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1
INTRODUCTION: DENDRITIC SPINES AND

THEIR ROLE IN THE NERVOUS SYSTEM

1.1. THE NERVOUS SYSTEM

The nervous system is the organ system of the body that coordinates both conscious as well as unconscious
actions and transmits signals between different parts of the body. The control of muscles, processing sensory
stimuli and regulating cognitive processes are all carried out by the nervous system. In most animal bodies
the nervous system consists of two main parts, the central nervous system (CNS) and the peripheral nervous
system. The first one consists of the brain and the spinal cord and the latter one connects the central nervous
system to every other part of the body.

At the cellular level the nervous system consists of a special type of cells, called neurons or nerve cells. Their
structure allows them to transmit signals fast and effectively to other cells. Internally signals are sent in the
form of electrochemical waves along thin fibers of the cell itself. Between different cells these signals are
mainly transmitted through specialized junctions called synapses.

1.1.1. NEURONS

Neurons or nerve cells are the cells that constitute the nervous system. They are characterized by a specific
composition that allows them to transmit signals from and to every part of the body. Specialized type of
neurons are designed to perform a specific task and include:

• Sensory neurons are sensitive to input from outside the body like touch, sound, light, smell and other
types of external stimuli. After receiving such stimuli they transmit signals to the central nervous sys-
tem.

• Motor neurons are able to directly or indirectly control muscles or glands after receiving input from the
central nervous system.

• Interneurons connect neurons to other neurons and are mainly found in the central nervous system.

A typical schematic graphic of the structure of two interconnected neurons can be found in figure 1.1. Neu-
rons are highly specialized for the processing and transmission of signals and this is reflected in their anatomy.
A typical neuron possesses a cell body or soma, multiple dendrites, an axon and an axon terminal.

• The soma is the cell body of the neuron. It contains the nucleus, where most of the cell’s genetic material
is located. The nucleus of a neuron is involved in processing signals and determining whether a signal
is to be transmitted or inhibited.

1



2 1. INTRODUCTION: DENDRITIC SPINES AND THEIR ROLE IN THE NERVOUS SYSTEM

• Dendrites are thin structures that arise from the cell body and often branch multiple times forming
a typical dendritic tree. This collection of dendritic protrusions is where the majority of input to the
neuron occurs. They receive input from other neurons and propagate the signal to the cell body.

• An axon is a structure that arises from the cell body and carries nerve signals away from the soma to
other nerve cells or different parts of the nervous system. Whereas a nerve cell has multiple dendrites
it typically possesses only one axon. Compared to dendrites an axon can be very long and signals travel
the majority of their distance via axons.

• The axon terminal is formed when the axon undergoes extensive branching at its end. It contains
the synaptic terminals, where neurotransmitter chemicals are released to communicate with target
neurons.

Figure 1.1: Structure of two interconnected neurons. Image: shutterstock.

1.1.2. SYNAPSES

A synapse is a structure where the signal transmission between two neurons occurs. There are two funda-
mentally different types of synapses: chemical synapses and electrical synapes. In electrical synapses an
electronic signal is transmitted by special channels connected to the presynaptic membrane on the one side
and to the postsynaptic membrane on the other side.

In this research, we shall focus on chemical synapses. In chemical synapses the transmitting neuron releases
a chemical substance, called neurotransmitter, in the synapse which can bind to a corresponding cell surface
receptor on the receiving cell. This cell may then be excited, inhibited or otherwise modulated. Chemical
synapses can be subdivided again into two main categories: excitatory and inhibitory synapses. An excitatory
synapse is a type of synapse in which an action potential in the presynaptic neuron increases the probability
of an action potential occurring in the postsynaptic cell. This is in contrast to inhibitory synapses, which
have – as the name suggests – an inhibitory effect on the activation of the postsynaptic neuron. When exci-
tatory effects exceed those of inhibitory effects, the receiving neuron will fire an action potential and thereby
information is transferred between the involved neurons. Next, we will focus on excitatory synapses.

