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1. INTRODUCTION

Mathematical simulation of flows is important for design, optimization and
trouble shooting of glass melting furnaces. To gain insight into the glass melting
process, physical experiments can be done. However, such experiments are
often very costly and time-consuming, and there are circumstances under which
certain physical quantities cannot be measured. Simulation by Computational
Fluid Dynamics (CFD) does not have these disadvantages. Although CFD only
approximates the real physics, it gives engineers in the glass industry great
insight into the transport phenomena occurring in glass melting furnaces.

At TNO Science and Industry, a CFD simulation package called X-stream is
developed for the glass industry. X-stream is able to simulate the glass melt
and the combustion space simultaneously. Besides the computation of the flow
fields and the energy equation, there are for instance models for turbulence,
combustion and radiation.

To simulate the complex physical processes in a furnace with a high accuracy,
many equations have to be solved, resulting in large computing times. A
domain decomposition algorithm can be used to divide the total problem into
smaller problems, which can be computed in parallel on different processors.
Some of the equations that have to be solved are Navier-Stokes equations,
equations that describe the conservation of momentum. Because these equa-
tions are nonlinear, solving them is very time-consuming. Therefore, we focus
in this research primarily on the Navier-Stokes equations.

The main goal of the Master’s project research is to get experience with the
algorithms used in X-stream and to improve them. To achieve this, Krylov
subspace acceleration combined with deflation is considered. Also some atten-
tion is paid to Krylov subspace acceleration combined with the Semi-Implicit
Method for Pressure-Linked Equations (SIMPLE).

The structure of this thesis is as follows. In Chapter 2 the mathematical model
for flow is discussed briefly, followed by the numerical model. In Chapter 3 a
discussion of iterative methods for solving the system of equations arising from
discretization is presented, followed by an introduction on domain decomposi-
tion methods in Chapter 4. In Chapter 5 the connection between X-stream and
the subjects treated in the previous chapters is given. Test cases in X-stream
used for experiments with deflation methods are described in Chapter 6. In
Chapter 7 numerical experiments done with deflation methods and their results
are described. Chapter 8 states the GCR-SIMPLE method. Finally, in Chapter
9 conclusions and recommendations are given.
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2. FINITE VOLUME DISCRETIZATION

Incompressible flow, for example in glass furnaces, can be described by a
mathematical model. From this model, partial differential equations (PDEs)
arise. Some PDEs can not be solved directly. These equations have to be
solved by transforming them into a finite number of difference equations and
then solving this system of equations.
There are a number of ways to transform a system of PDEs into a finite
number of difference equations. In CFD, the Finite Difference, Finite Ele-
ment and Finite Volume method are most commonly used. In this chapter
the Finite Volume (FV) method is discussed. The FV method is treated in
great detail in for example Wesseling [32], Patankar [13] and Ferziger & Perić [3].

This chapter begins with describing the mathematical model for incompressible
flow in Section 2.1. The discretization of the convection-diffusion equation and
the incompressible Navier-Stokes equations are described in Section 2.2 and
Section 2.3, respectively. These equations play an important role in this thesis.

2.1 Mathematical model of a flow

In this section, the mathematical model for incompressible flow is described.
First, some notation is introduced (this notation is used throughout the whole
thesis), then physical conservation equations are discussed briefly.

2.1.1 Notation

In this thesis the notation of Wesseling [32] is adopted: we assume a right-handed
Cartesian coordinate system (x1, x2, ..., xd) with d the number of space dimen-
sions. Greek letters denote scalars and boldfaced Latin letters denote vectors,
for example x = (x1, x2, ..., xd). In Cartesian tensor notation, differentiation is
denoted as follows:

φ,α =
∂φ

∂xα
.

Greek subscripts refer to coordinate directions and the summation convention
is used: summation takes place over Greek indices that occur twice in a term
or product, for example:

uαvα =
d∑

α=1

uαvα.

Sometimes, we will use vector notation if this is more convenient. For example,
in vector notation, the divergence of a vector field is written as div u.
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2.1.2 Conservation equations

In this subsection the conservation equations for mass, momentum and energy
will be given without derivation. The derivation can be found in for example
Wesseling [32]. The conservation equations are conveniently arranged in
Twerda [18] and Verweij [21].

Conservation of mass

The mass conservation law or continuity equation expresses the principle that
the rate of change of mass in an arbitrary material volume equals the rate of mass
production in this volume. Usually, in practice, there is no mass production,
and then the mass conservation law reads:

∂ρ

∂t
+

∂(ρuj)
∂xj

= 0, (2.1)

where ρ is the density and uj is the xj-component of the velocity u.

Conservation of momentum

Conservation of momentum of the flow in each direction is given by

∂(ρui)
∂t

+
∂(ρuiuj)

∂xj
= − ∂p

∂xi
+

∂

∂xj

(
µ

∂ui

∂xj

)
+ ρgi, i = 1, . . . , d, (2.2)

where p is the pressure, µ the viscosity and gi the xi-component of the
gravitational acceleration vector. These equations are also known as the
Navier-Stokes equations.

Conservation of energy

Energy per unit mass is contained in the flow as internal energy e and kinetic
energy ( 1

2ui
2). According to Verweij [21] and Wesseling [32] it is often convenient

to solve the enthalpy equation rather than the energy equation. The enthalpy
equation reads:

∂(ρh− p)
∂t

+
∂(ρujh)

∂xj
=

∂

∂xj

(
λ

cp

∂h

∂xj

)
+ Srad, (2.3)

with h = e + p
ρ the enthalpy, cp the specific heat, λ the thermal conductivity

and Srad the radiative source term.

State equations

We have obtained five conservation equations: one for mass, three for mo-
mentum (as d is taken to be three) and one for enthalpy. There are seven
unknowns: ρ, uj (j = 1, 2, 3), p, µ and e. A sufficient number of equations is
obtained by two additional equations of state, see Wesseling [32] for more details.
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General form of the conservation equations

The general form of the conservation equations of mass, momentum and en-
thalpy reads

∂(ρφ)
∂t

+
∂Fj

∂xj
= Sφ, (2.4)

where Fj is the total flux of quantity φ in the xj direction. The total flux is the
sum of the convective and the diffusive flux:

Fj = F con
j + F diff

j = ρujφ− Γ
∂φ

∂xj
, (2.5)

with Γ the effective transport coefficient. For example for the mass conservation
equation φ = 1, Γ = 0 and Sφ = 0.

2.2 The convection-diffusion equation

The convection-diffusion equation is given by (2.4) and (2.5). Taking ρ = 1 and
renaming Sφ by q and φ by ϕ, the convection-diffusion equation can be written
as

∂ϕ

∂t
+ (uαϕ),α − (Γϕ,α),α = q, x ∈ Ω ⊂ Rd, 0 < t ≤ T, (2.6)

with T a given time. The equation is assumed to be linear, with ϕ the only
unknown.
The dimensionless form of (2.6) is

∂ϕ

∂t
+ (uαϕ),α − (εϕ,α),α = q, (2.7)

where ε = Pe−1 with Pe the Péclet number, given by

Pe =
UL

Γ
, (2.8)

with U and L typical velocity and length scales. For Pe � 1 convection
dominates, for Pe � 1 diffusion dominates.

Initial and boundary conditions

At time t = 0 the following initial condition is given:

ϕ(0,x) = ϕ0(x), x ∈ Ω.

In order for the convection-diffusion equation together with its boundary condi-
tions (BCs) to be a well-posed problem, the BCs have to meet two requirements:
they have to be chosen such that the problem has a unique solution (because
the convection-diffusion equation is a second order equation this means that one
BC has to be prescribed at each part of the domain Ω). Also, they have to be
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chosen such that small perturbations do not cause large changes in the solution.
Suitable BCs for ε � 1 are given by (Wesseling, [32]):

ϕ(t,x) = fin(t,x), x ∈ ∂Ωin (Dirichlet)
ϕ(t,x) = fout(t,x), x ∈ ∂Ωout (Dirichlet), or

∂ϕ(t,x)
∂n

= gout(t,x), x ∈ ∂Ωout (Neumann), or

∂ϕ(t,x)
∂n

+ ϕ(t,x) = hout(t,x), x ∈ ∂Ωout (Robin),

where n is the outward unit normal on the boundary ∂Ω, ∂Ωin is the inflow
boundary (where ujnj < 0) and ∂Ωout the outflow boundary (ujnj > 0).

2.2.1 The computing grid

In this chapter we restrict ourselves to the two-dimensional case for sake of
simplicity. Generalization to three dimensions is straightforward. We will use a
cell-centered uniform grid, see Figure 2.1. On the upper- and left side are the
boundaries. The rectangular domain Ω = L1×L2 is divided in rectangular cells
of size h1 × h2. The computational grid G is defined by:

G = {x ∈ Ω : x = xj = (j− p)h, j = (j1, j2),p =
(

1
2
,
1
2

)
,

h = (h1, h2), jα = 1, 2, ..., nα, hα = 1/nα}.

The cell with center xj is called Ωj. Define

e1 ≡ (1/2, 0) and e2 ≡ (0, 1/2).

The value of a quantity ϕ in xj is denoted by ϕj, and ϕj+e1 is located at a cell
face, namely at

xj+e1 = ((j1 + 1/2)h1, j2h2).

The cell at the ’east’ side of Ωj is designated by Ωj+2e1 .

2.2.2 Discretization

In order to solve the convection-diffusion equation (2.7) numerically, the
equation has to be discretized. In this subsection space discretization is
described. Time discretization can be found in for example Wesseling [32]

Space discretization

We rewrite (2.7) as

∂ϕ

∂t
+ Lϕ = q, Lϕ = (uαϕ),α − (εϕ,α),α. (2.9)

We will now integrate (2.9) over a cell Ωj. Integrating the first term in the
left-hand side (LHS) of (2.9) and using the midpoint rule gives:∫

Ωj

∂ϕ

∂t
dΩ ≈ h1h2

dϕj

dt
.
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Fig. 2.1: A cell-centered uniform grid

Integrating the second term in the LHS of (2.9) using the divergence theorem
gives:∫

Ωj

LϕdΩ = Lhφj =

[∫ xj+e1+e2

xj+e1−e2

−
∫ xj−e1+e2

xj−e1−e2

]
(u1ϕ− εϕ,1)dx2

+

[∫ xj+e1+e2

xj−e1+e2

−
∫ xj+e1−e2

xj−e1−e2

]
(u2ϕ− εϕ,2)dx1

= F 1|j+e1
j−e1

+ F 2|j+e2
j−e2

.

Lh is a discrete operator and Fα is the numerical flux. The integrals in the
above equation will be approximated by the midpoint rule. The diffusive flux,
for example at the ’east’ side, can be approximated by∫ xj+e1+e2

xj+e1−e2

(−εϕ,1)dx2 ≈ −ε(ϕj+2e1 − ϕj)
h2

h1
.

The approximation of the convective flux is described in Subsection 2.2.3.
Integrating the source term in the right-hand side (RHS) of equation (2.9) yields∫

Ωj

qdΩ ≈ h1h2qj = q̂j.

2.2.3 Interpolation practices

Central and upwind discretization

There are various interpolation methods for approximating the convective flux.
One way is to use a central difference scheme (CDS), which reads for a uniform
grid:

(uϕ)j+eα
≈ 1

2
uj+eα(ϕj + ϕj+2eα).
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The CDS is O(h2
α) accurate.

Another way is to use an upwind difference scheme (UDS), and approximate uϕ
by the value of the node upstream:

(uϕ)j+eα ≈
1
2
(uj+eα + |uj+eα |)ϕj +

1
2
(uj+eα − |uj+eα |)ϕj+2eα .

The UDS is O(hα) accurate.

Wiggles

Discretization of the convection-diffusion equation leads to a FV scheme. If this
scheme is of the so-called positive type, which can be verified by the scheme’s
stencil, a discrete maximum principle can be formulated, which can give us a
priori information. By the sign of the source term this principle tells us if the
exact solution has a local maximum or minimum. If the exact solution has no
local extrema, ”wiggles” (oscillations) in a numerical solution are not physical
but must be a numerical artefact. More information on this subject can be
found in Wesseling [32].
One can verify that for the convection-diffusion equation with a constant ve-
locity field the UDS is positive for all Péclet numbers and satisfies the discrete
maximum principle, so with this scheme no wiggles occur. On the other hand,
one can verify that the CDS may introduces wiggles if

pj+eα
=
|uj+eα |hjα

ε
≥ 2, (2.10)

where the dimensionless number p is called the mesh Péclet number.

Hybrid scheme

In order to have a discretization scheme that does not introduce wiggles, an
option is to choose an UDS. However, this scheme is only first order accurate
and it introduces numerical diffusion. A solution to this problem is to use the
UDS only in regions where p ≥ 2 and the central scheme elsewhere. This is
called the hybrid difference scheme (HDS) and can be done as follows:

(uϕ)j+eα
≈ s(pj+eα

)(uϕ)uds,j+eα
+ (1− s(pj+eα

))(uϕ)cds,j+eα
,

where s(pj+eα
) is a switch function with the mesh Péclet number defined by

(2.10). For a more detailed description of the HDS the reader is referred to
Wesseling [32].
For iterative convergence in nonlinear cases it is beneficial if s(p) switches
smoothly between 0 and 1. Furthermore, one can show that the HDS is O(hα)
accurate.

2.2.4 Convergence, consistency and stability

A numerical scheme is only useful if it is convergent. How this can be
accomplished will now be discussed briefly.
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Global and local truncation error

Truncation errors are errors that are caused by truncation (to truncate means
to shorten by cutting off) of an infinite process. The process we consider is
where the maximum mesh size goes to zero. In the numerical approximation of
differential equations rounding errors are usually much smaller than truncation
errors, so we assume a zero rounding error.
The global truncation error e(n) is defined by

e(n) = ϕ(n)
e − ϕ(n),

where ϕ
(n)
e denotes the algebraic vector with elements of the exact solution

evaluated at time tn and ϕ(n) denotes the algebraic vector with elements of the
numerical approximation evaluated at time tn. The local truncation error r(n)

of the discrete operator Lh is defined by

r(n) = Lhe(n).

Convergence

A numerical scheme is convergent if the global truncation error satisfies

lim
h,τ↓0

e
(T/τ)
jh

= 0, xjh
fixed.

τ is the time step, it is assumed that τ and the spatial mesh sizes belong to a
decreasing sequence such that T/τ is an integer and xjh

is a grid point in the
spatial grid. Convergence means that the exact solution can be approximated
arbitrarily closely at a fixed time and position by decreasing τ and refining the
grid.

Consistency

A numerical scheme is consistent if

‖r(n)‖ ↓ 0

for n = 1, 2, ..., T/τ and h ↓ 0. Consistency means that for any point in the
domain the truncation error goes to zero as the mesh size goes to zero.

Stability

Consistency does not imply convergence. In addition, stability is required. Let
δ(0) be a hypothetical arbitrary perturbation of ϕ(0). The resulting perturbation
of ϕ(n) is called δ(n). Now a numerical scheme is called stable if δ(n) remains
bounded as n → ∞, for all δ(0). Two useful definitions of stability are zero-
stability and absolute-stability.
A scheme is called zero-stable if there exists a bounded function C(T ) and a
function τ0(h) such that for arbitrary δ(0)

‖δ(T/τ)‖h ≤ C(T )‖δ(0)‖h
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for all τ ≤ τ0(h), all h ≤ h0 for some fixed h0 and ‖x‖h = (|x1|h+. . .+|xn|h)1/h,
h ≥ 1.
A scheme is called absolutely-stable if there exists a constant C and a function
τ0(h) such that

‖δ(n)‖h ≤ C‖δ(0)‖h

for h fixed, all n > 0 and all τ ≤ τ0(h). Absolute stability differs from
zero-stability by the fact that h is fixed.

