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1 Introduction

Immobile patients that are limited to spending their time in bed predominantly are prone to
skin breakdown as a consequence of moisture development between the skin and mattress. This
wetness results from transpiration or urine. Due to wetting of the skin, the mechanical properties
of the skin change and the friction between the skin and the mattress increases. This increase
implies that the shear forces at the interface between the skin and mattress increase when a
patient is moved or relocated on bed for daily care. This mechanism increases the likelihood of
the development of a superficial pressure ulcer.

In this research, we will analyze, use and improve the phenomenological model developed by
Gefen for the simulation of micro-climate factors. This model contains an interaction between
the amount of transpiration and ambient temperature, increase of humidity, increase in the skin-
support contact pressure. Furthermore, we will analyze and use a finite-element model for the
mechanical support and equilibrium of tissue interacting with the mattress where the skin and
subcutaneous tissue are incorporated. This interaction poses a contact problem where the surface
of contact between the skin and mattress has to be determined. In this work, we will focus on
the combination of the two models, where we aim at predicting the likelihood of the development
of a superficial pressure ulcer in the course of time upon moving the patient over the surface of
the mattress. This is done by using the finite-element method over the domain containing the
tissue as well as the mattress. As an output parameter the shear strain will be important to
estimate the probability that skin break-down (failure) occurs. Since the mechanical properties
of skin change with local humidity, the skin will deteriorate in the course of time due to the
build-up of moisture levels. In this MSc-thesis, we aim at a coupling of the micro-climate factors
to the mechanical equilibrium which consists of a contact problem. Furthermore, skin behaves
differently from rigid materials, hence most likely Hooke’s Law will not be appropriate for the
modeling.

The basics of this thesis lie in the two articles

• ”How do microclimate factors affect the risk for superficial pressure ulcers: A mathematical
modeling study” by Amit Gefen, and

• ”Modeling the effects of moisture-related skin-support friction on the risk for superficial
pressure ulcers during patient repositioning in bed” by Eliav Shaked and Amit Gefen.

These articles both describe a mathematical model regarding pressure ulcers in bed-bound pa-
tients. The first one assesses a patients risk of getting a pressure ulcer. Here a pressure ulcer is
said to develop when the strength of the skin is smaller than the stress obtained by the movement.
The second article describes a way of calculating the shear stress of the skin during movement
using the finite element method.

Before a more detailed model can be formed from the two given models, a literature study needs
to be done in order to fully understand all concepts and details included in these models. Also the
field of contact mechanics has to be studied to be able to include this in the new model.
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2 Pressure ulcers

The official definition of a pressure ulcer is given by the European Pressure Ulcer Advisory Panel
and says the following.

”A pressure ulcer is localized injury to the skin and/or underlying tissue usually over
a bony prominence, as a result of pressure, or pressure in combination with shear. A
number of contributing or confounding factors are also associated with pressure ulcers;
the significance of these factors is yet to be elucidated.” – http://www.epuap.org

Such a pressure ulcer can occur after a large pressure has been applied to the skin for a short
period of time, or when a small pressure is applied for a long period of time. Pressure ulcers,
also referred to as ”bedsores” or ”pressure sores”, usually occur at bony prominences, which are
the parts of the body that are usually in direct contact with the underlying surface such as a
mattress. Examples of the most common locations are the shoulders and the shoulder blades,
back of the head, spine and tail bone.

The ”European Pressure Ulcer Advisory Panel” (EPUAP) is a panel created to ”support all
European countries in their efforts to prevent and treat pressure ulcers”. The overall mission of
this panel is to

” provide the relief of persons suffering from or at risk of pressure ulcers, in partic-
ular through research and the education of the public and by influencing pressure
ulcer policy in all European countries towards an adequate patient centered and cost
effective pressure ulcer care.” – http://www.epuap.org [1]

In order to improve the communication between the different countries regarding pressure ulcers,
the EPUAP has created a ”Quick Reference Guide” which is translated into many different
languages. In this reference guide guidelines are given that describe how a patients risk of
pressure ulcers can be determined, and which factors should be taken into account. In this
guide, the different types of pressure ulcers are also divided into four different categories. The
categories and their (shortened) explanations are given below. The full explanation can be found
on the EPUAP website [1].

Category/Stage I: Non-blanchable erythema Intact skin with non-blanchable redness of
a localized area usually over a bony prominence. Darkly pigmented skin may not have
visible blanching; its color may differ from the surrounding area. The area may be painful,
firm, soft, warmer or cooler as compared to adjacent tissue. Category I may be difficult to
detect in individuals with dark skin tones. May indicate at risk persons.

Category/Stage II: Partial thickness Partial thickness loss of dermis presenting as a shal-
low open ulcer with a red pink wound bed, without slough. May also present as an intact or
open/ruptured serum-filled blister.Presents as a shiny or dry shallow ulcer without slough
or bruising where bruising indicates deep tissue injury.

Category/Stage III: Full thickness skin loss Full thickness tissue loss. Subcutaneous fat
may be visible but bone, tendon or muscle are not exposed. Slough may be present but
does not obscure the depth of tissue loss. May include undermining and tunneling.The
depth of a Category/Stage III pressure ulcer varies by anatomical location.

Category/Stage IV: Full thickness tissue loss Full thickness tissue loss with exposed bone,
tendon or muscle. Slough or eschar may be present. Often includes undermining and
tunneling.The depth of a Category/Stage IV pressure ulcer varies by anatomical location.
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As can be seen in the definitions above, these different grades indicate the severity of the injury.
In this thesis the main focus will lie on superficial pressure ulcers. According to Gefen ([3, 11])
these correspond to the pressure ulcers from Grade I and Grade II.

As mentioned in the definition of pressure ulcers, many different factors influence a patients risk
at the injuries. These factors include among others the age of the patient, whether or not the
patient is healthy, the wetness of the skin and the stiffness of the skin. Many of these factors lie
close to each other, for example a patient who has diabetes often has a stiffer skin.
A lot of research has been done and is being done to investigate these factors and decrease
patients risk at pressure ulcers. The models that are described in the articles that will be used
in this thesis investigate the relation between the wetness of the skin (microclimate factors) and
the risk of pressure ulcers. In the articles it is described that the temperature in the room has
effect on the moisture level of the skin which has effect on the stiffness of the skin, hence again
the factors are related.
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3 Elasticity, Stress and Strain

In contact between solids the concepts of elasticity, stress and strain are very important. In the
subject of pressure ulcers, especially stress and strain are importance. In this section there will
therefore be given some attention to these topics. The knowledge used in this section and its
subsections is acquired a.o. from the books Theory of Elasticity, by S. Timoshenko and J.N.
Goodier [12], and Introduction to Finite Element Analysis Using MATLAB rand Abaqus by
Amar Khennane, chapter 5 [5].

3.1 Elasticity

The property of elasticity is something that all structural materials possess to a certain extent.
It means that when external forces causes an object to deform up until a certain limit, the de-
formation will disappear when the external forces are removed. An object is said to be perfectly
elastic when it resumes its initial form completely after the removal of all external forces.
Often when modeling elastic bodies it will be assumed that the matter of the body is homoge-
neous. This means that when taking a very small element of the body the same specific physical
properties as the entire body will apply. Another assumption that is often made is the assumption
that the body is isotropic. This means that the elastic properties are the same in all directions.
Even though many structural materials do not satisfy these assumptions, experience has shown
that the solutions of the theory of elasticity using these assumptions give very good results for
these materials. When the elastic properties however are not the same in all directions, and also
cannot be assumed to be the same, the condition of anistropy must be considered.

3.2 Stress and Strain

Stress and strain are the words most commonly used when talking about applying pressure on
an object or when objects are deformed due to external forces.

Stress

If one applies pressure or other external forces on the outside of an object and this object is
being restrained against rigid body movement, this pressure will be noted inside the object as
internal forces are induced. These internal forces have a certain intensity, i.e. a certain amount
of force per unit area of the surface on which they act. This intensity of the internal forces is
called stress. The dimension of stress is pressure, hence it is mostly measured in terms of pascal
(Pa).
When considering stress, it is usually resolved into two components: a normal stress which is
perpendicular to the area one looks at, and a shearing stress which acts in the plane of this area.
To denote stress the letters σ and τ are often used. Here σ denotes the normal stresses and τ
denotes the shearing stresses.
To indicate the direction of the plane on which the stress is acting, subscripts to the components
x, y and z are used. This means that when working in the Euclidean space the normal stresses
are denoted by σx, σy and σz. The subscript x for example indicates that the stress is acting on
a plane normal to the x-axis. It is agreed to take the normal stress positive when it produces
tension and negative in the case it produces compression.
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The shearing stresses are denoted by τxy, τxz, τyx, τyz, τzx and τzy or simply by σxy, σxz σyx,
σyz, σzx and σzy. Here τij = σij . Note that the shearing stresses have two subscripts each. The
first letter in the subscript indicates the direction of the normal to the plane under consideration.
The second letter is then indicating the direction of the component of the stress. For example,
considering the sides of a cube perpendicular to the z-axis, the component in the x-direction will
be denoted by τzx.
In the paragraph above it becomes clear that stress has three symbols to describe the normal
stresses (σx, σy and σz) and six symbols to describe the shearing stresses (τxy, τxz, τyx, τyz, τzx
and τzy).
Dividing the area one is looking at into very small elements, one can deduce that the shear-
ing stress can be described using three symbols instead of one. This deduction can be done
considering the equilibrium of the small elements. The following equations will be found.

