Modeling interaction between micro-climate factors and moisture-related skin-support friction during patient repositioning in bed Delft University of Technology

Thyrza Jagt 1509489 April 9, 2015

Table of Contents

- 1 Topic and goal
- 2 The problem
- **3** Solution Method
- 4 The Model
- **5** Results
- 6 Conclusions

7 Sources


Topic and Goal

Risk of pressure ulcers

- Bedbound patients
- Repositioning in bed
- Effects of microclimate factors

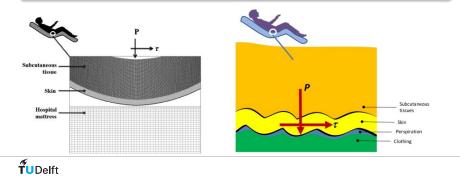
Goal

To create a combined model from two models created by Amit Gefen, in which a patients risk of pressure ulcers can be assessed when considering not only the contact between the body and the bed, but also including the effects of microclimate factors.

Pressure Ulcers (a.k.a. bedsores or pressure sores)

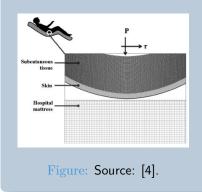
European Pressure Ulcer Advisory Panel: EPUAP

"A pressure ulcer is localized injury to the skin and/or underlying tissue usually over a bony prominence, as a result of pressure, or pressure in combination with shear. A number of contributing or confounding factors are also associated with pressure ulcers; the significance of these factors is yet to be elucidated." – http://www.epuap.org


Can occur after application of

- a large pressure for a short period of time,
- or a small pressure for a long period of time.

Ť∪De	lft						
		< □ >	< 🗗 🕨	∢ ≣ ▶	∢≣≯	E.	୬୯୯
Thyrza Jagt	1509489 (TU Delft)	Modeling the risk at Pressure Ulcers			April 9, 2	015	4 / 33


The basis

- "Modeling the effects of moisture-related skin-support friction on the risk for superficial pressure ulcers during patient repositioning in bed" by Eliav Shaked and Amit Gefen [4]
- "How do microclimate factors affect the risk for superficial pressure ulcers: A mathematical modeling study" by Amit Gefen [2]

		< □ >	- 문 🕨 🗧	▶ =	*) Q (*
Thyrza Jagt	1509489 (TU Delft)	Modeling the risk at Pressure Ulcers	April		5 / 33

Modeling the effects of moisture-related skin-support friction on the risk for superficial pressure ulcers during patient repositioning in bed

- Body exists of skin and subcutaneous tissue
- Body comes into contact with the bed
- Body is repositioned: moved across the bed

4́∪Delft

$$\frac{\Delta V(t)}{V} = \left[\alpha \frac{T_a - 30 \,^{\circ}\text{C}}{T_a^{\text{max}} - T_s^{\text{min}}} - \beta \frac{T_a - T_s}{T_a^{\text{max}} - T_s^{\text{min}}} (1 - RH) - \gamma \right] \cdot t \bullet \text{ Patient produces sweat}$$

• Dependent on ambient and skin temperature

$$\frac{\Delta V(t)}{V} = \left[\alpha \frac{T_a - 30 \,^{\circ}\text{C}}{T_a^{\text{max}} - T_s^{\text{min}}} - \beta \frac{T_a - T_s}{T_a^{\text{max}} - T_s^{\text{min}}} (1 - RH) - \gamma \right] \cdot t \quad \text{Patient produces sweat}$$

Modeling the risk at Pressure Ulcers

April 9, 2015

• Coefficient of friction changes due to sweat production

1509489 (TU Delft)

