
Improving the
Solution
Method in
Wanda

Literature Study
by

L. Huijzer

Student number: 4258878
Project duration: December 5, 2017 – August 31, 2018 (expected)
Thesis committee: Dr. ir. M.B. van Gijzen, TU Delft, supervisor

Prof. Dr. Ir. C. Vuik, TU Delft
Prof. Dr. Ir. A.W. Heemink, TU Delft
Ir. S. van der Zwan, Deltares

Abstract

The Wanda software package developed by Deltares can used for computing both steady state and transient
fluid flow in pipeline systems. Steady state simulations are used for initial system design and transient flow
simulations are used for doing water hammer analysis in pipeline systems. The flow speed and pressure are
the main quantities of interest. For both types of simulations a system consisting of both linear and non-
linear equations needs to be solved for the unknowns, speed and pressure. This system is solved by linearis-
ing the equations using the Newton-Raphson method and solving the resulting system of linear equations.
Currently, this is done by using a matrix solver from the proprietary IMSL numerical library. The problem is
that this solver sometimes either crashes or gets stuck in an infinite loop when dealing with singular matri-
ces, while the proprietary nature of the library only allows for limited troubleshooting. Moreover, the library
requires a paid license.

The goal of this thesis project is to find a solution method that is both robust and easily maintainable, while
being at least as fast as the current solution method. Several techniques are considered. To increase robust-
ness, problematic pipeline systems could potentially be identified before attempting to solve the system of
equations by considering a graph representation of the system of equations or by re-evaluating the underlying
physical model. Another approach is to detect singular matrices via a rank-revealing decomposition or con-
dition number estimation. To meet the performance requirement, fill-in reduction strategies, alternatives
to the Newton-Raphson method and optimisations for other parts of the solution method are considered.
The choice of numerical library also plays a role in performance. The Fortran libraries LAPACK and MUMPS
are considered as alternatives to the current library as they are open source and offered under a permissive
license.

i

Nomenclature

Symbol Quantity Unit

A Cross-sectional area of the fluid m2

c Pressure wave propagation speed ms−1

g Gravitational acceleration ms−2

H Hydraulic or piezometric head (pressure) m
K Bulk modulus kg m−1s−2

O Wetted circumference of the fluid m
p Pressure kg m−1s−2

pv Vapor pressure kg m−1s−2

Q Volumetric flow rate m3s−1

t Time s
v Velocity (average) ms−1

x Space m
z Elevation level m
η Dynamic viscosity kg m−1s−2

λ Friction coefficient s2m−5

ν Kinematic viscosity m2s−1

ρ Density kg m−3

ii

Contents

Abstract i
Nomenclature ii
1 Introduction 1

1.1 Report Structure . 1
1.2 Notation and Conventions . 1

2 Wanda 3
2.1 Background . 3
2.2 Fluid Dynamics . 4

2.2.1 Pipeline Fluid Dynamics . 4
2.3 The Wanda Model. 5

2.3.1 Component Types . 6
2.4 Steady Flow . 9

2.4.1 Numerical Implementation . 9
2.5 Transient Flow . 11

2.5.1 Numerical Implementation . 12

3 Problem Statement 15
3.1 Steady Flow Singularities . 15

3.1.1 Undetermined Q . 15
3.1.2 Undetermined H . 16

3.2 Transient Flow Singularities . 17
3.3 Current Solution Method . 18
3.4 Test Cases . 19

3.4.1 Singular Test Cases. 19
3.4.2 Large Test Cases . 20

3.5 Solution Method Profiling. 21

4 Numerical Methods 23
4.1 Preliminaries . 23

4.1.1 Sparse and Band Matrices . 23
4.1.2 Norms . 24
4.1.3 Rounding Errors . 25
4.1.4 Quantifying Solution Errors . 25

4.2 Condition Number . 26
4.2.1 Right-Hand Side Perturbation . 26
4.2.2 Definition and Properties . 27
4.2.3 Matrix and Right-Hand Side Perturbation . 28
4.2.4 Ambiguity . 28
4.2.5 Calculating the Condition Number . 28

4.3 LU -Factorisation . 28
4.3.1 Computing the LU -Factorisation . 30
4.3.2 Pivoting . 31
4.3.3 Computing the Condition Number . 34
4.3.4 Iterative Refinement . 36
4.3.5 Matrix Scaling . 37

4.4 Rank-Revealing Decompositions . 37
4.4.1 Singular Value Decomposition . 37
4.4.2 QR-Factorisation . 38

iii

Contents iv

4.5 Other Performance Optimisations . 38
4.5.1 Fill-in Reduction Strategies . 38
4.5.2 Newton-Raphson Alternatives . 38

4.6 Numerical Libraries . 39
4.6.1 LAPACK . 39
4.6.2 MUMPS . 39

4.7 Structural Singularity . 40

5 Thesis Proposal 42
5.1 Problem Summary . 42
5.2 Main Research Question . 42
5.3 Detailed Research Questions . 42

5.3.1 Robustness. 42
5.3.2 Efficiency . 43

5.4 Research Approach . 43

Bibliography 44
A Wanda 46

A.1 Conservation Laws . 46
A.1.1 Conservation of Momentum . 46
A.1.2 Conservation of Mass . 47

A.2 Large Test Cases. 48

1
Introduction

Designing a pipeline system such as a drinking water network involves a lot of considerations. The right
pumping equipment and pipeline diameter need to be selected so as to guarantee sufficient drinking water
being available for every household. But these are not the only considerations. What happens, for example,
when a pump trips or a valve unexpectedly closes? These kinds of situations cause pressure waves, called
water hammer, to propagate through the system. Water hammer can cause damages to pumps and other
equipment and can even result in broken pipes. Apart from the economic costs, the public health is also in
play when dirt and other matter leaks into the drinking water network. In order to prevent these kind of prob-
lems a well designed pipeline system is required which is able to handle potential water hammer scenarios.
Since doing experiments and using analytical methods are infeasible on such a scale, computational meth-
ods are required. This is where Wanda comes into play.

The current solution method in Wanda requires some attention. Improvements can be made in terms of ro-
bustness, maintainability and performance. Robustness is an issue since there are pipeline systems for which
the solution method either crashes or gets stuck in an infinite loop. Connected to this issue is maintainability:
part of the current solution method is based on proprietary software and hence does not lend itself to trou-
bleshooting. A move to an open source implementation with a permissive license is desirable. The previous
two aspects are key, but yielding ground in terms of performance is not an option. The focus of this literature
study is on finding methods that yield improvements in these three areas.

1.1. Report Structure
Chapter 2 starts with introducing the Wanda model. The fluid dynamics for the component types will be
treated, after which both the steady state and transient flow models and their numerical implementation
will be covered. Chapter 3 illustrates, using examples, the problem with the current solution method. Test
cases are introduced which are to be used to test both the robustness and performance of solution methods,
as well as some preliminary test results of the current method. Chapter 4 introduces numerical methods
which could improve the solution method in terms of robustness, maintainability and performance. The
final chapter, Chapter 5, sets the scope of the research using research questions and proposes an approach to
answering these questions.

1.2. Notation and Conventions
The following notation and conventions will be used throughout this report.

Important terms and definitions are written in bold font when introduced for the first time.

Matrices will be denoted by upper case letters, e.g.,

M =
[

M11 M12

M21 M22

]
(1.1)

and vectors in lower case bold font, e.g.,

1

1.2. Notation and Conventions 2

u = [u1 u2 . . . un]>. (1.2)

In pseudo code, the following notation will be used for matrix and vector indices.

Algorithm 1.1 Notation Example

M(i , j) denotes the element Mi j

M(i , :) denotes the i th row
M(:, j) denotes the j th column
u(k : l) denotes the elements k to l
M(k : l , j) denotes the elements k to l of column j
M(i , :) ·M(j , :) denotes the inner product between the i th and j th rows

Approximate solutions to equations are written with a hat. For example, u is an exact solution to Mu = b,
while û is an approximate solution to the same equation.

Example 1.1. Examples are given in boxes.

2
Wanda

This chapter serves as a general introduction to Wanda. It includes some background information on Wanda,
the description of the physical model and the numerical implementation. The material covered here is based
on the notes on fluid dynamics and Wanda as provided by Deltares [4, 6], which in turn is (partially) based on
the book on fluid dynamics by Wylie and Streeter [28].

2.1. Background
Wanda is a software package that allows for the design, control and optimisation of pipeline systems. It can
be used to simulate gas or oil pipeline systems, drinking water networks, sewage systems and various other
systems involving the transportation of fluids. These systems consist of hydraulic components such as pumps
and reservoirs, as well as pipes. Important aspects of pipeline systems can be studied. These aspects include:

• Flow capacity, velocity and distribution

• Cavitation, water hammer and dynamic behaviour

• Pressure and safety

• Pump efficiency, system characteristics

• Performance monitoring and control induced pressure waves

This shows that Wanda can be used throughout the lifetime of a pipeline system. From initial design up to
real time control and evaluation.

Figure 2.1: Wanda architecture.

As shown in Fig. 2.1, Wanda can be used to simulate liquid flow, heat transfer and multiphase systems. The
control module allows for a system to be linked to a control system. This can be used to monitor and control

3

2.2. Fluid Dynamics 4

the flow in a pipeline system.

Wanda can be used for two types of simulations, steady and transient flow. The steady state flow of a pipeline
network can be used for the design of a pipeline system. A well designed network allows for a balanced flow
and pressure. These type of calculations can be used for component selection, e.g., for the selection of pipe
diameter and pumping equipment. The other simulation type calculates transient (or unsteady) flow in a
pipeline system. This can be used to evaluate a system’s performance and safety by measuring the pressure
and flow in certain situations. These situations can include pump start-up, pump trip and other control
actions such as closing a valve. Phenomena such as water hammer and cavitation are included in the model.
Water hammer is a pressure wave travelling through the system, which can be caused by, e.g., the sudden
closing of a valve. These waves can cause damages to pumps and other parts of the system. Cavitation is the
formation of vapour cavities in liquid, which impacts the flow in a system and implosion of cavities can cause
damages to pumps and other components. For economic and safety reasons, it is of special importance to
evaluate the impact of these phenomena on a pipeline system.

2.2. Fluid Dynamics
The material discussed in this chapter only applies to the liquid module of Wanda. For the other modules the
concepts are similar with the main difference being the relevant quantities and the equations governing the
dynamics.

The Wanda model simulates one-dimensional fluid dynamics. The basic fluid properties are densityρ [kg m−3],
pressure p [kg m−1s−2] and speed v [ms−1]. Related to p is the vapour pressure pv [kg m−1s−2]. Vapour pres-
sure is the absolute pressure at which a fluid vaporises. Vaporisation due to an increase in temperature at a
given pressure is called boiling, whereas vaporisation due to a decrease in pressure at a given temperature
is called cavitation. There are two additional properties of fluids that determine their behaviour. The first is
compressibility K [kg m−1s−2], which is a measure of the relative change in volume to change in pressure.
Secondly, kinematic viscosity η [kg m−1s−2] or dynamic viscosity ν [m2s−1] is relevant. Viscosity is a measure
of resistance to deformation by stress, which can, for example, be caused by friction along the pipe wall. This
slows the fluid down.

For the purposes of which Wanda has been developed viscosity is always relevant, but compressibility not
necessarily. More specifically, compressibility is only relevant when considering transient flow. A more de-
tailed treatment of why this is the case will be given in Sections 2.4 and 2.5.

2.2.1. Pipeline Fluid Dynamics
The Wanda software package models fluid dynamics in pipeline systems. For this purpose the quantities of
interest differ slightly from the ones which are of interests in fluid dynamics in general. Wanda users are pri-
marily interested in the flow through and pressure in pipeline systems. These properties are measured by
the volumetric flow rate Q [m3s−1] and energy head H [m]. Other relevant quantities can be derived from
these two quantities. Volumetric flow rate is actually just a scaling of v since Q = Av , where A denotes the
cross-sectional area of the fluid and v the average speed in A. Note that free-surface flow is not treated here
and that pipelines are assumed to be always completely filled.

The energy head H is given as

H = p

ρg
+ z, (2.1)

where z denotes the height difference between the piezometric reference level and the height level at which
H is measured. Formally H includes the additional term v2/2g , but it is omitted here since it is usually small
compared to the other quantities. Wanda internally does use the full definition for computations. Note that,
since the model is only one-dimensional, p denotes the centreline pressure in the pipeline.

2.3. The Wanda Model 5

Figure 2.2: Hydraulic head.

As shown in Fig. 2.2, H is the sum of pressure head (p/ρg) and elevation head (z), as measured relative to a
fixed reference plane.

These two quantities are the main quantities of interest in the Wanda model.

2.3. The Wanda Model
In order to understand how Wanda models fluid dynamics in pipeline systems, it is first necessary to intro-
duce the broad framework of how these pipeline networks are modelled. For this purpose this section starts
with an example.

Example 2.1. Fig. 2.4 depicts an example of a pipeline system configured in Wanda. This system is a
sewage system and consists of two pumping stations which pump the fluid from the two reservoirs B1

and B3 through a pipeline to the outlet wier W1. It consists of five types of components.