τxy = τyx τxz = τzx τyz = τzy
σxy = σyx σxz = σzx σyz = σzy

(3.1)

Using these equations one finds that there are six components of stress, σx, σy, σz, τxy = τyx,
τxz = τzx and τyz = τzy, at every point in the object.
These stress components are sometimes denoted in matrix style, which gives us the stress ma-
trix

σ =

 σx τxy τxz
τyx σy τyz
τzx τzy σz

 .
Using (3.1) it can be seen that the matrix above is symmetric. Sometimes in engineering a vector
notation is used. In that case the stress is denoted as

~σ =



σx
σy
σz
τxy
τyz
τxz


=



σxx
σyy
σzz
σxy
σyz
σxz


=



σ11

σ22

σ33

σ12

σ23

σ13


.

Strain

Besides inducing internal forces when one applies pressure or other external forces on the outside
of an object while this object is being restrained against rigid body movement,material points
inside the body can be displaced. When this displacement causes the distance between two
points in the body to change one speaks of straining. Strain is dimensionless.
Similar to stress the strain in a certain point exists of different components. These components
are again denoted using the subscripts x, y and z. Same as stress the strain is also divided
into two parts; the unit elongations and the shearing strains. These are respectively denoted
as εi and γij or as εii and εij , where γij = εij + εji. Here the unit elongation means that the
distance between two points in the body only changes in one direction. In the shearing stresses
the distance between the points will change in two different coordinates.
The displacements in the Euclidean space are denoted using the letters u, v and w for respec-
tively displacements in the x-plane, y-plane and z-plane. The strain components are then given
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by
εx = ∂u

∂x εy = ∂v
∂y εz = ∂w

∂z

γxy = ∂u
∂y + ∂v

∂x γxz = ∂u
∂z + ∂w

∂x γyz = ∂v
∂z + ∂w

∂y
(3.2)

It can be easily seen that
γxy = γyx γxz = γzx γyz = γzy
εxy = εyx εxz = εzx εyz = εzy

(3.3)

Also the strain can be given in matrix form. One obtains the following matrix.

ε =

 εx γxy γxz
γyx εy γyz
γzx γzy εz


Using equations (3.3) it can be seen that ε is symmetric. Since the strain matrix consists of only
six independent components, some engineers prefer to use a vector notation to represent the
strain components. The following vector notations are commonly used in the literature.

~ε =



εx
εy
εz
γxy
γyz
γxz


=



εxx
εyy
εzz
γxy
γyz
γxz


=



εxx
εyy
εzz

εxy + εyx
εyz + εzy
εxz + εzx


=



εxx
εyy
εzz

2εxy
2εyz
2εxz


or

~ε =



εxx
εyy
εzz
εxy
εyz
εxz


=



ε11

ε22

ε33

ε12

ε23

ε13


=



ε1
ε2
ε3
ε4
ε5
ε6


.

3.3 Hooke’s Law

In the previous section the different components for stress and strain are given. The relation
between these components are given in Hooke’s law. This law says the following.

~σ = D~ε (3.4)

Here the matrix D is called the stiffness tensor.
Using the vectors ~σ and ~ε, which both contain only six elements due to symmetry, one can see
that the matrix D has size 6 by 6. These elements contain information regarding the materials
of the solids. This information is given using the coefficients of Elasticity. In total there are five
different coefficients which are all related to one another. The coefficients are called the Lamé’s
constants (Lamé’s first constant and the shear modules), Young’s modulus, the Poisson’s ratio
and the Bulk modulus.
Of these parameters, three are moduli of elasticity. These are the shear modulus, Young’s
modulus and the Bulk modulus. All three describe the ratio of the stress to the strain, hence are
equal to the slope of a stress-strain curve. The elasticity modulus is the mathematical description
of an objects tendency to deform elastically when forces are applied to it.
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Lamé’s constants

The Lamé constants are two different constants described by the French mathematician Gabriel
Lamé; Lamé’s first parameter λ and the shear modulus denoted by µ or G.
The first parameter, λ, is an elastic modulus, but is often said to have no physical interpretation.
The second parameter, denoted as µ or G, is mostly referred to as the shear modulus. Other
names for this elastic modulus are rigidity or the modulus of rigidity. This parameter is defined
to be the ratio of the shear stress to the shear strain. The modulus measures the stiffness of
the material. It can be considered as measuring the response of a material to shear stress, for
example cutting it with dull scissors. The SI unit of the shear modulus is the pascal (Pa =
N/m2).
Where the shear modulus always has to be positive, the first Lamé constant can be negative.
For most materials however, the constant will be positive.

Young’s modulus

Young’s modulus is the most common elastic modulus, named after the British scientist Thomas
Young. The modulus is also known as the modulus of elasticity, the elastic modulus or the
Tensile modulus. This parameter measures the stiffness of an elastic isotropic material, and is
therefore specific for the material. The modulus is defined as the ratio of the stress along an axis
to the strain along that axis. It can be considered as the material’s response to linear stress.
Examples of such stress are pulling the ends of a wire and putting a weight on top of a column.
Since the elastic modulus is defined as the ratio between stress and strain, it’s SI unit is the same
as the SI unit of the stress, pascal (Pa).
In anisotropic materials the Young’s modulus can have different values for the different directions
of the applied force with respect to the material’s structure.

The value of the Young’s modulus can be seen as a measure for the rigidness of the material.
When the material has a high modulus, it is very rigid.

Poisson’s ratio

One of the other elastic parameters is called the Poisson’s ratio and is denoted using the Greek
letter nu (ν). This parameter is defined as the ratio of the transverse strain to the longitudinal
strain. Since strain has no dimension, the Poisson’s ratio is also dimensionless. The ratio
describes the material’s response to when the object is squeezed (i.e. how much the material
expands outwards) and the response to when the object is stretched (i.e. how much the material
contracts).
The value of the ratio hence depends on the material of the object. When the material is
incompressible, the ratio will have a value of approximately 0.5. A value equal to 0 means that
the material does not expand radially when it is compressed. When the value of the ratio is
negative it means that the material has an opposite response to compression, i.e. the material
gets thinner when compressed. These materials are called auxetic.

Bulk modulus

The third elasticity modulus is called the Bulk modulus and is denoted as K or B. It measures
the material’s response to uniform pressure. An example of such uniform pressure is the pressure

10



at the bottom of the ocean or a deep swimming pool. It can be defined as the ratio of the volume
stress to the volume strain. In other words it can be described as ”the ratio of the infinitesimal
pressure increase to the resulting relative decrease of the volume”. The modulus is measured in
pascal (Pa).

In working with elasticity usually two of the above mentioned coefficients are used. In this thesis
Young’s modulus and the Poisson’s ratio (E, ν) shall be used. In Table 1 the relations between
the different coefficients are given.

Table 1: Relationships between the Coefficients of Elasticity
From [5]

(λ, µ) (E, ν) (E, G)

λ λ Eν
(1+ν)(1−2ν)

G(E−2G)
3G−E

µ µ E
2(1+ν) G

E µ(3λ+2µ)
λ+µ

E E

ν λ
2(λ+µ) ν E−2G

2G

K λ+ 2
3µ

E
3(1−2ν)

GE
3(3G−E)

Equation 3.4 gives Hooke’s law as ~σ = D~ε. For several situations the matrix D is actually known.
(Note that the elements of this matrix will consist of factors of E and ν.) Writing Hooke’s Law
in index notation, one obtains

σij = Dijklεkl. (3.5)

Here Dijkl is called the stiffness tensor, which is a fourth order tensor with a total of 81 compo-
nents. Equation 3.5 can also be written as a system of nine equations.