Thyrza Jagt

 $\mu = 0.5 \frac{\Delta V(t)}{V} + 0.4$

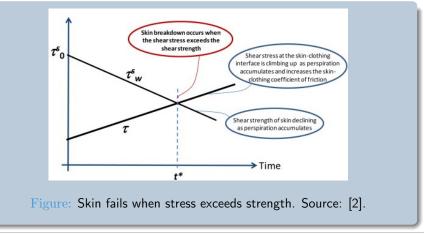
$$\frac{\Delta V(t)}{V} = \left[\alpha \frac{T_a - 30 \,^{\circ}\text{C}}{T_a^{\text{max}} - T_s^{\text{min}}} - \beta \frac{T_a - T_s}{T_a^{\text{max}} - T_s^{\text{min}}} (1 - RH) - \gamma \right] \cdot \bullet \quad \text{Patient produces sweat}$$

$$\mu = 0.5 \frac{\Delta V(t)}{V} + 0.4$$

$$\tau = \left(0.5 \frac{\Delta V(t)}{V} + 0.4 \right) \cdot P$$

$$\bullet \quad \text{Coefficient of friction} \\ \text{changes due to sweat} \\ \text{production} \\ \bullet \quad \text{Stress levels increase}$$

$$\frac{\Delta V(t)}{V} = \left[\alpha \frac{T_a - 30 \,^{\circ}\text{C}}{T_a^{\text{max}} - T_s^{\text{min}}} - \beta \frac{T_a - T_s}{T_a^{\text{max}} - T_s^{\text{min}}} (1 - RH) - \gamma \right] t \quad \text{Patient produces sweat}$$


- Coefficient of friction changes due to sweat production
 - Stress levels increase
- Strength of the skin decreases due to sweat production

$$\mu = 0.5 \frac{V}{V} + 0.4$$
$$\tau = \left(0.5 \frac{\Delta V(t)}{V} + 0.4\right) \cdot P$$
$$\tau_{v}^{s} = \left(1 - 0.8 \frac{\Delta V(t)}{V}\right) \tau_{0}^{s}$$

 $\Lambda V(t)$

TUDelft

April 9, 2015

4⊓Delft

					_		
Thyrza Jagt	1509489 (TU Delft)	Modeling the risk at Pressure Ulcers		April 9, 2	015	8 /	33

The difficulties of the problem

Patient lies in a bed:

- Body is in contact with the bed
- Both the body and the mattress will deform due to the contact

Deformation

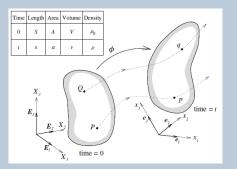


Figure: Many quantities change in the deformation of a body. Source: [1].

- Two configurations: reference and current.
- Need different notation for both configurations.

Ťu De	lft			
		▲□ ▶ ▲ @	▶ ★ 클 ▶ ★ 클 ▶ · · 클·	୬ବ୍ଦ
Thyrza Jagt	1509489 (TU Delft)	Modeling the risk at Pressure Ulcers	April 9, 2015	10 / 33

Contact

D 10

1 Contact area is unknown, only conditions are known:

- Gap function $g(\mathbf{X},t) = -\mathbf{v}\left(\varphi_t^{(1)}(\mathbf{X}) \varphi_t^{(2)}(\bar{\mathbf{Y}}(\mathbf{X})) \right) \leq 0.$
- Contact pressure $\mathbf{t}_N \geq 0$.
- $\mathbf{t}_N g = 0.$
- **2** Friction is present: frictional traction force $\mathbf{t}_T \leq \mu \mathbf{t}_N$.

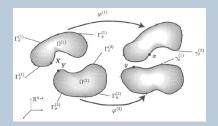
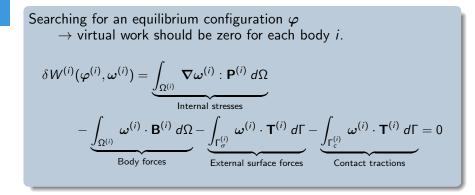



Figure: The two body contact problem. Source: [3].

	eitt					
		<□> < □	▶ ▲ ≣	▶ < ≣ ▶	E	୬୯୯
Thyrza Jagt	1509489 (TU Delft)	Modeling the risk at Pressure Ulcers		April 9, 20	15	11 / 33

Complete problem

Ť∪De	lft						
		< □ >	- 🗇 🕨	∢ ≣ ⊁	₹	· 唐·	୬ବ୍ଦ
Thyrza Jagt	1509489 (TU Delft)	Modeling the risk at Pressure Ulcers		A	opril 9, 201	15	12 / 33