(a) Check valve (b) Reservoir (c) Pipeline (d) Pump (e) Outlet weir

Figure 2.3: Sewage system components.

The components used in the sewage system are depicted in Fig. 2.3. The green coloured check valves
and pumps are in operation and the red ones are out of operation. The bottom pumping station
consists of a reservoir B3 from which fluid is pumped by pump P5 through pipeline P3 and P2 to outlet
weir W1. Pump P6 is out of operation. Each pump is protected by a check valve, which prevents
fluid from flowing through the pump in the wrong direction, for example, when the pump is out of
operation. At the blue connection points the components are connected via ’edges’, which are referred

2.3. The Wanda Model 6

Figure 2.4: Typical sewage system.

to as hydraulic nodes, or H-nodes. These H-nodes represent physical connection pieces which have
negligible influence on the flow. In Section 3.2 it will turn out that they are also helpful tools in the
numerical implementation of the model. They will be treated in more detail later on. The green- and
red-coloured points are the control connect points. At these points, components from the control
module can be connected to the hydraulic components.

The next section introduces the basic types of components which are required to translate physical reality
into a mathematical model and some additional definitions and concepts.

2.3.1. Component Types
What Wanda does is compute the unknowns H and Q in each component and in each H-node in the network.
The components in Fig. 2.3 show that they have either one or two connection points with the rest of the
network. This marks the division between fall type and supplier type components.

Fall Type Components
Fall type components are components which cause head loss in the fluid that flows through it and are char-
acterised by having two connection points.

Example 2.2. The symbols used in Wanda for some of the fall type components are given in Fig. 2.5.

Figure 2.5: Fall type components: Check valve, pump and valve.

The fluid is assumed to be incompressible in fall type components. This assumption can be justified by the

2.3. The Wanda Model 7

fact that in general the volume of other hydraulic components is very small compared to the volume of a
pipe. Therefore, for these components, the change in flow due to compression is negligible. This entails that
each fall type component can be described by a formula relating the volumetric flow rate Qi through the
component to the head loss ∆H = Hi −Hi+1 over the length of the component, which has the general form

f (Hi , Hi+1,Qi , t) = 0, (2.2)

where Hi and Hi+1 denote the head at points i and i +1 at the opposite ends of the component.

Example 2.3. An example of an equation describing a fall type components is the equation

Hi −Hi+1 =CQi |Qi |, (2.3)

which describes the flow through an opened check valve. C can be considered to be the valve loss
coefficient.

Note that H and Q are, in the transient case, time-dependent. For each fall type component Eq. (2.2) is
supplemented by

Qi =Qi+1, (2.4)

i.e., inflow is equal to outflow. These components cannot add or withdraw fluid from the network. Note that
each fall type component adds two points (i and i +1), with in each point two unknowns (H and Q), and two
equations to the network. In steady flow pipes too are fall type components, as fluid compressibility is no
concern, and are described by the Darcy-Weisbach equation

∆H = λL

8A/O

Qi |Qi |
g A2 , (2.5)

where λ denotes the friction coefficient, L the length of the pipe and O the pipe’s cross-sectional perimeter
[28]. How pipes are handled in transient flow will be described in Section 2.5.

Supplier Type Components
Supplier type components are components which add fluid to or withdraw fluid from the network and are
characterised by having only one connection point.

Example 2.4. The reservoir, surge tower and vent are instances of supplier type components.

Figure 2.6: Supplier type components: Reservoir, surge tower and vent.

Supplier type components are described by a relation between the head level Hi and the in- or outgoing flow
rate Qi at the connection point. These equations have the general form

g (Hi ,Qi) = 0 (2.6)

In Wanda, reservoirs can be of either finite or infinite size and can be used as a boundary condition to pre-
scribe the H or Q at some point.

Example 2.5. The reservoir of infinite size is described by

Hi = ci , (2.7)

where ci ∈R is constant.

2.3. The Wanda Model 8

In fact, each supplier type component acts as a boundary condition; they allow fluid flow into or out of the
network. Note that each supplier type component provides one point, with two unknowns, and one equation.

Component Phases
It is important to note that components can have different phases, that is, states. This entails that compo-
nents may be described by different equations at different points in time.

Example 2.6. For a valve V Eq. (2.2) takes the following form

fV (Hi , Hi+1,Qi , t) =
{

Hi −Hi+1 −d(θ)|Qi |Qi , if V is not closed at t
Qi , if V is closed at t

, (2.8)

where d ∈R is a known variable which depends on the parameter θ which denotes how far opened the
valve is.

Supplier type components such as outlets can also have different phases.

Hydraulic Nodes
In addition to these two hydraulic components, additional equations are provided by the ’edges’. As can be
seen in Fig. 2.4, the components are not directly linked to each other. For example, pipe P2 is connected to
outlet W1 via an ’edge’ H. H is actually an example of a hydraulic node (H-node).

Example 2.7. In this system, N1, N2 and N3 are the H-nodes which connect the components.

Figure 2.7: H-node example.

In principle, each H-node can be connected to an unlimited number of components. It was mentioned that
fall type components only provide two equations for a total of four unknowns and supplier type components
provide one equation for two unknowns. In other words, not enough equations to determine the unknowns.
The other required equations are provided by the H-node(s) connected to the component and, in relation
to this, each component provides one additional equation per H-node it is connected to. Each H-node N
provides the equations

QN + ∑
i∈N +

Qi − ∑
j∈N -

Q j = 0

QN = 0
, (2.9)

where N + and N - denote the sets of in- and outflow points connected to N , respectively. For each point
connected to N Wanda chooses whether it is an in- or outflow point, i.e., this is just a convention and has
nothing to do with the actual flow direction. These equations together enforce that the volumetric flow rates
of the components connected to N are coupled, so N simply serves a middleman which connects the com-
ponents, but does not of itself have any influence on the fluid flow. Furthermore, each component provides
an equation of the form

Hi = HN (2.10)

for each of its end points i connected to H-node N . This simply enforces H to be equal in the points con-
nected to N of the relevant components. Section 3.2 illustrates why adding these equations for each H-node
is helpful. Note that an elevation level can be set for each H-node. This elevation level is also applied to the

2.4. Steady Flow 9

connected components. The elevation level of an H-node serves as a reference level for the head H in the
connected components. It is easy to check that the total number of equations and unknowns for Fig. 2.7 in
steady flow are both equal to 24, if it is assumed that the two points at the extremities of the pipes are not
connected to any other components.

Nodal Sets
Every pipeline system is divided into nodal sets and pipelines. A nodal set is simply a set of non-pipe compo-
nents and H-nodes in between pipes. Both ends of a pipe are connected to nodal sets, which are formed by
H-nodes and components such a pumps and reservoirs, but also, for example, pipe branches or changes in
pipe diameter. This concept plays a role in the solution method for transient flow in Section 2.5. The sewage
system example of Fig. 2.4 consists of three pipelines and four nodal sets between pipelines. Each pumping
station forms a nodal set and G with pipe junction and H are also nodal sets. As illustrated by this system,
these nodal sets can contain numerous different components.

Variable Ordering
At each physical connect point and each H-node, there are two unknowns variables Hi and Qi . The number-
ing of the physical connection points and H-nodes and thus the ordering of the equations and variables, is
determined as follows. The starting point is the component which is added first in the Wanda user interface;
from there on, a breadth-first search is done through the network where at each step an H-node and the phys-
ical connection points of the connected components are numbered. This equation and variable numbering
is the ordering used by the solution method.

2.4. Steady Flow
A steady flow is, as the name suggests, a flow that does not change over time, i.e.,

∂ρ

∂t
= ∂p

∂t
= ∂v

∂t
= 0 (2.11)

Hence these properties can only vary with place. The fluid is assumed to be viscous, but compressibility is
not taken into account. After all, if it were that case that ρ(x1) > ρ(x2), then the fluid would tend to an equilib-
rium state where ρ is homogeneous, i.e., it would be unsteady. The steady flow is mainly used for designing a
pipeline system as well as providing an initial value for transient flow.

As mentioned before, fluid flow in pipes is described by the Darcy-Weisbach equation

∆H = λL

8A/O

Q|Q|
g A2 (2.12)

in case of steady state flow. Here Q|Q| is used instead of Q2 to be able to determine the direction of the flow.
These equations coupled with equations describing the flow in components such as pumps and reservoirs
lead to a system of equations that should be solved to obtain information about the characteristics of the
flow (most importantly Q, H) through the network. Section 2.4.1 will describe the solution method in more
detail.

2.4.1. Numerical Implementation
To summarise, in the steady flow case each fall type component provides Eq. (2.2), Eq. (2.4) and Eq. (2.10),
which gives a total of four equations for the same number of unknowns. In steady flow, pipes are also con-
sidered fall type components since the fluid is incompressible. Supplier type components bring Eq. (2.6) and
Eq. (2.10) to the table. Finally, each H-node provides the system of equations as given in Eq. (2.9). This results
in a system of equations with the same number of equations as unknowns.

Equations are in general non-linear. The Newton-Raphson method is applied to obtain a solution to the
system of equations. First the non-linear equations of the form Eq. (2.2) are linearised.

f (H (k+1)
i , H (k+1)

i+1 ,Q(k+1)
i) = f (H (k)

i , H (k)
i+1,Q(k)

i)+
(
∂ f

∂Hi

)(k)

[H (k+1)
i −H (k)

i] (2.13)

2.4. Steady Flow 10

+
(

∂ f

∂Hi+1

)(k)

[H (k+1)
i+1 −H (k)

i+1]+
(
∂ f

∂Qi

)(k)

[Q(k+1)
i −Q(k)

i]+h.o.t.

Here k denotes the iteration number. Equations of the form Eq. (2.6) are linearised in a similar manner, if
necessary. The higher order terms are ignored, resulting in quadratic convergence behaviour. Now, by setting

f (H (k+1)
i , H (k+1)

i+1 ,Q(k+1)
i) = 0, (2.14)

an iterative procedure is obtained. For the whole system of equations this procedure can be written as

f(u(k+1)) ≈ f(u(k))+ J(u(k))
[

u(k+1) −u(k)
]
= 0 (2.15)

where u(k) = [Q(k)
1 H (k)

1 . . . Q(k)
n H (k)

n]> and J(u(k)) denotes the Jacobian matrix. Using some initial guess, the
iterative process is continued until for each pipe Pm and each point j the condition H (k+1)

j −H (k)
j < ε1

Q(k+1)
m −Q(k)

m < ε2

(2.16)

holds for chosen ε1,ε2 ∈R.

Example 2.8. Consider the following pipeline system.

Figure 2.8: Small pipeline system.

The small pipeline system given in Fig. 2.8 leads to the following system of equations.

H1 = c1

Q A +Q1 −Q2 = 0
Q A = 0
HA = H1

HA = H2

H2 −H3 = λL

8A/O

Q2|Q2|
A2g

Q2 =Q3

HB = H3

HB = H4

QB = 0
QB +Q3 +Q4 = 0

H4 = c2

(2.17)

After linearisation, this system can be written in matrix form as

2.5. Transient Flow 11

0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 −1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 −1 0 0 0 0 0 0 0 0
0 0 0 −1 0 1 0 0 0 0 0 0
0 0 0 0 −c3 1 0 −1 0 0 0 0
0 0 0 0 1 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 −1 0 0
0 0 0 0 0 0 0 0 0 −1 0 1
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

Q1

H1

Q A

HA

Q2

H2

Q3

H3

QB

HB

Q4

H4

=

c1

0
0
0
0
c4

0
0
0
0
0
c2

, (2.18)

where c3,c4 can be determined using Eq. (2.13).

In general, each system can be written as

Mu = b, (2.19)

where M ∈ Rn×n , b,u ∈ Rn and n denotes the number of unknowns. The matrix and right hand side vector
change each iteration of the Newton-Raphson method. The matrices are generally asymmetric, sparse and
banded. Note that a (unique) solution need not exist, even though the number of unknowns is equal to the
number of equations. If in Eq. (2.17) Q1 = Q4 = 0 were prescribed on the boundaries instead of H1 and H4,
the equation

H2 −H3 = λL

8A/O

Q2|Q2|
A2g

(2.20)

has an infinite number of solutions. So at least one point with prescribed H is required for a unique solution
to exist. Even then, as will be shown in Section 3.1, a unique solution need not exist for some pipeline systems.

2.5. Transient Flow
Transient flow can change in place and time. As mentioned before, the only components in which compress-
ibility is taken into account are pipes. This allows transient flow to incorporate the phenomena cavitation and
water hammer, which are caused by pressure waves in the network. Changes in v in a network lead to changes
in pressure, which propagate through the network as pressure waves. If, for example, a valve suddenly closes,
an overpressure wave will propagate upstream of the valve through the network. The momentum of the fluid
will cause it to be compressed at the upstream side and decompressed at the downstream side of the valve.
Compressibility of the fluid entails that the fluid density can vary throughout the pipe, hence the pipe’s in-
ternal points need to be simulated as well. Note that in Wanda the cavitation is assumed to stay at the same
place, whereas in reality it is possible that cavitation moves along with the flow. This assumption results in a
much simpler model, while staying accurate enough to be useful.