ANATOMY AND FUNCTION OF EXCITATORY SYNAPSES

An excitatory synapse is a synapse in which an action potential in the presynaptic neuron increases the prob-
ability of an action potential occuring in the postsynaptic cell. They have a fundamental role in information
processing within the CNS. Knowing the typical anatomy of synapses is crucial in understanding their func-
tion. In figure 1.2 a schematic overview of the anatomy of an excitatory synapse is displayed. We shall discuss
the components shown.

In the presynaptic specialization lies a cluster of synaptic vesicles containing neurotransmitter close to the
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presynaptic cell membrane, which we call the active zone. Exocytosis of these vesicles releases neurotrans-
mitter in the synaptic cleft. An elaborated review of the presynaptic specialization and the synaptic vesicle
cycle can be found in [1].

The essential postsynaptic components of an excitatory synapse are located on the dendritic spine, which we
shall discuss in more detail later on. A detailed review of the architecture of the postsynaptic specialization
of excitatory synapses can be found in [2]. Opposed to the active zone, on the postsynaptic membrane lies
its counterpart, a protein dense regime called the postsynaptic density (PSD). The PSD contains scaffold pro-
teins, which are known to interact with neurotransmitter receptors, thus binding them to the PSD. At the PSD
neurotransmitter receptors, like AMPA and NMDA receptors , are highly concentrated. The presence of a PSD
is characteristic for excitatory synapses, inhibitory synapses lack such a thickening in the postsynaptic cell
membrane. The rest of the postsynaptic membrane can be divided into perisynaptic (close to the synapse)
and extrasynaptic (outside the synapse) regions. The active zone and the PSD are separated by a gap called
the synaptic cleft.

Figure 1.2: Anatomy of an excitatory synapse. CC BY-SA 3.0. Original in [3].

1.1.3. DENDRITIC SPINES

The dendrite of a neuron receives signals from other neurons. Most of the excitatory inputs are located on
dendritic spines. Spines are protrusions of the membrane of the postsynaptic cell, on which the PSD is lo-
cated. They consist of a spine head and a thin spine neck which connects them to the dendritic shaft (figure
1.3). A high correlation is found between the dimensions of spines and the size of the PSD [4, 5]. The shape of
spines can be described as “thin”, “stubby” or “mushroom”. The dendritic spine is a dynamic structure, whose
shape, size and composition change during development and in response to synaptic activity [6, 7]. Changes
in their size and shape are connected with a change in synaptic strength.

The relation between morphology and function is a central theme within biology. The way that the nontrivial
morphology of dendritic spines influence their function is not yet fully understood. Having structures like
spines containing synapses along the dendrite may have several advantages. Evidently, spines might assist in
signaling by physically forming a bridge from axon to dendrite [9]. However, not all synapses are constituted
by spines and dendrites can receive inputs directly on their shafts. It is therefore likely that spines are also
beneficial in another way. It has been widely suggested that they are associated with compartmentalization,
enabling the different synapses to work as independent components [8] . “Mushroom” spines typically have
a bulbous head (spine head) and are connected with their corresponding dendrite through a thin spine neck.
This morphology allows spines to serve as compartments by which one synapse can be isolated from other
synapses on the same neuron.
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Figure 1.3: STED image recorded from a living dendrite including spines. Source: [8].

1.2. SYNAPTIC PLASTICITY

Synaptic plasticity is the ability of synapses to strengthen and weaken over time, in response to a change in
their activity. If this strengthening and weakening persists, then long-lasting increase or decrease in synaptic
strength occurs, which is called long-term potentiation (LTP) and long-term depression (LTD) respectively.