It is favourable to have zero-stability because when the scheme is consistent
(which is often not so difficult to prove) we can apply Lax’s equivalence theorem,
which reads

zero-stability + consistency ⇒ convergence,
zero-stability ⇐ convergence.

The main difficulty is to prove zero-stability.

2.3 The incompressible Navier-Stokes equations

The incompressible Navier-Stokes equations are given by (2.2). The dimension-
less form is

∂(ρuα)
∂t

+ (ρuαuβ),β = −p,α + σαβ,β + fα, (2.11)

with

σαβ = Re−1(uα,β + uβ,α),

f a body force and the Reynolds number Re given by

Re =
ρ0UL

µ
.

Initial conditions

For the momentum equations the following initial condition is required:

uα(0,x) = wα(x),

with wα(x) the velocity at t = 0.

No-slip condition

Viscous fluids cling to solid surfaces, this is called the no-slip condition. At a
solid surface we have

uα(t,x) = vα(t,x),

with vα(t,x) the local wall velocity.
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Free surface conditions

At a free surface the tangential stress components are zero. We consider the
special case where the free surface is fixed at y = a = constant. In that case
the normal velocity and the tangential stress σαβ , α 6= β are zero:

v(t,x, a) = 0, uy(t,x, a) = 0.

Inflow conditions

Because the momentum equations resemble convection-diffusion equations for
the velocities, we prescribe Dirichlet conditions at an inflow boundary, see Sec-
tion 2.2. If x = a is an inflow boundary, we prescribe

uα(t, a, y) = Uα(t, y).

Outflow conditions

At an outflow boundary, often not enough physical information is available on
which to base a sufficient number of BCs; usually only the pressure is known.
Because of the resemblance of (2.11) to the convection-diffusion equation, it
is plausible that when Re � 1, ’wrong’ information generated by an artifi-
cial boundary condition propagates upstream only over a distance of O(Re−1).
This can be shown by applying singular perturbation analysis. In order to
avoid numerical wiggles it is advisable to choose as artificial outflow condition
a homogeneous Neumann condition for the tangential velocity. For an outflow
boundary at x = a this gives:

p(t, a, y) = p∞, ρvx(t, a, y) = 0.

More information on this subject can be found in Wesseling [32].

2.3.1 Discretization on a colocated grid

Colocated and staggered grids

There are two ways to arrange the unknowns on a grid: colocated arrangement
and staggered arrangement, see Figure 2.2. When all discrete unknowns reside
in one grid point (often the cell centers), the grid is called a colocated grid.
When the pressure is located in the cell centers and the velocity components
are located at the cell face centers, the grid is called a staggered grid.
We will restrict ourselves to a colocated grid and to incompressible flow with
constant density ρ = 1.

Discretization of the continuity equation

An incompressible flow means that uα,α = 0. FV discretization gives∫
Ωj

uα
,αdΩ ∼= h2u

1|j+e1
j−e1

+ h1u
2|j+e2

j−e2
= 0. (2.12)
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Fig. 2.2: A colocated grid (left) and a staggered grid (right)

The cell face values in (2.12) need to be interpolated in terms of cell center val-
ues. The straightforward way to do this is to use linear interpolation, resulting
in

h2u
1|j+2e1

j−2e1
+ h1u

2|j+2e2
j−2e2

= 0.

Discretization of the momentum equation

Taking f = 0 in (2.11), we have to discretize

∂uα

∂t
+ Fαβ

,β + p,α = 0, Fαβ = uαuβ − σαβ .

FV discretization gives∫
Ωj

{∂uα

∂t
+Fαβ,β+p,α}dΩ ∼= h1h2

duα
j

dt
+h2F

α1|j+e1
j−e1

+h1F
α2|j+e2

j−e2
+hγp|j+eα

j−eα
= 0,

(2.13)

with γ 6= α. The cell face values have to be interpolated between cell center
values. For a staggered grid, this can be done quite straightforward, for the
pressure as follows:

pj+eα
=

1
2
(pj + pj+2eα

). (2.14)

The interpolation for the pressure for the colocated grid will be described later,
see equations (2.19)–(2.22). The viscous stress σαβ is approximated using

(Re−1uα
,1)j+e1

∼= Re−1
j+e1

(uα
j+2e1

− uα
j )/h1, (2.15)

(Re−1uα
,2)j+e1

∼=
1
4
Re−1

j+e1

(
uα|j+2e2

j−2e2
+ uα|j+2e1+2e2

j+2e1−2e2

)
/h2,
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etcetera. For the inertia terms we may use

(uαuβ)j+eβ
∼=

1
2
(uαuβ)j +

1
2
(uαuβ)j+2eβ

, (2.16)

corresponding to second order central discretization.

Spurious checkerboard modes

The preceding discretization is analogous to what was done for the convection-
diffusion equation. But now, using the CDS to approximate the terms in equa-
tions (2.12) and (2.13) causes a spurious checkerboard pattern. Assuming Re is
constant and neglecting boundary conditions, one can show that

uα
j = (−1)j1+j2 exp {− 12

Re
(h−2

1 + h−2
2 )t}, p = (−1)j1+j2 (2.17)

with homogeneous boundary conditions, is a solution of (2.13)-(2.16). This
shows that if Re � 1 the checkerboard pattern (2.17) is damped slowly
for the velocity, but not for the pressure. One way to avoid checkerboard
patterns is to use a staggered grid instead of a colocated grid. Another option is
to use the pressure-weighted interpolation method, which will be discussed next.

Pressure-weighted interpolation method

The pressure-weighted interpolation (PWI) method (or Rhie & Chow inter-
polation after its inventors) is a colocated discretization method of accuracy
O(h2

1 + h2
2). The idea is to prevent checkerboard oscillations by perturbing the

continuity equation with pressure terms. The continuity equation is discretized
as in (2.12), with the cell face velocities evaluated as follows:

uα
j+eα

=
1
2
(uα

j + uα
j+2eα

) + (
hβ

4aα
j

∆αp)|j+2eα

j (no summation), (2.18)

where ∆αpj = pj+2eα − 2pj + pj−2eα , β 6= α and aα
j equals the negative sum

of the coefficients of uα
k , k 6= j in equation (2.13). The basic mathematical

principle behind (2.18) is that a small regularizing term is added (the second
term in the RHS) that excludes spurious modes.
Substitution of (2.18) in (2.12) results in the following discretization of uα

,α with
the PWI method:

h2u
1|j+2e1

j−2e1
+ h1u

2|j+2e2
j−2e2

+ h2
2{(

1
2a1

∆1p)j+2e1 − (
1
a1

∆1p)j + (
1

2a1
∆1p)j−2e1}

+ h2
1{(

1
2a2

∆2p)j+2e2 − (
1
a2

∆2p)j + (
1

2a2
∆2p)j−2e2} = 0.

Boundary conditions and pressure

A disadvantage of the PWI method is that it requires some further specifica-
tion of conditions for p at boundaries, beyond what is given for the differential
equations. Let (j1 = 1, j2), so that the ’west’ face of Ωj is part of the boundary.
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In (2.13), pj−e1 occurs, referring to a grid point at the boundary. This value is
approximated by extrapolation from the interior,

pj−e1 =
3
2
pj −

1
2
pj+2e1 . (2.19)

When the pressure distribution at the boundaries needs to be computed this
can be obtained by the method by Choi et al. [2]. First the pressure correction
is calculated:

p′j−e1
= p′j +

(u∗j − uj−e1)h2 + 1
2 (uj−e2 − uj+e2)h1

D1
j h2

, (2.20)

where D1
j = αjh2

a1
j

, with αj a relaxation factor and p′j known from a previous
iteration level. u∗j is given by

u∗j = uj −D1
j (p′j − p′j−e1

). (2.21)

After the pressure correction is calculated, the pressure can be obtained by the
following formula:

pj−e1 = pl−1
j−e1

+ αjp
′
j−e1

. (2.22)

pl−1
j−e1

is the pressure at the boundary at a previous iteration level.

Summary of equations

After spatial discretization, a system of ordinary differential equations is ob-
tained. An algebraic vector u contains all unknown velocity components and
an algebraic vector p contains all pressure unknowns. These equations can be
written as

du
dt

+ N(u)u + Gp = f(t),

Du + Cp = g(t), (2.23)

where N is a nonlinear algebraic operator arising from the discretization of
the inertia and viscous terms, G is a linear algebraic operator representing the
discretization of the pressure gradient, D and C are linear algebraic operators
corresponding to the velocity terms and the pressure terms, respectively, in the
PWI discretization of the continuity equation. f and g are known source terms
arising from the boundary conditions and body forces. The system (2.23) con-
tains both differential and algebraic systems and is therefore called a differential-
algebraic system (DAS).



3. ITERATIVE SOLUTION METHODS

Problems coming from discretized PDEs lead in general to large sparse systems
of equations. In that case, direct solution methods can be very impractical.
Consider the system Ax = b that has to be solved for x. Direct solution meth-
ods, for example the Gaussian elimination method, use the LU decomposition
of the matrix A. If A is large and sparse, L and U can be dense. This is
especially the case for 3D problems. So a considerable amount of memory is
required and the solution costs many floating point operations.
Therefore, iterative methods are used. These methods generate a sequence
of approximate solutions {x(k)}. The use of iterative solution methods is
especially very attractive in time-dependent and nonlinear problems.

In this chapter, several iterative methods are described. In the first
three sections, iterative methods for solving linear equations are discussed: in
Section 3.1 basic iterative methods are treated. In Section 3.2 Krylov subspace
methods and the preconditioning of these methods are discussed. Deflated
Krylov subspace methods are treated in Section 3.3. How the discretized
incompressible Navier-Stokes equations can be solved is described in Section
3.4.

3.1 Basic iterative solution methods

This section reviews some basic iterative methods (BIMs). A survey can be
found in for example Wesseling [32], Vuik [23], Saad [14] and Van der Vorst [22].
Given an n× n real matrix A and a real n-vector b, the problem considered is:

Ax = b (3.1)

Equation (3.1) is a linear system, A is the coefficient matrix, b is the right-hand
side vector and x is the vector of unknowns.
The basic idea behind iterative methods for the solution of a linear system is:
starting from a given x(k), obtain a better approximation x(k+1) of x in a cheap
way. Note that b − Ax(k) is small if x(k) is close to x. This motivates the
iteration process

x(k+1) = x(k) + M−1(b−Ax(k)). (3.2)

It is easy to verify that if this process converges, x(k) is a possible solution. The
choice of M is crucial in order to obtain a fast converging iterative method.
Rewriting of (3.2) leads to:

Mx(k+1) = Nx(k) + b, (3.3)
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where the matrix N is given by N = M − A. The formula A = M −N is also
known as the splitting of A.

Some well-known BIMs are the Gauss-Jacobi method, the Gauss-Seidel method
and the Strongly Implicit Procedure (SIP). The SIP method is often used in
X-stream and is described in, for example, Ferziger & Perić [3].

Convergence

The error e(k) = x− x(k) satisfies

e(k+1) = Be(k),

with B = M−1N , called the iteration matrix. We have

‖e(k)‖ ≤ ‖Bk‖‖e(0)‖. (3.4)

The spectral radius of a matrix B is defined by

ρ(B) = max{|λ|,where λ ∈ spectrum of B}

and satisfies

ρ(B) = lim
k→∞

‖Bk‖1/k.

There is convergence if and only if

ρ(B) < 1.

The smaller ρ(B), the faster the convergence. Then

‖Bk‖ = ρ(B)k, for k →∞,

and (3.4) becomes

‖e(k)‖ ≤ ρ(B)k‖e(0)‖.

Starting vectors

Iterative solution methods solving Ax = b start with a given vector x(0). Here
we shall give some ideas how to choose a good starting vector x(0). These
choices depend on the problem to be solved. If no further information is
available one always starts with x(0) = 0.
The solution of a nonlinear problem is in general approximated by the solution
of a number of linear systems. In such a problem the final solution of the
iterative method used to solve a linear system can be used as a starting solution
for the iterative method used to solve the next linear system.

Termination criteria

In general, the iterative method should be stopped if the approximate solution is
accurate enough. A good termination criterion is very important for an iterative
method, because if the criterion is too weak the approximate solution is useless,
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whereas if the criterion is too severe the iterative method never stops or costs
too much work.
An important quality a termination criterion should have is that it has to be
scaling invariant. An example of a good criterion is:

‖b−Ax(k)‖2
‖b‖2

≤ ε, (3.5)

with

‖x‖m = (xm
1 + . . . + xm

n )1/m. (3.6)

3.2 Krylov subspace methods

Define the computing work W to solve the linear system (3.1) as

W = O(Nα), (3.7)

with N the total number of equations and α a certain number. It can be shown
that for BIMs, for discretization of elliptic PDEs, in general α ≈ 2, the same as
for the ’best’ direct methods. Fortunately, BIMs can be accelerated. This can
be done by multigrid acceleration and Krylov subspace acceleration. Multigrid
methods bring α down to 1 (the ideal case), but are in general more difficult to
implement. For a survey on multigrid methods see for example Hackbusch [6]
or Wesseling [31]. Krylov subspace methods come close to α = 1 and are much
easier to implement. A survey on Krylov subspace methods can be found in
for example Saad [14], Van der Vorst [22] or Vuik [23]. In this section Krylov
subspace methods are discussed.

In the BIMs iterates are computed by the following recursion:

x(k+1) = x(k) + M−1(b−Ax(k)) = x(k) + M−1r(k). (3.8)

Writing out the first steps of such a process we obtain:

x(0) ,

x(1) = x(0) + M−1r(0),

x(2) = x(1) + M−1r(1) = x(0) + M−1r(0) + M−1(b−Ax(0) −AM−1r(0))
= x(0) + 2M−1r(0) −M−1AM−1r(0),

...

This implies that

x(k) ∈ x(0) + span{M−1r(0),M−1A(M−1r(0)), . . . , (M−1A)k−1(M−1r(0))}.
(3.9)

The subspace K(i)(A; r(0)) = span{r(0), Ar(0), . . . , Ai−1r(0)} is called the Krylov
subspace of dimension i corresponding to matrix A and initial residual r(0). An
x(i) calculated by a BIM is an element of x(0) + K(i)(M−1A;M−1r(0)). One
can work out that x(m) − x(0) ∈ K(m)(A, r(0)). Methods that look for optimal
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approximations to x−x(0) in K(m)(A, r(0)) are called Krylov subspace methods.

Convergence

It can be shown that for a symmetric positive definite (SPD) matrix A the
convergence behaviour of Krylov subspace methods depends strongly on the
eigenvalue distribution of the coefficient matrix. The condition number κ of an
SPD matrix A is given by

κ(A) =
λmax(A)
λmin(A)

. (3.10)

A smaller condition number means faster convergence.