In transient flow, the fluid flow in pipes is described by two conservation laws. First there is the conservation
of momentum.

∂v

∂t
+ g

∂H

∂x
+ λ

8A/O
v |v | = 0 (2.21)

The friction term results from the Darcy-Weisbach equation. This equation is derived from Eq. (A.1). The full
derivation can be found in [25] and [28].

Secondly, the law of conservation of mass applies, as given by

∂v

∂x
+ g

c2

∂H

∂t
= 0, (2.22)

where

2.5. Transient Flow 12

c = 1√√√√ρ

(
1

K
+ 1

A

dA

dp
+ 1

∆x

d∆x

dp

) , (2.23)

denotes the (pressure) wave propagation speed. It is derived from the equation Eq. (A.2). One of the assump-
tions in the derivation is that changes in ρ have little effect on flow compared to changes in A and ∆x (i.e.
the element volume), hence ρ is assumed to be constant. Change in ∆x means that the pipe either stretches
or shrinks in length due to pressure. Changes in A mark the expansion or contraction of a cross-section of
the pipe. In case of overpressure in stiff, thick-walled pipes and in case of under-pressure in all pipes, the
changes in A and ∆x are linearly dependent on the change in p. In other words, in these cases dA/dp and
d∆x/dp are constant and hence c is constant. In general though, c will be a non-linear function of p. For the
full derivation of the equation, the reader is referred to [4] or [28].

The system of Eqs. (2.21) and (2.22) consists of two equations. Note that Q can easily be obtained from these
equations via the identity Q = Av . The quantities in c are known as ρ is constant and change in volume to
pressure is a known property of the pipeline, hence the two unknowns H and v (or Q) can, in principle, be
solved from this system. The solution method will be explained in the next section.

2.5.1. Numerical Implementation
The only difference between steady flow and transient flow is that in transient flow the fluid is compressible
in pipes. This may seem like a small difference, but it actually has a big impact on the model. Now the fluid
flow in each pipe is described by the system of equations

∂v

∂t
+ g

∂H

∂x
+ λ

8A/O
v |v | = 0

∂H

∂t
+ c2

g

∂v

∂x
= 0

. (2.24)

This system of equations will be transformed into one ordinary differential equation to which the method of
characteristics is applied. Consider the linear combination

∂v

∂t
+ g

∂H

∂x
+ λ

8A/O
v |v |+β

(
∂H

∂t
+ c2

g

∂v

∂x

)
= 0, (2.25)

for β ∈R. Any two distinct values of β again yield a system of equations which is equivalent to Eq. (2.24). The
goal is to find two specific values for which Eq. (2.25) can be simplified. Rearrangement of the terms yields(

∂v

∂t
+βc2

g

∂v

∂x

)
+β

(
∂H

∂t
+ g

β

∂H

∂x

)
+ λ

8A/O
v |v | = 0 (2.26)

The total derivatives for H and v , assuming x = x(t), are given by

dH

dt
= ∂H

∂t
+ ∂H

∂x

dx

dt
(2.27)

dv

dt
= ∂v

∂t
+ ∂v

∂x

dx

dt
(2.28)

Now, by comparing these total derivatives with the expressions between brackets in Eq. (2.26), it is observed
that if

dx

dt
=βc2

g
= g

β
(2.29)

Eq. (2.26) becomes

β
dH

dt
+ dv

dt
+ λ

8A/O
v |v | = 0, (2.30)

an ordinary differential equation. Eq. (2.29) yields the two solutions

2.5. Transient Flow 13

β=± g

c
(2.31)

for β. By substituting these solutions into Eq. (2.29), the relation

dx

dt
=±c (2.32)

is obtained. Substituting these values into Eq. (2.30) results in the following two systems of equations.

g

c

dH

dt
+ dv

dt
+ λ

8A/O
v |v | = 0

dx

dt
= c

C+ (2.33)

− g

c

dH

dt
+ dv

dt
+ λ

8A/O
v |v | = 0

dx

dt
=−c

C− (2.34)

Consider a fixed point x ′ in a pipe. The equations C+ and C− describe that the H and v in x ′ are determined
by changes in H and v from the points to the left and right of x ′, respectively. These changes travel as pressure
waves with propagation speed ±c through the pipe.

A finite difference approach will be used to solve the equations above. The pipeline is discretised into parts
of equal size∆x. The resulting internal pipeline nodes are called water hammer nodes (W-nodes). The time-
step is given as ∆t =∆x/c.

Figure 2.9: The x-t plane for constant c.

If c is constant, the x-t grid of a pipeline can be visualised as in Fig. 2.9. Note that the image uses s instead of
x to denote place. Starting at t = 0, the Q and H in the pipeline are given by initial values which are obtained

2.5. Transient Flow 14

by computing the steady flow. The diagonal lines have slope c and −c. Along the line between P1 and P3 with
slope c, the first equation of Eq. (2.33) holds, so integrating that equation from P1 to P3 results in an equation
which can be solved for the unknowns in P3.

g

c

∫ P3

P1

dH

dt
dt +

∫ P3

P1

dv

dt
dt +

∫ P3

P1

λ

8A/O
v |v |dt = 0 (2.35)

The first two terms can directly be integrated. The third term, however, is problematic since v along the
characteristics is unknown. To solve this issue, a first order approximation for v is used, namely, simply the
value of v in point P1 will be used. Now, by denoting Hi and vi as H and v in point Pi , respectively, the
following equation is obtained.

H3 + c

g
v3 −H1 − c

g
v1 =− c

g

λ

8A/O
v1|v1|∆t

2
(2.36)

Similarly, along the line from point P2 to P3, Eq. (2.34) holds, which can be integrated from P2 to P3 and
results in an additional equation for solving the two unknowns in P3.

H3 − c

g
v3 −H2 + c

g
v2 = c

g

λ

8A/O
v2|v2|∆t

2
(2.37)

From these two equations, H3 and v3 at the next time step t +∆t/2 can be computed. By iterating over the
grid points at each time step, a solution is obtained by solving the system of two equations given as above at
each grid point.

Fig. 2.9 shows that, after calculating the state at t +∆t/2, there is a problem with calculating the unknowns at
time t +∆t for boundary points. Only one equation is available for these points. For a point at the left bound-
ary of the plane the first equation of C− will be added to the equations describing the nodal set connected to
the left side of the pipe, similarly, the first equation of C+ will be added to the equations describing the nodal
set at the right side. The systems of equations describing the nodal sets, supplemented by the equations of
the end points of the pipelines, are solved using the Newton-Raphson method. At every time step t this leads
to a system of linear equations which can be written as

M(t)u(t) = b(t) (2.38)

This matrix now has a block structure. For every nodal set S, M(t) includes a block M_S(t) of size 2k ×2k,
where k denotes the sum of the number of points in S and the number of pipe end points connected to S.
Each block is linearly independent from each other block, since they are separated by pipes. These blocks,
and the matrix itself, are again asymmetric, banded and sparse.

To summarise, the solution method for transient flow requires the following steps to calculate the unknowns
at time step t +∆t from the previous solution at time t .

1. First H and v for the W-nodes in each pipe will be calculated at time t +∆t/2 using the C+ and C−
equations.

2. Next, the unknowns for the internal W-nodes in each pipe will be calculated at time t +∆t , based on
the solution at time t +∆t/2, again using the C+ and C− equations. The end points of the pipes cannot
be calculated in this step.

3. Now the solution at t +∆t for the components in the nodal sets as well as the points at the extremities
of a pipe will be calculated. The equations governing the components in the nodal sets will be supple-
mented by a C+ or C− equation for the boundary point(s) of the pipe(s) connected to the relevant nodal
set.

In case c is not constant, obtaining a solution requires a bit more work, but the main idea remains the same.
The solution method used in this case is simply an adjusted method of characteristics. A detailed treatment
can be found in [28].

3
Problem Statement

The matrices produced by Wanda for solving steady or unsteady state problems are usually non-singular,
however, matrices can be singular. There are two situations in which this happens. The first case is when
the error occurs during steady state flow simulation. The other case is singularities due to phase changes in
components during transient flow simulations. Both cases will be illustrated using examples. Furthermore,
it will be explained why these cases are a problem for the current solution method. Finally, test cases are
introduced which form the minimal set of problems a new solution method should perform well on.

3.1. Steady Flow Singularities
Systems which cannot be solved in steady state flow are usually systems which make no sense in the physical
world. These errors often occur due to user error. Two steady flow examples will be given.

3.1.1. Undetermined Q

Figure 3.1: System leading to singular matrix due to user error.

Fig. 3.1 gives an example of such a system. This system consists of two boundary conditions B1 and B2 with
prescribed H , which are connected by a hydraulic node A. It makes no physical sense, as it simply consists
of two reservoirs directly connected to each other. In steady state this system leads to the following set of
equations.

H1 = c1

H1 = HA

Q A +Q1 +Q2 = 0
Q A = 0
H2 = HA

H2 = c2

(3.1)

15

3.1. Steady Flow Singularities 16

In each hydraulic component and in each hydraulic node there are two unknowns Q and H , hence there are
a total of six unknown variables. The system also gives rise to six linear equations. If c1 = c2 the system has an
infinite number of solutions. There is no a priori preference for any particular solution. If c1 6= c2 the system
has no solution at all. In both cases the program should return an error message in which the user is notified
of the mistake. The current matrix solver, however, simply crashes or gets stuck in an infinite loop on singular
matrices and does not return an error message, hence a more robust matrix solver is desired.

3.1.2. Undetermined H
This example is a revisit of Example 2.8.

Figure 3.2: Small pipeline system.

The boundary conditions are intentionally left blank in Fig. 3.2. The system of equations is given as follows.

f1(H1,Q1) = 0
Q A +Q1 −Q2 = 0

Q A = 0
HA = H1

HA = H2

H2 −H3 = λL

8A/O

Q2|Q2|
A2g

Q2 =Q3

HB = H3

HB = H4

QB = 0
QB +Q3 +Q4 = 0

f2(H4,Q4) = 0

, (3.2)

where f1 and f2 denote the B1 and B2 boundary conditions, respectively. Assume the boundary conditions
are chosen such that, if a flow exists, it flows from B1 to B2. There are now three cases to consider for the
boundary conditions. Both boundary conditions prescribe H , exactly one prescribes Q and the other H , or
both prescribe Q.

1. As in Eq. (2.17), both boundary conditions prescribing H results in a unique solution for the system. All
the Hi ’s are determined by the boundary conditions and the Qi ’s are determined by the Darcy-Weisbach
equation.

2. If one boundary prescribes H and the other Q, the system is also uniquely determined. On one side of
the pipe all Hi ’s are determined and at the other all Qi ’s. The Darcy-Weisbach equations couples the
variables on both sides.

3. There is, however, a problem with prescribing Q on both sides. Assume Q1 = c1 and Q4 = c4. Now H
cannot be determined, as opposed to Q in the previous example. If c1 6= −c4, the system has no solution
at all. If c1 =−c4, it has an infinite number of solutions.

3.2. Transient Flow Singularities 17

In this case Wanda asks to prescribe H on one of the H-nodes such that H becomes determined. The next
section will describe in more detail how this problem is handled.

3.2. Transient Flow Singularities
A different matter is singularity due to, e.g., a closing valve or tripping pump. These actions can make (parts
of) the pipeline system undetermined (without considering additional information) in transient flow. This
issue should be avoided by Wanda itself as it is not due to user error. The following example illustrates how
Wanda handles undetermined systems due to phase changes.

Figure 3.3: System leading to singular matrix due to phase transitions.

The pipeline system given in Fig. 3.3 consists of two supplier type components, three fall type components
and four hydraulic nodes. This results in a total of twenty-four unknowns and the same number of equations.
The system of equations describing the network is given by

H1 = c1

H1 = HA

Q A +Q1 −Q2 = 0
Q A = 0
H2 = HA

f1(H2, H3,Q2, t) = 0
Q2 =Q3

H3 = HB

QB +Q3 −Q4 = 0
QB = 0
H4 = HB

f2(H4, H5,Q4, t) = 0
Q4 =Q5

H5 = HC

QC +Q5 −Q6 = 0
QC = 0
H6 = HC

f3(H6, H7,Q6, t) = 0
Q6 =Q7

H7 = HD

QD +Q7 +Q8 = 0
QD = 0
H8 = HD

H8 = c2

, (3.3)

where

3.3. Current Solution Method 18

f j (Hi , Hi+1,Qi , t) =
{

Hi −Hi+1 −d(θ)|Qi |Qi , if V j is not closed at t
Qi , if V j is closed at t

(3.4)

for a known d(θ) which depends on how far opened the valve is. Assume, if a flow exists, it flows from B1

to B2. Suppose that all valves are open at t = 0. If at most one of V1 and V3 is closed at the next time step
t = ∆t , the system is fully determined. If both are closed at t = ∆t , H becomes undetermined in the part of
the system between V1 and V3. This part of the system is described by

Q2 =Q3

H3 = HB

QB +Q3 −Q4 = 0
QB = 0
H4 = HB

f2(H4, H5,Q4, t) = 0
Q4 =Q5

H5 = HC

QC +Q5 −Q6 = 0
QC = 0
H6 = HC

Q6 =Q7

, (3.5)

If V1 and V3 are closed, it is given that Q2 =Q6 = 0. From Eq. (3.5) it follows that

Q3 =QB =Q4 =Q5 =QC =Q6 = 0 (3.6)

If V2 is (partly) opened, it also follows that

H3 = HB = H4 = H5 = HC = H6, (3.7)

but there is no way to determine H from the linear system. Since V1 and V3 were open at t = 0, there is
information available from the previous time step. Closing these valves leads to no change in the amount
of fluid in the part in between these valves, so it seems reasonable that H will stay the same as well. That is
exactly what Wanda does. It replaces one of the H-node equations QB = 0 or QC = 0 with

HB (t =∆t) = HB (t = 0) or HC (t =∆t) = HC (t = 0) (3.8)

Now both Q and H are fully determined in the system. If V2 is also closed at t =∆t , a similar thing happens,
but now in both node B and C the H from the previous time step should be prescribed.