σ11 = D1111ε11 +D1112ε12 +D1113ε13 +D1121ε21 +D1122ε22 +D1123ε23

+D1131ε13 +D1132ε32 +D1133ε33

σ12 = D1211ε11 +D1212ε12 +D1213ε13 +D1221ε21 +D1222ε22 +D1223ε23

+D1231ε13 +D1232ε32 +D1233ε33

σ13 = D1311ε11 +D1312ε12 +D1313ε13 +D1321ε21 +D1322ε22 +D1323ε23

+D1331ε13 +D1332ε32 +D1333ε33

σ21 = D2111ε11 +D2112ε12 +D2113ε13 +D2121ε21 +D2122ε22 +D2123ε23

+D2131ε13 +D2132ε32 +D2133ε33

σ22 = D2211ε11 +D2212ε12 +D2213ε13 +D2221ε21 +D2222ε22 +D2223ε23

+D2231ε13 +D2232ε32 +D2233ε33

σ23 = D2311ε11 +D2312ε12 +D2313ε13 +D2321ε21 +D2322ε22 +D2323ε23

+D2331ε13 +D2332ε32 +D2333ε33

σ31 = D3111ε11 +D3112ε12 +D3113ε13 +D3121ε21 +D3122ε22 +D3123ε23

+D3131ε13 +D3132ε32 +D3133ε33

σ32 = D3211ε11 +D3212ε12 +D3213ε13 +D3221ε21 +D3222ε22 +D3223ε23

+D3231ε13 +D3232ε32 +D3233ε33

σ33 = D3311ε11 +D3312ε12 +D3313ε13 +D3321ε21 +D3322ε22 +D3323ε23

+D3331ε13 +D3332ε32 +D3333ε33

(3.6)
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Using (3.1) and (3.3) it follows that the above equations can be simplified due to symmetry of
the stiffness tensor, i.e.

Dijkl = Dijlk = Djikl = Djilk.

This means that instead of 81 different elements, the stiffness tensor only has 36 independent
elastic coefficients. Using more simplifications the number of coefficients can even be reduced to
21.

3.3.1 Isotropic materials

In this thesis the skin and subcutaneous will be modeled as isotropic materials. Here isotropy
means uniformity in all orientations, or in other words, the elastic properties of the material are
the same in any direction and therefore do not depend on the choice of the coordinates system
([5]). Since none of the properties of the material depend on the orientation, the material is per-
fectly rotational and symmetric with respect to three orthogonal planes. Using this assumption
the matrix D can be simplified to exist of only two independent coefficients, E and ν, obtaining
the following stress-strain relationship for the elastic matrix.



σxx
σyy

σzz

σxy

σyz

σxz


=

E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1−2ν
2 0 0

0 0 0 0 1−2ν
2 0

0 0 0 0 0 1−2ν
2





εx
εy

εz

γxy

γyz

γxz


(3.7)

In equation (3.7) the relation between stress and strain is given for an isotropic material, with the
stress a function of the strain. Here the stiffness tensor is called the elasticity matrix D.

It is also possible to write this Hooke’s Law differently, i.e. with the strain a function of the
stress. The equation will then become ~ε = C~σ. In this case instead of the elastic matrix one
speaks of the compliance matrix, denoted by C. Equation (3.8) shows the relation between stress
and strain using this compliance matrix.



εx
εy

εz

γxy

γyz

γxz


=

1

E



1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0

−ν −ν 1 0 0 0

0 0 0 2(1 + ν) 0 0

0 0 0 0 2(1 + ν) 0

0 0 0 0 0 2(1 + ν)





σxx
σyy

σzz

σxy

σyz

σxz


(3.8)

3.4 Plane stress and Plane strain

Working with solids, hence in three dimensions, the vectors describing the stress and strain both
contain six elements, and the stiffness tensor is six by six. This causes most problems to be
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quite large. Fortunately it is often possible to make some assumptions that lead to simplifica-
tions.

Plane stress

An example of a situation in which simplifying assumptions can be made is when working with
a solid with one dimension relatively small compared to the two others and loaded in its plane.
In such a situation the problem can be analyzed using the plane stress approach. This approach
means that the stress on the small dimension is assumed to be zero throughout the entire solid.
The only forces applied to the object will be parallel to the plate of this dimension. In other
words, the stress vector is zero across a particular surface. This approach is usually taken when
working with thin plates and beams. Look for example at Figure 1.

Figure 1: In plane stress one of the dimensions is very small compared to the others. In this
thin body, the z-component is small.

In this figure one can see that the thickness of the beam (z-component) is small compared to
the other two dimensions. It is also clear that the surfaces of the beam are free of forces. This
leads to the stress components σxz, σyz and σzz being equal to zero. If the beam is thin, as it is
shown in the figure, it can be assumed that these stress components are equal to zero throughout
the entire thickness of the beam. Furthermore, it is reasonable to assume that the other stress
components, σxx, σyy and σxy remain constant.
We find that in the case of plane stress the stress vector will only exist of three non-zero compo-
nents, and using this the stress-strain relation using the elastic matrix shown in equation (3.7)
will come down to the following.

 σxx
σyy

σxy

 =
E

1− ν2

 1 ν 0
ν 1 0

0 0 1−ν
2


 εxx

εyy

γxy

 (3.9)
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Furthermore, since σzz is equal to zero and using that

σzz =
E

(1 + ν)(1− 2ν)
(νεxx + νεyy + (1− ν)εzz) (3.10)

(from equation (3.7)) εzz can be determined. To do this, take

A =
E

(1 + ν)(1− 2ν)
.

Substituting σzz = 0 in (3.10) one obtains a result for εzz.

0 = Aν(εxx + εyy) +A(1− ν)εzz

A(1− ν)εzz = −Aν(εxx + εyy)

εzz =
−ν

1− ν
(εxx + εyy) (3.11)

This expression can be rewritten further using equation (3.9). From Hooke’s Law for plane stress
it follows that

σxx =
E

1− ν2
(εxx+ νεyy)

σyy =
E

1− ν2
(νεxx+ εyy)

σxx + σyy =
E

1− ν2
(1 + ν)(εxx + εyy)

σxx + σyy =
E

1− ν
(εxx+ εyy). (3.12)

Multiplying equation (3.12) by −νE and comparing this with equation (3.11) equation (3.13) can
be derived.

εzz =
−ν
E

(σxx + σyy) (3.13)

As before, Hooke’s Law can also be given using the compliance matrix. This relation is given by
equation (3.14).  εxx

εyy

γxy

 =
1

E

 1 −ν 0
−ν 1 0

0 0 2(1 + ν)


 σxx

σyy

σxy

 (3.14)
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Plane strain

Another example in which certain assumptions can simplify the problem is called plane strain.
In this case one of the dimensions of an object will be very large compared to the other two
dimensions. In this case the loads are uniformly distributed with respect to the large dimension
and act perpendicular to it. An example of this situation is shown in figure 2.

Figure 2: In plane strain one of the dimensions is very large compared to the others. In this
thick body, the z-component is large.

Instead of the z-component being very small compared to the other two dimension as in Plain
Stress, here the z-component is very large compared to the other two. In this case the strain
components γxz, γyz and εzz are equal to zero. This holds throughout the beam because the
displacements of all faces in the z-direction are kept equal to zero.
The strain components that are nonzero are εxx, εyy and γxy.

As in the case of plane stress we find that Hooke’s law will be smaller, since the strain vector
exists of only three nonzero components. The stress-strain relation using the elastic matrix shown
in equation (3.7) will become the following.

 σxx
σyy

σxy

 =
E

(1 + ν)(1− 2ν)

 1− ν ν 0
ν 1− ν 0

0 0 1−2ν
2


 εxx

εyy

γxy

 (3.15)

Hooke’s Law can also be given the other way around, using the compliance matrix. This relation
is given by equation (3.16). εxx

εyy

γxy

 =
1 + ν

E

 1− ν −ν 0
−ν 1− ν 0

0 0 2


 σxx

σyy

σxy

 (3.16)
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Furthermore, εzz is equal to zero, but σzz is not. Looking at Hooke’s Law in equation (3.7) and
writing zero for γxz, γyz and εzz the following equation is obtained.

σxx
σyy

σzz

σxy

σyz

σxz


=

E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1−2ν
2 0 0

0 0 0 0 1−2ν
2 0

0 0 0 0 0 1−2ν
2





εxx
εyy

0

γxy

0

0


(3.17)

Equation (3.18) follows directly from this relation.

σzz = ν(εxx + εyy) (3.18)

Review Plane stress and Plane strain

In figure 3 the two states plane stress and plain strain are quickly compared.

Figure 3: Comparison between plane stress and plane strain.
From: http://classes.mst.edu/civeng110/concepts/13/strain/plane stress vs strain.gif
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4 Contact Mechanics

Contact mechanics is the area having to do with situations in which multiple solids are in contact
with one another. This area is very big, since there are many different options when looking at
contacting solids. The solids themselves for example can be rigid or elastic, they can deform or
stay the same as an effect of the contact, and the contact between the solids can be conforming
or non-conforming. These latter options mean that without applying pressure the bodies either
touch at multiple points (i.e. they ”fit together”) or they only touch at one point or one line
(i.e. the shapes do not ”fit together”). In the case of non-conforming contact, the contact area is
very small compared to the sizes of the bodies, which causes the stresses to be high in this area.
In this case the contact will also be called concentrated. In the case of a larger contact area the
stresses will be more spread out and the contact will be called diversified.