Preconditioning

Krylov subspace methods as explained above are well founded theoretically,
but they are all likely to suffer from slow convergence for problems which arise
from typical applications such as CFD. Both the efficiency and robustness of
iterative techniques can be improved by using preconditioning. Preconditioning
is simply a means of transforming the original linear system into one which has
the same solution, but which is likely to be easier to solve with an iterative
solver. In general, the reliability of iterative techniques, when dealing with
various applications, depends much more on the quality of the preconditioner
than on the particular Krylov subspace method used.

A preconditioner is a matrix that transforms the system such that the
transformed coefficient matrix has a more favourable spectrum. Consider the
preconditioner M . The transformed system is then given by

M−1Ax = M−1b. (3.11)

The matrix M has the following requirements: M−1y = z has to be inexpensive
to solve for y and the eigenvalues of M−1A should be clustered around 1.
In literature the term preconditioner has a double meaning. Besides referring
to the preconditioning matrix, the entire iterative method is often called a
preconditioner.

The Preconditioned Conjugate Gradient (PCG) method

In the special case that A is SPD, using the PCG method is not expensive.
More information about this method can be found in for example Vuik [23],
Wesseling [32] and Saad [14]. The PCG method is given by the following
algorithm:

Algorithm 3.1 (PCG)
Given an SPD n × n matrix A, an n-vector b, an SPD preconditioner M and
an initial guess x(0), this algorithm solves the linear system Ax = b.
r(0) = b−Ax(0)

z(0) = M−1r(0)

p = z(0)
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For j = 1, . . ., until convergence do:
α = (r(j−1), z(0))/(Ap,p)
x(j) = x(j−1) + αp
r(j) = r(j−1) − αAp
z(1) = M−1r(j)

β = (r(j), z(1))/(r(j−1), z(0))
p = z(1) + βp
z(0) = z(1)

End for
x ≈ x(j)

Note that when implementing this algorithm, not everything has to be kept in
memory. For example, in iteration j, only r(j−1) and r(j) are needed. There is
no use keeping all the earlier vectors r(i), i < j − 1.

Computational work, robustness and convergence

Orthonormalization is not required in the PCG method, in contrast to other
Krylov methods, as we will see later. This makes the PCG method cheap and
it requires little memory. Break-down does not occur in computing α and β,
because A and M are SPD. Therefore the PCG algorithm is robust. Concerning
convergence, one can show that

‖x− x(k)‖M−1A ≤ 2

(√
κ(M−1A)− 1√
κ(M−1A) + 1

)k

‖x− x(0)‖M−1A, (3.12)

where ‖x‖M−1A =
√

(M−1Ax,x).

The Preconditioned Generalized Conjugate Residual (PGCR)
method

For a general matrix A the GCR Krylov subspace method can be used to solve
the linear system Ax = b. The preconditioned GCR method is given by the
following algorithm, see for example Vuik, Frank & Segal [26].

Algorithm 3.2 (PGCR)
Given an n × n matrix A, an n-vector b, a preconditioner M and an initial
guess x(0), this algorithm solves the linear system Ax = b.
r(0) = b−Ax(0)

For j = 1, . . ., until convergence do:
Solve Mv(j) = r(j−1)

q(j) = Av(j)

[q(j),v(j)] = orthonorm[q(j),v(j),q(i),v(i), i < j]
γ = (q(j), r(j−1))
x(j) = x(j−1) + γv(j)

r(j) = r(j−1) − γq(j)

End for
x ≈ x(j)
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Note that the relation between q and v (q = Av) is very important and should
be satisfied for all intermediate steps. The routine orthonorm refers to the
orthonormalization process used. It is left open in the above algorithm because
there are several ways to do this, see Frank & Vuik [4]. A common used method
is the Modified Gram-Schmidt algorithm:

[q,v] = orthonorm[q,v,q(i),v(i), i < j]
For i = 1, . . . , j − 1 do:

α = (q,q(i))
q = q− αq(i)

v = v − αv(i)

End for
q = q/‖q‖2
v = v/‖q‖2

‖.‖2 is the Euclidean norm (3.6).

Computational work

The orthonormalization process used in Algorithm 3.2 could make the PGCR
algorithm expensive. First of all, the vectors q(1), . . . ,q(j) and v(1), . . . ,v(j)

need to be stored in memory and with every iteration the memory usage in-
creases. Secondly, the orthonormalization work of the vectors increases with
every iteration.
The storage and computing work can be reduced by applying the following
techniques:

• Restarting: stop the PGCR algorithm after jres iterations and remove
q(1), . . . ,q(jres) and v(1), . . . ,v(jres).

• Truncation: allow only jtrunc vectors q(j) and v(j), and replace an old
vector by a new one.

When restarting or truncation is applied the optimality property of the PGCR
algorithm gets lost.

Robustness and convergence

Inspection of the PGCR algorithm in combination with modified Gram-Schmidt
orthonormalization shows that breakdown can occur if ‖q(j)‖2 = 0. This can
happen if r(j−1) = r(j−2), which is unlikely to happen in practice, or if the exact
solution is reached, i.e. x(j−1) = x. This means that the PGCR method is very
robust.
Concerning convergence of Krylov subspace methods one can show that conver-
gence is monotone,

‖r(j)‖ ≤ ‖r(j−1)‖. (3.13)

3.3 Deflated Krylov subspace methods

The deflation method is originally proposed in Nicolaides [11]. In the late
nineties this method had a rebirth as an application for solving elliptic layered
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problems with extreme contrasts in the coefficients, see for example Vuik et al.
[29] or Vuik et al. [30]. The matrix of such a system arising from discretization
is ill-conditioned because of the large jumps in the coefficients. It was observed
that solving the system with a conventional (preconditioned) Krylov subspace
method gave erratic convergence behaviour. Removing the smallest eigenvalues
of the matrix by the deflation technique solved this problem.
Now the basic idea of deflation will be discussed briefly. More can be found in
Frank & Vuik [5]. In Chapter 7 numerical experiments done with deflation (in
MATLAB as well as X-stream) are described.

Basic idea of deflation

Consider the linear algebraic n× n system

Ax = b, (3.14)

where A is a general matrix. Let P and Q be given by

P = I −AZ(Y T AZ)−1Y T ,

Q = I − Z(Y T AZ)−1Y T A,

where Z and Y are matrices whose columns span suitable subspaces. We have
the following properties for P and Q:

• P 2 = P, Q2 = Q,

• PAZ = Y T P = 0, Y T AQ = QZ = 0,

• PA = AQ.

To solve the system Ax = b using deflation, note that x can be written as

x = (I −Q)x + Qx (3.15)

and that (I −Q)x = Z(Y T AZ)−1Y T Ax = Z(Y T AZ)−1Y T b can be computed
immediately. Furthermore, Qx can be obtained solving the deflated system

PAx̃ = Pb (3.16)

for x̃ and premultiplying the result with Q. For a derivation see Appendix A.
Deflation can be combined with preconditioning. Suppose M is a suitable pre-
conditioner, then (3.16) can be replaced by the following: solve x̃ from

M−1PAx̃ = M−1Pb (3.17)

and form Qx̃. This system can be solved by a Krylov subspace solver.
Note that when the deflated system (3.16) is solved with a Krylov subspace
method one always has to take x̃(0) = 0. Also note that when an initial guess
x(0) 6= 0 is chosen, one has to solve the deflated system

PAṽ = P f , (3.18)

where v = x− x(0) and f = b−Ax(0) in order for system (3.14) to be solved.
We will restrict ourselves to the deflated PCG algorithm (DPCG) for the case
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that A and M are SPD, and to the deflated PGCR algorithm (DPGCR) for
the case that A and M are general matrices. The following algorithm is the
deflated variant of Algorithm 3.1.

Algorithm 3.3 (DPCG)
Given an SPD n×n matrix A, a vector b, an SPD preconditioner M , projectors
P and Q = PT for the case Y = Z and an initial guess x(0), this algorithm
solves the linear system Ax = b.
r(0) = b−Ax(0)

x̃(0) = 0
r̃(0) = Pr(0)

p(0) = z(0) = M−1r̃(0)

For j = 1, . . ., until convergence do:
α = (r̃(j−1), z(j−1))/(p(j−1), PAp(j−1))
x̃(j) = x̃(j−1) + αp(j−1)

r̃(j) = r̃(j−1) − αPAp(j−1)

z(j) = M−1r̃(j)

β = (r̃(j), z(j))/(r̃(j−1), z(j−1))
p(j) = z(j) + βp(j−1)

End for
x ≈ (I −Q)A−1r(0) + Qx̃(j−1) + x(0)

The deflated variant of Algorithm 3.2 is given by the following algorithm:

Algorithm 3.4 (DPGCR)
Given an n× n matrix A, a vector b, a preconditioner M , projectors P and Q
and an initial guess x(0), this algorithm solves the linear system Ax = b.
r(0) = b−Ax(0)

x̃(0) = 0
r̃(0) = Pr(0)

For j = 1, . . ., until convergence do:
v(j) = M−1r̃(j−1)

q(j) = PAv(j)

[q(j),v(j)] = orthonorm[q(j),v(j),q(i),v(i), i < j]
β = (r̃(j−1),q(j))
x̃(j) = x̃(j−1) + βv(j)

r̃(j) = r̃(j−1) − βq(j)

End for
x ≈ (I −Q)A−1r(0) + Qx̃(j−1) + x(0)

Choosing Z and Y

There are various possibilities to choose the matrices Z and Y . In general Y is
often chosen equal to Z. The columns of Z are usually called deflation vectors.
For example, approximate eigenvectors can be chosen. Details can be found in
Vuik et al. [29] and Vuik et al. [30]. In Chapter 7 constant deflation (CD) and
constant linear deflation (CLD) are described.
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3.4 Solving the stationary incompressible Navier-Stokes equations

There are various methods to solve the Navier-Stokes equations iteratively. A
popular method used in engineering is the Semi-Implicit Method for Pressure-
Linked Equations (SIMPLE). Many improved variants of SIMPLE have
been proposed, like for example the SIMPLE Revised (SIMPLER) method.
However, in engineering literature, for example Patankar [13] or Ferziger &
Perić [3], it is not easy to verify which algebraic systems are actually solved
because the presented algorithms are overrun with details. Therefore, a more
mathematically convenient way is to present them in a so-called distributive
iterative framework.
In this section we will focus on SIMPLE. Distributive iteration will be de-
scribed and we will show that SIMPLE can be written as a classical distributive
iterative method.

The algebraic system to be solved

We consider a colocated grid. If we delete the time derivative in equation (2.23)
and linearize N(u), the algebraic system to be solved may be denoted as(

N G
D C

)(
u
p

)
=
(

f
g

)
. (3.19)

Distributive iteration

Suppose we have a linear system

Ax = b. (3.20)

The system is postconditioned:

ABx̂ = b, x = Bx̂, (3.21)

where B is the postconditioning matrix, chosen in such a way that (3.21) is
easier to solve iteratively than (3.20). For example, one can choose AB to be an
M-matrix (see Wesseling [32]), while A is not. Splitting the matrix AB yields

AB = M −N,

corresponding to the following splitting of the original matrix A:

A = MB−1 −NB−1.

This leads to the following stationary iterative method for (3.20):

MB−1x(k+1) = NB−1x(k) + b,

or

x(k+1) = x(k) + BM−1(b−Ax(k)). (3.22)

Note that the iterative method defined by (3.22) is consistent for any non-
singular B and M : if it converges, it solves Ax = b. The method is called
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distributive iteration because the correction M−1(b− Ax(k)) is distributed, so
to speak, over the elements of x(k+1).

Distributive iteration for the stationary Navier-Stokes equations

The system to be solved is (3.19). Define

A =
(

N G
D C

)
.

A distribution matrix B such that AB is of block-triangular form:

AB =
(

Q 0
R S

)
.

would be attractive. A possible choice for B is

B =
(

I B12

0 B22

)
,

resulting in

AB =
(

N NB12 + GB22

D DB12 + CB22

)
.

Choosing B such that NB12 + GB22 = 0 gives

B12 = −N−1GB22,

resulting in

AB =
(

N 0
D E

)
, (3.23)

with E = (C −DN−1G)B22.

SIMPLE method

The SIMPLE method is obtained by choosing B22 = I, so that (3.23) becomes

AB =
(

N 0
D C −DN−1G

)
.

A splitting AB = M −N is defined by

M =
(

Q 0
D R

)
,

where Q and R are approximations to N and C −DN−1G such that Mx = b
is easily solvable. For the distribution step in (3.22) B is approximated by

B =
(

I −Ñ−1G
0 I

)
,
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where Ñ−1 is an easy to evaluate approximate inverse of N . In the original SIM-
PLE method, one chooses Ñ = diag(N); this makes DÑ−1G easy to determine.

Now the SIMPLE method is given by (3.22). In the present case we have

b−Ax(k) =
(

f
g

)
−
(

N G
D C

)(
u(k)

p(k)

)
=

(
r(k)
1

r(k)
2

)
. (3.24)

Algorithm 3.5 (SIMPLE)
Let p(0) and u(0) be initial estimations of the pressure and velocity field,
respectively. Let ωp and ωu be underrelaxation parameters. This algorithm
solves the non-linear system (3.19) for the stationary incompressible Navier-
Stokes equations.
For k = 0, . . . , until convergence do:

Compute r(k)
1 and r(k)

2 from (3.24)
Solve Qδu = r(k)

1

Solve Rδp = r(k)
2 −Dδu

δu = δu− Ñ−1Gδp
u(k+1) = u(k) + ωuδu
p(k+1) = p(k) + ωpδp

End for
u ≈ u(k)

p ≈ p(k)

Experience has shown that the use of underrelaxation factors is necessary.
Many variants of the SIMPLE method can also be described in the presented
distributed iteration framework, see for example Vuik et al. [28] or Vuik &
Saghir [27] for a description of the SIMPLER method.

Convergence, computing work and stopcriterion

One can show that SIMPLE converges slowly and that the computing work is of
O(N 2), just like BIMs. Fortunately, like BIMs, the SIMPLE method is suitable
for acceleration by Krylov subspace methods or multigrid.
Besides making the residuals small it is recommendable to make the velocity
field also sufficiently divergence free, i.e. to make Du(k) sufficiently small, for
instance

‖Du(k)‖∞ < εV/H, 0 < ε ≤ 1,

with ‖x‖∞ = max{|x1|, . . . , |xn|}, V and H typical magnitudes for the velocity
and domain, and ε a certain fixed tolerance. See for more details Wesseling [32].
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4. DOMAIN DECOMPOSITION METHODS

The term domain decomposition (DD) has slightly different meanings to specia-
lists within the discipline of PDEs. In parallel computing it means decomposing
data from a computational model among the processors in a distributed memory
computer. In asymptotic analysis it means separation of the physical domain
into regions that can be modeled with different equations. In preconditioning
methods, DD refers to the process of subdividing the solution of a large linear
system into smaller problems whose solutions can be used to produce a precon-
ditioner (or solver) for the system of equations that results from discretizing
the PDE on the entire domain. Note that all three of these interpretations may
occur in a single program.
In this chapter we will concentrate on DD methods as iterative solution meth-
ods for solving PDEs based on a decomposition of the spatial domain of the
problem into several subdomains.
There are several motivations for using DD:

• ease of parallelization and good parallel performance,

• simplification of problems on a complicated geometry,

• good convergence properties,

• different physical models can be used in different subdomains,

• local grid refinement can be implemented with more ease,

• memory requirements can be reduced, because the subproblems can be
much smaller than the total problem.