By replacing equations in this manner, Wanda can adjust singular matrices to make them non-singular. For
the example in Section 3.1.2 the system becomes undetermined if both boundary conditions prescribe Q.
When calculating steady state flow, Wanda will take H equal to the elevation level of the H-node. Using this
information Wanda will calculate a solution, but it will also return an error that H is prescribed on a node. To
obtain a suitable solution, the user is prompted to prescribe H on the H-node. If node HB is prescribed and
c1 6= −c4, the equation

QB = 0 (3.9)

will fail to hold. It means that an H-node does have its own flow, which makes no sense physically. Wanda
returns an additional error to notify the user of this.

3.3. Current Solution Method
These examples show that an underdetermined system where H is undetermined is modified in such a way
that it becomes determined.1 The method of determining if H is undetermined is run after every phase
change. It is an expensive routine, hence it could be worth optimising.

1Similarly, in the heat module pressure p and/or T can become undetermined and are handled appropriately.

3.4. Test Cases 19

The main problem is the case where Q is undetermined. Wanda does not have a routine in place to detect
this problem in all cases. The current matrix solver sometimes detects singular matrices, but when it does
not it either crashes without giving any useful feedback or it gets stuck in an infinite loop. The current solver
is the LSLXG routine from the Fortran-based, proprietary International Mathematics and Statistics Library
(IMSL) provided by Rogue Wave Software. This routine obtains an LU -decomposition using a Markowitz
pivoting strategy of the matrix, which is used to solve the system of linear equations [3]. Next chapter will
include more detail on how a solution is obtained using the LU -decomposition. Another drawback of the
IMSL routine is that it requires a paid license. The primary goal is to find a method to detect and appropriately
handle singular matrices and a matrix solver that is at least as fast as the current one without requiring paid
licenses. I.e., the desire is to find and implement a robust, maintainable and fast solution method. In order to
evaluate and compare solution methods test cases are required. The next section introduces test cases which
are to be used as benchmarks.

3.4. Test Cases
The main goal is handling singular matrices, hence test cases resulting in singular matrices are required. The
cases where H is undetermined are already handled, hence especially cases where Q is undetermined are
of interest. Tests for singular matrices are given in Section 3.4.1. Since speed is also important, large, non-
singular test cases are included in Section 3.4.2. All these test cases together form a minimal set of problems
on which a solution method should perform well.

3.4.1. Singular Test Cases
The following table shows the test cases and their most important characteristics.

Name Type Undet. H-components n nnz

H boundary Steady Q 2 6 10
Shaft Steady Q 3 12 21
Unsteady shaft Transient Q 3 12 21
Q boundary with pipe Steady H 3 12 23
Valve phase changes Transient H 5 24 49

Table 3.1: Singular test cases.

Here n denotes the number of unknowns and nnz denotes the number of non-zero elements in the matrix
for the steady state flow. Due to phase changes, in transient flow nnz can change per time step, hence it is
omitted from the table. For each of the test cases a visualisation and a short description follows.

H Boundary
This is the problem as discussed in Section 3.1.1.

Shaft

Figure 3.4: Shaft test case.

3.4. Test Cases 20

The network is given in Fig. 3.4. It consists of two boundary conditions with prescribed H and in between a
shaft. It is given by the following system of equations.

H1 = c1

HC = H1

Q1 +QC +Q2 = 0
QC = 0
HC = H2

f (H2, H3) = 0
Q2 =Q3

HD = H3

Q3 +QD −Q4 = 0
QD = 0
HD = H4

H4 = c4

, (3.10)

where

f (H2, H3) =
{

H2 −H3, if S2 is submerged
H3 − c3, if S2 is partially filled

(3.11)

If S2 is submerged the upstream and downstream H are decoupled and c1 = c3 is required for a solution to
exist. If S2 is partially filled, both boundary conditions should be equal, i.e. c1 = c4, for a solution to exist. In
both cases Q cannot be determined from the system.

Unsteady Shaft
The shaft example can also cause Q to become undetermined when doing transient flow simulations. Since
no algorithm is in place to detect whether Q is undetermined due to phase changes, this issue should be
handled appropriately by the solution method by producing a clear error message. In unsteady state the
equations governing the shaft are given by Q2 −Q3 = A

dH2

dt
f (H2, H3,Q2, t) = 0

(3.12)

where

f (H2, H3,Q2, t) =

H2 −H3, if S2 is submerged at t
H3 − c3, if S2 is partially filled at t

Q2 if S2 is drained at the top at t
(3.13)

If the shaft is drained at the top t = 0 and either submerged or filled at some time step ∆t > 0, Q becomes
undetermined.

Q Boundary With Pipe
This is the example as given in Section 3.1.2.

Valve Phase Changes
See Section 3.2.

3.4.2. Large Test Cases
The table below shows some large test problems with their most important characteristics.

Name H-components n nnz bl bu

Drinking water 82 348 766 56 58
Noord-Holland 1543 6342 14264 308 310
Noord-Holland 2 1178 10718 23829 632 634

Table 3.2: Large test cases.

3.5. Solution Method Profiling 21

Here bl and bu denote the lower and upper bandwidth of the steady state matrix, respectively. The definitions
of bl and bu are given in Section 4.1 and their significance is explained in Section 4.3.2.

Drinking Water
This test case represents a drinking water network with one pumping station. A visualisation is given in
Fig. A.3. The sparsity pattern of the steady state matrix is given in Fig. 3.5a.

Noord-Holland 1
The Noord-Holland 1 test case is a large test case representing a part of the drinking water network in Noord-
Holland. A visualisation is given in Fig. A.4. The sparsity pattern of the steady state matrix is given in Fig. 3.5b.

Noord-Holland 2
This case also represents part of the drinking water network in Noord-Holland. A visualisation is given in
Fig. A.5. The sparsity pattern of the steady state matrix is given in Fig. 3.5c.

(a) Drinking water (b) Noord-Holland 1

(c) Noord-Holland 2

Figure 3.5: Sparsity pattern large test cases

3.5. Solution Method Profiling
Profiling results of the current solution method of Wanda for each of the large test cases are given here. The
results are obtained by simulating a transient flow scenario, which differs per case. Note that these results
should not be considered as final benchmarks. The results are obtained over just one run and are meant

3.5. Solution Method Profiling 22

to give an indication of how long each part of the solution method takes. This information can be used to
identify the bottlenecks which are worth optimising performance-wise.

H-detect IMSL solver Matrix build Miscellaneous
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
er

ce
nt

ag
e

of
 ti

m
e

Total time: 68s

(a) Noord-Holland 1

H-detect IMSL solver Matrix build Miscellaneous
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
er

ce
nt

ag
e

of
 ti

m
e

Total time: 1654s

(b) Noord-Holland 2

Figure 3.6: Profiling results test cases.

Fig. 3.6 shows the percentage of computation time for the most significant parts of the solution methods. It
turns out that the drinking water case is too small for any meaningful test results; the actual solution method
takes an insignificant amount of time compared to all the other routines in Wanda. For this reason the results
of this case are omitted here.

H-detect is the routine that searches for nodes where H is undetermined after phase changes have occurred
and, if applicable, tries to fix this. For the Noord-Holland 1 case, this routine takes a significant amount of
time. This indicates that there exist cases involving so many phase changes that it may be worth optimising
this algorithm. For the Noord-Holland 2 case, this routine is insignificant. The IMSL solver is the part which
solves the systems of linear equations. For both cases, it takes about 20% of the total computation time,
which is significant. The matrix build routine is the routine which gathers all the relevant information from
the components and builds the actual matrix. The miscellaneous category includes all the other routines.
Most of these routines deal with the logistics necessary for carrying out the simulation and are not really part
of the solution method itself. For example, the most time consuming routine in the Noord-Holland 2 test case
is the routine that writes the results to a file. This routine takes more than 20% of the total computation time.

The results show that the IMSL solver and possibly the H-detect algorithm are parts of the solution method
worth optimising.

4
Numerical Methods

Last chapter illustrated the problem with the current solution method. The goal of this chapter is twofold.
It introduces methods which would improve the robustness of the solution method. Furthermore, methods
that replace the current IMSL routine are introduced. The content of this chapter is for a significant part
based on Golub and Van Loan [16].

4.1. Preliminaries
Let M ∈Rn×n and b,u ∈Rn . This chapter is centred around finding a solution u to the equation

Mu = b. (4.1)

First some preliminary concepts are introduced.

4.1.1. Sparse and Band Matrices
A matrix M ∈Rm×n is called sparse if only a small number of its entries are non-zero. There is no formal def-
inition of sparsity. Sparse matrices are interesting since, compared to dense matrices, they generally require
less storage space and usually less operations are required for computations involving sparse matrices.

Example 4.1. The IMSLa and MUMPSb numerical libraries, use the coordinate format for storing
matrices [3, 5]. For example, the matrix 0 1 0

2 0 3
0 4 5

 (4.2)

is stored as
i 1 2 2 3 3
j 2 1 3 2 3

value 1 2 3 4 5
(4.3)

including the dimension n and nnz(M), which equal 3 and 5, respectively. For this example the storage
is ordered on row and column, but for both the MUMPS and IMSL solvers this is not necessary.

aSee Section 3.3.
bSee Section 4.6.

A band matrix is a special type of sparse matrix. The upper and lower bandwidth of a matrix is defined as
follows [16].

Definition 4.2. Let M ∈ Rn×n . The lower bandwidth bl of M is given as the minimum number such that
Mi j = 0 whenever i − j > bl . Similarly, the upper bandwidth bu is the minimum number such that Mi j = 0
whenever j − i > bu .

23

4.1. Preliminaries 24

Example 4.3. The matrix 1 2 0
3 4 5
6 0 7

 (4.4)

has lower bandwidth 2 and upper bandwidth 1.

A nice property of band matrices is that only the values within the band need to be stored. Let M ∈Rm×n . The
transformation

i 7→ bu + i − j +1, max(1, j −bu) ≤ i ≤ min(1, j +bl)
j 7→ j , 1 ≤ j ≤ n

(4.5)

defines the band matrix storage, such that M can be stored in Mb ∈ R(bl+bu+1)×n . This storage format is, for
example, used in LAPACK1 routines for band matrices [9].

Example 4.4. The matrix
M11 M12 0 0 0
M21 M22 M23 0 0
M31 M32 M33 M34 0

0 M42 M43 M44 M45

0 0 M53 M54 M55

 (4.6)

with bl = 2 and bu = 1 can be stored in band matrix format as
0 M12 M23 M34 M45

M11 M22 M33 M44 M55

M21 M32 M43 M54 0
M31 M42 M53 0 0

 (4.7)

4.1.2. Norms
A measure of distance between, and size of matrices and vectors is required for, among other purposes, error
analysis. This is formalised in the concept of vector and matrix norms. An example of a vector norm is the
p-norm [16, 26].

Definition 4.5. Let p ∈ [1,∞) and u ∈Rn . The p-norm of u is given by

‖u‖p =
[

n∑
i=1

|ui |p
]1/p

The most regularly used norms are the 1-,2- and ∞-norms.

‖u‖1 =
n∑

i=1
|ui | (4.8)

‖u‖2 =
(

n∑
i=1

|ui |2
)1/2

(4.9)

‖u‖∞ = max
1≤i≤n

|ui | (4.10)

Using the vector norm it is possible to define a measure of distance between matrices and a measure of size
of matrices.

Definition 4.6. Let ‖ ·‖p denote the p-norm on Rn and M ∈Rm×n . The matrix norm is defined by

‖M‖p = sup
u∈Rn \{0}

‖Mu‖p

‖u‖p
1See Section 4.6.

4.1. Preliminaries 25

The matrix norm has the submultiplicative property

‖M1M2‖p ≤ ‖M1‖p‖M2‖p (4.11)

for M1 ∈ Rm×k and M2 ∈ Rk×n . This property will turn out to be important in perturbation analysis. The
matrix equivalents of Eqs. (4.8) to (4.10) for M ∈Rm×n can be computed using the following formulas.