Complete problem

$$\delta W^{(i)}(\boldsymbol{\varphi}^{(i)},\boldsymbol{\omega}^{(i)}) = \int_{\Omega^{(i)}} \nabla \boldsymbol{\omega}^{(i)} : \mathbf{P}^{(i)} \, d\Omega - \int_{\Omega^{(i)}} \boldsymbol{\omega}^{(i)} \cdot \mathbf{B}^{(i)} \, d\Omega - \int_{\Gamma^{(i)}_{\sigma}} \boldsymbol{\omega}^{(i)} \cdot \mathbf{T}^{(i)} \, d\Gamma - \int_{\Gamma^{(i)}_{c}} \boldsymbol{\omega}^{(i)} \cdot \mathbf{T}^{(i)} \, d\Gamma = 0$$

The summation of the virtual work over the two bodies should be zero.

$$\begin{split} \delta W(\boldsymbol{\varphi}, \boldsymbol{\omega}) &:= \sum_{i=1}^{2} \delta W^{(i)}(\boldsymbol{\varphi}^{(i)}, \boldsymbol{\omega}^{(i)}) \\ &= \sum_{i=1}^{2} \left\{ \int_{\Omega^{(i)}} \nabla \boldsymbol{\omega}^{(i)} : \mathbf{P}^{(i)} \, d\Omega - \int_{\Omega^{(i)}} \boldsymbol{\omega}^{(i)} \cdot \mathbf{B}^{(i)} \, d\Omega - \int_{\Gamma^{(i)}_{\sigma}} \boldsymbol{\omega}^{(i)} \cdot \mathbf{T}^{(i)} \, d\Gamma \right\} \\ &\xrightarrow{\delta W^{int, ext}(\boldsymbol{\varphi}, \boldsymbol{\omega})} \\ &= \underbrace{-\sum_{i=1}^{2} \int_{\Gamma^{(i)}_{c}} \boldsymbol{\omega}^{(i)} \cdot \mathbf{T}^{(i)} \, d\Gamma}_{\delta W^{c}(\boldsymbol{\varphi}, \boldsymbol{\omega})} = 0. \end{split}$$

tuDelft

				2.20
Thyrza Jagt	1509489 (TU Delft)	Modeling the risk at Pressure Ulcers	April 9, 2015	13 / 33

Solution Method

Newton-Raphson Method

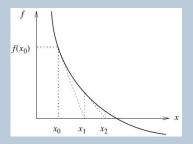


Figure: The Newton-Raphson method for a one-degree-of-freedom problem. Source: [3]. Solving f(x) = 0.

- Iterative method
- Initial guess x₀
- Update the guess

Solving
$$\delta W(\boldsymbol{\varphi}, \boldsymbol{\omega}) = 0.$$

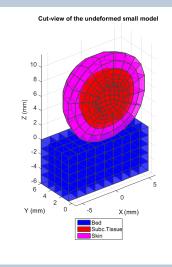
• Solve $\delta W(oldsymbol{arphi}_k,oldsymbol{\omega}) = -D\delta W(oldsymbol{arphi}_k,oldsymbol{\omega})[\mathbf{u}],$ with

•
$$\varphi_{k+1} = \varphi_k + \mathbf{u}.$$

TUDelft

Thyrza .	lagt	1509489	(TU De

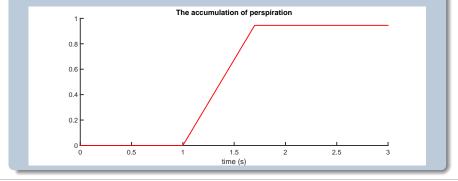
pril 9, 2015 14 / 3


Finite Element Method

- Divide the volumes into elements.
- Solve the problem as a summation over the elements instead of an integral over the volume.