The structure of this chapter is as follows. In Section 4.1 basic DD methods
are discussed, in Section 4.2 DD for the stationary incompressible Navier-Stokes
equations is treated.

4.1 Basic domain decomposition methods

A survey on DD methods can be found in for example Smith et al. [15], Saad
[14] or Brakkee [1]. The most common DD methods are Schwarz methods.
These methods are used mostly for overlapping domains. The Schwarz
method for non-overlapping domains does not converge, but can be used as
a preconditioner. For non-overlapping domains that have a joint interface,
Schur complement methods are used mostly. Non-overlapping methods differ
from overlapping methods by solving an additional interface equation. In this
thesis only Schwarz methods for overlapping domains are described. Schur
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Ω1
Ω2

Γ1

Γ2

Fig. 4.1: An overlapping decomposition of the domain

complement methods are treated in, for example, Brakkee [1].

DD aims to solve the differential equation

Lu = f on Ω, (4.1)

with suitable BCs on ∂Ω, by decomposing the domain into subdomains
Ω̄ = Ω̄1 ∪ . . . ∪ Ω̄k, where Ω is open and the Ωi are open subsets of Ω, as illus-
trated in Figure 4.1. For simplicity, we consider two subdomains Ω̄ = Ω̄1 ∪ Ω̄2

and we apply the Dirichlet BC u = g on ∂Ω, although more general Neumann
and Robin BCs may also be dealt with.

In this section we restrict ourselves to so-called one-level DD methods. In Sub-
section 4.1.1 the basic Schwarz method is discussed, followed by the multiplica-
tive Schwarz method in Subsection 4.1.2 and the additive Schwarz method in
Subsection 4.1.3. In Subsection 4.1.4 convergence properties of the Schwarz
method are treated, without going into details.

4.1.1 Basic Schwarz method

The simplest and earliest known DD method is the one-level Schwarz method.
We will start this subsection by describing the basic Schwarz method and
after that make a distinction between the multiplicative and additive Schwarz
method.

Consider the overlapping domain, as shown in Figure 4.1, with Ω = Ω1 ∪ Ω2.
The part of the boundary of Ωi which is located in the interior of Ωj (j 6= i) is
denoted by Γi.
The basic Schwarz method to solve (4.1) begins by selecting an initial guess u

(0)
2 ,

for the values in Ω2. Then, iteratively for k = 1, 2, . . ., one solves the boundary
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value problem,
Lu

(k)
1 = f in Ω1,

u
(k)
1 = g on ∂Ω1 \ Γ1,

u
(k)
1 = u

(k−1)
2 |Γ1 on Γ1,

for u
(k)
1 . This is followed by the solution of the boundary value problem,

Lu
(k)
2 = f in Ω2,

u
(k)
2 = g on ∂Ω2 \ Γ2,

u
(k)
2 = u

(k)
1 |Γ2 on Γ2.

The k-th iterate is then defined as

u(k)(x, y) =

{
u

(k)
1 (x, y) if (x, y) ∈ Ω \ Ω2,

u
(k)
2 (x, y) if (x, y) ∈ Ω2.

It is shown (see Brakkee [1] for some references) that for self-adjoint elliptic
operators L, the iterates converge in the norm induced by the operator to the
true solution u of (4.1) like

‖u− u(k)‖L ≤ ρk‖u− u(0)‖L.

Here, ρ depends on the choice of Ω1 and Ω2.

The discrete form of (4.1) is denoted by

Ay = b, (4.2)

where A represents the discretization of L and BCs on the global domain. We
restrict ourselves to the case that the grids of the subdomains coincide in the
overlap area.

The algebraic Schwarz algorithm will be described in matrix notation. Let I1

and I2 be the index sets of unknowns in the interior of Ω1 and Ω2, respectively.
The total number of unknowns is n = |I| and ni denotes the number of unknowns
in subdomain Ωi. For the case of generous overlap I1 ∩ I2 6= ∅.
Denote by RT

i a trivial extension matrix of dimension n× ni, defined as

(RT
i yi)k =

{
(yi)k if k ∈ Ii

0 else,

for yi ∈ Rni . The entries in the matrix RT
i consist of ones and zeroes with at

most one ’1’ in each row. The transpose Ri is a trivial restriction matrix whose
action is to restrict a full length vector of size n to a subdomain vector of size
ni, by selecting the components of the vector corresponding to Ii. Note that
RiR

T
i = Ini

, while RT
i Ri 6= In. The local subdomain matrices are written in

terms of the global matrix A and the restriction matrices Ri as

A11 = R1ART
1 , A22 = R2ART

2 .
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4.1.2 Multiplicative Schwarz method

The algebraic Schwarz iteration starts with an arbitrary initial guess v(0) and
constructs a sequence of approximations as follows:

y(k+1/2) = y(k) + RT
1 A−1

11 R1(b−Ay(k)), (4.3)

y(k+1) = y(k+1/2) + RT
2 A−1

22 R2(b−Ay(k+1/2)). (4.4)

Note that the Ri matrices are never formed in practice. When I1 ∩ I2 = ∅ this
is an instance of block Gauss-Seidel iteration. When I1 ∩ I2 6= ∅, (4.3) and
(4.4) form a generalization of block Gauss-Seidel for overlapping subblocks of
the matrix A.

Introducing the error ε(i) = y − y(i), (4.3) and (4.4) are rewritten as

ε(k+1/2) = (I − P1)ε(k), (4.5)

ε(k+1) = (I − P2)ε(k+1/2), (4.6)

with Pi = RT
i A−1

ii RiA. The matrices Pi present projection operators (P 2
i = Pi).

Combining (4.5) and (4.6), we get

ε(k+1) = (I − P2)(I − P1)ε(k),

which is the reason for calling the algorithm multiplicative. We may write (4.3)
and (4.4) also as a preconditioned Richardson iteration

y(k+1) = y(k) + M−1
gs (b−Ay(k)),

with M−1
gs A = I − (I − P2)(I − P1). For the case of disjoint index sets

I1 ∩ I2 = ∅, Mgs is the block lower triangular matrix of A. Note that the
multiplicative Schwarz method is not suitable for parallelization, because all
blocks are handled consecutively, one after the other (see (4.3) and (4.4)).

4.1.3 Additive Schwarz method

A block Jacobi variant of (4.3) and (4.4) is

y(k+1/2) = y(k) + RT
1 A−1

11 R1(b−Ay(k)), (4.7)

y(k+1) = y(k+1/2) + RT
2 A−1

22 R2(b−Ay(k)). (4.8)

Its main advantage is that the subdomain corrections can be carried out in
parallel, in contrast with equations (4.3) and (4.4). Writing (4.7) and (4.8) in
terms of the error ε(i), we get

ε(k+1) = (I − P1 − P2)ε(k).

Equations (4.7)-(4.8) may also be written as a preconditioned Richardson iter-
ation

y(k+1) = y(k) + M−1
jac(b−Ay(k)),
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with M−1
jacA = P1 + P2, which is the reason for calling this algorithm additive.

Note that the additive Schwarz method is more suitable for parallelization than
the multiplicative Schwarz algorithm. However, concerning convergence it can
be observed that the multiplicative Schwarz method converges faster than the
additive Schwarz method.
In general, DD methods converge slowly, so some acceleration technique is re-
quired. Several of those techniques are found in the literature: multigrid acceler-
ation and acceleration by Krylov subspace methods. For references see Brakkee
[1].

4.1.4 Convergence properties

Because DD methods converge slowly in general, some acceleration technique is
required. For multigrid acceleration the reader is referred to Brakkee [1] where
some useful references can be found. In this subsection acceleration by Krylov
subspace methods will be described briefly.

Krylov subspace methods are frequently used to accelerate DD methods but
mostly in conjunction with an approximate solution of the subdomains. Nu-
merical experiments show that Krylov subspace acceleration in general provides
significant acceleration of convergence, and that it makes convergence more ro-
bust with respect to the number of subdomains, mesh size and external BCs.
A DD method accelerated by a Krylov subspace method is called a Krylov-
Schwarz method. Equivalently, Schwarz-Krylov means that DD is used as a
preconditioner for a Krylov subspace method.
Krylov subspace acceleration amounts to the solution of a preconditioned system
of equations

M−1Ay = M−1b, (4.9)

with M = Mgs or M = Mjac. In case of a domain with k subdomains,
M−1

gs A = I − (I − Pk)(I − Pk−1) . . . (I − P1) and M−1
jacA =

∑
i=1,...,k Pi. Con-

vergence theory is most developed for symmetric problems (with A an SPD
matrix), using acceleration by conjugate gradients. For this purpose, M−1A
must be symmetric.
Assume that M−1A is SPD, then the error after m conjugate gradient acceler-
ations e(m) = v − v(m), behaves like

‖e(m)‖M−1A ≤ 2cm‖e(0)‖M−1A, c =
√

κ− 1√
κ + 1

, (4.10)

where

κ =
λmax(M−1A)
λmin(M−1A)

.

Formula (4.10) is an upper bound: the rate of convergence depends not
only on the extremal eigenvalues, but on the whole spectrum. For instance,
with clustering of eigenvalues, convergence will typically be faster. In general,
however, convergence of iterative methods improves when the condition number
of the preconditioned matrix decreases.
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The mesh size and number of subdomains have influence on the condition num-
ber. Only the results will be given, for the derivation the reader is referred to
Brakkee [1]. Let the mesh size be given by h. For the Schwarz algorithm with
minimal overlap,

κ(M−1
jacA) = O(h−1H−1),

and with generous overlap,

κ(M−1
jacA) = O(1/H2).

For the effect of the number of subdomains on the convergence, we consider
local coupling and global coupling. Local coupling means that each subdomain
only interacts through coupling with its neighbors. In this case the condition
number grows with the number of subdomains. With global coupling all
subdomains communicate with each other. In this case the dependence of the
condition number on the number of subdomains can be removed by using a
so-called coarse grid correction. Two types of coarse grid correction methods
can be distinguished: two-grid coarse grid correction and deflation coarse grid
correction.
Two-grid coarse grid correction results in a two-level algorithm. The basic idea
is to construct a preconditioner that reduces both low and high frequency error
components. For the additive Schwarz method the block Jacobi preconditioner
is used as a smoother, see for more details Smith [15]. Other references are
Nabben [10] and Padiy et al. [12].
Another coarse grid correction approach is to use a deflation coarse grid
correction, as described in Section 3.3. It turns out that deflation in combi-
nation with DD gives better results compared to two-grid coarse grid correction.

Deflation and domain decomposition

Various publications can be found on deflation in combination with DD and
parallel computing. Some useful references are Frank & Vuik [5], Vuik & Frank
[25], Vuik & Frank [24], Vermolen & Vuik [20] and Keyes [8].
Choosing the matrices Z and Y , as described in Section 3.3, is usually done at
subdomain level. This choice is further investigated in Chapter 7.1.

4.2 Domain decomposition for the incompressible Navier-Stokes
equations

In this section the additive Schwarz DD method is combined with the SIMPLE
method for solving the incompressible Navier-Stokes equations. The system to
be solved is given by (3.19). For the two-dimensional Navier-Stokes equations
(d = 2) the system becomes

A =

 N1 0 G1

0 N2 G2

D1 D2 C

 , y =

 u
v
p

 , b =

 b1

b2

b3

 . (4.11)

For reasons given in the previous sections, we accelerate the additive Schwarz
method with the PGCR method or with the DPGCR method when a deflation
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coarse grid correction is necessary. The resulting methods are referred to as the
PGCR-Schwarz method and the DPGCR-Schwarz method, respectively. The
SIMPLE method can be accelerated by the PGCR method, resulting in the
PGCR-SIMPLE method.
First we will have to choose whether we apply DD in SIMPLE, or SIMPLE
in DD. Only literature could be found on DD in SIMPLE (see for example
Teigland [16]) so we will continue with this.

First PGCR-SIMPLE will be discussed. This method can be found in Li
& Vuik [9]. The preconditioner M in PGCR is chosen as BP−1 defined by (see
Subsection 3.4)

B =

 I 0 −Ñ−1
1 G1

0 I −Ñ−1
2 G2

0 0 I

 (4.12)

and

P =

 N1 0 0
0 N2 0

D1 D2 C −
∑2

i=1 DiÑ
−1
i Gi

 , (4.13)

with Ñi = diag(Ni).
Within each PGCR-SIMPLE iteration j = 1, . . . , n1 the search directions v(j) =
BP−1r(j−1) have to be computed. The vector v(j) can be computed by applying
the following distributive step:

1. Solve Pw = r(j−1);

2. v(j) = Bw;

where w is an auxiliary variable.
Substitution of B (4.12) and P (4.13) yields

1. (a) Solve Niwi = rj−1
i , i = 1, . . . , d;

(b) Solve (C −
∑d

i=1 DiÑ
−1
i Gi)wd+1 = rj−1

d+1 −
∑d

i=1 Diwi;

2. v(j) = Bw;

The rest of the steps in PGCR-SIMPLE is the same as in the PGCR method
(Algorithm 3.2).

Now DD is applied to the systems in step 1 and 2: for the d systems in
step 1 the PGCR algorithm is used with the block Jacobi preconditioner
blockdiag(Ni), for the system in step 2 the DPGCR algorithm is used with
the block Jacobi preconditioner blockdiag(C −

∑d
i=1 DiÑ

−1
i Gi). This is done

because the matrix in the system of step 2 can be seen as a discrete Laplacian
operator.
Writing out the distributive steps to avoid computations of inverses leads to
the following algorithm. Note that deflation is only written out till a certain
level; systems involving the matrix Z are not explicitly written out.
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Algorithm 4.1 (DPGCR-Schwarz in PGCR-SIMPLE)
Consider the system Ay = b resulting from the discretization of the Navier-
Stokes equations. Let y(0) be an initial guess of the system, Y = Z and Z
a certain subspace. Then this algorithm describes how the deflated PGCR
Krylov subspace accelerated additive Schwarz DD method is applied within the
PGCR accelerated SIMPLE. w̃ is an approximation of w and α is a relaxation
parameter.

r(0)
i = bi −Niy

(0)
i −Giy

(0)
d+1, i = 1, . . . , d;

r(0)
d+1 = bd+1 −

∑d
i=1 Diy

(0)
i − Cy(0)

d+1;
For j = 1, . . . , n1 do:

wi = pgcrschw[Ni, r
(j−1)
i , w̃i], i = 1, . . . , d;

wd+1 = dpgcrschw[C −
∑d

i=1 DiÑ
−1
i Gi, r

(j−1)
d+1 −

∑d
i=1 Diwi, w̃d+1];

v(j)
i = αi(wi − Ñ−1

i Giwi), i = 1, . . . , d;
v(j)

d+1 = αd+1wd+1;

q(j)
i = Niv

(j)
i + Giv

(j)
d+1, i = 1, . . . , d;

q(j)
d+1 =

∑d
i=1 Div

(j)
i + Cv(j)

d+1;
[q(j),v(j)] = orthonorm1[q(j),v(j),q(i),v(i), i < j];
γ = (r(j−1),q(j));
y(j) = y(j−1) + γv(j);
r(j) = r(j−1) − γq(j);

End for
y ≈ y(j);

Function ȳ = pgcrschw[Ā, b̄, ȳ(0)]
r̄0 = b̄− Āȳ(0);
For j = 1, . . . , n2 do:

Solve Āmmv̄(j)
m = r̄(j−1)

m , j = 1, . . . ,nblock;
q̄(j) = Āv̄(j);
[q̄(j), v̄(j)] = orthonorm2[q̄(j), v̄(j), q̄(i), v̄(i), i < j];
γ̄ = (r̄(j−1), q̄(j));
ȳ(j) = ȳ(j−1) + γ̄v̄(j);
r̄(j) = r̄(j−1) − γ̄q̄(j);

End for
ȳ ≈ ȳ(j);

Function ȳ = dpgcrschw[Ā, b̄, ȳ(0)]
r̄(0) = b̄− Āȳ(0);
ỹ(0) = 0;
Solve ZT ĀZw̄1 = ZT r̄(0);
r̃(0) = r̄(0) − ĀZw̄1;
For j = 1, . . . , n2 do:

Solve Āmms̄(j)
m = r̃(j−1), j = 1, . . . ,nblock;

Solve ZT ĀZw̄2 = ZT Ās̄(j);
v̄(j) = Ās̄(j) − ĀZw̄2;
[v̄(j), s̄(j)] = orthonorm3[v̄(j), s̄(j), v̄(i), s̄(i), i < j];
β̄ = (r̃(j−1), v̄(j));
ỹ(j) = ỹ(j−1) + β̄s̄(j);
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r̃(j) = r̃(j−1) − β̄v̄(j);
End for
Solve ZT ĀZw̄3 = ZT Āỹ(j−1);
ȳ ≈ Z(w̄1 − w̄3) + ỹ(j−1) + ȳ(0);

In the above algorithm the routines dpcgrschw and pgcrschw are called when
PGCR-Schwarz DD is applied with or without deflation. In the third argument
of this routine an initial guess is provided. The routines orthonorm1,
orthonorm2 and orthonorm3 refer to the orthonormalization process used,
for example the modified Gram-Schmidt algorithm, see Section 3.2.
The relaxation parameters αi, i = 1, . . . , d in the PGCR-SIMPLE loop refer to
the velocity components, the relaxation parameter αd+1 to the pressure. When
applying a Krylov subspace acceleration it is expected that less relaxation is
necessary, so it is likely that relaxation parameters closer to 1 can be chosen.
Finally, the solution procedure for solving the incompressible Navier-Stokes
equations is given by the following algorithm:

Algorithm 4.2 (solving the incompressible Navier-Stokes equations)
Let y(0) be an initial guess. Then this algorithm solves the non-linear system
(3.19) for the stationary incompressible Navier-Stokes equations.
For k = 1, . . . , until convergence do

Solve A(y(k−1))y(k) = b with DPGCR-Schwarz in PGCR-SIMPLE
End for
y ≈ y(k)
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5. X-STREAM

In this chapter the connection between X-stream and the subjects treated in
the previous chapters will be described.

Mathematical model

In X-stream the basic conservation equations as discussed in Section 2.1 can be
solved both in the glass melting space as in the combustion space. Some other
mathematical models describing physical processes available in X-stream are:
combustion, turbulence, radiation, batch, electrical boosting, foam, bubbling
and stirring. Most of these models are specifically related to the process of
glass melting. Details on this kind of models can be found in the GTM-X user
manual [17], Twerda [18] and Verweij [21].

Finite volume discretization

The FV method is used on a colocated grid in the X-stream code. The
grid is block-structured and boundary-fitted, see for details Ferziger & Perić
[3] or Wesseling [32]. Defect correction (a method to improve the accuracy
of a lower order discretization, without having to solve for a higher order
discretization, see Wesseling [32]) is applied and blending can be done with
several schemes: the UDS scheme, the CDS scheme and higher order schemes.
Both the instationary and the stationary (non-dimensionless) incompressible
Navier-Stokes equations can be solved. The PWI method is used to resolve the
checkerboard problem.

Iterative solution methods

In X-stream, the incompressible Navier-Stokes equations are solved with the
SIMPLE method, according to Algorithm 3.5. The linear systems resulting
from the SIMPLE method can be solved with the CG method, the SIP method
and the Space Tri-Diagonal Matrix Algorithm (SPTDMA) (see Patankar [13]).
All these iterative methods are used within a domain decomposition context.
Note that the CG solver can only be applied to SPD matrices. In general, the
SIP solver is the most robust and efficient solver for small grids and a small
number of blocks.



38 5. X-stream

Domain decomposition

In the X-stream code, a Schwarz DD method with the following properties is
implemented:

• Unaccelerated additive one-level Schwarz method with minimal overlap;

• Inaccurate subdomain solution by a single iteration of SIP, SPTDMA or
CG;

• Block-structured cell-centered grid;

• Local grid refinement can be done at block level;

• Application of different models on different blocks;

• Parallelized using the MPI (Message Passing Interface) standard.

For more details and implementation description, see Verweij [21].

In X-stream, a set of subdomains (blocks) for which the same model is
applied is referred to as ’domain’. For the solution to the Navier-Stokes
equations a Schwarz iteration is referred to as an inner iteration and a SIMPLE
iteration as an outer iteration.

A global flowchart of the current solution procedure for solving the Navier-
Stokes equations in X-stream is given by Figure 5.1. The abbreviations LC and
GC denote respectively local and global communication between the processors
in a parallel computing environment.
The SIMPLE stabilization iteration (SSI) refers to a method for improving
convergence of the pressure-correction system. Each SSI iteration can be seen
as a SIMPLE step without solving the pseudo velocities.
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6. TEST CASES IN X-STREAM

In this chapter four test cases in X-stream are described. These test cases are
used for experiments in Chapter 7 and Chapter 8. Varying from relatively simple
to complex, the test cases we consider are: a pipe flow, a flow in a 90◦ degrees
channel, a flow in a disc with a stirrer and a flow in an impinging jet. Only
stationary, laminar flow with constant density is considered for these test cases.

6.1 Test case 1: Pipe flow in a unit cube

In this test case (X-stream reference XTC-35) the stationary incompressible
Navier-Stokes equations are solved for a unit cube. We assume the flow has a
constant viscosity.
The geometry is 3D and x × y × z = 1 m × 1 m × 1 m. The inlet is located
at x = 0 m, the outlet at x = 1 m. The four remaining boundaries are all solid
walls. The number of subdomains (blocks) can be chosen: 1, 2, 8 or 64.
For the velocity components uniform Dirichlet BCs are taken at the inlet (u =
1 ms−1, v = w = 0 ms−1) and homogeneous Neumann BCs at the outlet. At
the walls no-slip conditions are taken.
Figure 6.1 shows the geometry, as well as the resulting velocity field for the case
with 64 blocks.

Fig. 6.1: Geometry and velocity field for a flow in a unit cube
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6.2 Test case 2: Flow in a 90◦ degrees channel

Fig. 6.2: Geometry of a 90◦ degrees channel

In this test case the stationary incompressible Navier-Stokes equations are solved
for a 90◦ degrees channel.
The geometry is 3D and the channel has length z = 1.6 m, width x = 0.4 m and
height y = 0.04 m (see Figure 6.2). The inlet is located at x = 0 m, the outlet
at z = 1.6 m. The four remaining boundaries are all solid walls. The number
of blocks is six.
For the velocity components uniform Dirichlet BCs are taken at the inlet and
homogeneous Neumann BCs at the outlet. At the walls no-slip conditions are
taken.
Figure 6.3 shows the resulting velocity and pressure field in a cross-section of
the channel.

Fig. 6.3: The computed velocity field (left) and pressure field (right) in a cross-section
of a 90◦ degrees channel
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6.3 Test case 3: Flow in a disc with a stirrer

Fig. 6.4: Geometry of a disc

In this test case the stationary incompressible Navier-Stokes equations are solved
for a disc with a so-called horizontal stirrer. Stirrers are often applied in the
glass industry to enhance the mixing of the fluid.
The geometry is 3D and the disc has inner radius Rin = 0.1 m, outer radius
Rout = 0.5 m and height y = 0.1 m, see Figure 6.4. There are two solid walls
(at r = 0.1 m and at r = 0.5 m), the rest of the disc is ’open’. Four blocks are
taken.
Note that the disc is rotation-symmetrical and that each horizontal cross-section
(h constant) has the same velocity and temperature field.
At the walls uniform Dirichlet BCs are taken for the temperature. At the top
(y = 0.1 m) and bottom (y = 0 m) of the disc uniform Neumann BCs are taken.
To simulate the effect of the stirrer, a body force is applied to the flow.
Figure 6.5 shows the velocity field and the temperature in a cross-section of the
disc.

6.4 Test case 4: Flow in an impinging jet

In this test case the stationary incompressible Navier-Stokes equations are solved
for an impinging jet.
The geometry is 3D, a cube with x× y× z = 0.1 m × 0.1 m × 0.1 m. The inlet
is a 0.02 m × 0.02 m square located in the middle of the top of the cube and
the four sides of the cube are the outlets (so at x = 0 m, x = 0.1 m, y = 0 m
and y = 0.1 m). The bottom of the cube (z = 0 m) and the top of the cube
(z = 0.1 m) minus the inlet, are solid walls. Three blocks are taken.
For the velocity components homogeneous Dirichlet BCs are taken at the walls
and uniform Dirichlet BCs at the inlet. For the pressure homogeneous Dirichlet
BCs are taken at the outlets.
Figure 6.6 shows the velocity field and the temperature in a cross-section of the
cube.
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Fig. 6.5: The resulting velocities (arrows) and temperatures (colors) in a cross-section
of a disc

Fig. 6.6: The resulting velocities (arrows) and temperatures (colors) in a cross-section
of an impinging jet



7. NUMERICAL EXPERIMENTS WITH DEFLATION

In this chapter we want to gain insight into the DD methods, as described
earlier. Especially the choice of the deflation vectors (the columns of Z, see Sec-
tion 3.3) will be investigated. Therefore tests in MATLAB and X-stream have
been done. MATLAB is used since it has a huge number of build-in routines
for matrix analysis, and programming in MATLAB is rather straightforward.

The structure of this chapter is as follows. First the choice and description of
deflation vectors are discussed in Section 7.1. Then the tests and their results
are described in Sections 7.2 (MATLAB) and 7.3 (X-stream). Partitioning of
the subdomains is treated in Section 7.4. When using deflation, an LU de-
composition of the matrix ZT AZ has to be made. The accuracy of this LU
decomposition is important, this is treated in Section 7.5.

7.1 Deflation vectors

This section begins with the choice of deflation vectors: the requirements for
these vectors are given in Subsection 7.1.1. After this, three different kinds of
deflation vectors are described in Subsection 7.1.2.

7.1.1 Requirements for deflation vectors

Choosing deflation vectors for obtaining an efficient solution method is not a
trivial task. Several conditions have to be taken into account, some of which
are already mentioned in Section 3.3. Consider Y chosen equal to Z. We want
the matrix Z to satisfy the following properties (see Vuik et al. [30]):

1. The matrix Z should be problem independent and inexpensive to con-
struct.

2. The span of the columns of Z should be close to the eigenspace corre-
sponding with the smallest eigenvalues of PA.

3. Generalization to 3D should be possible.

4. The matrix Z should be chosen such that E = ZT AZ is non-singular,
because systems involving E are computed by a direct method.

5. The gain in iterations for this choice of Z should result in lower wall-clock
times.

Property 2 is difficult to obtain, because little theory is developed on how the
choice of Z is related to the spectrum of PA. However, for the case that A is
SPD, a few bounds for the eigenvalues have been proved, see Nicolaides [11].
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Fig. 7.1: 1D and 2D grid, both with two subdomains

Considering property 5 the following can be stated. The wall-clock time depends
on more factors than the choice of Z: the convergence rate of the iterative
solution method, the number of deflation vectors, the number of grid cells per
subdomain and the solution method used to solve the system involving E also
play a role. However, it is still important to choose Z as good as possible.

7.1.2 Description of deflation vectors

In this subsection, we will consider three different kinds of deflation vectors:
constant deflation vectors and linear deflation vectors, based on grid numbering
and based on grid coordinates. This results in three possibilities for the matrix
Z used in deflation methods: ZCD for constant deflation, ZCLD−ijk for constant
linear deflation based on grid numbering and ZCLD−cartesian for constant
linear deflation based on grid coordinates. These three deflation matrices
will be described with help of two examples, a 1D grid with two subdomains
and a 2D grid with two subdomains, see Figure 7.1. After the description
of the deflation vectors and matrices, CLD-ijk and CLD-cartesian are compared.

Constant deflation vectors

For each subdomain, exactly one deflation vector is defined having constant
elements in the grid points on the corresponding subdomain, and zero elements
in the grid points on the other subdomain(s). So constant deflation vectors zm

are chosen in the following way:

zm(i) = 1, xi ∈ Ωm,

zm(i) = 0, xi /∈ Ωm.

For both the examples (1D and 2D) in Figure 7.1 this gives the following defla-
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tion matrix:

ZCD =


1 0
1 0
1 0
1 0
0 1
0 1

 . (7.1)

The value 1 in ZCD can be replaced by a different non-zero value, since
the matrix PA only depends on span(Z). Generalization to the 3D case is
straightforward.

Linear deflation vectors based on grid numbering

A linear deflation vector based on grid numbering is defined on each subdomain
by increasing each element linearly for increasing grid points. For a 1D case the
vectors zm are chosen in the following way:

zm(i) = 0, xi /∈ Ωm,

z1(i) = i, xi ∈ Ω1,

zm(i) = i−
m−1∑
j=1

|Ωj |, xi ∈ Ωm, m > 1,

with |Ωj | the number of cells in subdomain j. Here we assume the grid is
structured and has a logical numbering.

The columns of the deflation matrix span the space consisting of both the con-
stant and the linear vector. So it combines the constant deflation vectors and
the linear deflation vectors based on grid numbering.
For the 1D example (see Figure 7.1) this gives the following deflation matrix:

ZCLD−ijk =


1 1 0 0
1 2 0 0
1 3 0 0
1 4 0 0
0 0 1 1
0 0 1 2

 . (7.2)

Generalization to the 2D and 3D case is not so straightforward as with constant
deflation. In two dimensions Z consists of three vectors per subdomain: one
constant vector and one linear vector for each of the two dimensions. In three
dimensions Z consists of four vectors per subdomain: one constant vector and
three linear vectors.

Consider the following 2D example, given in Figure 7.2: one domain with four
cells, the cells numbered as shown in the figure. The constant deflation vector is
a vector with four ones. For making the linear deflation vectors both numberings
of the cells are used: the ’single’ numbering for the sequence of the numbers
in the vector, the (i,j)-numbering for the values of the numbers in the vector.
The linear deflation vector in horizontal direction is given by (1 2 1 2)T and the
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Fig. 7.2: 2D grid with one domain and cells numbered in two ways

linear deflation vector in vertical direction is given by (1 1 2 2)T . The matrix
ZCLD−ijk is now given by:

ZCLD−ijk =


1 1 1
1 2 1
1 1 2
1 2 2

 . (7.3)

Linear deflation vectors based on grid coordinates

A linear deflation vector based on grid coordinates is defined on each subdomain
by using the positions of the cell centers. For a 1D case the vectors zm are chosen
in the following way:

zm(i) = xi, xi ∈ Ωm,

zm(i) = 0, xi /∈ Ωm.