‖M‖1 = max
1≤ j≤n

m∑
i=1

|Mi j | (4.12)

‖M‖2 =
√
λmax(M>M) (4.13)

‖M‖∞ = max
1≤i≤m

n∑
j=1

|Mi j | (4.14)

Here λmax(·) denotes the largest eigenvalue of a matrix. Eqs. (4.12) and (4.14) represent the maximum abso-
lute column and row sums, respectively.

4.1.3. Rounding Errors
Analytically, it is possible to solve Eq. (4.1) exactly. When using numerical methods it is usually not possible
to obtain an exact solution, rather, the goal is to approximate the solution as well as possible and necessary.
Computers use finite precision arithmetic where numbers are stored as floating point numbers, which are
of the form

±0.d1d2 . . .dt ·βe , (4.15)

where d1 > 0 and 0 ≤ di <β. Here 0.d1d2 . . .dt ,β and e are called the mantissa, base and exponent respectively
[27]. For numerical calculations Wanda mostly uses double precision numbers, which means that t = 53,
β= 2 and −1024 ≤ e ≤ 1023. Rounding errors occur when a real number x is rounded to the nearest floating
point number f l (x). Now

f l (x) = x(1+ε), (4.16)

where

|ε| ≤ 1

2
β1−t = ε0 (4.17)

and ε0 is called the machine precision. For double precision this means

|ε| ≤ 1

2
β1−53 ≈ 10−16, (4.18)

so double precision is accurate up to about 16 decimal digits.

Each operation of adding, subtracting, multiplying and dividing two floating point numbers is called a float-
ing point operation, or flop. Flops provide a good way to quantify the computational complexity of an algo-
rithm.

4.1.4. Quantifying Solution Errors
Vector norms can be used to quantify the error between a solution u to Eq. (4.1) and its (numerical) approxi-
mation û. The absolute error is given as

‖u− û‖ (4.19)

and the relative error is given as

‖u− û‖
‖u‖ (4.20)

Since u is generally unknown, a more practical way to quantify the error is via the residual and relative resid-
ual, which are defined by

4.2. Condition Number 26

‖b−M û‖ and
‖b−M û‖

‖b‖ , (4.21)

respectively. Note, however, that a small residual does not necessarily mean that the absolute (and relative)
error is also small.

4.2. Condition Number
The goal is to find a method to detect singular matrices. Analytically, one could use the determinant to find
out whether a given matrix is singular. Due to rounding errors it is in general impossible to determine whether
a given matrix is singular in finite precision. The determinant of a singular matrix in finite precision may not
be exactly equal to zero, so determining whether a matrix is singular amounts to determining whether the
determinant is close enough to zero. However, a small determinant does not imply singularity. On the other
hand, a small determinant may appear to be zero in finite precision, but the matrix may be invertible. The
following example illustrates that a small determinant does not mean that the matrix is in fact singular.

Example 4.7. Consider the matrix a · In ∈Rn×n where In denotes the identity matrix [16]. Now det(a ·
In) = an . Choosing a arbitrarily small results in an arbitrarily small determinant, however, the matrix
is just a scaling of the identity matrix. It is easy to scale this matrix such that the determinant becomes
zero in finite precision arithmetic, while a is still a non-zero number in the same precision, certainly
for large n.

It is clear that determinants are not an option for determining singularity in finite precision arithmetic. De-
termining when the determinant of a matrix equals zero is infeasible due to the presence of rounding errors.
Alternative methods are required.

Since there is no clear way of distinghuishing singular matrices from non-singular matrices in finite precision
arithmetic, matrices with ’bad properties’ are often referred to as nearly singular matrices. Consider the
following example.

Example 4.8. Consider the following equation.

Mu =
[

0 0.01
1 1

][
u1

u2

]
=

[
0
1

]
= b (4.22)

Intuitively, M is nearly singular as row 1 is almost a scalar multiple of row 2. The solution is given as
u = [1 0]>. Now, if a perturbation b → b+∆b of the form

Mu′ =
[

0 0.01
1 1

][
u′

1
u′

2

]
=

[
0.01

1

]
= b+∆b (4.23)

were to occur, the solution becomes u′ = [0 1]>. Now ‖∆b‖2 = 0.01, but ‖u′−u‖2 =
p

2, which illustrates
that a small perturbation in b can result in a large perturbation in u.

The aim is now to find out some method to determine when matrices are nearly singular.

4.2.1. Right-Hand Side Perturbation
Using the matrix and vector norms, it is possible to quantify effect of a perturbation in M or b on u [26]. First
assume only b is affected by a perturbation of the form

b → b+∆b, (4.24)

where ‖∆b‖p ≤ δ‖b‖p for some δ> 0. The perturbed system is solved by

M(u+∆u) = b+∆b, (4.25)

hence by linearity

M∆u =∆b. (4.26)

4.2. Condition Number 27

This implies that ∆u = M−1∆b and hence by submultiplicativity

‖∆u‖p = ‖M−1∆b‖p ≤ ‖M−1‖p‖∆b‖p (4.27)

From Eq. (4.25) it also follows by linearity that

‖b‖p = ‖Mu‖p ≤ ‖M‖p‖u‖p , (4.28)

which implies that

1

‖u‖p
≤ ‖M‖p

1

‖b‖p
. (4.29)

By combining Eqs. (4.27) and (4.29) the following bound is obtained.

‖∆u‖p

‖u‖p
≤ ‖M‖p‖M−1‖p

‖∆b‖p

‖b‖p
‖ ≤ δ‖M‖p‖M−1‖p (4.30)

The quantity ‖M‖p‖M−1‖p determines the sensitivity of u to a perturbation in b. A small perturbation in b
could potentially cause a large perturbation in u.

4.2.2. Definition and Properties
Definition 4.9. Let M ∈Rn×n . The condition number of M using the p-norm is defined as [16]

κp (M) = ‖M‖p‖M−1‖p

Note that by submultiplicativity

κp (M) = ‖M‖p‖M−1‖p ≥ ‖M M−1‖p = ‖In‖p = 1 (4.31)

A problem involving matrix with a small condition number is called well-conditioned (or stable) and one
with a large condition number is called ill-conditioned (or unstable) [16]. This is dependent on what one
defines as small and large. Furthermore, it also depends on which norm is used, although any two condition
numbers κp1 and κp2 are equivalent in the sense that there exist c1,c2 ∈R such that for all M ∈Rn×n

c1κp1 (M) ≤ κp2 (M) ≤ c2κp2 (M). (4.32)

For a singular matrix, κp (M) =∞.

Example 4.10. Consider again Example 4.7. Calculating the condition number of a−1In shows that

κ∞(M) = ‖a · In‖∞‖(a · In)−1‖∞ = a−1‖In‖∞a‖In‖∞ = 1, (4.33)

hence indeed this scaling of the identity matrix is (very) well-conditioned.

Example 4.11. Consider Example 4.8. M and M−1 are given as[
0 0.01
1 1

]
and

[−100 1
100 0

]
, (4.34)

respectively. Now
κ∞(M) = ‖M‖∞‖M−1‖∞ = 2 ·101 = 202 (4.35)

and given the perturbation of size ‖∆b‖∞/‖b‖∞ = 0.01/1 = 0.01

‖∆u‖∞
‖u‖∞

≤ 202 ·0.01 = 2.02, (4.36)

which explains the large perturbation in u of size
p

2.

4.3. LU -Factorisation 28

4.2.3. Matrix and Right-Hand Side Perturbation
Now consider a perturbation in both M and b of the form

b → b+∆b (4.37)

M → M +∆M (4.38)

where ‖∆b‖p ≤ δ‖b‖p and ‖∆M‖p ≤ δ‖M‖p for some δ> 0. Now the perturbed solution v = u+∆u satisfies

(M +∆M)v = b+∆b. (4.39)

Assuming that δκp (M) < 1 (which prevents A+∆A from becoming singular), it can be shown that [16]

‖∆u‖p

‖u‖p
≤ 2δ

1−δκp (M)
κp (M) (4.40)

Example 4.12. Consider a small perturbation bounded by δ= 0.5·10−6 and assume κp (M) = 106. Now
the relative perturbation in u is bounded by

‖∆u‖p

‖u‖p
≤ 2 ·0.5 ·10−6

1−0.5 ·10−6106 106 = 2 (4.41)

illustrating that a small perturbation in both M and b can cause a relatively large perturbation in u.

4.2.4. Ambiguity
The trouble with the condition number is that there is still some ambiguity involved. There is no general rule
for when κp (M) is too large, i.e., for determining when M is ill-conditioned. A useful heuristic states that, if
ε0 ≈ 10−r and κ∞(M) ≈ 10q , then Gaussian elimination gives a solution which is accurate up to about q − r
decimal digits [16]. According to this heuristic, what really determines whether M is ill-conditioned with
respect to the machine precision depends on the accuracy required for the underlying problem. Ultimately,
to detect (nearly) singular matrices, some arbitrary cut-off value is required to qualify matrices as (nearly)
singular or not.

4.2.5. Calculating the Condition Number
The definition of the condition number immediately poses a big problem since ‖M−1‖ is required. If M−1

were known, it could be used to immediately solving Mu = b without having to resort to matrix solvers, how-
ever, matrix inversion is computationally expensive. The next section will show how to estimate κp (M) using
the LU -factorisation of M , without requiring M−1 to be known.

4.3. LU -Factorisation
Solving a system of linear equations by hand typically amounts to applying Gaussian elimination. Similarly,
for small systems as the ones in Wanda, direct solution methods are used as they offer sufficient performance.
Direct solution methods use Gaussian elimination techniques to solve a system of the form Eq. (4.1). Using
Gaussian elimination M is factored into

M = LU , (4.42)

where L,U ∈ Rn×n are lower and upper triangular matrices, respectively. Solving Eq. (4.1) now amounts to
solving the forward step

Ly = b (4.43)

and backward step

U u = y (4.44)

such that

4.3. LU -Factorisation 29

Mu = LU u = Ly = b. (4.45)

In Section 4.3.3 it will be shown how the LU -decomposition can be used to estimate the condition number of
a matrix.

Example 4.13. Consider the following system of linear equations.

u1 +2u2 = 1 (4.46)

3u1 +4u2 = 1 (4.47)

Subtracting 3 times Eq. (4.46) from Eq. (4.47) results in the triangular system

u1 +2u2 = 1 (4.48)

−2u2 =−2 (4.49)

which can easily be solved. Similarly, the matrix equivalent to this system can be factored into

M =
[

1 2
3 4

]
=

[
1 0
3 1

][
1 2
0 −2

]
= LU (4.50)

and can be used to obtain a solution using the forward and backward steps.

The main idea behind the LU -factorisation is applying Gaussian transformations G1, . . . ,Gn−1 to M , such that
it is reduced to row echelon form, i.e. U = Gn−1Gn−2 . . .G1M . Applying transformation Gk will set the ele-
ments of column k of M below the diagonal to zero. It is assumed that each transformation only includes
adding a scalar multiple of one row to another. No row scaling or row interchanges are applied. The matrix L
contains information about what Gaussian transformations are used at each step.

Let M ∈Rn×n and let M (k) denote M after applying the first k Gaussian transformations, i.e.

M (k) =GkGk−1 . . .G1M , k = 1, . . . ,n −1 (4.51)

Furthermore, let M (0) = M .

Definition 4.14. The kth Gauss-vector αk ∈Rn is defined as [26]

α(k) = [0, . . . ,0︸ ︷︷ ︸
k

,α(k)
k+1, . . . ,α(k)

n], (4.52)

where α(k)
i = M (k−1)

i k /M (k−1)
kk . The element M (k−1)

kk is called the kth pivot element.

The kth Gaussian transformation Gk can now be defined as

Gk = I −α(k)e>k (4.53)

From this definition it is immediately clear that an LU -decomposition is only possible if M (k−1)
kk 6= 0 for

1 ≤ k ≤ n −1. In finite precision a bound away from 0 is required. It can be proved that the LU -factorisation
of M exists if M and all its principal submatrices are non-singular [16]. A principal submatrix M ′ ∈Rk×k of M
is a matrix that can be obtained from M by removing n −k rows and the same n −k columns from M . This is
also enough to guarantee that the pivot elements are non-zero in finite precision. The LU -decomposition is
unique.

Now define

U =Gn−1Gn−2 . . .G1M . (4.54)

It is not hard to show that

G−1
k = I +α(k)e>k (4.55)

4.3. LU -Factorisation 30

and

(Gn−1Gn−2 . . .G1)−1 =G−1
1 G−1

2 . . .G−1
n−1 =

n−1∏
k=1

(
I +α(k)e>k

)
= I +

n−1∑
k=1
α(k)e>k (4.56)

Finally, if L is defined as

L = I +
n−1∑
k=1
α(k)e>k , (4.57)

then M = LU [16].

