Basing a new matrix correction algorithm on this method not only
improves the robustness of Wanda, but comparing this new method to the old correction algorithm shows a

72

9.2. Recommendations 73

significant performance boost. A big advantage of using LAPACK is the wide availability of vendor-optimised
versions, despite the fact that a test of the optimised MKL library showed that no significant performance
improvements were gained. This is possibly due to the small problem sizes in LAPACK and the aggressive
compiler optimisations applied to the reference implementation.

Unexplored Methods
Some of the research questions in Chapter 4 indicate directions which remain unexplored. A short explana-
tion will be given as to why this is.

A lot of undetermined systems can be corrected using an a posteriori fix, but preventing these issues alto-
gether by adjusting the physical model does not seem to be a good approach since underdetermination is
always either a result of phase changes or a mistake by the user. Both issues can be resolved, although fixing
W or Q being undetermined requires some knowledge of the underlying physics.

Rank-revealing decompositions seemed an inferior approach to using singularity detection using maximum
matchings and simply using the LU -decomposition. Especially since the structural singularity approach can
be used to identify the problem in the network.

9.2. Recommendations
One possible improvement is providing all the matrix coefficients for each possible phase of the components
and only setting the coefficients of the current component phase to non-zero. The LAPACK solver is not af-
fected by adding these zero elements. Now phase changes during a time step would leave the matrix structure
intact. When the RCM permutation is computed based on this information, it only needs to be computed
once every time step. This could improve performance, although it could also negatively affect the matrix
bandwidth. This method also allows for keeping the Jacobian, apart from changes in flow direction, constant
within a time step. Adding these two improvements could yield a significant performance boost.

Optimised BLAS and/or LAPACK libraries could yield improvements. Using implementations such as ATLAS
and OpenBLAS could possibly be beneficial. This would also not require large changes in the code. Similarly,
the performance of entirely different numerical libraries such as MUMPS could be investigated.

Since matrix bandwidth is what really determines the performance of the matrix solver, a larger bandwidth
reduction could potentially lead to a large performance improvement. The objective is to find a bandwidth
minimisation heuristic that performs better than RCM and has a similar run time. For both Noord-Holland
test cases computing the RCM permutations takes most of the solution method run time, hence a more effi-
cient implementation of RCM, if it exists, could already yield significant improvements.

Alternatively, ordering the components in a pipeline system a priori could make a posteriori methods obso-
lete, so this also seems to be a potentially fruitful research direction.

Bibliography

[1] Matrix algebra on gpu and multi-core archictectures. URL http://icl.cs.utk.edu/magma/.

[2] Parallel linear algebra software for multicore architectures. URL https://bitbucket.org/icl/

plasma.

[3] IMSL Fortran Math Library, 2014.

[4] Hydrodynamica van Leidingsystemem, 2015.

[5] Multifrontal Massively Parallel Solver. User’s Guide, 2016. URL http://mumps.enseeiht.fr.

[6] WANDA 4.5 User Manual, 2017.

[7] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A fully asynchronous multifrontal solver using
distributed dynamic scheduling. SIAM Journal on Matrix Analysis and Applications, 23(1):15–41, 2001.

[8] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet. Hybrid scheduling for the parallel solution
of linear systems. Parallel Computing, 32(2):136–156, 2006.

[9] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Ham-
marling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide. Society for Industrial and Applied Math-
ematics, Philadelphia, PA, third edition, 1999. ISBN 0-89871-447-8 (paperback).

[10] L.W. Beineke and R.J. Wilson. Selected topics in graph theory. Number v. 3 in Selected Topics in Graph
Theory. Academic Press, 1988. ISBN 9780120862030.

[11] C. G. Broyden. A class of methods for solving nonlinear simultaneous equations. Mathematics of Com-
putation, 19(92):577–593, 1965. ISSN 00255718, 10886842. URL http://www.jstor.org/stable/

2003941.

[12] John Burkardt. Grafpack – graph computations, 2000. URL https://people.sc.fsu.edu/

~jburkardt/f_src/grafpack/grafpack.html.

[13] John Burkardt. Reverse cuthill-mckee ordering, 2003. URL https://people.sc.fsu.edu/

~jburkardt/f_src/rcm/rcm.html.