Since memories are postulated as networks of neurons in the brain, altering synaptic strength is thought to
be one of the most important mechanisms that constitute memory and learning. Synaptic transmission of
signals and synaptic plasticity are crucial for proper functioning of the central nervous system. Failure of
these mechanisms are associated with many neurological and neuropsychiatric disorders like schizophrenia,
Alzheimer disease, depression and autism [10, 11]. Furthermore, plasticity of synapses located in the brain
(brain plasticity) is thought to play an important role in stroke rehabilitation [12]. Therefore, it is of clinical
importance to gain a better understanding of the mechanism that influence synaptic plasticity.

The strength of synaptic transmission between neurons can be modified by various factors, like the density
of neurotransmitter receptors located on the postsynaptic neuron [13] and the quantity of neurotransmitters
released into the synapse [14]. If the amount of neurotransmitter released into the synapse exceeds a cer-
tain threshold in concentration that saturates the postsynaptic receptors, then the number of available and
properly functioning receptors will be the most important limiting factor [14, 15]. Controlling the number
of receptors at excitatory synapses is of fundamental importance in synaptic transmission [16]. It is there-
fore of great importance to understand the mechanisms behind receptor trafficking in dendrites and more
specifically in dendritic spines.

1.2.1. RECEPTOR TRAFFICKING AT SYNAPSES

We know that the phenomena of synaptic plasticity depends strongly on the density of neurotransmitter
receptors at the PSD of the postsynaptic cell. Therefore it is interesting to investigate the factors that influence
this density. Three main mechanisms that drive the receptor traffic can be distinguished.

The first mechanism is endocytosis and exocytosis of receptors from intracellular vesicles. These are energy-
consuming processes in which receptors are transported from the cell membrane into the intracellular space
(endocytosis) or the other way around (exocytosis).

Second, anchoring of receptors at the PSD has been the focus of numerous studies. The PSD partially consists
of scaffold proteins, which are known to bind to the receptors. This mechanism ensures trapping of receptors
at the site of the PSD.
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The third mechanism controlling receptor trafficking at synapses is surface diffusion. In general, receptors
are not bound to the cell membrane, but can diffuse freely until being transported to the intracellular space
(endocytosis) or anchored at scaffold proteins (for example at the PSD).

A factor influencing how these mechanisms work is the morphology of the dendritic spine on which the
synapse is located [17]. The morphology of a spine is nontrivial. The necessity of having this shape and
the function of spines are not well understood. Since it is widely accepted that changes of structure of the
brain are caused by changes of activity of the brain, research has focused on the implications of nontrivial
morphological structures [5–7, 17, 18].

1.2.2. SYNAPTIC CROSSTALK

Crosstalk between synapses refers to instances in which components from one synapse influences the signal
transmission in other synapses. An example is when a summation of neurotransmitter released in a synapse
creates a spill-over to other synapses and thereby creates extrasynaptic signaling. For specific signaling, it is
important that synapses can be strengthened and weakened individually in response to their specific activity
(synaptic plasticity). Synaptic crosstalk undermines the ability of the body to specifically control the strength
of individual synapses.

Since receptors can diffuse across the cell membrane, they can also be a cause of synaptic crosstalk. An
important question is how an exocytic event in one synapse affects the amount of receptors in neighboring
synapses. In other words, if receptors are released in one spine, what kind of implications does this have
on the concentration of receptors in neighboring spines. We would like to investigate the influence of the
morphology of dendritic spines on this synaptic crosstalk. A model concerning this question does not exist
yet. The morphology of spines is thought to cause compartmentalization enabling excitatory synapses to
function as individual components and we would like to explore to what extent.

1.3. RESEARCH QUESTIONS

After this introduction to dendritic spines and their role in the nervous system, we can formulate our research
question:

How does the morphology of dendritic spines influence the synaptic crosstalk?

The subquestions belonging to this main research question are:

How should the morphology of dendritic spines be defined?

What constitutes a good comparison between shapes?

What is a measure for the amount of synaptic crosstalk?