Example 4.15. For

M =
1 2 3

3 2 1
1 3 2

 , (4.58)

the first Gaussian transformation is given as

G1 =
 1 0 0
−3 1 0
−1 0 1

 , (4.59)

such that

G1M =
1 2 3

0 −4 −8
0 1 −1

 . (4.60)

Similarly,

G2 =
1 0 0

0 1 0
0 1/4 1

 (4.61)

results in

G2G1M =
1 2 3

0 −4 −8
0 0 −3

=U (4.62)

and

L =G−1
2 G−1

1 =
1 0 0

3 1 0
1 −1/4 1

 (4.63)

The example above illustrates that, at each iteration k, the matrix M (k) can be partitioned into

M (k) =
[

N (k)
11 N (k)

12
0 N (k)

22

]
, (4.64)

where N (k)
11 ∈Rk×k , N (k)

12 ∈Rk×(n−k) and N (k)
22 ∈R(n−k)×(n−k).

4.3.1. Computing the LU -Factorisation
In practice, to limit the storage space required, the LU decomposition is usually computed in such a way that
it is stored in the original matrix M . Assume M is a banded matrix with lower and upper bandwidth bl and
bu , respectively. The following algorithm computes the LU decomposition of M [16].

4.3. LU -Factorisation 31

Algorithm 4.1 LU Factorisation

for k = 1 → n −1 do
if M(k,k) = 0 then

Error: zero pivot
end if
for i = k +1 → min{k +bl ,n} do

M(i ,k) ← M(i ,k)/M(k,k)
end for
for j = k +1 → min{k +bu ,n} do

for i = k +1 → min{k +bl ,n} do
M(i , j) = M(i , j)−M(i ,k)M(k, j)

end for
end for

end for

Note that the diagonal elements of L are all equal to 1, hence they do not need to be stored. The algorithm re-
quires about 2bl bun flops. After factorisation, the solution to Eq. (4.1) can be obtained by solving the forward
and backward steps as in Eqs. (4.43) and (4.44). The following versions of the forward and backward steps
overwrite the right-hand side b with the solution of the substitution steps.

Algorithm 4.2 LU Forward Substitution Step

for j = 1 → n do
for i = j +1 → min{ j +bl ,n} do

b(i) ← b(i)−L(i , j)b(j)
end for

end for

Algorithm 4.3 LU Backward Substitution Step

for j = n → 1 do
b(j) ← b(j)/U (j , j)
for i = max{1, j −bu} → j −1 do

b(i) ← b(i)−U (i , j)b(j)
end for

end for

The forward and backward substitution steps for a banded matrix cost about 2nbl and 2nbu flops, respec-
tively.

4.3.2. Pivoting
The current LU -factorisation algorithm has two drawbacks. One is that in finite precision rounding errors
can cause a large perturbation in the matrix M , i.e. the algorithm is unstable. The other is the loss of sparsity.
Both these problems can be (partially) avoided by a technique called pivoting.

Pivoting for Stability

Example 4.16. LU factorisation cannot be applied to the matrix

M =
[

0 1
1 0

]
(4.65)

as it has a zero pivot, while the matrix is well-conditioned [26].

4.3. LU -Factorisation 32

Example 4.17. Consider the following equation in β= 10, t = 3 floating point arithmetic [16].[
0.001 1

1 2

]
u =

[
1
3

]
(4.66)

The matrix is well-conditioned as κ∞(M) = 3. The LU decomposition is given by

L̂ =
[

1 0
1000 1

]
, Û =

[
0.001 1

0 −1000

]
(4.67)

and

L̂Û =
[

0.001 1
1 0

]
(4.68)

Solving the system using this decomposition results in the solution û = [0 1]>, while the exact solution
is given by u = [1.002. . . 0.998. . .]>.

Consider the LU -decomposition of M in finite precision arithmetic. It can be shown (see [16]) that the com-
puted L̂ and Û satisfy

L̂Û = M +∆M , (4.69)

where

‖∆M‖ ≤ nε0‖L̂‖‖Û‖ (4.70)

For small problems, as is the case Wanda, nε0 is small. What could be problematic is large elements in L̂ or
Û . If one of the pivot elements is very small Definition 4.14 shows that elements of L can become very large.
This could result in a solution û to L̂Û û = b which does a bad job at solving the original equation M û = b. In
order to avoid this, Gaussian elimination in combination with a technique called pivoting is applied.

Popular strategies are partial and complete pivoting. In complete pivoting, prior to applying the Gaussian
transformation Gk , permutation matrices Pk and Qk are applied to M (k−1),

Pk M (k−1)Qk , (4.71)

such that the kth pivot element (Pk M (k−1)Qk)kk is the largest entry in absolute value in the matrix partition
N (k−1)

22 (see Eq. (4.64)) [16]. The matrices Pk and Qk represent the row and column interchange necessary to
achieve this, respectively. In other words, Algorithm 4.1 becomes [16]

Algorithm 4.4 LU Factorisation With Complete Pivoting

for k = 1 → n −1 do
Determine a and b such that |M(a,b)| is the maximum element in M(k : n,k : n)
M(k, :) ↔ M(a, :)
M(:,k) ↔ M(:,b)
if M(k,k) = 0 then

Error: zero pivot
end if
for i = k +1 → min{k +bl ,n} do

M(i ,k) ← M(i ,k)/M(k,k)
end for
for j = k +1 → min{k +bu ,n} do

for i = k +1 → min{k +bl ,n} do
M(i , j) = M(i , j)−M(i ,k)M(k, j)

end for
end for

end for

4.3. LU -Factorisation 33

Complete pivoting thus requires the comparison of (n −k)2 numbers at each iteration k. Partial pivoting is
similar, but it only determines a and hence only applies the permutation Pk at each iteration. Partial pivoting
requires the comparison of n −k numbers at each iteration k.

The question now, of course, is if these pivoting strategies increase stability.

Definition 4.18. Let M ∈Rn×n . The growth factor γ of the Gaussian elimination of M is defined as

γ= max{σ,σ1, . . . ,σn−1}

σ
, (4.72)

where σ= maxi , j |Mi j | and σk = maxi , j |M (k)
i j |.

Note that |Ui j | = |M (n−1)
i j | ≤ γ ·maxi , j |Mi j |, which motivates the definition. It can be shown that with partial

pivoting

L̂Û = M +∆M , (4.73)

where ‖∆M‖∞ ≤ n3ε0γ‖M‖∞ and ε0 denotes the machine precision [16]. In practice, γ is usually of order 10.

Complete pivoting results in an LU -factorisation of the form

PAQ = LU (4.74)

For partial pivoting Q = In , the identity matrix.

Pivoting for Sparsity
Another reason to apply pivoting is to keep LU as sparse as possible. If M has lower bandwidth of bl and an
upper bandwidth of bu , L has a lower bandwidth of bl and U an upper bandwidth of bu [16]. The problem is
that within their respective bandwidths, L and U usually become almost completely dense, hence more stor-
age space is required and solving systems of linear equations using the LU -decomposition is not so efficient.

Example 4.19. Consider the discretisation matrix of the Laplacian in 2D [26].

Figure 4.1: Sparsity pattern 2D Laplacian discretisation matrix

The matrix has an upper and lower bandwidth of 7, with numerous zero entries inside the band and
only a total of 217 non-zero entries. The LU -decomposition is depicted below.

4.3. LU -Factorisation 34

(a) L (b) U

Figure 4.2: Sparsity pattern LU -decomposition 2D Laplacian discretisation

The LU -decomposition contains a lot more non-zero elements inside the band, in fact, the L and U
matrices are almost completely dense within the band.

Pivoting strategies are applied to prevent this so-called fill-in from occurring. Note that these strategies are
all heuristics.

The currently used IMSL routine LSLXG uses Markowitz pivoting [3]. Let r (k)
i denote the number of non-

zero elements in row i of N (k)
22 , given as in Eq. (4.64), and let c(k)

j denote the number of non-zero elements of

column j of the same matrix. Now compute

χ(k)
i j = (r (k)

i −1)(c(k)
j −1) (4.75)

for each element in N (k)
22 . Apply row and column permutations such that the element which minimises χ(k)

i j
becomes the pivot element. In case of a tie, one can pick the largest element. During the iteration k of the
LU -factorisation this pivot selection will cause χ(k)

i j entries to be modified, which will not all result in fill-in,

hence this choice is a local optimum for creating the least fill-in. In order to not get in trouble with stability,

not all elements of N (k)
22 are considered. For 0 < δ< 1 only the elements

(
N (k)

22

)
i j

such that∣∣∣N (k)
22

∣∣∣
i j
≥ δ

∣∣∣N (k)
22

∣∣∣
ab

(4.76)

for all k ≤ a,b ≤ n are considered [21].

4.3.3. Computing the Condition Number
As mentioned in Section 4.2.5, the definition of the condition number requires ‖M−1‖p to be known. If M−1

were known, resorting to numerical methods would be unnecessary. An estimation of ‖M−1‖p is required. A
naive estimation would be to solve Mui = ei (i = 1, . . . ,n), where ei = [0 . . . 0︸ ︷︷ ︸

i−1

1 0 . . . 0︸ ︷︷ ︸
n−i

]>. Then

M [u1 u2 . . . un] = In (4.77)

and hence the matrix [u1 u2 . . . un] would provide a good estimate for M−1 [16]. The problem with this ap-
proach is that it would require solving n systems of linear equations. The goal is to compute an estimate of
‖M−1‖p in O (n2) flops. This section is restricted to computing an estimation of ‖M−1‖∞ as proposed in [13].
This method is based on the observation that

Mu = b =⇒ ‖M−1‖∞ ≥ ‖u‖∞/‖b‖∞ (4.78)

4.3. LU -Factorisation 35

This inequality states that ‖u‖∞/‖b‖∞ provides a lower bound on ‖M−1‖∞. The method provides a heuristic
that tries to maximise ‖u‖∞/‖b‖∞ in order to estimate ‖M−1‖∞. The final goal is to use the LU -decomposition
for condition number estimation.

Let T ∈Rn×n be upper triangular and consider the following column version of solving T y = d using backward
substitution [16].

Algorithm 4.5 Column Version Backward Substitution

p(1 : n) = 0
for k = n → 1 do

Choose d(k)
y(k) ← [d(k)−p(k)]/T (k,k)
p(1 : k −1) ← p(1 : k −1)+T (1 : k −1,k)y(k)

end for

This algorithm does not use the usual backward substitution method, but it uses an auxiliary vector p to
calculate the element y(k) at each step. One way to heuristically maximise ‖y‖∞/‖d‖∞ is to choose d(k) ∈
{−1,1}. This ensures that ‖d‖∞ = 1, hence from Eq. (4.78) it follows that ‖y‖∞ provides the estimation for
‖T −1‖∞. This way of choosing d can be applied in such a way that both y(k) and p(1 : k − 1) grow at each
iteration. Algorithm 4.6 is a version of Algorithm 4.5 that implements this heuristic [16].

Algorithm 4.6 Triangular Condition Estimation

p(1 : n) ← 0
for k = n → 1 do

Choose d(k) = 1
y(k)+ ← [d(k)−p(k)]/T (k,k)
p(k)+ ← p(1 : k −1)+T (1 : k −1,k)y(k)+
Choose d(k) =−1
y(k)− ← [d(k)−p(k)]/T (k,k)
p(k)− ← p(1 : k −1)+T (1 : k −1,k)y(k)−
if |y(k)+|+‖p(k)+‖1 ≥ |y(k)−|+‖p(k)−‖1 then

y(k) ← y(k)+
p(1 : k −1) ← p(1 : k −1)+

else
y(k) ← y(k)−
p(1 : k −1) ← p(1 : k −1)−

end if
end for
y ← y/‖y‖∞

This algorithms considers both options d(k) = 1 and d(k) = −1 and uses the one which results in the most
growth in y(k) and p(k). The heuristic chooses the local optimum at each iteration which hopefully ap-
proaches the global optimum.

It turns out that the lower bound that the estimate ‖y‖∞/‖d‖∞ provides for ‖T −1‖∞ can be made even sharper
[13, 17]. This can be done using the following steps.

1. Apply the lower triangular version of Algorithm 4.6 to T >y = d.

2. Solve T x = y.

3. Estimate ‖T −1‖∞ by ‖x‖∞/‖y‖∞.

The motivation for step 2 is that a singular value decomposition analysis shows that if ‖y‖∞/‖d‖∞ is large
then ‖x‖∞/‖y‖∞ is almost certainly at least as large and often produces an even better estimate [13].

4.3. LU -Factorisation 36

Consider again the general matrix M with P M = LU and assume for simplicity that P = In . Similar to the ar-
gument above, producing a large-norm solution to (LU)>r = d and solving LU z = r produces a sharp estimate
for ‖M−1‖∞, namely ‖z‖∞/‖r‖∞. A slight adjustment to the procedure is required as Algorithm 4.6 can only
be applied to triangular matrices. This motivates the following procedure.

1. Apply the lower triangular version of Algorithm 4.6 to U>y = d.

2. Solve L>r = y.

3. Solve Lw = r.

4. Solve U z = w.

5. Estimate ‖M−1‖∞ by ‖z‖∞/‖r‖∞.

Step 1 and 2 produce a large-norm solution r and estimate ‖r‖∞/‖d‖∞. Step 3 and 4 produce the sharper
estimate ‖z‖∞/‖r‖∞.