In the general contact problem there are three components that can be of importance.

1. Due to the the load that presses the bodies together, deformation of the separate bodies
will occur. The deformation depends on the material and structure of the body.

2. Secondly the bodies have an overall motion relative to each other. Possibilities are the
bodies being at rest, approaching each other (after which impact follows), sliding and
rolling over each other.

3. Thirdly there are the processes at the contact area: compression and adhesion in the
direction perpendicular to the area, and friction and micro-slip in the tangential directions.

This last component can be described using conditions called the contact conditions.

• First of all the gap between the two bodies should always be greater than or equal to
zero: en ≥ 0, where equality holds in case of contact and inequality when the bodies are
separated.

• Secondly, the normal stress acting on each body should also be greater than or equal to
zero: pn ≥ 0, where equality means the bodies are separated and inequality holds when
the bodies are in contact. In this latter case the normal stress is compressive.

Note that:

– The functions en and pn depend on the location of the body surfaces.

– The product of en with pn will always be equal to zero: enpn = 0.

The first important component of contact problems is, as given above, the deformation of the
solids in contact. Researchers have been investigating this deformation done for a long time. In
1882, Hertz published an article called ”On the contact of elastic solids”. This article was one of
the first steps in the research of contact mechanics. After this, many more models were created,
such as the JKR model (Johnson, Kendall and Roberts), and the Bradley model.

There are many different models regarding contact between two solids. Some of these models are
useable for contact problems of solids that are only pressed together (normal contact problems),
while other models can be used when either or both solids are being moved with respect to
the other (tangential contact problems). Four big models regarding normal contact problems
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Figure 4: Contact with no force acting upon
the contact.

Figure 5: Contact with a normal force acting
upon the contact.

are described in section 4.1. The contact problems with tangential movement are described in
section 4.2.

4.1 Normal contact mechanics

The information described in this subsection is mostly obtained from the books Contact Mechan-
ics by Johnson [4] and Contact Mechanics and Friction by Popov [9] and the website Wikipedia
[13].

The following models will be described in this section. A more elaborate description of these
models is given in respectively section 4.1.1 and 4.1.2.

Hertz fully elastic model

JKR fully elastic model considering adhesion in the contact zone

Bradley purely van der Waals model with rigid spheres

DMT fully elastic, adhesive and van der Waals model.

4.1.1 The Hertzian Theory of Elastic Deformations

The Hertzian Theory of Elastic Deformations is on of the first models regarding the geometrical
effects on local elastic deformation properties. It was created around 1882 when Hertz solved
the problem of contact between two elastic bodies with curved surfaces. The result described
in the model forms a basis for contact mechanics today. The most common problem is called
the normal contact problem. This problem revolves around two bodies which are brought into
contact with another by forces perpendicular to their surfaces [9], or in other words, are being
pressed together. The Hertzian Theory of Elastic Deformations considers such a normal contact
problem between a rigid sphere and an elastic half-space. In the theory all adhesive forces are
neglected. The information in this section closely follows the information from the book Contact
Mechanics and Friction by V.L. Popov [9].

Figures 4 and 5 shows the contact between the elastic half-space and the rigid sphere schemati-
cally.

The original theory of Heinrich Hertz had three results
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• the contact radius was determined,

• the maximum pressure was determined and

• the normal force of the contact was determined.

To obtain these results Hertz used the displacement of the points on the surface in the contact
area between an originally even surface and a rigid sphere of radius R. This displacement is
equal to1

uz = d− r2

2R
, (4.1)

where uz denotes the surface displacement, d the indentation depth, r =
√
x2 + y2 and R the

radius of the sphere. The relation between the before mentioned parameters is shown in figure
5.

In solving the contact problem in order to obtain the three results a pressure distribution has to be
assumed. The pressure distribution that is assumed in the theory of Hertz is p = p0(1− r2/a2)n,
with n = 1/2. In this pressure distribution p0 is the maximum pressure. This Hertzian Pressure
Distribution

p = p0

(
1− r2

a2

) 1
2

, r2 = x2 + y2 (4.2)

leads to a vertical displacement equal to

uz =
πp0

4E∗a
(2a2 − r2), r ≤ a. (4.3)

Equation (4.3) can be obtained as follows.2 When working with a continuous distribution of the
normal pressure p(x, y), the displacement of the surface is calculated as

uz =
1

πE∗

∫ ∫
p(x′, y′)

dx′dy′

r
with r =

√
(x− x′)2 + (y − y′)2 and E∗ =

E

1− ν2
. (4.4)

Using a change of coordinates, taking α = a2 − r2, β = r cos(φ) and substituting equation (4.2),
equation (4.4) becomes

uz =
1

πE∗
p0

a

∫ 2π

0

∫ s1

0

(
α2 − 2β − s2

) 1
2 ds︸ ︷︷ ︸

∗

 dφ. (4.5)

The expression (*) can be calculated as

(∗) =

∫ s1

0

(
α2 − 2β − s2

) 1
2 ds

=
1

2
αβ +

1

2
(α2 + β2) ·

(π
2
− arctan(β/α)

)
.

1Only the z-component of the displacement is of interest within the framework of the half-space approximation
in contact problems without friction [9].

2This derivation is explained in Appendix A of [9].
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Integrating the above over φ from 0 to 2π, the terms αβ and arctan(β/α) vanish since β =
r cos(φ). This leads to the following result.

uz =
1

πE∗
p0

a

∫ 2π

0

(∫ s1

0

(
α2 − 2β − s2

) 1
2 ds

)
dφ

=
1

πE∗
p0

a

2π∫
0

π

4
(α2 + β2)dφ

=
1

4E∗
p0

a

2π∫
0

a2 − r2 + r2 cos(φ)dφ

=
πp0

4E∗a
(2a2 − r2)

= equation (4.3)

The total force of the contact is

F =

a∫
0

p(r)2πrdr =
2

3
p0πa

2. (4.6)

To solve the contact problem, one can now use the fact that both equation (4.1) and equation
(4.3) describe the same vertical displacement and hence should be equal.

πp0

4E∗a
(2a2 − r2) = d− r2

2R

From this equality the variables a and d can be derived. One obtains

a =
πp0R

2E∗
and d =

πap0

2E∗
. (4.7)

Equation (4.7) leads to the first result of Hertz theory, the contact radius between the rigid
sphere and the elastic half-space:

1. a2 = Rd. (4.8)

Using equations (4.7) and (4.8) the second result can also be obtained, which is the maximum
pressure.

2. p0 =
2E∗

π

(
d

R

) 1
2

(4.9)

Substituting both equations (4.8) and (4.9) in the equation of total force (4.6), the third result
is obtained; the normal force.

3. F =
4

3
E∗
(
d3

R

) 1
2

(4.10)

From this last result, the potential energy of the elastic deformation U can be determined using
−F = ∂U∂d.

U =
8

15
E∗(Rd5)

1
2
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The above results are explicitly for the contact between a rigid sphere and an elastic half space.
The results can be used to obtain results for other scenarios, such as the contact between two
elastic bodies, the contact between two spheres, the contact between two elastic cylinders, and
more.

If the contact is for instance between two elastic bodies, the only difference with the previous
result is that the expression of E∗ must be changed into

1

E∗
=

1− ν2
1

E1
+

1− ν2
2

E2
, (4.11)

where E1 and E2 are the moduli of elasticity of the two bodies, and ν1 and ν2 the respective
Poisson’s ratios.

4.1.2 Bradley’s Van der Waals model, The JKR-theory and the DMT-theory

Fifty years after Hertz solved the normal contact problem without adhesion between elastic
bodies in 1882, Bradley presented the solution for the normal contact problem with adhesion
between a rigid sphere and a rigid plane.

In 1971 an article was written by K.L. Johnson, K. Kendall and A.D. Roberts. In this article a
new contact mechanics model called the JKR-theory is described in which the contact adhesive
interactions are taken into account. The JKR-theory is often referred of as the classical theory
of adhesive contact.

The JKR-theory is based on the Hertzian theory. However, as has been noted before, Hertz did
not include any adhesive forces in his model. It was found by Roberts and Kendall [6] that these
contact forces are of little significance when two spheres are pressed together by a high load,
but become more important when this load reduces. This means that for low loads the model of
Hertz will be less accurate.