Just as with linear deflation based on the grid, for the deflation matrix the con-
stant deflation vectors and the linear deflation vectors based on grid coordinates
are combined.
For the 1D example (see Figure 7.1) this gives the following deflation matrix
(the cells have length 0.1):

ZCLD−cartesian =


1 0.05 0 0
1 0.15 0 0
1 0.25 0 0
1 0.35 0 0
0 0 1 0.45
0 0 1 0.55

 . (7.4)

For the 2D case Z has three vectors per subdomain: one constant vector and
two linear vectors: one for the x-coordinates and one for the y-coordinates of
the cell centers. For the 3D case Z has four vectors per subdomain.

Non-uniform grids

In the given examples uniform grids are used. Generalization to non-uniform
grids is straightforward. For constant deflation vectors and linear deflation
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Fig. 7.3: 1D grid with two subdomains and two cell sizes

vectors based on grid numbering nothing changes. Only linear deflation vectors
based on grid coordinates are different. Consider a 1D example, with grid size
0.1 in the first subdomain and grid size 0.2 in the second subdomain, see Figure
7.3.
Now the deflation matrix is:

ZCLD−cartesian =


1 0.05 0 0
1 0.15 0 0
1 0.25 0 0
1 0.35 0 0
0 0 1 0.5
0 0 1 0.7

 . (7.5)

Comparison between CLD-ijk and CLD-cartesian

We have now constructed deflation matrices Z. Note that the matrix
ZCLD−cartesian in (7.4) looks like ZCLD−ijk in (7.2). It is useful to investigate
whether the results of CLD-ijk and CLD-cartesian are the same under certain
conditions.

In algorithms that use deflation, P = I − AZ(Y T AZ)−1Y T and
Q = I − Z(Y T AZ)−1Y T A are constructed and used. We choose Y equal to Z,
as stated earlier. The following Lemma can be applied:

Lemma 7.1.
Let A ∈ Rn×n be non-singular. Let Z1 ∈ Rn×r and Z2 ∈ Rn×r with
rank(Z1) =rank(Z2) = r. Define E1 = ZT

1 AZ1 and E2 = ZT
2 AZ2. If

Im(Z1)=Im(Z2), then

(I −AZ1E
−1
1 ZT

1 )A = (I −AZ2E
−1
2 ZT

2 )A.

Proof.
Since Im(Z1)=Im(Z2), there exists a non-singular matrix M ∈ Rr×r such that
Z1 = Z2M . Hence

Z2E2
−1Z2

T − Z1E1
−1Z1

T = Z2(E2
−1 −ME1

−1MT )Z2
T

= Z2E2
−1(I − E2ME1

−1MT )Z2
T

= Z2E2
−1(I − E2M(MT E2M)−1MT )Z2

T

= Z2E2
−1(I − E2MM−1E2

−1M−T MT )Z2
T

= 0.

A consequence of this Lemma is that, if A is SPD and if each subdomain
has uniform cells, then CLD-ijk and CLD-cartesian produce the same result,
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because the two methods have the same matrix P and Q. Take for example the
matrices (7.2) and (7.5) (these matrices belong to a grid with two subdomains,
each subdomain has its own cell size, see Figure 7.3). It is easy to show that the
span of ZCLD−cartesian is equal to the span of ZCLD−ijk. The first and third
column of the matrices are equal. Furthermore

0.05
0.15
0.25
0.35
0
0

 = 0.1


1
2
3
4
0
0

− 0.05


1
1
1
1
0
0

 (7.6)

and 
0
0
0
0

0.5
0.7

 = 0.3


0
0
0
0
1
1

+ 0.2


0
0
0
0
1
2

 . (7.7)

In the next section one test is done for subdomains with uniform cells, as an
example of Lemma 7.1. The other tests are done for cases with different cell
sizes within a subdomain.

7.2 Tests in MATLAB

In MATLAB two 1D testproblems have been used:

• Testproblem 1 (Poisson problem, Dirichlet BCs):

d2ϕ

dx2
= x sinx, (7.8)

with boundary conditions ϕ(0) = ϕ(π) = 0.

• Testproblem 2 (convection-diffusion problem, Dirichlet BCs):

dϕ

dx
− 0.001

d2ϕ

dx2
= 0, (7.9)

with boundary conditions ϕ(0) = 0 and ϕ(1) = 1.

These problems have been tested on two grids:

• Grid 1 (see Figure 7.4):
A 1D domain with n cells: in the first half of the domain the cells have
length h1, in the second half of the domain the cells have length h2.

• Grid 2 (see Figure 7.4):
A 1D domain with n cells, cell i has length h(i) = α ∗ (k)i. α depends on
the length of the domain and it is convenient to choose k approximately
0.9.
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Grid 1 Grid 2

Fig. 7.4: Grids for the tests in MATLAB

Ω1 Ω2 Ω3

Fig. 7.5: Grid 1 with three subdomains

Both testproblems are discretized with central differences and solved with
PGCR and DPGCR. PCG and DPCG are not used because the second test-
problem is non-symmetric. The diagonal matrix is used as a preconditioner.
The startvector is the zero-vector and the stopcriterion is:

‖b−Ax‖
‖b‖

< 0.0001 (7.10)

The tests consist of trying PGCR and DPGCR with three deflation matrices
(CD, CLD-ijk and CLD-cartesian) with various values for n and a various
number of subdomains.

In Lemma 7.1., we have proved that if each subdomain has uniform cells,
then CLD-ijk and CLD-cartesian produce the same result. Therefore, we will
perform one test in MATLAB where this is the case: testproblem 1 with grid
1, where grid 1 has two subdomains that each cover exactly half of the domain
(as in Figure 7.3). Furthermore, h1 = 3h2 is chosen. The number of iterations
for CLD-ijk and CLD-cartesian for a different number of cells n is:

n CLD-ijk CLD-cartesian
100 72 72
200 145 145
300 218 218

This shows what we expected considering Lemma 7.1. Because the cases with
uniform cells in each subdomain are not so interesting, in all other tests we will
consider domains which have at least one subdomain with non-uniform cell-
sizes. See for example grid 1 with three subdomains in Figure 7.5. One can
see that the first and third subdomain have uniform cell sizes, while the second
subdomain has cells with two different sizes.

7.2.1 Results

In this subsection the results of the tests in MATLAB are given. This means
that the number of iterations is given for every test. First, several tables with
test results are given, after that some conclusions are drawn. Only in the first
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table results for PGCR are given. More tests for PGCR have been performed,
but they show nothing new.

Results for testproblem 1, grid 1 with h1 = 3h2:

(D)PGCR, one subdomain:

n PGCR CD CLD-ijk CLD-cartesian
100 100 92 97 97
200 200 181 195 194
300 300 264 292 292

DPGCR, three subdomains:

n CD CLD-ijk CLD-cartesian
108 68 56 43
204 128 107 81
300 188 157 120

DPGCR, five subdomains:

n CD CLD-ijk CLD-cartesian
100 39 30 30
200 76 60 61
300 113 91 91

Results for testproblem 2, grid 1 with h1 = 3h2:

DPGCR, one subdomain:

n CD CLD-ijk CLD-cartesian
100 99 98 98
200 159 158 158
300 219 218 218

DPGCR, three subdomains:

n CD CLD-ijk CLD-cartesian
108 82 68 68
204 118 109 109
300 170 152 153

DPGCR, five subdomains:

n CD CLD-ijk CLD-cartesian
100 66 58 57
200 88 82 80
300 124 111 112
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Instead of taking h1 = 3h2, another ratio between h1 and h2 can be chosen.
This has also been tested, but shows nothing new. The results of testprob-
lem 2 are very similar to the results of testproblem 1 (except for the grid
with three subdomains), so for grid 2 only the results for testproblem 1 are given.

For testproblem 1, grid 1 and three subdomains CLD-cartesian shows a much
better performance than CLD-ijk, whereas for an other number of subdomains
the results are similar. This could have to do with the number of subdomains
with different cell sizes. In case of three subdomains, the first and third
subdomain have equal cells within the subdomain. The second subdomain
contains two different cell sizes. In case of five subdomains, only one out of
the five subdomains has different cell sizes, which is less than one out of three
subdomains. This could possibly increase the difference between CLD-ijk and
CLD-cartesian.
However, this is not a satisfactory explanation. One outcome that can not be
explained by this theory is the case with one domain: on basis of the theory
above one would expect a large difference between the performances of CLD-ijk
and CLD-cartesian. Another thing that can not be explained are the results of
testproblem 2: the case with three subdomains does not show much difference
between CLD-ijk and CLD-cartesian there.

Results for testproblem 1, grid 2 with α = 0.33 and k = 0.9:

DPGCR, one subdomain:

n CD CLD-ijk CLD-cartesian
50 48 48 47
65 64 62 63

DPGCR, three subdomains:

n CD CLD-ijk CLD-cartesian
51 46 32 13
72 63 50 20

DPGCR, five subdomains:

n CD CLD-ijk CLD-cartesian
50 36 18 7
70 55 30 11

α, k and n have to be chosen carefully. If α is too large, n has to be small,
otherwise negative cell lengths occur. If k is small and n is large, the cell sizes
get very small and MATLAB has trouble calculating them.

7.2.2 Conclusions

From the tests performed in MATLAB, some conclusions can be drawn:
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Fig. 7.6: 1D grid with non-uniform cell-sizes

• Solving a problem with PGCR always means more iterations than solving
the problem with DPGCR.

• CLD almost always needs less iterations than CD. Only for testproblem 1
with one subdomain CD is slightly better.

• More subdomains means less iterations. This can be explained as follows:
more subdomains means less grid points (unknowns) per subdomain. In
general, less unknowns means less iterations. When you keep increasing
the number of subdomains, in the end each subdomain will have one
unknown. It is obvious that in this case the problem is solved directly.
Drawback of increasing the subdomains is that each iteration becomes
more expensive. For every problem, there has to be an optimal number
of subdomains such that the total wall-clock time is as low as possible.

• For grid 1, there is very little difference between CLD-ijk and CLD-
cartesian. Only testproblem 1 with three subdomains shows a much better
performance of CLD-cartesian.

• For grid 2, CLD-cartesian performs better than CLD-ijk.

We are especially interested in the difference in performance between CLD-ijk
and CLD-cartesian. The last two conclusions say something about these two
methods. The difference between CLD-ijk, CD and iterative methods without
deflation is already treated in Verkaik [19].
Using common sense, one would expect that CLD-cartesian performs better
than CLD-ijk, because for the vectors of CLD-ijk the numbering of the cells is
important, while for the vectors of CLD-cartesian the positions of the unknowns
are important.

Consider Figure 7.6. The CLD-ijk vector for this grid is (1 2 3 4)T and the
CLD-cartesian vector is (0.05 0.15 0.3 0.6)T . The CLD-cartesian vector better
represents the position of the unknowns and the sizes of the cells than the
CLD-ijk vector. An explanation for the fact that grid 1 does not show much
difference can be that there are only two different cell-sizes, and h1 is ’only’
three times as large as h2. In grid 2 all the cells have different sizes and the
difference between the smallest and largest cell size is very big.

So much for the common sense. A more mathematical explanation can be given
considering the effective condition numbers of the matrices PCLD−ijkA and
PCLD−cartesianA: these are the matrices used in the deflation algorithms. We
look at the effective condition number because the matrix PA is singular (the
effective condition number is the maximum eigenvalue divided by the minimum
non-zero eigenvalue, given the problem is symmetric).
For example, in the table given below some effective condition numbers are
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given together with the number of iterations for testproblem 2 and grid 1:

Testproblem 2, grid 1 with h1 = 3h2:

DPGCR, five subdomains:

n #iter CLD-ijk #iter CLD-cart eff cond no CLD-ijk eff cond no CLD-cart

100 58 57 17.5 17.4
200 82 80 20.4 19.0
300 111 112 36.3 36.3
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Fig. 7.7: The eigenvalues of CLDGCR-cartesian for n = 100, testproblem 2, grid 1

The eigenvalues of PA for n = 100 with CLD-cartesian are given in Figure
7.7. For other values of n, other numbers of domains and CLD-ijk instead of
CLD-cartesian the eigenvalues are distributed in the same way. You can see
that the value of the effective condition number corresponds with the number
of iterations required for convergence. Because five subdomains are considered,
there are ten deflation vectors, this explains the ten eigenvalues with value zero
you see in Figure 7.7.

It is interesting to consider a case where the number of iterations of CLD-ijk and
CLD-cartesian differ a lot. This is the case for testproblem 1 in combination
with grid 2. Unfortunately, it is difficult to calculate and compare the effective
condition numbers, because there are a lot of (very) small eigenvalues and some
very large ones. Therefore the eigenvalues for testproblem 1, grid 2 with α =
0.33 and k = 0.9, n = 50 and five subdomains are plotted on log scale in
Figure 7.8. The ten eigenvalues with value zero are left out of the figure. The
eigenvalues for other numbers of domains and other values of n are distributed
in the same way. Now the effective condition numbers can be calculated. It
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Fig. 7.8: The eigenvalues of CLDGCR for n = 50, testproblem 1, grid 2

turns out that CLD-ijk has an effective condition number of 1.4 · 105 and CLD-
cartesian has an effective condition number of 8.9 · 104. This partly explains
the difference in number of iterations needed for convergence (CLD-ijk needs 18
iterations, CLD-cartesian needs 7 iterations).

7.3 Tests in X-stream

In X-stream three test cases have been used. The stationary incompressible
Navier-Stokes equations are solved for all three cases. The three test cases are
described in Sections 6.2, 6.3 and 6.4. In Subsection 7.3.1 it is made clear what
we know already and what needs to be tested. The results of the test cases can
be found in Subsection 7.3.2 and the conclusions in Subsection 7.3.3.

7.3.1 Tests

In X-stream, the test cases described in Chapter 6 can be solved with different
solvers. Important output of the test cases are the number of outer iterations,
the residuals and the wall-clock times. Here is a survey of the things that have
been varied for the test cases. The default values are pointed out and remarks
are made about the usefulness of varying the parameters considering the output
of the test cases.

• Solver: the solvers that can be chosen are SIP, SPTDMA, CG and GCR.
The last two can be used with deflation: CD, CLD-ijk and CLD-cartesian.
Deflation can be used for pressure or energy, for example. We only con-
sider SIP and GCR (without and with deflation for the pressure), with
emphasis on (D)GCR. More on the performance of SPTDMA can be found
in Verkaik [19]. The SIP method is most commonly used in X-stream.



7.3. Tests in X-stream 57

• Underrelaxation: the underrelaxation parameters of the velocities and the
pressure can be varied. Verkaik [19] has done research on choosing the
underrelaxation parameters. We will use the default values in X-stream.

• Block level: the block level (the refinement level of the blocks) has default
value 1. The block level can be set to 2 but this shows nothing new
concerning the differences between the solvers. Also, the program needs
much more time to reach convergence. Therefore we will only work with
block level 1.

• SIMPLE stabilizer iteration: Convergence results on varying SSI can be
found in Verkaik [19]. For each test case, we use the default value X-stream
has set.

• Inner iterations: for most problems, the default values for the number
of inner iterations are 5 for the velocities and 15 for the pressure and
energy (if the energy equation is solved). We will vary the number of
inner iterations for the pressure.

To sum up the above: we vary the number of inner iterations of the pressure
to evaluate the SIP solver and (D)GCR. Important forms of output are the
number of outer iterations, wall-clock time and residuals. Because Verkaik [19]
has already done a lot of research on the different solvers, except for DGCR
with CLD-cartesian, emphasis will lay on the difference in performance between
DGCR with CLD-ijk and DGCR with CLD-cartesian. (D)CG is not considered
because (D)GCR is more general, applicable also to non-symmetric problems.