Note that other estimations techniques are also available, see, e.g., [17].

4.3.4. Iterative Refinement
Assume the solution û to Eq. (4.1) is obtained using the factorisation P M ≈ L̂Û in finite precision arithmetic.
The goal is to improve the accuracy of the solution u.

Algorithm 4.7 Iterative Refinement [16]

r ← b−M û
Solve Ly = Pr
Solve U z = y
unew ← û+z

Applying Algorithm 4.7 would result in

Munew = M û+Mz = b− r+ r = b (4.79)

in exact arithmetic. In finite precision, however, things are a little more complicated. Assume for simplicity
that P = In and

M = L̂Û −E (4.80)

Now the identity

Mu = L̂Û u−Eu = b (4.81)

motivates the fixed-point iteration

L̂Û unew −E û = b (4.82)

which can be rewritten as

L̂Û unew = (L̂Û −M)û+b (4.83)

⇐⇒ unew = û+ (L̂Û)−1[b−M û] (4.84)

Subtracting the equation above from the equation

u = u+ (L̂Û)−1[b−Mu] (4.85)

results in

u−unew = [I − (L̂Û)−1M](u− û) (4.86)

Taking norms shows that this process is expected to yield improvement if ‖I − (L̂Û)−1M‖ < 1. In finite preci-
sion, iterative refinement usually stops yielding improvement after a few iterations.

4.4. Rank-Revealing Decompositions 37

4.3.5. Matrix Scaling
Improving accuracy is also possible by scaling the system of equations. Instead of solving Eq. (4.1), the equa-
tion

(D−1
1 MD2)v = D−1

1 b (4.87)

is solved and subsequently u is obtained by u = D2v. The relative error of v is about ε0κ∞(D−1
1 MD2), so

choosing these matrices well should result in a more accurate solution [16]. Scaling costs O (n2) flops.

4.4. Rank-Revealing Decompositions
A rank-revealing decomposition, as the name suggests, is a matrix decomposition which tells something
about the rank of the matrix. These decompositions can be used to determine whether the matrix is well-
conditioned or not and also to solve a system of linear equations.

4.4.1. Singular Value Decomposition
The most interesting decomposition is the singular value decomposition (SVD), which is given as follows
[16].

Theorem 4.20. Let M ∈Rm×n of rank r ≤ min(m,n). There exists orthogonal matrices U ∈Rm×m and V ∈Rn×n

such that

M =UΣV >, Σ=
[
Σr 0
0 0

]
∈Rm×n (4.88)

where Σr = diag(σ1,σ2, . . . ,σr) ∈Rr×r and

σ1 ≥σ2 ≥ ·· · ≥σr > 0 (4.89)

The values σi are called the singular values of M . If r < min(m,n), then 0 is a singular value as well. The
columns of U and V are called the left and right singular vectors, respectively. This theorem immediately
shows that, to compute the rank of the matrix, one can look at the singular values in the SVD. As singular
values can be very small, determining the rank of a matrix via the SVD in finite precision can be problematic
due to rounding errors. It does, however, provide insight into the conditioning of the matrix.

Let σmax = σ1 and σmin = σr if r = min(m,n) or σmin = 0 otherwise. From Theorem 4.20 and Eq. (4.13) it
follows that ‖M‖2 =σmax for M ∈Rm×n . Now, if M ∈Rn×n such that rank(M) = n, then ‖M−1‖2 = 1/σmin. This
shows that

κ2(M) = ‖M‖2‖M−1‖2 = σmax

σmin
, (4.90)

which illustrates that the SVD contains information on the conditioning of a matrix. For a singular matrix
κ2(M) =∞.

Example 4.21. Consider again Example 4.11. The matrix

M =
[

0 0.01
1 1

]
(4.91)

can be decomposed as

M =UΣV > ≈
[−0.005 0.999
−0.999 −0.005

][
1.414 0

0 0.007

][−0.707 −0.707
−0.707 0.707

]
(4.92)

showing that the matrix has full rank, however, σmax/σmin ≈ 202 which shows that the matrix may be
considered ill-conditioned when working in low-precision arithmetic (e.g. t = 4).

Calculating the SVD requires an expensive O (n3) operations, although variations exists where only part of the
SVD is calculated [16].

4.5. Other Performance Optimisations 38

4.4.2. QR-Factorisation
Another rank-revealing decomposition is the QR-factorisation, where Q is an orthogonal matrix and R an
upper triangular matrix [16]. For M ∈ Rm×n with r = rank(M), the Householder QR-factorisation procedure
with partial pivoting yields

MP =QR, R =
[

R11 R12

0 0

]
(4.93)

where P ∈Rn×n is a permutation matrix and R11 ∈Rr×r .

Example 4.22. The QR-factorisation of M as in Example 4.21 is given as

M =QR =
[

0 −1
−1 0

][−1 −1
0 −0.01

]
(4.94)

In this example, pivoting was not applied.

4.5. Other Performance Optimisations
Here a few performance optimisation techniques are introduced, namely, fill-in reduction strategies and al-
ternatives for the Newton-Raphson method.

4.5.1. Fill-in Reduction Strategies
Section 4.3.2 showed that pivoting strategies can be used to reduce the fill-in during the LU -factorisation
process. Other possibilities for reducing fill-in are adjusting the internal component numbering technique in
Wanda and matrix reordering schemes.

Component Ordering
Section 2.3.1 shows that the physical connection points of the components and the H-nodes are numbered
through a breadth-first search starting from the component first added to the pipeline system. It is possible
that a different algorithm and/or starting point for ordering the components results in a matrix with lower
bandwidth and hence less fill-in during the LU -decomposition. The advantage of targeting this part of the
solution method is that the algorithm only needs to be performed once before running the solution method.

Matrix Reordering Schemes
Another possibility is to look into the feasibility of reordering the matrix after each phase change. This is only
worthwhile if a method can be used with small computational costs yielding a significant fill-in reduction.
Reordering schemes such as the Cuthill-McKee algorithm can be used [14].

4.5.2. Newton-Raphson Alternatives
As shown in Eq. (2.13), the Newton-Raphson method for solving a system of equations requires the computa-
tion of the Jacobian at each iteration. This is an expensive computation. Picard iteration and Quasi-Newton
methods are considered as alternatives. The basic idea behind both types of methods is that they require less
work per iteration at the cost of more iterations for convergence.

Quasi-Newton Methods
Quasi-Newton methods replace the Jacobian in Eq. (2.13) with an approximation. Examples of these type of
methods are Broyden’s method [10] and the Symmetric Rank-One method [11].

Picard Iteration
At each time step, the system of non-linear equations produced by Wanda can be written as F(u) = 0, where
u = [Q1 H1 . . . Qn Hn]>. It can be rewritten as

Mu+G(u) = b, (4.95)

where Mu denotes the linear part, G(u) the non-linear part and b a constant vector. This motivates the fixed-
point iteration (or Picard iteration) [18]

Mu(k+1) = b−G(u(k)) (4.96)

4.6. Numerical Libraries 39

4.6. Numerical Libraries
The previous sections describe the mathematical theory of solution methods for systems of linear equations.
For Wanda an actual implementation of these methods is required. Numerous libraries are available which
provide optimised implementations. Two main libraries are considered here. Both libraries are Fortran-
based, as the solution method in Wanda is also written in Fortran.

4.6.1. LAPACK
The Linear Algebra Package (LAPACK) is one of the most prominent numerical libraries. The library is writ-
ten in Fortran and is primarily intended for solving equations involving large, dense matrices. One disad-
vantage of LAPACK is that it cannot directly handle matrices in coordinate format. This format, which is
currently used in Wanda, must be converted to band matrix storage. LAPACK relies on the Basic Linear Alge-
bra Subroutines (BLAS) implementation on the system, which handle the operations such as matrix-vector
multiplication, vector addition, etc. This makes it worthwhile to also investigate which BLAS implementation
has the best performance: ATLAS, BLAS or OpenBLAS.

Mathematical operation LAPACK routine

Matrix norm DLANGB

Condition number DGBCON

LU factorisation step DGBTRF

LU solve step DGBTRS

Iterative refinement DGBRFS

Singular value decomposition DGESVD

QR-factorisation DGEQRF

Table 4.1: LAPACK routines.

Table 4.1 shows the mathematical operations and their corresponding LAPACK computational routines [9].
The routine names start with ’D’ which stands for double precision, as computations in Wanda are done in
double precision. Note that LAPACK often uses block versions of algorithms which are rich in matrix-matrix
multiplications [16]. This leads to better performance on computers. The DGBTRF routine uses a block ver-
sion of the LU -decomposition with partial pivoting, as explained in Section 4.3.2. The condition number
estimation technique used in the DGBCON routine is the one explained in Section 4.3.3.

If the performance of LAPACK turns out to be insufficient, two derivations of LAPACK can be considered
which aim for better performance using the available hardware.

PLASMA
The Parallel Linear Algebra for Scalable Multi-core Architectures (PLASMA) library is a LAPACK implemen-
tation which aims to effectively use multi-core processors for performance improvements [2]. Since almost
every computer, especially computers which are meant to run simulation software such as Wanda, contains
a multi-core processor, PLASMA may yield better performance.

MAGMA
The Matrix Algebra on GPU and Multi-core Architectures (MAGMA) library aims to use both multi-core
processors and GPUs for achieving a performance improvement [1]. Virtually all modern computers contain
a GPU, hence also involving the GPU in the computations may yield even better performance.

4.6.2. MUMPS
The Multifrontal Massively Parallel sparse direct Solver (MUMPS) library is a numerical library written in
Fortran which is intended for solving equations involving large, sparse matrices [5]. Since it also uses the
coordinate format for storing matrices, it does not require any adjustments to the matrix storage. If LAPACK
does not offer the required performance, MUMPS should be able to offer better performance.

4.7. Structural Singularity 40

MUMPS is purely built to solve systems of equations using Gaussian elimination. For asymmetric matrices,
as is the case in Wanda, this amounts to using the LU -decomposition. The library also has routines available
for operations such as matrix scaling, condition number estimation and iterative refinement.

4.7. Structural Singularity
The methods in previous sections relied on detecting underdetermined systems of equations by considering
the matrix resulting from linearisation. Another interesting approach is to look at the network topology and
the resulting system of equations to determine whether or not a solution exists. These equations can be either
linear or non-linear. Consider the following definition [22].

Definition 4.23. Let M ∈ Rn×n . M is called structurally singular if every N ∈ Rn×n , with Ni j = 0 whenever
Mi j = 0, is singular.

This definition motivates the use of graph theory for determining whether a given system of equations is
undetermined.

Example 4.24. Consider again the system of Section 3.1.1.

Figure 4.3: Steady state singularity.

This system is described by the following system of equations.

H1 = c1 (4.97)

H1 = HA (4.98)

Q A +Q1 +Q2 = 0 (4.99)

Q A = 0 (4.100)

H2 = HA (4.101)

H2 = c2 (4.102)

Let the matrix M ∈R6×6 be defined by

Mi j =
{

1, if variable j is present in equation i
0, otherwise

(4.103)

Note that the matrix is defined in such a way that it can also represent non-linear systems of equations.
For this particular system the matrix is given as

M =

1 0 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 1
0 0 0 1 0 0
0 0 1 0 1 0
0 0 0 0 1 0

 (4.104)

4.7. Structural Singularity 41

when using the variable ordering (H1,Q1, HA ,Q A , H2,Q2). This matrix is structurally singular; no
matter what values are substituted in for the non-zeros of M , it will remain singular. After all, column
2 and 6 are always scalar multiples of each other. In other words, the singularity of M is determined by
its sparsity pattern. When this is the case, the underlying system of equations is also called structurally
singular. A different approach to detecting if a system is undetermined is by determining whether it
is structurally singular. One way to do this is by considering a suitable graph representation of the
system and look for a criterion when the underlying system is structurally singular.

For example, let G = (U ∪V ,E) where U and V denote the equations and variables, respectively, and
uv ∈ E if equation u contains variable v [20].

4.102

4.101

4.100

4.99

4.98

4.97

Q2

H2

Q A

HA

Q1

H1

Figure 4.4: Bipartite graph representation.

Fig. 4.5 shows two disconnected components. The red component is underdetermined as it only
contains two equations and three variables. The black component contains more equations than
variables and does not have a solution if c1 6= c2.

Another possibility is to let D = (V , A) be a digraph with V = {1,2,3,4,5,6} and uv ∈ A if equation u
contains variable v (using the same equation and variable ordering as in M) [15].

1 2

3

45

6

Figure 4.5: Digraph representation.

For this graph representation it is not immediately clear how the system of equations being struc-
turally singular is visible in the graph structure.

These kind of methods could potentially be used to detect faulty systems before trying to solve them. Another
potentially interesting approach is by looking at the physical model itself to prevent undetermined systems
from occurring.

5
Thesis Proposal

This chapter summarises the problem description, describes the scope of the research in the form of research
questions and proposes an approach to solving these questions.