The DMT-theory is yet another theory that includes adhesive forces. This theory is created as
a combination of the Hertzian theory and Bradleys model. When the two bodies are separated
and significantly apart the DMT-theory will simplify to Bradleys’s Van der Waals model.

All three models describe the adhesive normal contact problem, only between different types of
bodies.

Bradley solved the adhesive normal contact problem between a rigid sphere and a rigid plane.
The resulting adhesive force was found to be FA = 4πγR, with γ the surface energy and
R the radius of the sphere.

JKR solved the adhesive contact problem between elastic bodies. They found the adhesive force
to be equal to FA = 3πγR.

DMT described a different adhesive theory while they considered the case of deformable bodies
by adding the adhesive force of Bradleys model to the theory of Hertz.

In 1976 Tabor realized that the above mentioned models were all valid for different scenarios.
The DMT-Theory and JKR-Theory are both special cases of the general problem. He stated
that the theories had only very small differences, but that ([9])
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Bradleys model is correct for absolutely rigid bodies,

The JKR-Theory is valid for large, flexible spheres, and

The DMT-Theory is valid for small, rigid spheres.

4.2 Tangential Contact Problems

In the previous models, the two solids were only pressed together and both had absolutely smooth
and frictionless surfaces. In these cases the shear forces in the contact area are equal to zero.
In this section contacts are examined in which the point of contact is also loaded in the tangential
direction. Now static and kinetic frictional forces will become interesting, and the shear forces
will thus be nonzero. These Tangential Contact Problems belong to the field of Frictional con-
tact mechanics, which is the study of the deformation of bodies in the presence of frictional effects.

In case of tangential contact problems there are additional contact conditions, coming from the
fact that the shear stress should always be smaller than or equal to the so-called traction bound
which depends on the position. This is called the local friction law. The friction law that is most
commonly used is called Coulomb’s law (see section 4.2.4), which states that Fx ≤ µFN . Here
Fx is the tangential force, FN is the normal force and µ is the coefficient of friction.
In this law equality holds in case of sliding and inequality holds in case of sticking.

Generally the contact area and the sticking and sliding parts are unknown in advance. If these
were known, then the elastic fields in the two bodies could be solved independently from each
other and the problem would not be a contact problem anymore.

4.2.1 Cattaneo problem

A commonly known tangential contact problem is called the Cattaneo problem. This contact
problem is between an elastic sphere with radius R and an elastic plane (half space). The sphere
is pressed onto the plane and then shifted over the plane’s surface by a tangential force Fx.
When starting with only the normal force FN the sphere will be pressed onto the plane. The
contact point will turn into a contact area as both bodies deform and the center of the sphere
moves down by a distance of δn called the approach (see figure 6). The contact area will be
circular and a Hertzian normal pressure distribution arises.

Figure 6: The center of the sphere moves down by a distance of d = δn.
Source: CMaF

When both the sphere and the plane are from the same material (same elastic properties), the
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Hertzian solution reads

pn(x, y) = p0

√
1− r2/a2 r =

√
x2 + y2 ≤ a a =

√
Rδn,

p0 =
2

pi
E∗(δn/R)1/2 FN = 4

3E
∗R1/2δ

3/2
n E∗ =

E

2(1− ν2)
,

where E and ν are respectively the Young’s modulus and the Poisson’s ratio. This is the same
as was shown earlier in section 4.1.1.
When the sphere and the plane are made of different materials, the same solution holds, only
now using

1

E∗
=

1− ν2
1

E1
+

1− ν2
2

E2
. (4.12)

Assumed before is that after the normal pressure is applied, a tangential force Fx will be applied
that ’pushes’ against the sphere.
When this force is lower than the Coulomb friction bound (Fx < µFN ) the center of the sphere will
move sideways for a small distance δx, which is called the shift. An equilibrium will be obtained
in which the bodies are deformed and frictional shear stresses occur. When the tangential force
is removed the sphere will (mostly) shift back.

This problem was solved analytically by Cattaneo. In his solution he combined two Hertzian
distributions which showed that there occurs partial sliding during the tangential loading (see
section 4.2.3).
Before this combination of distributions is shown, some information regarding working with
half-spaces, the deformations that will occur in these and the stress distributions causing these
deformations are given.

4.2.2 Half-space approaches

It is often useful to work with half-spaces instead of fixed and bounded planes. We will therefore
look into the deformations that will occur when a tangential stress distribution acts upon an
elastic half-space.
As is done in the book of Valentin L. Popov [9] the problems will be considered using a half-space
approximation. This means that ”the gradient of the surface of he contacting bodies should be
small in the vicinity relevant to the contact problem ” ([9]).

A point is taken on the surface of this elastic half-space which is chosen to be the origin. A
concentrated force acts on this origin, which for simplicity only has a component in the x-
direction. When considering the surface z = 0 the following equations describe the displacements
([7]3)

ux = Fx
1

4πG

{
2(1− ν) +

2νx2

r2

}
1

r
,

uy = Fx
1

4πG
· 2ν

r3
xy, (4.13)

uz = Fx
1

4πG
· (1− 2ν)

r2
x.

In these equations G is the shear modulus also denoted by µ, described further in section 3.3
and table 1.

3referred to by [9]
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To make the problem more realistic one can look at a tangential force distribution acting upon
the displacement of the surface. Assuming this force acts in the x-direction it can be denoted
by

σzx(x, y) = τ(x, y).

Using this distribution, the displacement in the x-direction can be calculated using the inte-
gral

ux =
1

4πG
· 2
∫∫
A

{
1− ν
s

+ ν
(x− x′)2

s3

}
τ(x′, y′)dx′dy′, (4.14)

where
s2 = (x− x′)2 + (y − y′)2.

It is obvious that a different force distribution will lead to a different displacement in the x-
direction. The following possibilities are given in Chapter 8 of Contact Mechanics and Friction,
by V.L. Popov [9].

• For example, a constant value of the displacement will be found if the following force
distribution is taken

τ(x, y) = τ0(1− r2/a2)−1/2 with r2 = x2 + y2 ≤ a2.

Substituting this in equation (4.14) and integrating, the displacement inside the loaded
area (r ≤ a) is found to be

ux =
π(2− ν)

4G
τ0a = constant. (4.15)

Due to symmetry, in this case uy = 0. The z-component of the displacement is however
not equal to zero and can be calculated using equation (4.13). The total force Fx that acts
on the contact area can be calculated as

Fx =

a∫
0

τ(r)2πrdr = 2πτ0a
2. (4.16)

• Another possible force distribution is the distribution

τ(x, y) = τ0
(
1− r2/a2

)1/2
. (4.17)

Substituting this in equation (4.14) the x-displacement of the surface points in the loaded
area (r ≤ a) is obtained as

ux =
τ0π

32Ga

[
4(2− ν)a2 − (4− 3ν)x2 − (4− ν)y2

]
, (4.18)

with the total force equal to

Fx
2

3
πτ0a

2. (4.19)
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• A third possibility would be that the force distribution acting in the x- direction upon an
elastic body within a strip of width 2a is given by

τ(x, y) = τ0(1− x2/a2)1/2. (4.20)

In this the displacement of the surface points is given by [9]

ux = constant− τ0
x2

aE∗
. (4.21)

• The last case that is given in [9] is a special case. Now the tangential loading is presented as
torsion. This phenomena occurs when working in a round contact area (radius a) and the
tangential forces are directed perpendicular to the respective polar radius r. The stresses
in this situation are give by

σzx = τ(r) sin(φ) and σzy = τ(r) cos(φ). (4.22)

Here the force distribution τ is given as

τ(r) = τ0
r

a

(
1−

( r
a

)2
)−1/2

. (4.23)

According to Johnson in his book Contact Mechanics ([4]), the displacement of the surface
is given by (in polar components)

uφ =
πτ0r

4G
,

ur = 0, (4.24)

uz = 0.

Looking at these displacement components it is clear that the surface area turns, which
happens if the chosen torsion is in fact the torsion of the rigid cylindrical indenter sticking
to the surface. In this case the torsional moment is equal to [9]

Mz =
4

3
πa3τ0. (4.25)

Now that some information is available regarding the deformations that occur due to different
force distributions, the cases of sticking and sliding will be examined.