The basic model

- Body exists of subcutaneous tissue and skin
- Two steps:
 - Body moves downwards towards the bed
 - Body is repositioned; moved across the bed

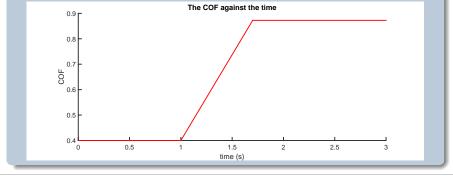

TUDelft

pril 9, 2015 16 / 3

Including Micro-Climate factors

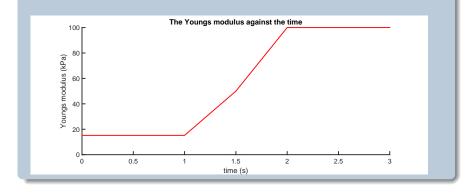
While the body is at rest the effects of the microclimate factors are applied

• Perspiration is accumulated



		< □ > <{	⑤ * * 흔 * * 흔 * _ 흔,	৩১৫
Thyrza Jagt	1509489 (TU Delft)	Modeling the risk at Pressure Ulcers	April 9, 2015	17 / 33

Including Micro-Climate factors

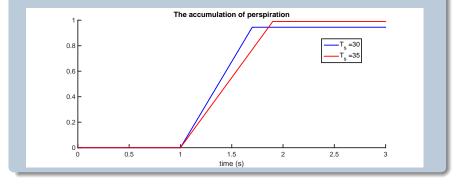

While the body is at rest the effects of the microclimate factors are applied

- Perspiration is accumulated
- The coefficient of friction changes as an effect of the production of perspiration.

		< □ ▶ < ₫	☞▶ ▲ 필▶ ▲ 필▶ · · 필·	୬ୡ୯
Thyrza Jagt	1509489 (TU Delft)	Modeling the risk at Pressure Ulcers	April 9, 2015	17 / 33


• The Young's modulus (stiffness) of the skin changes

		 < □ > < @ > · 	< <u>₹</u> < <u>₹</u> > < <u>₹</u>	୬ବ୍ଦ
Thyrza Jagt	1509489 (TU Delft)	Modeling the risk at Pressure Ulcers	April 9, 2015	18 / 33

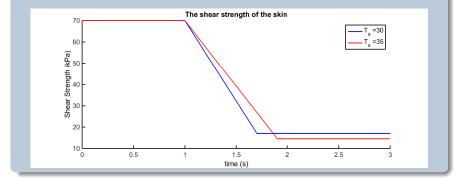

- The Young's modulus (stiffness) of the skin changes
- Additional weight is added

A

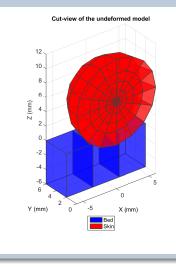

TUDe	lft			
		▲□ > ▲ 🗗 > ▲ 4	≣	৩১৫
Thyrza Jagt	1509489 (TU Delft)	Modeling the risk at Pressure Ulcers	April 9, 2015	18 / 33

- The Young's modulus (stiffness) of the skin changes
- Additional weight is added
- A different value of the skin temperature is used

- The Young's modulus (stiffness) of the skin changes
- Additional weight is added
- A different value of the skin temperature is used



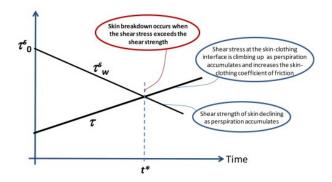
- The Young's modulus (stiffness) of the skin changes
- Additional weight is added


10.

• A different value of the skin temperature is used

I U De	III			
		 < □ > < / <p></p> 	< 글 > < 글 >	୬ଏଙ
Thyrza Jagt	1509489 (TU Delft)	Modeling the risk at Pressure Ulcers	April 9, 2015	18 / 33

The final model



- Body exists of only skin
- Three steps:
 - Body is subject to gravity and hence moves downwards
 - 2 The body is at rest and the effects of the microclimate factors are applied
 - 3 Body is moved across the bed

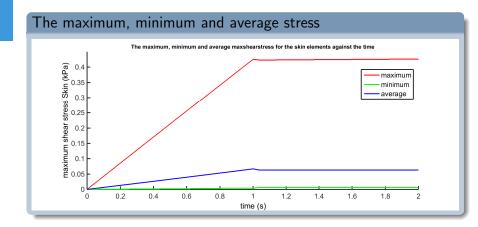
Results

Skin breakdown: skin 'fails' if stress exceeds strength

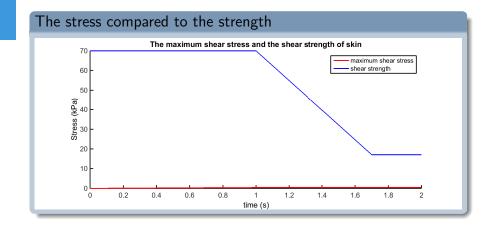
- Look at the strength of the skin
- Look at the stress levels of the skin