[14] Richard H. Byrd, Humaid Fayez Khalfan, and Robert B. Schnabel. Analysis of a symmetric rank-one trust
region method. SIAM Journal on Optimization, 6(4):1025–1039, 1996. doi: 10.1137/S1052623493252985.
URL https://doi.org/10.1137/S1052623493252985.

[15] S. Camiz and S. Stefani. Matrices And Graphs. World Scientific Publishing Company, 1996. ISBN
9789814530088.

[16] A. K. Cline, C. B. Moler, G. W. Stewart, and J. H. Wilkinson. An Estimate for the Condition Number of a
Matrix. SIAM Journal on Numerical Analysis, 16:368–375, April 1979. doi: 10.1137/0716029.

[17] W.J. Cook, W.H. Cunningham, W.R. Pulleyblank, and A. Schrijver. Combinatorial Optimization. Wiley
Series in Discrete Mathematics and Optimization. Wiley, 2011. ISBN 9781118031391.

[18] E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices. In Proceedings of the
1969 24th National Conference, ACM ’69, pages 157–172, New York, NY, USA, 1969. ACM. doi: 10.1145/
800195.805928. URL http://doi.acm.org/10.1145/800195.805928.

[19] Iain S Duff, Albert M Erisman, and John K Reid. Direct Methods for Sparse Matrices. Oxford University
Press, Inc., New York, NY, USA, 1986. ISBN 0-198-53408-6.

74

http://icl.cs.utk.edu/magma/
https://bitbucket.org/icl/plasma
https://bitbucket.org/icl/plasma
http://mumps.enseeiht.fr
http://www.jstor.org/stable/2003941
http://www.jstor.org/stable/2003941
https://people.sc.fsu.edu/~jburkardt/f_src/grafpack/grafpack.html
https://people.sc.fsu.edu/~jburkardt/f_src/grafpack/grafpack.html
https://people.sc.fsu.edu/~jburkardt/f_src/rcm/rcm.html
https://people.sc.fsu.edu/~jburkardt/f_src/rcm/rcm.html
https://doi.org/10.1137/S1052623493252985
http://doi.acm.org/10.1145/800195.805928

Bibliography 75

[20] Shimon Even. Graph Algorithms. Cambridge University Press, 2 edition, 2011. doi: 10.1017/
CBO9781139015165.

[21] Jeffrey Finkelstein. Source code for bipartite matchings, 2015. URL https://networkx.github.io/

documentation/latest/_modules/networkx/algorithms/bipartite/matching.html.

[22] Alan George and Joseph W. Liu. Computer Solution of Large Sparse Positive Definite. Prentice Hall Pro-
fessional Technical Reference, 1981. ISBN 0131652745.

[23] Norman E. Gibbs, William G. Poole, and Paul K. Stockmeyer. An algorithm for reducing the bandwidth
and profile of a sparse matrix. SIAM Journal on Numerical Analysis, 13(2):236–250, 1976. ISSN 00361429.
URL http://www.jstor.org/stable/2156090.

[24] Manfred Gilli and Myriam Garbely. Matchings, covers, and jacobian matrices. Journal of Eco-
nomic Dynamics and Control, 20(9):1541 – 1556, 1996. ISSN 0165-1889. doi: https://doi.org/
10.1016/0165-1889(95)00910-8. URL http://www.sciencedirect.com/science/article/pii/

0165188995009108.

[25] G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins Studies in the Mathematical Sci-
ences. Johns Hopkins University Press, 1996. ISBN 9780801854149.

[26] Ch H. Papadimitriou. The np-completeness of the bandwidth minimization problem. 16:263–270, 01
1976.

[27] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure, dynamics, and func-
tion using networkx. In Gaël Varoquaux, Travis Vaught, and Jarrod Millman, editors, Proceedings of the
7th Python in Science Conference, pages 11 – 15, Pasadena, CA USA, 2008.

[28] Nicholas J. Highham. A survey of condition number estimation for triangular matrices. SIAM Rev., 29
(4):575–596, December 1987. ISSN 0036-1445. doi: 10.1137/1029112. URL http://dx.doi.org/10.