Complete Sticking - A contact problem without slip In the case of complete sticking,
there exists no sliding in the contact. These type of problems are also called tangential contact
problems without slip.Here the coefficient of friction (COF) between the two bodies is very high
(tends to infinity), or the bodies are ”glued together”.
In most cases, however, the no-slip condition will not hold near the boundary, which means that
relative sliding will occur. The fact that the no-slip condition often does not hold is due to the
fact that in these cases the shear stress approaches infinity in these areas while the normal stress
tends to zero [9].
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A contact problem accounting for slip An example of such a problem is the Cattaneo
problem described earlier. Many other examples can be considered as well. As said above, in
most cases there will be slip in the boundary of the contact area. When sliding occurs in (part
of) the contact area, the contact problem accounts for slip. In these problems one could deal
with both sliding and sticking, or only sliding.
To get an idea of a contact problem accounting for slip, consider two bodies in contact where
normal and tangential forces act simultaneously. As an example [9] two spheres are being pressed
together with a normal force FN while also pulled in the tangential direction with force Fx. The
friction between the two bodies is assumed to be according to Coulomb’s law of friction; the
maximum static friction stress τmax is equal to the kinetic friction stress τk. Both are equal to
the normal stress p multiplied with a constant coefficient of friction (COF) µ.

τmax = µp and τk = µp. (4.26)

Now in the area where sticking occurs, the stress τ will have to be smaller than or equal to the
normal stress multiplied with this coefficient of friction, i.e.

τ ≤ µp. (4.27)

When one assumes the bodies completely adhere in the contact area, the following equations
for the distributions of the normal and tangential stresses are obtained according to Valentin L.
Popov [9].

Normal stress p = p0

(
1− (r/a)2

) 1
2 , FN =

2

3
p0πa

2, (4.28)

Tangential stress τ = τ0
(
1− (r/a)2

)− 1
2 , Fx = 2πτ0a

2. (4.29)

Looking at these distributions it is clear that at the boundary of the area the normal stress p
approaches zero, while the tangential stress τ tends to infinity. This means that here the sticking
condition (4.27) will always be invalid and hence there will always be slip near the boundary of
the contact area. Sticking will occur however inside of the area, when the tangential forces are
sufficiently small (see figure 7. The sticking and sliding domains are separated by the boundary
circle on which holds that τ = µp.

It can be shown that the shear stress distribution given in equation (4.29) is only valid for contact
without sliding. However, using this distribution one can prove that there will always be sliding
at the boundary, which is a contradiction to the assumption.
A new distribution needs to be constructed, which is correct for a situation with both sliding
and sticking. Such a distribution can be constructed as a combination of known distributions.
This need for a new and better stress distribution is the same as the need in the Cattaneo
problem.

4.2.3 Forming a new stress distribution

In Contact mechanics and Friction [9] it is described that in the case of sliding and sticking
(such as in the Cattaneo problem) a distribution can be formed using two ”Hertzian” stress
distributions, obtaining

τ = τ (1) + τ (2)

= τ1(1− r2/a2)1/2 − τ2(1− r2/c2)1/2, (4.30)
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where a is the contact radius and c is the radius of the sticking domain as is shown in figure 7.

Figure 7: Sticking and sliding domains in a round tangential contact.
Source: [9, Ch. 8].

Since this stress distribution is of the form given in equation (4.17) the displacement will be
similar to to one shown in equation (4.18). The following displacement can be obtained.

ux =
τ0π

32Ga

[
4(2− ν)a2 − (4− 3ν)x2 − (4− ν)y2

]
(4.31)

− τ0π

32Gc

[
4(2− ν)c2 − (4− 3ν)x2 − (4− ν)y2

]
Now combining this displacement with the fact that sticking occurs within the circle with radius
c it is clear that the displacement in this area should be constant:

ux(r) = constant if r < c.

The fact that sliding occurs in the rest of the domain means that in that area Coulomb’s law of
friction is met:

τ(r) = µp(r), if c < r < a.

Using these conditions, the following stress distribution can be found.

τ(r) = µp0(1− r2/a2)1/2 − µp0
c

a
(1− r2/c2)1/2 if 0 ≤ r ≤ c (4.32)

τ(r) = µp(r) if c ≤ r ≤ a (4.33)

the displacement for the points in the sticking area and the sliding area can be determined. From
these displacements, the tangential force can be given in terms of the normal force, using that
FN = 2

3p0πa
2. One obtains

Fx = µFN

(
1−

( c
a

)3
)
. (4.34)

Rewriting this equation, a radius for the static area is found.

c

a
=

(
1− Fx

µFN

)1/3

(4.35)
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From this relationship it can be seen that complete sliding occurs when

Fx = µFN ,

where µ is the coefficient of friction from Coulomb’s Law of Friction.

4.2.4 Coulomb’s Law of Friction

Coulomb’s Law of Friction is a very simple model to describe the extremely complicated phe-
nomenon of friction in case of dry friction (or Coulomb friction). Despite the simplicity of the
law it is shown to be very wide applicable [9].
The law is given by the following inequality

Ff ≤ µFN , (4.36)

where Ff is the frictional force, FN the normal force and µ the coefficient of friction.

The coefficient of friction is a constant which can depend on a.o.

• the contact time,

• the normal force,

• the sliding speed,

• the surface roughness and

• the temperature.

In the article of Gefen on microclimate factors [3] the effect of the temperature of the room,
the temperature of the patient and the production of sweat on the risk for pressure ulcers is
being examined. It could therefore be important to include these factors in the contact model.
A change in the temperature could for instance change the elastic properties of the materials
(i.e. the skin, subcutaneous tissue and the mattress) and when sweat is produced it might be
necessary to include the presence of fluid in the model.

4.2.5 Choosing a contact mechanics model

In the previous sections, several contact mechanics models have been described. In this section
they will briefly be compared after which a choice will be made as to which model to use in this
thesis.

In this thesis the contact is between a human body, which is flexible, and a hospital mattress
which also is elastic. The human body is pressed against the mattress, but is simultaneously
moved along the mattress. The body is not glued to the mattress, and the coefficient of friction
between the patient and the bed does not tend to infinity, which means that sliding will occur
during the movement.
These factors lead to the conclusion that the problem is in fact a tangential contact problem
accounting for slip. For this reason, the contact models describing the normal contact problem
(see section 4.1) can be discarded. The information given in section 4.2, such as the solving
process of the Cataneo problem, can be used to solve the problem described in this thesis.
However, since other factors are of interest too the model needs to be expended. For instance,
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this thesis will also include the effect of moisture on the risk of pressure ulcers. This means that
the presence of fluids might have to be included in the contact model. Also, the effect of the
temperature on the risk of pressure ulcers is being examined. Therefore it might be important
to include the temperature changes in the contact model.

Very important is that the contact is between a human body and a hospital mattress. This
means that the exact contact area is not known as opposed to all examples shown above. This in
turn means that the integrals used in the models above, in which is integrated over the contact
area, can not be calculated as simple as shown. This is similar to the Signorini problem which
is explained in section 4.3. We will have to determine the contact area using a sort of trial and
error system in which the contact area is estimated and improved until it is obtained right.

4.3 The Signorini Problem

The Signorini problem is a problem posed in 1959 regarding the equilibrium configuration of an
elastic body resting on a rigid surface. In this contact only the mass forces on the body were
taken into account.
The problem is to find the elastic equilibrium configuration of this elastic body subject to only
its mass forces. In other words, the problem is to find the deformation of the body, only subject
to its body forces. The difficulty in the problem is that the contact area between the elastic body
and the sphere is not known prior to solving the problem. Due to this the problem originally was
named the problem with ambiguous boundary conditions. These ambiguous boundary condi-
tions consist of both equalities and inequalities and represent the difference between contact and
separation. Every point in the body has to satisfy one of the two sets of boundary conditions,
i.e. it will either be in the contact area or in the separation.

Antonio Signorini posed the problem asking his students whether the problem is well-posed or
not in a physical sense, i.e. if its solution exists and is unique or not. This eventually was solved
by one of his students, Gaetano Fichera, who named the problem after his teacher.

Fichera, as opposed to Signorini, did not consider only incompressible bodies and a plane rest
surface, which made the problem more general.
The goal of the problem is to [14] ”find the displacement vector from the natural configuration
~u(~x) = (u1(~x), u2(~x), u3(~x)) of an anisotropic non-homogeneous elastic body that lies in a subset
A of the three dimensional euclidean space, whose boundary δA and whose interior normal is
the vector ~n, resting on a rigid frictionless surface whose contact surface (or contact set) is

Σ and subject only to its body forces ~f(~x) = (f1(~x), f2(~x), f3(~x)), and surface forces ~g(~x) =
(g1(~x), g2(~x), g3(~x)) applied on the free surface δA\Σ: the set A and the contact surface Σ
characterize the natural configuration of the body and are known a priori. Therefore the body
has to satisfy the general equilibrium equations:

δσik
δxk

− fi = 0 for i = 1, 2, 3 (4.37)

the ordinary boundary conditions on δA\Σ

σiknk − gi = 0 for i = 1, 2, 3 (4.38)
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and the following two sets of boundary conditions on Σ, where ~σ = ~σ(~u) is the Cauchy stress
tensor.”

