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Turbomachinery

Source: http://www.pointwise.com/

Complex (smooth) geometry
Structural, heat and flow
analysis
Hard to optimize using
engineering experience

Used in many applications:
automobile
aerospace
energy production
heating



Introduction B-splines as basis for analysis Algebraic Flux Correction Constrained L2 projection Flow problems Conclusions

Turbomachinery

Source: http://www.pointwise.com/

Complex (smooth) geometry
Structural, heat and flow
analysis
Hard to optimize using
engineering experience

Used in many applications:
automobile
aerospace
energy production
heating



Introduction B-splines as basis for analysis Algebraic Flux Correction Constrained L2 projection Flow problems Conclusions

Why to optimize?

Lower emissions
Lower fuel consumption
Longer life-cycle
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Why to optimize?

Decrease mass
Decrease flow losses
Increase TET by improving
cooling
Evaluate particle impact on
the blade
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Why IGA?

No manual re-meshing - automation of optimization possible

Idea: Use the same function space to represent the geometry
and to solve the problem

Represents the geometry exactly

The same numerical method for fluid and structural simulation

No gaps between domains
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Objectives of the thesis

Main goal:

Develop a solver for the compressible Euler equations

Side goals:

Apply the AFC stabilization in the IGA framework

Develop the constrained L2 projection in the IGA framework
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Schedule of the thesis

Literature study:

Implement the B-spline constructor and evaluator

Implement the IGA solver for Poisson equation

Extend it to arbitrary 2D geometry

Main part of thesis project:

Implement the IGA solver for stationary convection-diffusion
equation

Extend it to time-dependent problems

Implement the Compressible Euler equations solver
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B-spline basis functions on uniform knot vector

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Basis functions of order 0

ξ

 

 
N

1,0

N
2,0

N
3,0

N
4,0

N
5,0

N
6,0

N
7,0

N
8,0

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Basis functions of order 1

ξ

 

 
N

1,1

N
2,1

N
3,1

N
4,1

N
5,1

N
6,1

N
7,1

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Basis functions of order 2

ξ

 

 
N

1,2

N
2,2

N
3,2

N
4,2

N
5,2

N
6,2

ξ = [0, 0, 0, 1, 2, 3, 4, 4, 4]

The higher order B-spline basis functions are computed with
recursive Cox-de Boor formula.
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B-spline basis functions on nonuniform knot vector
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Properties:
Positivity
Partition of unity
Compact support
(at most p + 1
knot spans)
Cp−m continuity
at knots
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B-spline curves

B-spline curves

C(ξ) =
n∑

i=1

Ni ,p(ξ)Bi
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B-spline surfaces

B-spline surfaces

S(ξ, η) =
n∑

i=1

m∑
j=1

Ni ,p(ξ)Mj ,q(η)Bi,j
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Enriching the basis

Shape preserving operations:

Inserting new knots (equivalent to h-refinement)

Increasing the order of the basis (equivalent to p-refinement)
results in n − 1 new DOFs

k-refinement - firstly increase the order and then add new
knot values - No counterpart in standard FEM

Result: Generalized tensor product basis
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Poisson’s problem on arbitrary geometry

Problem description

−∆u(x , y) = f (x , y) in Ω,

u(x , y) = 0 on ∂Ω

with load vector f (ξ, η) = 2π2 sin(πξ) sin(πη).
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Poisson’s problem on arbitrary geometry

Main steps of solving the problem:

1 Derive the weak formulation taking into account mapping of
parametric domain onto physical domain

2 Use the B-spline tensor product basis function as the basis
functions for analysis (careful indexing)

3 Write the problem in the form of linear system

4 Evaluate the basis functions at points required for integration

5 Evaluate the mapping matrix function

6 Integrate numerically and assemble the matrix and RHS

7 Solve the linear system
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Parametric and physical domains

FEA:

IGA:

Source: J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, ”Isogeometric Analysis: Towards Integration of CAD and FEA”
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Poisson’s problem on arbitrary geometry

Uniform open knot vectors, n = 4, m = 3, p = q = 2
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Poisson’s problem on arbitrary geometry

The Matlab code written during the literature study was not
efficient enough.

It was decided to use the C++ library G+SMO for further
work
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Framework of AFC

High-order method

Accurate in smooth regions
Producing oscillations in vicinity of discontinuities and steep
gradients

Low-order method

Guaranteeing no oscillations in vicinity of discontinuities and
steep gradients
Overly diffusive

In framework of AFC low-order method is obtained from high-order
method by algebraic operations on matrices.
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Framework of AFC

Anti-diffusion

Difference between high-order and low-order schemes

Idea: Add limited amount of anti-diffusion to low-order scheme in
non-linear fashion

Flux limiting

Decompose the anti-diffusion into fluxes between the nodes
Limit them separately using available algorithms
Compose the anti-diffusion back from the individual fluxes

Challenge: Extend flux limiting to non-nodal DOFs!
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Standard L2 projection

For IGA Nodal assignment of initial and boundary conditions is
NOT possible.