5.1. Problem Summary
The current solution method applies the Newton-Raphson to linearise the system of equations. The resulting
matrices are solved by the LSLXG routine of the proprietary IMSL numerical library which requires a paid
license. The problem with this matrix solver is that it sometimes either crashes or gets stuck in an infinite loop
when dealing with singular matrices. The proprietary nature of this library makes troubleshooting difficult.
Both the robustness and maintainability of the current matrix solver leave much to be desired. For these
reasons, Deltares wants to move away from this library to a robust and easily maintainable solution method,
while not giving in on performance.

5.2. Main Research Question
The main research question can be stated as follows.

How can the robustness and maintainability of the current solution method in Wanda be improved,
without giving in on efficiency?

The focus is on improving the part of the solution method that solves the matrix-vector equations as this
would require a minimal change in the Wanda code. A robust solution method should always either find
a solution or return a clear error message. This could be achieved by first checking for singularities before
trying to solve the system of equations. Public domain libraries can be used to satisfy the maintainability
requirement. As a constraint, the solution method should be efficient, that is, at least as fast time-wise as the
current solution method. Improvements are always welcome, but the emphasis is on robustness.

5.3. Detailed Research Questions
The main research question shows that the research should focus on two things: robustness and efficiency.
To zoom in on the main research question and set the scope for the research, more detailed questions will be
given here.

5.3.1. Robustness
The following questions focus on robustness.

1. Is it possible to detect undetermined systems via a graph representation and is it feasible to implement
this in Wanda?

2. Is it possible to prevent undetermined systems from occurring by adjusting the physical model?

3. Is it possible to reliably detect singular matrices using condition number estimation techniques?

42

5.4. Research Approach 43

4. Can rank-revealing decompositions be used to both efficiently solve matrix-vector equations and detect
singular matrices?

5.3.2. Efficiency
The following questions focus on efficiency, that is, the speed of the solution method.

5. Which numerical library offers the best performance (LAPACK or derivatives, or MUMPS)?

6. Can fill-in be reduced by using another algorithm to order the components in the pipeline system?

7. Is it feasible to apply a reordering scheme to the matrix to reduce fill-in?

8. Can fill-in be reduced by using an appropriate pivoting strategy?

9. Are there more efficient alternatives to the Newton-Raphson method for solving the system of non-linear
equations which yield sufficiently accurate solutions?

10. Is it possible to improve the performance of the algorithm which detects the undetermined variables?

Some of these questions are more important than others. For example, some questions are expected to yield
a bigger performance improvement than others. Some also require a big change in the Wanda code, while
others require little effort. It follows naturally that some questions have a higher priority than others.

5.4. Research Approach
The first step will be to investigate whether it is possible to detect undetermined systems a priori, that is,
before trying to solve them. If this were possible and it is also possible to feasibly implement this in Wanda,
no other methods for detecting singular systems are required and hence further research could focus on im-
proving the performance of the Wanda solution method.

The second step is to look for improvement in building the matrix. One approach is to look at alternative
methods for ordering the components in the pipeline system (which determines the matrix ordering) in or-
der to reduce the fill-in. If this is not possible, looking into the reordering of the matrix after it is built to
reduce the fill-in is another possibility. This can be done by looking at different pivoting strategies such as
Markowitz pivoting, but also matrix-reordering schemes such as Cuthill-McKee.

The third step is investigating what the best method is to detect singular matrices, either by using a condition
number estimation or a rank-revealing decomposition such as the SVD or QR-decomposition. This step is
only required when the first step proves infeasible, although condition number estimation can also be used
for estimating solution accuracy. If the LU -decomposition of a matrix is used for solving the system of linear
equations, iterative refinement can be used to improve the accuracy of the solution, if desirable.

The fourth step is to investigate which implementation of these methods yields the best results, both performance-
and accuracy-wise. This step is heavily connected to the previous one as this also requires investigating which
methods should be used for detecting singularities and solving the systems of linear equations. This step also
includes tweaking parameters such that the best performance is achieved while producing sufficiently accu-
rate solutions. LAPACK and its derivatives, PLASMA and MAGMA, will be considered as well as the MUMPS
library.

The fifth step, if time permits, is investigating if any other performance improvements can be gained. Per-
haps performance improvements could be gained by optimising the algorithm which detects the undeter-
mined variables. Furthermore, other methods instead of Newton-Raphson for solving systems of non-linear
equations can be investigated, for example, Quasi-Newton methods and Picard iteration.

Bibliography

[1] Matrix algebra on gpu and multi-core archictectures. URL http://icl.cs.utk.edu/magma/.

[2] Parallel linear algebra software for multicore architectures. URL https://bitbucket.org/icl/

plasma.

[3] IMSL Fortran Math Library, 2014.

[4] Hydrodynamica van Leidingsystemem, 2015.

[5] Multifrontal Massively Parallel Solver. User’s Guide, 2016. URL http://mumps.enseeiht.fr.

[6] WANDA 4.5 User Manual, 2017.

[7] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A fully asynchronous multifrontal solver using
distributed dynamic scheduling. SIAM Journal on Matrix Analysis and Applications, 23(1):15–41, 2001.

[8] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet. Hybrid scheduling for the parallel solution
of linear systems. Parallel Computing, 32(2):136–156, 2006.

[9] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Ham-
marling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide. Society for Industrial and Applied Math-
ematics, Philadelphia, PA, third edition, 1999. ISBN 0-89871-447-8 (paperback).

[10] C. G. Broyden. A class of methods for solving nonlinear simultaneous equations. Mathematics of Com-
putation, 19(92):577–593, 1965. ISSN 00255718, 10886842. URL http://www.jstor.org/stable/

2003941.

[11] Richard H. Byrd, Humaid Fayez Khalfan, and Robert B. Schnabel. Analysis of a symmetric rank-one trust
region method. SIAM Journal on Optimization, 6(4):1025–1039, 1996. doi: 10.1137/S1052623493252985.
URL https://doi.org/10.1137/S1052623493252985.

[12] S. Camiz and S. Stefani. Matrices And Graphs. World Scientific Publishing Company, 1996. ISBN
9789814530088.

[13] A. K. Cline, C. B. Moler, G. W. Stewart, and J. H. Wilkinson. An Estimate for the Condition Number of a
Matrix. SIAM Journal on Numerical Analysis, 16:368–375, April 1979. doi: 10.1137/0716029.

[14] E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices. In Proceedings of the
1969 24th National Conference, ACM ’69, pages 157–172, New York, NY, USA, 1969. ACM. doi: 10.1145/
800195.805928. URL http://doi.acm.org/10.1145/800195.805928.

[15] Iain S Duff, Albert M Erisman, and John K Reid. Direct Methods for Sparse Matrices. Oxford University
Press, Inc., New York, NY, USA, 1986. ISBN 0-198-53408-6.

[16] G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins Studies in the Mathematical Sci-
ences. Johns Hopkins University Press, 1996. ISBN 9780801854149.

[17] Nicholas J. Highham. A survey of condition number estimation for triangular matrices. SIAM Rev., 29
(4):575–596, December 1987. ISSN 0036-1445. doi: 10.1137/1029112. URL http://dx.doi.org/10.

1137/1029112.

[18] C. Kelley. Iterative Methods for Linear and Nonlinear Equations. Society for Industrial and Applied Math-
ematics, 1995. doi: 10.1137/1.9781611970944. URL http://epubs.siam.org/doi/abs/10.1137/1.

9781611970944.

44

http://icl.cs.utk.edu/magma/
https://bitbucket.org/icl/plasma
https://bitbucket.org/icl/plasma
http://mumps.enseeiht.fr
http://www.jstor.org/stable/2003941
http://www.jstor.org/stable/2003941
https://doi.org/10.1137/S1052623493252985
http://doi.acm.org/10.1145/800195.805928
http://dx.doi.org/10.1137/1029112
http://dx.doi.org/10.1137/1029112
http://epubs.siam.org/doi/abs/10.1137/1.9781611970944
http://epubs.siam.org/doi/abs/10.1137/1.9781611970944

Bibliography 45

[19] Harry M. Markowitz. The elimination form of the inverse and its application to linear programming.
Manage. Sci., 3(3):255–269, April 1957. ISSN 0025-1909. doi: 10.1287/mnsc.3.3.255. URL http://dx.

doi.org/10.1287/mnsc.3.3.255.

[20] Kazuo Murota. Matrices and Matroids for Systems Analysis. Springer Publishing Company, Incorporated,
1st edition, 2009. ISBN 3642039936, 9783642039935.

[21] Farid N. Najm. Circuit Simulation. Wiley-IEEE Press, 2010. ISBN 0470538716, 9780470538715.

[22] Arnold Neumaier. Scaling and structural condition numbers. Linear Algebra and its Applications, 263,
09 1996.

[23] H.E.A. van den Akker and R.F. Mudde. Fysische Transportverschijnselen I. VSSD, 2005.

[24] J. van Kan, A. Segal, and F.J. Vermolen. Numerical Methods in Scientific Computing. Delft Academic
Press, 2014.

[25] A.E.P. Veldman and A. Velická. Stromingsleer, 2007.

[26] C. Vuik and D.J.P. Lahaye. Scientific computing, 2015.

[27] C. Vuik, F.J. Vermolen, M.B. van Gijzen, and M.J. Vuik. Numerical Methods for Ordinary Differential
Equations. Delft Academic Press, 2015.

[28] E.B. Wylie and V.L. Streeter. Fluid transients. Number v. 1977 in Advanced book program. McGraw-Hill
International Book Co., 1978.

http://dx.doi.org/10.1287/mnsc.3.3.255
http://dx.doi.org/10.1287/mnsc.3.3.255

A
Wanda

A.1. Conservation Laws
A.1.1. Conservation of Momentum

Figure A.1: Conservation of momentum.

Note that here ∆x is used instead of ∆s. From Fig. A.1 the law of conservation of momentum can be derived,
for ∆x small.

p A+
(

p A+ ∂(ρA)

∂x
∆x

)
︸ ︷︷ ︸

Pressure on ends

−ρg∆x

(
A+ A+ ∂A

∂x ∆x

2

)
sinα︸ ︷︷ ︸

Force due to weight

−τO∆x︸ ︷︷ ︸
Friction

+
(

p + 1

2

∂p

∂x
∆x

)
∂A

∂x
∆x︸ ︷︷ ︸

Pressure on sides

46

A.1. Conservation Laws 47

=ρ∆x

(
A+ A+ ∂A

∂x ∆x

2

)
dv

dt︸ ︷︷ ︸
Element mass acceleration

(A.1)

Here O denotes the circumference of the pipe. The friction term describes friction due to the pipe wall.

A.1.2. Conservation of Mass
Now the conservation of mass will be derived. Note that here∆x can vary over time, since an element of mass
can shrink in size due to pressure.

Figure A.2: Conservation of mass.

Fig. A.2 leads to the following equation (again using s instead of x to denote place).

ρAv∆t︸ ︷︷ ︸
Inflow

=
(
ρAv + ∂(ρAv)

∂x
∆x

)
∆t︸ ︷︷ ︸

Outflow

+ ∂(ρA∆x)

∂t
∆t︸ ︷︷ ︸

Net flow

(A.2)

I.e., inflow is equal to outflow plus the mass that is kept within the element.

A.2. Large Test Cases 48

A.2. Large Test Cases

Figure A.3: Drinking water test case.

Figure A.4: Noord-Holland 1 test case.

A.2. Large Test Cases 49

Figure A.5: Noord-Holland 2 test case.

	Abstract
	Nomenclature
	Introduction
	Report Structure
	Notation and Conventions

	Wanda
	Background
	Fluid Dynamics
	Pipeline Fluid Dynamics

	The Wanda Model
	Component Types

	Steady Flow
	Numerical Implementation

	Transient Flow
	Numerical Implementation

	Problem Statement
	Steady Flow Singularities
	Undetermined Q
	Undetermined H

	Transient Flow Singularities
	Current Solution Method
	Test Cases
	Singular Test Cases
	Large Test Cases

	Solution Method Profiling

	Numerical Methods
	Preliminaries
	Sparse and Band Matrices
	Norms
	Rounding Errors
	Quantifying Solution Errors

	Condition Number
	Right-Hand Side Perturbation
	Definition and Properties
	Matrix and Right-Hand Side Perturbation
	Ambiguity
	Calculating the Condition Number

	LU-Factorisation
	Computing the LU-Factorisation
	Pivoting
	Computing the Condition Number
	Iterative Refinement
	Matrix Scaling

	Rank-Revealing Decompositions
	Singular Value Decomposition
	QR-Factorisation

	Other Performance Optimisations
	Fill-in Reduction Strategies
	Newton-Raphson Alternatives

	Numerical Libraries
	LAPACK
	MUMPS

	Structural Singularity

	Thesis Proposal
	Problem Summary
	Main Research Question
	Detailed Research Questions
	Robustness
	Efficiency

	Research Approach

	Bibliography
	Wanda
	Conservation Laws
	Conservation of Momentum
	Conservation of Mass

	Large Test Cases