As said before, each point has to satisfy on of two sets of ambiguous boundary conditions. These
sets are the following.

 uini = 0
σiknink ≥ 0
σikniτk = 0

or

 uini > 0
σiknink = 0
σikniτk = 0

, (4.39)

where τ = (τ1, τ2, τ3) is a tangent vector to the contact set Σ.

Looking at these sets of boundary conditions it can be seen ([14]) that points which satisfy the
first set of conditions are the points which do not leave the contact set Σ in the equilibrium
configuration. This area is called the area of support. The points which satisfy the second
set of conditions are those which do leave this contact set, and are referred to as the area of
separation.

As mentioned before, the problem posed by Signorini only asked whether the problem was well-
posed and solvable. Actually solving the problem was not part of this. This has been done later
on, and is reported in the literature.
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5 Risks on pressure ulcers due to Microclimate factors

In this thesis a model will be created describing a patients risk on pressure ulcers while being
moved on a hospital bed. In this model the effect of microclimate factors will also be included.
The basics of this part are described in the article ”How do microclimate factors affect the risk
for superficial pressure ulcers: A mathematical modeling study.” by Amit Gefen [3].
In this section the assumptions, calculations and results of this article will be described.

In the article the risk of superficial pressure ulcers (SPUs) is being examined. Here superficial
pressure ulcers will mean ”skin damage associated with sustained mechanical loading”.
The research described in the article continues on the idea that thermodynamic conditions within
and around the skin tissue (i.e. the skin being wet) influences the risk of a patient getting a
SPU. The term microclimate is used here to describe factors like the local temperature and
moisture conditions of the skin. The area of interest will be the parts of the human body that
are considered the weight-bearing regions ([8]4). Previous papers described the effect of surface
temperature, humidity, moisture and air movement as risks factors on the patients susceptibility.
All these papers however, were based on purely experimental research. The article written
by Gefen creates a mathematical model to prove that the microclimate factors are indeed risk
factors.

In figure 8 the part of the human body that is considered is shown. This region of interest (ROI)
is ”a small region of contact between the skin an a support (e.g. mattress or cushion), possibly
with a covering sheet, some clothing or stocking in-between the skin and support”.

Figure 8: The model will consider a small weight-bearing part of the human body.
Source: [3]

Perspiration

The first step that is taken in the article is to assume the expression of the perspiration accu-
mulated over a certain time period within the available space.

4Referred to by Gefen in [3].
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The following denotations are used.

Notation Factor

∆V volume of perspiration
t time
V available space between the skin and the contact materials at the ROI

Ṡ rate of production of perspiration by the sweat glands contained on the ROI

Ḋ rate of drainage of perspiration out of the ROI via the contact materials

Ė rate of evaporation of perspiration.

With the factors above, the accumulated perspiration over time t within V is assumed to be

∆V (t)

V
=

t∫
0

(Ṡ − Ė − Ḋ)dt′ (5.1)

Now the rate of production of perspiration can be assumed to start with an ambient temperature
Ta (temperature within the ROI) of 30 ◦C. It can also ion is be assumed that the production is
proportional to the temperature gradient Ta − 30 ◦C. Using this Ṡ can be formulated as

Ṡ = α
Ta − 30 ◦C

Tmax
a − Tmin

s

. (5.2)

Here α is a dimensionless proportionality constant, Tmax
a is the maximal ambient temperature

and is equal to 40 ◦C and Tmin
s is the minimal skin temperature, equal to 30 ◦C.

In a similar way the evaporation rate is formulated.

Ė = β
Ta − Ts

Tmax
a − Tmin

s

(1−RH) (5.3)

Here β is another dimensionless proportionality constant, Ts is the skin temperature and RH =

1 − ∆V (t)
V is the relative humidity at the liquid free-space of the ROI. In the article a more

detailed definition is given.

The RH is defined as the ratio between the amount of water vapor at the ROI and
the maximum amount ow water vapor that the ROI can hold, and hence, the RH
ranges between 0 and 1. - Amit Gefen, [3]

Lastly an expression for the drainage of perspiration Ḋ is given. This is simply given as a single
dimensionless effective permeability coefficient

Ḋ = γ. (5.4)

This constant weighs together the contributions of permeabilities of all contact materials. If for
instance γ = 0, there is no drainage of perspiration at all.

To establish a model that is simple enough mathematically speaking to solve, the assumption is
made that the ambient temperature, skin temperature and relative humidity do not change in
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time, and thus are independent of t. With these assumptions and using equations (5.2), (5.3)
and (5.4)equation (5.1) becomes

∆V (t)

V
=

[
α

Ta − 30 ◦C

Tmax
a − Tmin

s

+ β
Ta − Ts

Tmax
a − Tmin

s

(1−RH) + γ

]
· t, (5.5)

with t such that 0 ≤ ∆V (t)/V ≤ 1.

The coefficient of friction

Another factor in the model described in the article is the coefficient of friction (COF) between
the skin and a contacting covering sheet or clothing. This coefficient strongly depends on the
volume of perspiration accumulated over the skin.
For instance, for the contact between dry skin and common hospital textiles the COF is equal
to approximately 0.4. For contact between wet skin and the same textiles the COF will increase
to approximately 0.9. Using this, an expression for the COF (denoted as µ) between the skin
and the covering sheet or clothing in the ROI is described for the model.

µ = 0.5
∆V (t)

V
+ 0.4 (5.6)

This equation shows that the accumulation of perspiration on the skin will consequently increase
the shear forces f between the skin and the contact materials over time.
For the shear forces f it holds that f = µN where N is the bodyweight force applied perpen-
dicularly to the skin-support or skin-clothing contact area at the weight-bearing region. This
bodyweight force N is assumed to be constant over time since the patient is not moving. Despite
this fact, µ does increase with time as can be obtained from equation (5.6). As a consequence the
shear stress between the skin and the contact materials will increase over time, as the amount of
perspiration increases. This shear stress τ is equal to the shear force normalized by the contact
area A which gives τ = µN/A. Because the pressure P delivered to the skin from the support
surface at the skin-support or clothing-support region of contact is given as P = N/A the shear
stress can be written in terms of this pressure, that is τ = µP . Substituting the expression of
the COF (equation (5.6) into this relationship the following equation holds for the ROI.

τ =

(
0.5

∆V (t)

V
+ 0.4

)
· P (5.7)

Here the pressure P depends on the stiffness of the support, and will rise as the stiffness of
the support increases ([2]5). Since τ is linearly proportional to P , the same dependency on the
stiffness of the support will hold.

Skin Breakdown

When the shear stress applies on the skin (given by equation (5.7) exceeds the shear strength
of the skin, skin break down will occur (figure 9). It was shown before that the shear stress
will increase over time as perspiration accumulates. The shear strength of the skin will however
decline. A reference is given to ([10]) regarding the fact that the shear strength reduces ”by a

5Referred to by Gefen in [3].

33



factor 5 for a completely hydrated skin with respect to dry skin.” Using this an expression of the
shear strength of the skin τsw is given.

τsw =

(
1− 0.8

∆V (t)

V

)
τs0 (5.8)

Here τs0 is the shear strength of dry skin.

Figure 9: Skin break down will occur when the shear stress applied on the skin exceeds the
shear strength of the skin.

Source: [3]

Since the skin breaks down when the shear stress applied on the skin exceeds the shear strength
of the skin, the next step is to find the time t∗ for which the shear stress is equal to the shear
strength of the skin, hence where τ = τsw. This equality yields

t∗ =
τs0 − 0.4P

(0.5P + 0.8τs0 )
{

[α−β(1−RH)]Ta+β(1−RH)Ts−α·30 ◦C
Tmax
a −Tmin

s
− γ
} (5.9)

With this equation it is possible to examine the effect of the different factors on this critical time
t∗.

5.1 Calculations

In the article, the effect of the microclimate factors Ta, RH and Ts as well as interacting factors
P and permeability γ on the critical for skin breakdown is examined. In order to study the
effects of these factors on the critical time, several plots were made in which the factors took
different values. In every plot, the critical time (t∗) is plotted against the skin temperature (Ts)
and one of the other factors is being varied. In Table 2 the values for all parameters are given.
Note that whenever one of the factors is being varied, the others are equal to the values given in
this table ([3]).

The Matlab code used to repeat the calculations can be found in Appendix (A).
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Table 2: These parameter values were used in the plots shown in figure 10 .

Parameters τs0 P α β γ Ta RH

Value 70 kPa 7 kPa 2 1 0.1 35 ◦C 0.5

5.2 Results

In the article the following plots are given as the results.