Ť∪De	lft			
		 < □> < ⊡> < 	돌▶ ★ 돌▶ · · 돌·	৩৫৫
Thyrza Jagt	1509489 (TU Delft)	Modeling the risk at Pressure Ulcers	April 9, 2015	20 / 33

Results basic model


The Basic model

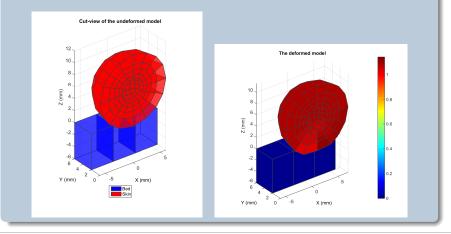
			<i>ð</i> •	∢ ≣ ≯	<≣>	E.	୬ୡଡ଼
Thyrza Jagt	1509489 (TU Delft)	Modeling the risk at Pressure Ulcers		A	pril 9, 20	15	


Results basic model

1

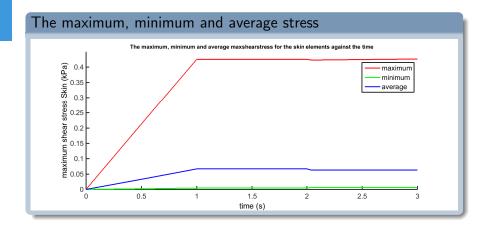
Ť∪Del	ft						
		+ • +	< 🗇 🕨	∢ ≣ ▶	<= ≣ > _	E	৩১৫
Thyrza Jagt	1509489 (TU Delft)	Modeling the risk at Pressure Ulcers		A	opril 9, 201	5	22 / 33

Results basic model

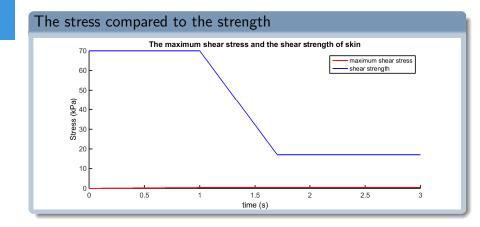


Ť∪Del	ft			
		<□> < ⊡ >	▲ 콜 ▶ → 콜 ▶	≣ ୬৭৫
Thyrza Jagt	1509489 (TU Delft)	Modeling the risk at Pressure Ulcers	April 9, 2015	23 / 33

Results model with microclimate factors


The Microclimate model

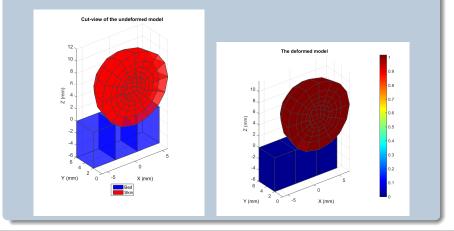
Coefficient of friction is time dependent


		▲ □ ➤ ▲	Ø ► < Ξ ► < Ξ ► Ξ =	୬ୡଡ଼
Thyrza Jagt	1509489 (TU Delft)	Modeling the risk at Pressure Ulcers	April 9, 2015	24 / 33

Results microclimate model

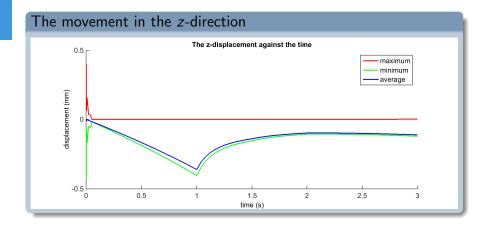
Ť UDel	ft						
		< □ > <	<i>a</i> •	∢ ≣ ►	<= ≣ >	E.	୬ଏଙ
Thyrza Jagt	1509489 (TU Delft)	Modeling the risk at Pressure Ulcers		А	pril 9, 201	.5	25 / 33