1137/1029112.

[29] John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings in bipartite graphs.
SIAM Journal on Computing, 2(4):225–231, 1973. doi: 10.1137/0202019. URL https://doi.org/10.

1137/0202019.

[30] C. Kelley. Iterative Methods for Linear and Nonlinear Equations. Society for Industrial and Applied Math-
ematics, 1995. doi: 10.1137/1.9781611970944. URL http://epubs.siam.org/doi/abs/10.1137/1.

9781611970944.

[31] Hang Tong Lau. Laupack – graph routines, 2000. URL https://people.sc.fsu.edu/~jburkardt/f_

src/laupack/laupack.html.

[32] H.T. Lau. Algorithms on graphs. A Petrocelli book. TAB Professional and Reference Books, 1989. ISBN
9780830634293.

[33] A. Lim, B. Rodrigues, and Fei Xiao. A centroid-based approach to solve the bandwidth minimization
problem. In 37th Annual Hawaii International Conference on System Sciences, 2004. Proceedings of the,
pages 6 pp.–, Jan 2004. doi: 10.1109/HICSS.2004.1265221.

[34] Andrew Lim, Brian Rodrigues, and Fei Xiao. Heuristics for matrix bandwidth reduction. 174:69–91, 10
2006.

[35] Harry M. Markowitz. The elimination form of the inverse and its application to linear programming.
Manage. Sci., 3(3):255–269, April 1957. ISSN 0025-1909. doi: 10.1287/mnsc.3.3.255. URL http://dx.

doi.org/10.1287/mnsc.3.3.255.

[36] Jorge J. Moré, Burton S. Garbow, and Kenneth E. Hillstrom. User Guide for MINPACK-1, August 1980.

[37] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University Press, New
York, NY, USA, 1995. ISBN 0-521-47465-5, 9780521474658.

https://networkx.github.io/documentation/latest/_modules/networkx/algorithms/bipartite/matching.html
https://networkx.github.io/documentation/latest/_modules/networkx/algorithms/bipartite/matching.html
http://www.jstor.org/stable/2156090
http://www.sciencedirect.com/science/article/pii/0165188995009108
http://www.sciencedirect.com/science/article/pii/0165188995009108
http://dx.doi.org/10.1137/1029112
http://dx.doi.org/10.1137/1029112
https://doi.org/10.1137/0202019
https://doi.org/10.1137/0202019
http://epubs.siam.org/doi/abs/10.1137/1.9781611970944
http://epubs.siam.org/doi/abs/10.1137/1.9781611970944
https://people.sc.fsu.edu/~jburkardt/f_src/laupack/laupack.html
https://people.sc.fsu.edu/~jburkardt/f_src/laupack/laupack.html
http://dx.doi.org/10.1287/mnsc.3.3.255
http://dx.doi.org/10.1287/mnsc.3.3.255

Bibliography 76

[38] Kazuo Murota. Matrices and Matroids for Systems Analysis. Springer Publishing Company, Incorporated,
1st edition, 2009. ISBN 3642039936, 9783642039935.

[39] Farid N. Najm. Circuit Simulation. Wiley-IEEE Press, 2010. ISBN 0470538716, 9780470538715.

[40] Arnold Neumaier. Scaling and structural condition numbers. Linear Algebra and its Applications, 263,
09 1996.

[41] A. Nijenhuis and H.S. Wilf. Combinatorial Algorithms for Computers and Calculators. Academic Press,
New York, 1978.

[42] J. K. Reid and J. A. Scott. Reducing the total bandwidth of a sparse unsymmetric matrix. SIAM Journal
on Matrix Analysis and Applications, 28(3):805–821, 2006. doi: 10.1137/050629938. URL https://doi.

org/10.1137/050629938.

[43] Youcef Saad. SPARSKIT: a basic tool kit for sparse matrix computations - Version 2, 1994.

[44] Yousef Saad. Sparsekit2 – sparse matrix utility package, 1989. URL http://people.sc.fsu.edu/

~jburkardt/f77_src/sparsekit2/sparsekit2.html.

[45] H.E.A. van den Akker and R.F. Mudde. Fysische Transportverschijnselen I. VSSD, 2005.