As shall be discussed in Chapter 2 a model considering more than one synapse (multisynapse models) that in-
tegrates the nontrivial three-dimensional morphology that typifies dendritic spines does not exist. Therefore
the influence of the shape of these dendritic spines on their interaction is not yet addressed.





2
EXISTING MODELS FOR SYNAPTIC

RECEPTOR TRAFFICKING

In this section we explore the existing models for synaptic receptor trafficking. We distinguish single synapse
and multisynapse models and furthermore make a subdivision based on how these models deal with the
geometry of synapses. Furthermore we shall give an overview of the methods used per model.

2.1. SINGLE SYNAPSE MODELS

As the name suggests single synapse models model the synaptic receptor trafficking considering one synapse.
They typically investigate the mean first passage time (MFPT) from the top of the synapse to the dendrite and
the residence time of receptors at the postsynaptic density. A variety of models exist and they have a different
approach both in the aspect of modeling receptor trafficking, trapping and recycling as well as the aspect of
geometry of the domain.

2.1.1. HOLCMAN AND SCHUSS, 2011

Holcman and Schuss [19] took the nontrivial geometry into account and defined a domain of computation
that incorporated the relatively large head and narrow neck. They use analytical methods to compute the
mean first passage time from spinelike structures. More specifically, they study the residence time of a Brow-
nian particle from the spine head to an absorbing boundary at the end of the spine neck. These particles move
either on a two-dimensional (flat) or inside a three-dimensional domain. The two- and three-dimensional
composite domains Ω considered consist of a head, Ω1, connected through a small interface ∂Ωi to a nar-
row cylindrical neck Ω2 as shown in figure 2.1. The two-dimensional domain is a cross section of the three-
dimensional domain. The boundary of Ω is reflecting, except the far end of domain Ω2. Furthermore they
distinguish between a bottleneck connected by a smooth funnel to the neck and a nonsmooth connection
between head and neck as in figure 2.1.

Holcman and Schuss compute the MFPT as proposed in [20] and consider a Brownian motion x(t ). The
expected lifetime of x(t ) in Ω, given x(0) = x ∈Ω, is the MFPT v(x) of x(t ) from x to ∂Ωa and the solution of
the mixed boundary value problem

∆v(x) = − 1

D
for x ∈Ω (2.1)

v(x) = 0 for x ∈ ∂Ωa (2.2)
∂v(x)

∂n
= 0 for x ∈ ∂Ωr , (2.3)

7



8 2. EXISTING MODELS FOR SYNAPTIC RECEPTOR TRAFFICKING

Figure 2.1: (a) The composite domain consist as used by [19]. The entire boundary is reflecting (∂Ωr , in red), except for a small absorbing
part ∂Ωa . (b) A cross section of a nonsharp and sharp connection.

where D denotes the diffusion constant, ∂Ωr denotes the reflecting boundary and ∂v(x)
∂n is the directional

derivative taken in the direction normal to the boundary at point x . If the size of the absorbing part ∂Ωa is
sufficiently smaller than the reflecting part ∂Ωr , it can be shown that the MFPT is to leading order indepen-
dent of x ∈Ω.

Both the MFPT from the head to the interface connecting the head and the neck,τx→∂Ωi and the MFPT from
this interface to the absorbing boundary, τ∂Ωi→∂Ωa are computed. The MFPT from the head to the absorbing
boundary can then be represented as

τx→∂Ωa = τx→∂Ωi +τ∂Ωi→∂Ωa . (2.4)

τ∂Ωi→∂Ωa is harder to calculate, since both ∂Ωi and ∂Ωa are boundaries of domain Ω2. See [20] for further
details on this computation.

The presented results include the relation between neck radius and neck length and MFPT. The geometry
of the connection (smooth or nonsmooth) affects this relationship significantly and to a larger extent in the
two-dimensional than in the three-dimensional case.