Standard L2 projection

Find such a projection of analytical f to V h that the residual

R(Pf ) = Pf − f

is orthogonal to V h. In other words:

(Pf − f , v) = 0, ∀v ∈ V h

(f , g) =

∫
Ω
f (x)g(x)dx
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Standard L2 projection

Find f h ∈ V h such that for all vh ∈ V h, (f h, vh) = (f , vh).

We can rewrite the problem in the matrix-vector form:

MCx = b

MC = {mij} - the consistent mass matrix; mij =
∫

Ω ϕiϕjdx

b = {bi} - the right hand side vector; bi =
∫

Ω f ϕidx.
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Standard L2 projection

f (x) = sin(πx1) sin(πx2) in Ω = [0, 1]× [0, 1]
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Standard L2 projection

f (x) =

{
0 if x < 0.5

1 if x ≥ 0.5
in Ω = [0, 1]

(a) p = 2 and varying number of
DOFs

(b) varying p and equivalent
number of DOFs
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Constrained L2 projection

Idea: Use approach similar to AFC.

High-order method

Standard L2 projection
MCxH = b

Low-order method

MLxL = b

ML - result of row-sum mass lumping of MC

Resulting method

MLx = MLxL + f̄(xH)

f̄(xH) - limited anti-diffusion
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Constrained L2 projection

p = 2, n = 34
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Constrained L2 projection
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Stationary convection-diffusion equation

Definition of problem

−∇ · (D∇u(x)) +∇ · (v(x)u(x)) = R(x) in Ω

u(x) = γ(x) onΓD

du

dn
(x) = β(x) onΓN

u(x) - the variable of interest
D - the diffusion tensor (or scalar coefficient d)
v(x) - the average velocity of quantity
R(x) - the source term.
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Stationary convection-diffusion equation

Dicrete problem

(S − K )u = r

S = {sij} - discrete diffusion operator

sij =

∫
Ω

(D∇ϕj · ∇ϕi )dx

K = {kij} - discrete convection operator

kij = −vj · cij , cij =

∫
Ω
∇ϕjϕidx

r - right-hand side vector

ri =

∫
Ω
Rϕidx +

∫
ΓN

Dβϕids
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Benchmark problem

|v| = 1

Element Peclet number

Peh =
|v|h
2d

Peh > 1 convection-dominated
Peh < 1 diffusion-dominated

(on the length scale of mesh)

Source: J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, ”Isogeometric Analysis: Towards Integration of CAD and FEA”
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Benchmark problem on p = 2, 18× 18 B-spline basis

(a) d = 0.1, Peh = 0.56 (b) d = 0.01, Peh = 5.56

(c) d = 0.001, Peh = 55.56
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Algebraic flux correction

Remedy: Use AFC stabilization.

High-order method

(S − K )u = r

Low-order method

(S − L)u = r

L = K + D - result of adding the artificial diffusion to K

Resulting method

(S − L)u = r + f̄(u)

f̄(u) - limited anti-diffusion
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AFC vs. SUPG

(a) AFC (b) SUPG

d = 0.0001, uniform p = 2, 10× 10 B-spline basis
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AFC vs. SUPG

d = 0.0001, uniform p = 2,
130× 130 B-spline basis

Estimated L2 convergence rates:
p AFC SUPG

1 1.71 0.69

2 1.03 0.40

3 0.71 0.47

4 0.48 0.50
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Time-dependent convection-diffusion equation

Definition of problem

∂u(x, t)

∂t
−∇ · (D∇u(x, t)) +∇ · (v(x, t)u(x, t)) = R(x, t) in Ω

u(x, t) = γ(x, t) onΓD

∂u

∂n
(x, t) = β(x, t) onΓN

u(x, 0) = u0(x), ∀x ∈ Ω

u(x, t) - the variable of interest
D - the diffusion tensor (or scalar coefficient d)
v(x, t) - average velocity field
R(x, t) - source term
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Time-dependent convection-diffusion equation

Semi-dicrete problem

MC
du

dt
= (K − S)u + r

MC = {mij} - consistent mass matrix

mij =

∫
Ω
ϕjϕidx

Time discretization using:

Forward Euler method

SSP-eRK-2 method

SSP-eRK-3 method
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Algebraic flux correction