[46] J. van Kan, A. Segal, and F.J. Vermolen. Numerical Methods in Scientific Computing. Delft Academic
Press, 2014.

[47] A.E.P. Veldman and A. Velická. Stromingsleer, 2007.

[48] C. Vuik and D.J.P. Lahaye. Scientific computing, 2015.

[49] C. Vuik, F.J. Vermolen, M.B. van Gijzen, and M.J. Vuik. Numerical Methods for Ordinary Differential
Equations. Delft Academic Press, 2015.

[50] E.B. Wylie and V.L. Streeter. Fluid transients. Number v. 1977 in Advanced book program. McGraw-Hill
International Book Co., 1978.

https://doi.org/10.1137/050629938
https://doi.org/10.1137/050629938
http://people.sc.fsu.edu/~jburkardt/f77_src/sparsekit2/sparsekit2.html
http://people.sc.fsu.edu/~jburkardt/f77_src/sparsekit2/sparsekit2.html

A
Appendix

A.1. Conservation Laws
A.1.1. Conservation of Momentum

Figure A.1: Conservation of momentum.

Note that in the figure ∆s is used instead of ∆x. From Fig. A.1 the law of conservation of momentum can be
derived, for ∆x small.

p A+
(

p A+ ∂(ρA)

∂x
∆x

)
︸ ︷︷ ︸

Pressure on ends

−ρg∆x

(
A+ A+ ∂A

∂x ∆x

2

)
sinα︸ ︷︷ ︸

Force due to weight

−τO∆x︸ ︷︷ ︸
Friction

+
(

p + 1

2

∂p

∂x
∆x

)
∂A

∂x
∆x︸ ︷︷ ︸

Pressure on sides

=ρ∆x

(
A+ A+ ∂A

∂x ∆x

2

)
dv

dt︸ ︷︷ ︸
Element mass acceleration

(A.1)

Here O denotes the circumference of the pipe. The friction term describes friction due to the pipe wall.

77

A.2. Large Test Cases 78

A.1.2. Conservation of Mass
Now the conservation of mass will be derived. Note that here∆x can vary over time, since an element of mass
can shrink in size due to pressure.

Figure A.2: Conservation of mass.

Fig. A.2 leads to the following equation (again using s instead of x to denote place).

ρAv∆t︸ ︷︷ ︸
Inflow

=
(
ρAv + ∂(ρAv)

∂x
∆x

)
∆t︸ ︷︷ ︸

Outflow

+ ∂(ρA∆x)

∂t
∆t︸ ︷︷ ︸

Net flow

(A.2)

I.e., inflow is equal to outflow plus the mass that is kept within the element.

A.2. Large Test Cases

Figure A.3: Filter test case.

A.2. Large Test Cases 79

Figure A.4: Noord-Holland 1 test case.

Figure A.5: Noord-Holland 2 test case.

A.3. Hopcroft-Karp Pseudocode 80

A.3. Hopcroft-Karp Pseudocode

Algorithm A.1 Hopcroft-Karp

Input: Graph G
Output: Maximum matching PairU, MSize

for u in U do
PairU(u) ← 0

end for
for v in V do

PairV(v) ← 0
end for
MSize ← 0
while BFS() = true do

for u in U do
if PairU(u) = 0 then

if DFS(u) = true then
MSize ← MSize + 1

end if
end if

end for
end while
return MSize, PairU

Algorithm A.2 Breadth-First Search (BFS)
Input: -
Output: True if augmenting path exists, false otherwise

for u in U do
if PairU(u) = 0 then

Dist(u)←0
Enqueue(u)

else
Dist(u)←∞

end if
end for
Dist(0) ←∞ . Dist is initialised as Dist(0:n)
while Empty(Q) = false do . 0 denotes the null vertex

u ← Dequeue(Q)
if Dist(u)< Dist(0) then

for v adjacent to u do
if Dist(PairV(v)) = ∞ then

Dist(PairV(v)) = Dist(u)+1
end if

end for
end if

end while
return Dist(0) != ∞

A.3. Hopcroft-Karp Pseudocode 81

Algorithm A.3 Depth-First Search (DFS)