For solving all variables, the additive Schwarz method is used with inaccurate
subdomain solution obtained by SIP steps. We restrict ourselves to solving the
subdomain problems using one SIP iteration and refer to this method as SIP(1).

7.3.2 Results

Test case 2 (Flow in a 90◦ degrees channel)

Figure 7.9 shows the residuals for the methods SIP(1) and (D)GCR for 30 inner
iterations. One outer iteration is done. The residual is given by the following:
for each cell the mass that enters the cell and the mass that leaves the cell are
calculated. For each cell the difference between these two numbers is calculated.
The sum over all the cells in the grid of these absolute differences is the residual.

This figure shows a very good performance of CLDGCR-cartesian. After about
12 inner iterations CLDGCR-ijk has the second best residual. After more than
30 iterations the residuals remain approximately constant.

Figure 7.10 shows the number of outer iterations that is needed for convergence
for a certain number of inner iterations. Figure 7.11 shows the time needed for
convergence for a certain number of inner iterations.

For three or more inner iterations, CLDGCR-ijk and CLDGCR-cartesian have
the same number of outer iterations. For six or more inner iterations, CDGCR
has the same number of outer iterations as well.
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Fig. 7.9: The residuals after one outer iteration for a certain number of inner iterations
for test case 2

1 2 3 4 5 6 7 8 9
0

200

400

600

800

1000

1200

inner iterations

ou
te

r i
te

ra
tio

ns

SIP(1)
GCR
CDGCR
CLDGCR−ijk
CLDGCR−cartesian

Fig. 7.10: The number of outer iterations needed for convergence for test case 2
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Fig. 7.11: Time (in seconds) needed for convergence for test case 2

SIP(1) always needs more iterations. Especially for a very low number of inner
iterations, the gain by using CLDGCR-cartesian instead of SIP(1) is very
large. The table given below illustrates this. The number of outer iterations
SIP(1) needs is divided by the number of outer iterations an other method needs.

# inner it. SIP(1)
GCR

SIP(1)
CDGCR

SIP(1)
CLDGCR-ijk

SIP(1)
CLDGCR-cart

1 1.5 2.6 5.4 7.4
2 1.6 2.7 5.4 6.2
6 1.4 3.4 4.2 4.2
9 1.0 3.6 3.6 3.6

You can see that for one inner iteration, CLDGCR-cartesian needs about seven
times less outer iterations, while for nine inner iterations, CLDGCR-cartesian
needs ’only’ 3.6 times less outer iterations.
Figure 7.11 shows almost the same picture as Figure 7.10. Only after about
six inner iterations, the time to convergence increases slightly for (D)GCR. A
logical explanation for this is the increasing number of inner iterations. (when
the outer iterations are constant and the inner iterations increase, the total
number of iterations also increases). This pleads for choosing the number of
inner iterations not too large. To give an idea of the time you gain using
(D)GCR instead of SIP(1), the table below indicates the time (D)GCR needs
compared to the time SIP(1) needs to converge.
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Fig. 7.12: The residuals after one outer iteration for a certain number of inner itera-
tions for test case 3

# inner it. SIP(1)
GCR

SIP(1)
CDGCR

SIP(1)
CLDGCR-ijk

SIP(1)
CLDGCR-cartesian

1 1.5 2.3 4.5 6.0
2 1.4 2.2 4.1 4.3
6 1.1 2.4 2.5 2.7
9 0.8 2.2 2.2 2.2

The table above is correct, but not completely fair. Normally, you would not
use the same number of inner iterations for the different methods. Therefore
we compare the times to convergence of the different methods, given that the
number of inner iterations is optimal for each method. For SIP(1) we use
12 inner iterations, for GCR 4, for CDGCR 7, for CLDGCR-ijk 4 and for
CLDGCR-cartesian 4. Now the time you can gain by using (D)GCR instead of
SIP(1) is given in the table below.

SIP(1)
GCR

SIP(1)
CDGCR

SIP(1)
CLDGCR-ijk

SIP(1)
CLDGCR-cartesian

0.9 2 2.1 2.3

This table shows that applying a deflation method to GCR can make
the time to convergence twice as fast.

Test case 3 (Flow in a disc with a stirrer)

Figure 7.12 shows the residuals for the solvers SIP(1) and (D)GCR for 30 inner
iterations. One outer iteration is done.
The figure shows not much difference between GCR and DGCR. Clearly, SIP(1)
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Fig. 7.13: Cells in a cross-section of the cube of test case 4

has larger residuals than the other solvers. The little difference between GCR
and DGCR can be explained by (as already stated at the description of the
test case) the rotation-symmetry of the disc and the fact that every horizontal
cross-section of the disc has the same velocity and temperature field. What
you actually do is solving a problem along a line of 0.4 m and then copy this to
the rest of the disc. This ’line’ has uniform cell size, so this explains the very
similar performances of GCR, CDGCR, CLDGCR-ijk and CLDGCR-cartesian.
Because this test case is clearly not interesting if you want to see the difference
between CLDGCR-ijk and CLDGCR-cartesian we do not proceed with this case.

Test case 4 (Flow in an impinging jet)

Tests in MATLAB showed a very good performance of CLD-cartesian compared
to the other methods, for a grid with much difference in the cell sizes. Therefore,
test case 4 is tested with the grid as in Figure 7.13: the cells become smaller
toward the bottom of the cube. We expect to see differences in performance of
the different solvers for this test case.
Figure 7.14 shows the residuals for the solvers SIP(1) and (D)GCR for 30 in-

ner iterations. DGCR needs less than 30 iterations as you can see in the figure.
Clearly, SIP(1) has larger residuals than the other solvers. CLDGCR-ijk and
CLDGCR-cartesian perform equally well.
Varying the number of inner iterations has (almost) no influence on the number
of outer iterations. There is little difference between the methods and every
method itself shows only small variation in the number of outer iterations.
Unfortunately, this test case does not show the same as the testproblems in
MATLAB did.
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Fig. 7.14: The residuals after one outer iteration for a certain number of inner itera-
tions for test case 4

7.3.3 Conclusions

From the above results some conclusions can be derived:

• CLDGCR-cartesian always needs less (or just as much) iterations than
the other methods evaluated.

• CLDGCR-cartesian has always smaller (or just as large) residuals than
the other methods evaluated.

• One should not choose the number of inner iterations too large. The ad-
vantage of choosing a large number of inner iterations, is that you are sure
the number of outer iterations is as small as possible. The disadvantage
is that a larger number of inner iterations costs more time than a smaller
number of inner iterations, given the number of outer iterations stays (ap-
proximately) the same. Every problem has an optimum in balancing the
number of outer and inner iterations.

7.4 Subdomain partitioning

Apart from the test cases described in Section 7.3, other cases have been tested
with deflation in X-stream, small cases as well as larger ones. In general, the
results of these cases resemble the results and conclusions given in Section 7.3.
Only one new issue came up during the tests: the number of subdomains that
is used. This will be explained below.
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It is clear that when a certain 3D geometry is divided into n subdomains, the
matrix ZCD has n columns and ZCLD has 4n columns. With m the number of
cells, ZCD is an m × n -matrix and ZCLD is an m × 4n -matrix. In X-stream,
the matrix E = ZT AZ is used. A is an m × m -matrix, so ECD is an n × n
-matrix and ECLD a 4n× 4n -matrix.
So a large number of subdomains causes a large matrix E, especially ECLD is
very large. For example, one of the test cases was a case with 600 subdomains,
so then ECLD is a 2400× 2400 -matrix.
The problem with E being a large matrix are the calculations done with E. In
X-stream, deflation is implemented in a way that is suitable for small matrices
E: Ex = y is not solved efficiently for x, because no use of the sparseness of E
is made. When E is small, the increase of the total computation time by this
inefficiency is negligible. When E is large, the computation time can increase a
lot.
This was shown by the test case with 600 subdomains. This case has run with
GCR, CDGCR and CLDGCR-cartesian and with one, three and ten outer
iterations. The number of inner iterations is set optimal for each solution
method. The residuals of the velocities and pressure are roughly the same for
the three methods (CLDGCR has somewhat smaller residuals, but it is not a
large difference). The computation times differ a lot. For a small number of
outer iterations, CDGCR needs about three times more CPU time than GCR,
CLDGCR needs about three hundred times more CPU time than GCR.

As stated above, Ex = y is not solved efficiently. First an LU decomposition
of E is made, then this LU decomposition is used for solving Ex = y. Making
the LU decomposition of E costs a lot of time: for this case, CDGCR needs ten
to fifteen seconds to make the decomposition (remember that E is a 600× 600
-matrix) and CLDGCR needs about half an hour (E a 2400 × 2400 -matrix).
For solving Ex = y, CDGCR needs about 0.02 seconds, CLDGCR about 0.3
seconds. For convergence, a large number of iterations is needed, so the total
time for solving Ex = y all the times is very large.
The above is only one example, not every case with many subdomains will
give the same results. But it is clear that when one has a geometry with
many subdomains, a deflation algorithm can not be easily applied, because
convergence costs too much CPU time.

There are two ways of solving this ’subdomain’ problem: the first one is
changing the way Ex = y is solved for x, the second one is to decrease the
number of subdomains.

As stated above, the solver that is now used to solve Ex = y for x is a
direct solver that does not use the sparseness of E. This solver is suitable
for problems with less than about fifty subdomains. For problems with more
subdomains a sparse solver for unstructured matrices is needed. The numbering
of the subdomains is very important when using a sparse solver, because this
numbering influences the positions of the non-zeros in the matrix.

For most cases, the subdomain partitioning is made considering two things:
physics and geometry. By ’considering physics’ the following is meant: the ge-
ometry of a certain test case consists of different parts. For example, a glass



64 7. Numerical experiments with deflation

Ω1

Ω2

Ω3

Fig. 7.15: Subdomain partitioning considering the geometry

melting furnace has a combustion chamber, a batch blanket and a glass melting
part. Different equations are solved for each part. It is logical to solve the same
set of equations within a subdomain. So the subdomains are chosen such that
this is the case.
Taking care of the geometry when choosing the subdomains is most easily ex-
plained by a figure. Consider Figure 7.15. The subdomain partitioning is done
by looking at the geometry and dividing it in subdomains in a logical way.
In practice, subdomain partitioning considering physics corresponds with sub-
domain partitioning considering geometry.
When there are many subdomains, it is better for deflated GCR to take sub-
domains together. Certain choices have to be made then. Further research has
to be done to say more about this subject. When you stumble across a case
with many subdomains now, it is wise to try constant deflation first, and not
immediately constant linear deflation.

7.5 Accuracy of the LU decomposition of ZT AZ

When using deflation in X-stream, the inverse of the matrix ZT AZ has to be
calculated. Therefore it is necessary that the matrix ZT AZ is non-singular.
An easy check can be done with help of the LU decomposition of ZT AZ.
It is known that when a matrix is singular, its LU decomposition is not
correct. Therefore the following check is done: consider a matrix M . An LU
decomposition of M can be made, resulting in a lower triangular matrix L and
an upper triangular matrix U . If M is a non-singular matrix L ∗ U should be
equal to M , so L ∗ U − M should be a matrix with only very small values.
Below the algorithm is given that X-stream used to check whether the matrix
ZT AZ is non-singular:

Algorithm to check non-singularity ZT AZ
1. Diff = ZT AZ − LU(ZT AZ)
2. If (any Diff(:,:) > 1E-10) then

write ’warning: deflation solver can give erroneous results!’
End if

The factor 10−10 is determined empirically by looking at some test cases.
In the above algorithm, the magnitude of the numbers in the matrix ZT AZ
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is not taken into account.It is clear that when ZT AZ has numbers in the
order of 105, the absolute errors made by the LU decomposition are larger
than when the largest number in ZT AZ is of the order 10−5. Therefore, it is
better that some kind of scaling is done in the algorithm. We have chosen a
diagonal scaling, because it scales the numbers in the original matrices ZT AZ
and LU(ZT AZ) around 1. The algorithm with this scaling is given by:

Algorithm to check non-singularity ZT AZ with scaling
1. For i = 1, n do:

Diag(i) =
∑n

j=1 |(ZT AZ)ij |
End for

2. Diff = ZT AZ − LU(ZT AZ)
3. For i = 1, n do:

Diff(i,:) = |Diff(i,:)|/Diag(i)
End for

4. If (any Diff(:,:) > 1E-10) then
write ’warning: deflation solver can give erroneous results!’

End if

In step 1 a diagonal scaling is calculated. In step 2 the difference between the
matrices ZT AZ and LU(ZT AZ) is calculated. In step 3 the scaling is applied:
every row of the difference matrix is divided by a scaling factor.
Finally, in step 4 a warning is given when one of the elements in the scaled
difference matrix is larger then 10−10.

The scaling is testes for some test cases. Before the scaling was implemented,
for some of these cases a lot of warnings were given. After implementing the
algorithm with scaling, these warnings are no longer given for the test cases.
The largest number in the matrix Diff was of the order 10−16, so the faults made
by the LU decomposition do not come close to the limit of 10−10.
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8. GCR-SIMPLE ON A COLOCATED GRID

In this chapter GCR-SIMPLE on a colocated grid will be discussed. First the
algorithms GCR, SIMPLE and GCR-SIMPLE are stated in Section 8.1. In
Section 8.2 diagonal scaling is described and in Section 8.3 the implementation
of GCR-SIMPLE is treated.

8.1 Algorithms

In this section GCR and SIMPLE are repeated (from Chapter 4). After that
they are combined in GCR-SIMPLE.

8.1.1 GCR

For a general matrix A the GCR Krylov subspace method can be used to solve
the linear system Ax = b. The preconditioned GCR method is given by the
following algorithm, see for example Vuik, Frank & Segal [26].

Algorithm 8.1 (PGCR)
Given an n × n matrix A, an n-vector b, a preconditioner M and an initial
guess x(0), this algorithm solves the linear system Ax = b.
r(0) = b−Ax(0)

For j = 1, . . ., until convergence do:
Solve Mv(j) = r(j−1)

q(j) = Av(j)

[q(j),v(j)] = orthonorm[q(j),v(j),q(i),v(i), i < j]
γ = (q(j), r(j−1))
x(j) = x(j−1) + γv(j)

r(j) = r(j−1) − γq(j)

End for
x ≈ x(j)

The relation between q and v (q = Av) is very important and should be satisfied
for all intermediate steps. The routine orthonorm refers to the orthonormal-
ization process used. It is left open in the above algorithm because there are
several ways to do this, see Frank & Vuik [4]. A common used method is the
Modified Gram-Schmidt algorithm:
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[q,v] = orthonorm[q,v,q(i),v(i), i < j]
For i = 1, . . . , j − 1 do:

α = (q,q(i))
q = q− αq(i)

v = v − αv(i)

End for
q = q/‖q‖2
v = v/‖q‖2

‖.‖ is the Euclidean norm (3.6).

8.1.2 SIMPLE

The algebraic system to be solved by the SIMPLE method may be denoted as(
N G
D C

)(
u
p

)
=
(

f
g

)
. (8.1)

At the k-th iteration we have

b−Ax(k) =
(

f
g

)
−
(

N G
D C

)(
u(k)

p(k)

)
=

(
r(k)
1

r(k)
2

)
. (8.2)

In the SIMPLE algorithm below, some matrices are approximated: Q and R
are approximations of N and C − DN−1G, respectively. Ñ−1 is an easy to
evaluate approximate inverse of N (in practice, one chooses Ñ = diag(N)).
For more information and background on the SIMPLE algorithm, the reader is
referred to Chapter 4.