Results microclimate model



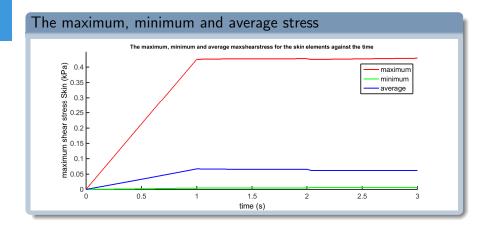
Ť UDel	lft					
			▶ ∢≣ ►	≣	E.,	୬ବ୍ଦ
Thyrza Jagt	1509489 (TU Delft)	Modeling the risk at Pressure Ulcers	A	pril 9, 201	5	26 / 33

Results changing stiffness

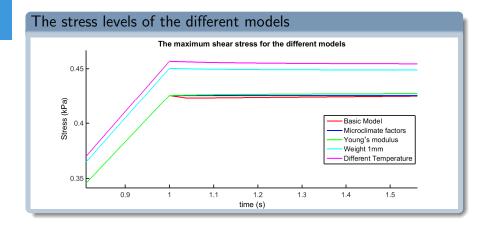

Changing the stiffness

Both the COF and the stiffness of the skin change in time.

		<□> <∂	× € × € × E ≥	୬ୡଡ଼
Thyrza Jagt	1509489 (TU Delft)	Modeling the risk at Pressure Ulcers	April 9, 2015	27 / 33


Results changing stiffness

Ť∪Del	ft						
		< □ ≻ < @	6 🕨	∢ ≣ ≯	<= ≣ >	÷.	୬ବ୍ଦ
Thyrza Jagt	1509489 (TU Delft)	Modeling the risk at Pressure Ulcers		A	pril 9, 201	.5	28 / 33


Results changing stiffness

1

Ť∪Del	ft					
		< 🗆 > < 🗗	3 > 4 E	≣⊁ ⊀≣⊁	÷.	୬୯୯
Thyrza Jagt	1509489 (TU Delft)	Modeling the risk at Pressure Ulcers		April 9, 201	5	29 / 33

Overall Results

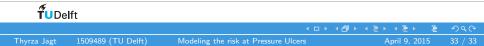
Ť∪Del	ft				
		<□> ─	▲ 콜 ⊁ → 콜 ⊁	11日	৩১৫
Thyrza Jagt	1509489 (TU Delft)	Modeling the risk at Pressure Ulcers	April 9, 201	15	30 / 33

Conclusions

- The two models are combined : a model now exists including the effect of the microclimate factors
- Stress increases:
 - Microclimate factors (changing friction)
 - Changing stiffness
 - Adding of weight
 - Increasing skin temperature
- No skin failure is noted
- Improvements are still necessary

Remarks and Recommendations

- The model should be increased.
- The geometry of human body should be improved.
- It should be noted that the different body parts of the patient are connected.
- Constants such as the temperature should be time-dependent.
- More timesteps could be added to see what happens when the patient is at rest for a longer period of time.
- More realistic values for the changing stiffness should be used.


Once improved the model can be used for special cases.

- An unresponsive patient lies on top of a tube.
- A patient whose head or legs need to be elevated.

Ť ∪Delft				
		<□>	▲ 돌 ▶ ▲ 돌 ▶ … 돌	୬୯୯
Thyrza Jagt	1509489 (TU Delft)	Modeling the risk at Pressure Ulcers	April 9, 2015	32 / 33

Sources

- Javier Bonet and Richard D. Wood. Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press, Cambridge, United Kingdom, 1997.
- [2] Amit Gefen. How do microclimate factors affect the risk for superficial pressure ulcers: A mathematical modeling study. Journal of tissueviability, 20:81–88, 2011.
- [3] Tod A. Laursen. Computational Contact and Impact Mechanics. Springer, Durham, USA, 2002.
- [4] Eliav Shaked and Amit Gefen. Modeling the effects of moisture-related skin-support friction on the risk for superficial pressure ulcers during patient repositioning in bed. *frontiers in bioengineering and biotechnology*, 1, 2013.