Input: A vertex u in U
Output: True if successfully augmented (or u=0), false otherwise

if u != 0 then
for v adjacent to u do

if Dist(PairV(v)) = Dist(u)+1 then
if DFS(PairV(v)) = true then

PairV(v) ← u
PairU(u) ← v
return true

end if
end if

end for
Dist(u)←∞
return false

end if
return true

A.4. Solution Accuracy Test Cases 82

A.4. Solution Accuracy Test Cases

Case name Symbol

airvalve L1

Airvessels L2

boundaries -
channel -
Checkvalves L3

collector -
InfPipesQH -
pump_drivetypes_control L4

Resistances -
SurgeTowers_combined L5

TJunct_brancL_allphases L6

Tstraight_FINAL L7

Tap_combined -
Fcv -
PdCV L8

PRV_combined L9

PuCV L10

valve L11

vent L12

venturi -
weir_combined L13

YJUNC_COMB_ALLPHASES L14

YJUNC_DIV_ALLPHASES -
cooling_water L15

LoadingArm_with_Control L16

Loading_System L17

Pump_trip_control -
Sewage_transient -
trip11_QSd L18

trip17_QSe L19

CAPWAT_241 L20

CAPWAT_242B L21

CAPWAT_257 L22

CAPWAT_258b L23

M129_multiple_200el_qs_oi1 -
Perugia99052608_QS -
Perugia99052609_QS -

Table A.1: Liquid cases.

Case name Symbol

4wayheat H1

Airvessel_pipe H2

checkvalve_1 -
GASBOIL -
HEATDEMDIS -
HEATSUPdownT -
heatsupqh -
heatsupqh_wlim -
heatexchanger_simple -
pipe -
pumpheat -
heatresist -
solarcollector -
surge_tower_pipe H3

valve H4

District_heating_system_EPS -
District_heating_system_RTS -
slug -

Table A.2: Heat cases.

	Abstract
	Acknowledgements
	Nomenclature
	Introduction
	Research Goal and Approach
	Report Outline
	Notation and Conventions

	Wanda
	Background
	Fluid Dynamics
	Pipeline Fluid Dynamics

	The Wanda Model
	Component Types

	Steady Flow
	Numerical Implementation

	Transient Flow
	Numerical Implementation

	Problem Statement
	Steady Flow Singularities
	Undetermined Q
	Undetermined H

	Transient Flow Singularities
	Current Solution Method
	Test Cases
	Singular Test Cases
	Large Test Cases

	Wanda Profiling

	Redesign Requirements
	Problem Summary
	Main Research Question
	Detailed Research Questions
	Robustness
	Efficiency

	Research Approach

	Numerical Methods
	Preliminaries
	Sparse and Band Matrices
	Norms
	Rounding Errors
	Quantifying Solution Errors

	Condition Number
	Right-Hand Side Perturbation
	Definition and Properties
	Matrix and Right-Hand Side Perturbation
	Ambiguity
	Calculating the Condition Number

	LU-Factorisation
	Computing the LU-Factorisation
	Pivoting
	Computing the Condition Number
	Iterative Refinement

	The LAPACK Library

	Bandwidth Minimisation
	Graphs and Matrices
	Reverse Cuthill-McKee
	Asymmetric Matrices
	Results

	Structural Singularities
	Graph-Theoretic Characterisation
	Application to Wanda
	The Hopcroft-Karp Algorithm
	Basic Ideas
	The Algorithm
	Implementation
	Preliminary Results

	Results
	New Solution Method
	Singularity Detection
	Routines Used

	Robustness
	Matrix Correction

	Accuracy
	Procedure
	Iterative Refinement

	Run Time
	Procedure
	Iterative Refinement
	IMSL vs. LAPACK
	Singularity Detection
	LU-Decomposition Computation
	Solution Method Steps
	Matrix Correction Algorithms
	Reference LAPACK vs. Vendor-Optimised LAPACK

	Evaluation

	Conclusions and Recommendations
	Conclusions
	Recommendations

	Bibliography
	Appendix
	Conservation Laws
	Conservation of Momentum
	Conservation of Mass

	Large Test Cases
	Hopcroft-Karp Pseudocode
	Solution Accuracy Test Cases