High-order method

MC
du

dt
= (K − S)u + r

Low-order method

ML
du

dt
= (L− S)u + r

ML - result of row-sum mass lumping of MC

L = K + D - result of adding the artificial diffusion to K

Resulting method

ML
du

dt
= (L− S)u + r + f̄(u)

f̄(u) - limited anti-diffusion
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Convection of smooth hump - AFC disabled


hump2.avi
Media File (video/avi)
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Convection of smooth hump - AFC disabled

uniform p = 2, 66× 66 B-spline basis
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Convection of rectangular wave

uniform p = 2, 66× 66 B-spline basis
SSP-eRK-3, ∆t = 0.0001
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Convection of rectangular wave - AFC enabled

uniform p = 2, 66× 66 B-spline basis
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Compressible Euler equations

Problem in divergence form

∂U

∂t
+∇ · F = 0

vector of conservative variables:

U =

 ρ
ρv
ρE


vector of inviscid fluxes:

F =

 ρv
ρv ⊗ v + pI
ρEv + pv
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Compressible Euler equations

Semi-discrete problem

MC
dU

dt
= KU + S(U)

U =
[
ρ1 (ρv)1 (ρE )1 · · · ρN (ρv)N (ρE )N

]T
M - the block consistent mass matrix

Mij = mij I , mij =

∫
Ω

ϕiϕjdx

K - the discrete Jacobian operator

Kij = cji · Aj , cij =

∫
Ω

ϕi∇ϕjdx

S - the boundary load vector

Si = −
∫
ΓN

ϕiFnds
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Algebraic flux correction

High-order method

MC
dU

dt
= KU + S(U)

Low-order method

ML
dU

dt
= LU + S(U)

ML - result of row-sum mass lumping of MC

L = K + D - result of adding the artificial diffusion to K

Resulting method

ML
dU

dt
= LU + S(U) + F̄ (U)

F̄ (U) - limited anti-diffusion
Limiting in terms of primitive variables
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Convection of isentropic vortex - AFC disabled

Density ρ


Vortex.avi
Media File (video/avi)
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Convection of isentropic vortex - AFC disabled

SSP-eRK-3, ∆t = 0.005
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Sod’s shock tube

Density Velocity Pressure


AFCrho.avi
Media File (video/avi)


AFCv.avi
Media File (video/avi)


AFCpo.avi
Media File (video/avi)
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Sod’s shock tube

No stabilization AFC

ρ, uniform p = 1, 129× 129 B-spline basis, SSP-eRK-3 ∆t = 0.001


noAFC.avi
Media File (video/avi)


AFC.avi
Media File (video/avi)
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Sod’s shock tube - AFC enabled

ρ at t = 0.231, SSP-eRK-3 ∆t = 0.001



Introduction B-splines as basis for analysis Algebraic Flux Correction Constrained L2 projection Flow problems Conclusions

Overview

1 Introduction
Motivation
Scope of the thesis

2 B-splines as basis for analysis
B-splines
IGA approach to Poisson’s problem

3 Algebraic Flux Correction

4 Constrained L2 projection
Standard L2 projection
Constrained L2 projection

5 Flow problems
Stationary convection-diffusion equation
Time-dependent convection-diffusion equation
Compressible Euler equations

6 Conclusions



Introduction B-splines as basis for analysis Algebraic Flux Correction Constrained L2 projection Flow problems Conclusions

Outcome from this thesis project

Pilot implementation of IGA-based compressible Euler solver

Implementation of AFC generalized to non-nodal DOFs

Implementation of constrained L2 projection generalized to
non-nodal DOFs

Directions of further development of IGA based approach to
compressible flow problems

For author:

Understanding of B-splines and IGA

Experience with G+SMO and templated C++

Knowledge in field of compressible inviscid flows

Understanding of FCT, TVD and AFC frameworks
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Future developments

Full Navier-Stokes solver

Optimization of code

Multi-patch problems

3D problems

NURBS

Non-linear FCT or better linearisation

Alternative time-discretization schemes

Investigation of limitation of convergence rates for Euler
equation (by 0.5 and 2)



Introduction B-splines as basis for analysis Algebraic Flux Correction Constrained L2 projection Flow problems Conclusions

Future developments

Full Navier-Stokes solver

Optimization of code

Multi-patch problems

3D problems

NURBS

Non-linear FCT or better linearisation

Alternative time-discretization schemes

Investigation of limitation of convergence rates for Euler
equation (by 0.5 and 2)



Introduction B-splines as basis for analysis Algebraic Flux Correction Constrained L2 projection Flow problems Conclusions

Thank you for your attention!
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