Figure 10: The calculated dimensionless critical times for skin breakdown versus the skin
temperature (Ts) for different values of (a) the microclimate parameters of ambient

temperature (Ta) (left panel) and relative humidity (RH) (right panel), and (b) the interacting
parameters of pressure delivered from the support (P ) (left panel) and permeability to

perspiration (γ) of the materials contacting the skin or being in close proximity to the skin
(right panel). The following values were assigned to the model variables in these

simulations:τs0 = 70 kPa, P = 7 kPa∗, α = 2, β = 1, and γ = 0.13, Ta = 35 ◦C∗ and RH = 0.53.
∗ denotes; where not altered as detailed in the specific panel.

As can be seen in the figures, all the factors that have been examined do have effect on the
critical time.
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6 The human body, contact mechanics and the finite ele-
ment method

In the article of Gefen [11] they created a model of a human body resting on a hospital mattress.
In working with the body they used the finite element method.

In this section the article written by Eliav Shaked and Amit Gefen will be reproduced. In this
article the look at the interaction between the skin and subcutaneous tissue of a patient and
the hospital mattress. The model of the skin in interaction of the hospital mattress is shown in
Figure 11. So far I have not been able to repeat the calculations that are done in the article,
hence this will be done in the official thesis report.

Figure 11: The model of the skin in interaction of the hospital mattress
Source: [11]

The relevant values for the model parameters are listed in Table 3.

Table 3: Values of the physical and mechanical properties, and the numerical
characteristics used in this study

Source: [11]

Parameter Skin Subcutaneous tissue Hospital mattress

Density (kg/m3) 1100 971 30
Poisson’s ratio (-) 0.49 0.48 0.3
Elastic modulus (kPa) 15.2/50/100 2 10
Thickness (mm) 2 15 50
Length (mm) 60 60 400
Number of elements (-) 8515 24300 20000

In the article several modeling assumptions and boundary conditions are named.
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• A finite element model is used to analyze the skin stresses under a weight-bearing bony
prominence while this region of interest slides frictionally over the support surface, as occurs
during repositioning.

• The computations were carried out in a plane stress analysis.

• The skin and subcutaneous tissues were modeled as linearly elastic isotropic nearly incom-
pressible materials.

• A pressure boundary condition was applied on the top edge of the model, in order to
simulate the load over the ROI (region of interest), generated by the relative body-weight
imposed to the bony prominence and downwards to the outer tissue layers.

• Pressure under the bony prominence was estimated elsewhere, and was set for all sim-
ulations at the level of 130kPa which corresponds to a male with a normal body mass
index.

• The hospital mattress was constrained of any movement (translations and rotations) on
the sides and the bottom. Constraining the mattress on the sides was needed in order
to simulate the resistance to deformation from the lateral mattress parts outside the ROI
(that is, which were not modeled).

• Displacement was applied to the top edge of the model in a standard lateral turning,
assuming repositioning regime of 10cm horizontal sliding along and 1 cm toward (i.e.,
immersion into) the mattress.

• The aforementioned 130kPa pressure represented the static weight-bearing of the patient,
and the 1-cm displacement toward the mattress represented the additional loading applied
by a caregiver to reposition the patient.

So far I have not been able to fully repeat the calculations which are done in this article. This
will be done in the final thesis report.
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A Effect of microclimate factors on the patients risk of
pressure ulcers - Matlab code

1 % This Matlab code r e p e a t s the c a l c u l a t i o n which are done in the
a r t i c l e by

2 % Gefen .
3 clear a l l ;
4

5 taus = 70 ;
6 P = 7 ;
7 alpha = 2 ;
8 beta = 1 ;
9 gamma = 0 . 1 ;

10 RH = 0 . 5 ;
11 Ts = 3 0 : 0 . 5 : 3 3 ;
12

13 % S t a r t wi th the s u b p l o t (2 ,2 ,1) , which p l o t s d i f f e r e n t v a l u e s o f the
14 % ambient temperature Ta
15 x = zeros ( 1 , 6 ) ;
16 matrix = zeros ( 6 , 7 ) ;
17 for Ta = 3 5 : 4 0 ;
18 counter = taus −0.4∗P;
19 nD1 = ( 0 . 5∗P+0.8∗ taus ) ;
20 nD2 = alpha ∗ ( (Ta−30) /10) ;
21 nD3 = beta ∗ ( (Ta−Ts) /10)∗(1−RH) ;
22 nD4 = gamma;
23 tX = counter . / (nD1 . ∗ ( nD2− nD3 − nD4) ) ;
24 matrix (Ta−34 , : ) = tX ;
25 x (Ta−34) = tX (1) ;
26 end ;
27 matrix = matrix . /max( x ) ;
28 subplot ( 2 , 2 , 1 ) ;
29 plot (Ts , matrix ) ;
30 axis ( [ 3 0 , 3 3 , 0 . 4 , 1 ] ) ;
31 xlabel ( ’ T s [ ˆoC ] ’ ) ;
32 ylabel ( ’ Dimens ion les s time f o r sk in breakdown ’ ) ;
33 hold on ;
34

35 % Continue wi th the second s u b p l o t , which t a k e s Ta=35 and p l o t s f o r
36 % d i f f e r e n t v a l u e s o f RH.
37 x = zeros ( 1 , 5 ) ;
38 matrix = zeros ( 5 , 7 ) ;
39 Ta = 35 ;
40 clear RH;
41 for RH = 0 : 0 . 2 5 : 1 ;
42 counter = taus −0.4∗P;
43 nD1 = ( 0 . 5∗P+0.8∗ taus ) ;
44 nD2 = alpha ∗ ( (Ta−30) /10) ;
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45 nD3 = beta ∗ ( (Ta−Ts) /10)∗(1−RH) ;
46 nD4 = gamma;
47 tX = counter . / (nD1 . ∗ ( nD2− nD3 − nD4) ) ;
48 matrix (RH∗4+1 , :) = tX ;
49 x (RH∗4+1) = tX (1) ;
50 end ;
51 matrix = matrix . /max( x ) ;
52 subplot ( 2 , 2 , 2 ) ;
53 plot (Ts , matrix ) ;
54 axis ( [ 3 0 , 3 3 , 0 . 4 , 1 ] ) ;
55 xlabel ( ’ T s [ ˆoC ] ’ ) ;
56 ylabel ( ’ Dimens ion les s time f o r sk in breakdown ’ ) ;
57 hold on ;
58

59 % In the t h i r d s u b p l o t , RH i s taken to be 0 .5 , and d i f f e r e n t v a l u e s
o f P

60 % are p l o t t e d .
61 x = zeros ( 1 , 8 ) ;
62 matrix = zeros ( 8 , 7 ) ;
63 RH =0.5;
64 clear P;
65 for P = 3 : 1 0 ;
66 counter = taus −0.4 .∗P;
67 nD1 = ( 0 . 5 . ∗P+0.8∗ taus ) ;
68 nD2 = alpha ∗ ( (Ta−30) /10) ;
69 nD3 = beta ∗ ( (Ta−Ts) /10)∗(1−RH) ;
70 nD4 = gamma;
71 tX = counter . / (nD1 . ∗ ( nD2− nD3 − nD4) ) ;
72 matrix (P−2 , : ) = tX ;
73 x (P−2) = tX (1) ;
74 end ;
75 matrix = matrix . /max( x ) ;
76 subplot ( 2 , 2 , 3 ) ;
77 plot (Ts , matrix ) ;
78 axis ( [ 3 0 , 3 3 , 0 . 7 , 1 ] ) ;
79 xlabel ( ’ T s [ ˆoC ] ’ ) ;
80 ylabel ( ’ Dimens ion les s time f o r sk in breakdown ’ ) ;
81 hold on ;
82

83 % In the f i n a l s u b b p l o t P=7 and gamma i s be ing changed .
84 x = zeros ( 1 , 5 ) ;
85 matrix = zeros ( 5 , 7 ) ;
86 P=7;
87 clear gamma;
88 for gamma = 0 : 0 . 0 5 : 0 . 2 ;
89 counter = taus −0.4 .∗P;
90 nD1 = ( 0 . 5 . ∗P+0.8∗ taus ) ;
91 nD2 = alpha ∗ ( (Ta−30) /10) ;
92 nD3 = beta ∗ ( (Ta−Ts) /10)∗(1−RH) ;
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93 nD4 = gamma;
94 tX = counter . / (nD1 . ∗ ( nD2− nD3 − nD4) ) ;
95 matrix (gamma∗20+1 , :) = tX ;
96 x (gamma∗20+1) = tX (1) ;
97 end ;
98 matrix = matrix . /max( x ) ;
99 subplot ( 2 , 2 , 4 ) ;

100 plot (Ts , matrix ) ;
101 axis ( [ 3 0 , 3 3 , 0 . 6 , 1 ] ) ;
102 xlabel ( ’ T s [ ˆoC ] ’ ) ;
103 ylabel ( ’ Dimens ion les s time f o r sk in breakdown ’ ) ;
104 hold on ;
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