Algorithm 8.2 (SIMPLE)
Let p(0) and u(0) be initial estimations of the pressure and velocity field,
respectively. Let ωp and ωu be underrelaxation parameters. This algorithm
solves the non-linear system (8.1) for the stationary incompressible Navier-
Stokes equations.
For k = 0, . . . , until convergence do:

Compute r(k)
1 and r(k)

2 from (8.2)
Solve Qδu = r(k)

1

Solve Rδp = r(k)
2 −Dδu

δu = δu− Ñ−1Gδp
u(k+1) = u(k) + ωuδu
p(k+1) = p(k) + ωpδp

End for
u ≈ u(k)

p ≈ p(k)

Experience has shown that the use of underrelaxation factors is necessary.

8.1.3 GCR-SIMPLE

In Chapter 5 information can be found on the GCR-SIMPLE method. In this
subsection the most important matrices and equations are repeated for the 2D
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case, after which the algorithm is given.

In GCR-SIMPLE, the system Ax = b (resulting from the discretization of the
Navier-Stokes equations) is solved, with

A =

 N1 0 G1

0 N2 G2

D1 D2 C

 ,x =

 u
v
p

 ,b =

 b1

b2

b3

 . (8.3)

Preconditioner M (in PGCR) is chosen as BP−1 defined by

B =

 I 0 −Ñ−1
1 G1

0 I −Ñ−1
2 G2

0 0 I

 (8.4)

and

P =

 N1 0 0
0 N2 0

D1 D2 C −
∑2

i=1 DiÑ
−1
i Gi

 . (8.5)

The GCR-SIMPLE method for a colocated grid arrangement can now be
obtained in a similar way as for the staggered case, see Vuik & Saghir [27]. The
GCR-SIMPLE method is given by the following algorithm:

Algorithm 8.3 (GCR-SIMPLE)
Consider the system Ax = b resulting from the discretization of the Navier-
Stokes equations. Let the matrix A be given by (8.3) and let B and P be
given by (8.4) and (8.5), respectively. Let x(0) be an initial solution, such that
Ax(0) ≈ b. Then this algorithm solves Ax = b.
r(0) = b−Ax(0)

For k = 1, . . . , ngcrsimple do:
Solve P s = r(k−1)

v(k) = Bs
q(k) = Av(k)

Orthonormalize q(k) and v(k)

β = (r(k−1),v(k))
x(k) = x(k−1) + βq(k)

r(k) = r(k−1) − βv(k)

End for
x ≈ x(k)

8.2 Diagonal scaling

It is convenient to use a diagonal scaling of the system, because this leads
to a better behaviour with respect to rounding errors. To implement diag-
onal scaling some adaptations are made. The ’scaling’ matrix is given by
D−1

AB = diag(AB)−1 and A, b and P are replaced by D−1
ABA, D−1

ABb and D−1
ABP ,

respectively. Now the GCR-SIMPLE method with diagonal scaling is given by
the following algorithm:
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Algorithm 8.4 (GCR-SIMPLE with diagonal scaling)
Consider the system Ax = b resulting from the discretization of the Navier-
Stokes equations. Let the matrix A be given by (8.3) and let B and P be
given by (8.4) and (8.5), respectively. Let x(0) be an initial solution, such that
Ax(0) ≈ b. Then this algorithm solves Ax = b.
r(0) = D−1

AB(b−Ax(0))
For k = 1, . . . , ngcrsimple do:

Solve D−1
ABMs = r(k−1)

v(k) = Bq
q(k) = D−1

ABAv(k)

Orthonormalize q(k) and v(k)

β = (r(k−1),v(k))
x(k) = x(k−1) + βq(k)

r(k) = r(k−1) − βv(k)

End for
x ≈ x(k)

In practice, for preconditioning an approximation Ã of A is used:

Ã =

 Q1 0 G1

0 Q2 G2

D1 D2 C

 .

Diagonal scaling for the colocated case is not so obvious, as we will illustrate
now. Consider

ÃB =

 Q1 0 G1 −Q1Ñ
−1
1 G1

0 Q2 G2 −Q2Ñ
−1
2 G2

D1 D2 R̂

 ,

with R̂ = R in the staggered case and R̂ = R+C in the colocated case, R given
by R = −

∑2
i=1 DiÑ

−1
i Gi. As diagonalization matrix we should take

DAB =

 D1 0 0
0 D2 0
0 0 D3

 , (8.6)

with D1 = diag(Q1), D2 = diag(Q2) and D3 = diag(R) for the staggered case
and D3 = diag(C + R) for the colocated case. The problem for the colocated
case is that the matrix C is not explicitly available. Therefore, one could choose
DAB = diag(R), just like in the staggered case. However, when ‖C‖ is not
negligible compared to ‖R‖, it is unknown what effect this shall have on the
performance of the GCR-SIMPLE algorithm. Unfortunately, for glass furnaces,
it is known that ‖C‖ is large and an it is difficult to make an estimation of the
values on the diagonal of C. Therefore, the scaling will not be very accurate.
The following algorithm is a detailed version of Algorithm 8.4. The matrices
denoted by 2 are contributions to the diagonal scaling. Removing those matrices
results in the GCR-SIMPLE algorithm without diagonal scaling.
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Algorithm 8.5 (GCR-SIMPLE with diagonal scaling (detailed))
Consider the system Ax = b resulting from the discretization of the Navier-
Stokes equations. Let the matrix A be given by (8.3) and let Di be given by
(8.6). Let x(0) be an initial solution such that Ax(0) ≈ b. Then this algorithm
solves Ax = b.
r(0)

i = D−1
i (bi −Niu

(0)
i −Gip(0)), i = 0, . . . , d

r(0)
d+1 = D−1

d+1 (bd+1 −
∑d

i=1 Diu
(0)
i − Cp(0))

For k = 1, . . . , ngcrsimple do:
Solve D−1

i Nisi = r(k−1)
i , i = 0, . . . , d

Solve D−1
d+1 Rsd+1 = r(k−1)

d+1 − D−1
d+1

∑d
i=1 Diqi

v(k)
i = si− D−1

i Gisd+1, i = 0, . . . , d

v(k)
d+1 = sd+1

q(k)
i = D−1

i (Niv
(k)
i + Giv

(k)
d+1), i = 0, . . . , d

q(k)
d+1 = D−1

d+1 (
∑d

i=1 Div
(k)
i + Cv(k)

d+1)

Orthonormalize q(k) and v(k)

β = (r(k−1),v(k))
x(k) = x(k−1) + βq(k)

r(k) = r(k−1) − βv(k)

End for
x ≈ x(k)

It is shown in Vuik & Saghir [27] that taking only a small number of GCR-
SIMPLE steps is sufficient, and reduces the amount of work and storage intro-
duced by the orthonormalization method.

8.3 Implementation

Before starting the Master’s project, the GCR-SIMPLE method was imple-
mented in X-stream for the largest part. However, it did not work properly
yet. During the Master’s project, the implementation is further improved but
it is still not finished. For making a new method to work, it is always advisable
to start with an elementary problem. A suitable setup is given by test case 1
(see Section 6.1), with the unit cube divided in a small number of cells. For
this test case, it turns out that the pressure is smooth enough and no PWI is
necessary to obtain a correct checkerboard-free solution.

Two problems to overcome in the X-stream code seem to be the treatment of the
pressure and the handling of C. Since the code is based on the SIMPLE method,
pressure correction is used for correcting boundary velocities and fluxes. How-
ever, the GCR-SIMPLE method does not explicitly provide pressure correction
as the SIMPLE method. As stated before, ‖C‖ is not always negligible com-
pared to ‖R‖ and an estimation of the diagonal of C is hard to make. These two
problems could be the cause for the GCR-SIMPLE method still not working in
X-stream. Further research has to be done to overcome these problems.
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9. CONCLUSIONS AND RECOMMENDATIONS

9.1 Conclusions

In this thesis, deflated Krylov subspace methods and the GCR-SIMPLE
method are discussed, for use of these methods in the CFD package X-stream.
Deflated Krylov subspace methods can be used to accelerate additive Schwarz
domain decomposition (DD) methods. To gain insight into these deflated
methods, they were applied to some testproblems in MATLAB for 1D numerical
experiments, as well as to some test cases in X-stream for 3D experiments. In
MATLAB, PGCR and DPGCR were implemented. For the deflated method
constant deflation (CD) and constant linear deflation (CLD) (a combination
of constant and linear vectors) were considered. The linear vectors can be
constructed in two ways: based on grid numbering (CLD-ijk) and based on grid
coordinates (CLD-cartesian). Both ways were tested. The following conclusions
can be drawn from the experiments in MATLAB and X-stream:

1. Concerning convergence rate, deflated (P)GCR performs better than
(P)GCR. (P)GCR performs best with CLD deflation, followed by CD
deflation.

2. CLDGCR-cartesian has smaller (or just as large) residuals than the other
methods that are tested, therefore CLDGCR-cartesian needs less itera-
tions than the other methods or just as much. The difference between
CLDGCR-ijk and CLDGCR-cartesian can be explained by the fact that
the effective condition number of PCLD−ijkA is larger than the effective
condition number of PCLD−cartA.

3. When solving Ay = b with A an SPD matrix and a uniform cell size in
each subdomain, CLDGCR-ijk and CLDGCR-cartesian produce the same
results and need the same number of iterations.

4. More subdomains means less iterations. Drawback of increasing the num-
ber of subdomains is that each iteration becomes more expensive. For
every problem, there is an optimal number of subdomains such that the
total wall-clock time is as low as possible.

5. Each method has an optimal number of inner iterations. When comparing
the methods with their optimal number of inner iterations, CLDGCR-
cartesian shows the best performance. It can make the time to converge
twice as fast, compared to GCR.

6. Summarizing the conclusions above, CLDGCR-cartesian is the method
that performs best compared to the other methods that are tested. How-
ever, there is one drawback: when the number of subdomains is large,
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CLDGCR can be very slow, especially CLDGCR-cartesian. This is
the case because of the following: In X-stream (when using deflation),
ZT AZx = y is solved for x. To do this, a solver is used that does
not use the sparseness of ZT AZ. When there is a large number of sub-
domains, the computation time will increase a lot. Say there are 600
subdomains. ZT AZ then is a 600×600-matrix for CLDGCR-ijk and a
2400×2400-matrix for CLDGCR-cartesian. To solve this problem, the
number of subdomains has to decrease or the way ZT AZ is solved has to
change.

9.2 Recommendations

The following recommendations can be made:

1. A suitable sparse solver for unstructured matrices should be implemented
to solve ZT AZx = y for x when there are many (say more than fifty)
subdomains.

2. Subdomain partitioning should be examined further. When there are
many subdomains, one should decrease the number of subdomains. How
this can be done best, should be investigated.

3. The GCR-SIMPLE method, which is implemented for the largest part,
could be finished. Attention has to be paid to the treatment of the pressure
and the matrix C.



APPENDIX A

In this appendix a derivation is given for the fact that Qx can be obtained
solving the deflated system PAx̃ = Pb for x̃ and premultiplying the result with
Q as stated in Section 3.3.
Multiplying Qx by A and using the fact that PA = AQ gives:

AQx = PAx = Pb. (A.1)

So x has to satisfy PAx = Pb. P is singular, so this can not be solved directly.
Because PAZ = 0, Ker(P ) = AZ. Note that the columns of PA span Pb so
the system is compatible. This means that the number of solutions x is infinite.
Say x̃ is a solution of

PAx̃ = Pb. (A.2)

Because ker(P ) = AZ we know that ker(PA) = Z, so one can write x̃ as

x̃ = x + Zf , (A.3)

with f an arbitrary vector. Then:

Qx̃ = Qx + QZf = Qx, (A.4)

because QZ = 0, as stated in Section 3.3.
It is clear now that solving PAx̃ = Pb for x̃ and premultiplying the result with
Q gives Qx.
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NOTATIONS

Roman symbols

Symbol Description Units
a sum of coefficients in PWI method [−]
A matrix of linear system [−]
b source term in DAS [−]
B iteration matrix [−]
B postconditioner [−]
cp specific heat [m2 s−2 K−1]
C linear algebraic operator in DAS [−]
d number of space dimensions [−]
D linear algebraic operator in DAS [−]
e internal energy per unit mass [m2 s−2]
e auxiliary variable for denoting grid positions [−]
e global truncation error [−]
E matrix in deflation method [−]
f dimensionless body force [−]
f inhomogeneous term in differential equation [−]
F flux [−]
g gravitational acceleration [m s−2]
g boundary value [−]
G computational grid [−]
G linear algebraic operator in DAS [−]
h boundary value [−]
h enthalpy per unit mass [m2 s−2]
h cell size [−]
I identity matrix [−]
I index set [−]
j reference to a grid point [−]
j iteration number [−]
k iteration number [−]
L length scale [m]
L discrete operator [−]
M preconditioner [−]
n unit normal [−]
N nonlinear algebraic operator in DAS [−]
N remainder matrix in the splitting [−]

nblock total number of blocks [−]
p pressure [kg m−1 s−2]
p dimensionless mesh Péclet number [−]
P projector in deflation method [−]
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P preconditioner [−]
q source term in transport equation [−]
Q projector in deflation method [−]
r local truncation error [−]
r residual [−]
R trivial extension matrix [−]
Re Reynolds number [−]
s switch function [−]
S source term in enthalpy equation [−]
t time [s]
t dimensionless time [−]
u velocity [m s−1]
U velocity scale [m s−1]
v search direction in Krylov method [−]
W computing work [−]
x dimensionless coordinate [−]
x coordinate [m]
Y matrix in deflation method [−]
Z matrix in deflation method [−]

Greek symbols

Symbol Description Units
α reference to a coordinate [−]
α relaxation parameter [−]
δ small parameter [−]
ε inverse Péclet number [−]
Γ artificial boundary [−]
Γ effective transport coefficient [−]
κ condition number [−]
λ thermal conductivity [kg m s−3 K−1]
λ eigenvalue [−]
µ dynamic viscosity [kg m−1 s−1]
ρ density [kg m−3]
ρ spectral radius of a matrix [−]
σ dimensionless stress tensor [−]
τ time step [s]
φ material property [−]
ϕ material property [−]
ω relaxation parameter [−]
Ω domain [−]
∂Ω domain boundary [−]

Abbreviations

Abbreviation Description
BC boundary condition
BIM basic iterative method
CD constant deflation
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CDS central difference scheme
CFD computational fluid dynamics
CLD constant linear deflation
DAS differential algebraic system
DD domain decomposition
DPCG deflated preconditioned conjugate gradient
DPGCR deflated preconditioned generalized conjugate residual
FV finite volume
GC global communication
HDS hybrid difference scheme
LC local communication
LHS left-hand side
MPI message passing interface
PCG preconditioned conjugate gradient
PDE partial differential equation
PGCR preconditioned generalized conjugate residual
PWI pressure-weighted interpolation
RHS right-hand side
SIMPLE strongly implicit method for pressure-linked equations
SIMPLER SIMPLE revised
SIP semi-implicit procedure
SPD symmetric positive definite
SPTDMA space tri-diagonal matrix algorithm
SSI SIMPLE stabilization iteration
UDS upwind difference scheme