DISCUSSION

The method that Holcman and Schuss present is elegant and allows an analytical representation for calcu-
lation of the MFPT. The derivation of this representation, however, is based on heavy assumptions on the
geometry. For example, for diffusion on the surface of the three-dimensional domain the head is assumed
to be spherical. This model considers only MFPT from the head of the spine to the exit of the spine (to the
dendrite) and cannot be used for trapping at the PSD by assuming an absorbing boundary there, because
of assumptions on the geometry. For more complex geometries numerical methods have to be used. There-
withal the model considers a system of one synapse and therefore cannot be used or has to be heavily adjusted
to investigate the synaptic crosstalk between multiple synapses.

2.1.2. KUSTERS ET AL., 2013

Kusters et al. [21, 22] incorporated curved geometries in their work as well. They combined random walk
simulations with calculations of mean first passage times to study the diffusive time scales and escape rates
for different geometrical properties of the domain of computation. They consider lateral diffusion on an ax-
isymmetric curved surface. The domain consist of a bulbous head and a funnellike neck and is parameterized
as
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r (u,θ) =
 R sinu cosθ

R sinu sinθ
h − R cosu

Au

 , (2.5)

where R is the maximal radial distance of the surface, h a measure for the height of the funnel, and A a shape
parameter which is large for systems with a narrow neck and small for systems with a wider neck. T. For R = 1
and h = 4 the influence of A is shown in figure 2.2.

Figure 2.2: Influence of A on shape as parametrized by [21].

The in-plane Brownian motion of the particles on a curved surface is simulated using a method extensively
discussed in [23]. Briefly, the random walk is produced as trajectories of fixed length steps in random direc-
tions on a curved geometry with in-plane coordinates u and θ. On a curved surface both selecting a random
direction and traveling a fixed distance require some attention. A random directional unit vector −→w is of unit
length when we subject it to the constraint guu(wu)2+gθθ(wθ)2 = 1, where gi j are entries of the metric. Note
that for axisymmetrical surfaces gi j = 0 when i 6= j .

Next, a geodesic curve in the direction of −→w is approximated, parametrized by the arc length s, using a second
order approximation of the tangential plane

r (s +ds) ≈ r (s)+ dr (s)

ds
ds + 1

2

d2r (s)

ds2 ds2. (2.6)

The first derivative is simply the unit tangent vector −→w and the second derivative is obtained by solving the
geodesic equation

d2r (s)

ds2 =−Γi
kl

dr l

ds

dr k

ds
. (2.7)

If a step size λ is used, this method results in a shift in coordinates for every iteration given by

∆u = wuλ− 1

2
Γu

uu(wu)2λ2 −Γu
uθwu wθλ2 − 1

2
Γu
θθ(wθ)2λ2, (2.8)

∆θ = wθλ− 1

2
Γθuu(wu)2λ2 −Γθuθwu wθλ2 − 1

2
Γθθθ(wθ)2λ2. (2.9)

This method leads to trajectories that are locally Brownian to second order in curvature. An extensive discus-
sion of this method in general can be found in [23] and an application to this problem can be found in [22].
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Kusters et al. also calculate the MFPT. They do so using almost the same mixed boundary value problem
as [19]. A small modification is made however, Eq. (2.1) is substituted by

∇2W =− 1

D
, (2.10)

where D is the diffusion constant, W is the MFPT and ∇2 is the Laplace-Beltrami operator, which can be
calculated using the metric and Christoffel symbols. The more general Laplace-Beltrami operator is used to
account for the curvature of the domain. With this substitution the calculation of the MFPT is equivalent for
both methods.

They find a general power law dependence for both the equilibrium time scale of a population of particles
and a single-particle characteristic time of escape time. The equilibrium time τeq depends on neck radius
and neck length by the general relations

τeq = (neck radius)−α, α> 0 (2.11)

τeq = (neck length)β, β> 0. (2.12)

α and β are some positive constants and their exact value depends on the specific geometry.

DISCUSSION

The random walk method used by Kusters et al. [21, 22] is very flexible in terms of types of geometries it
can be used with. As long as the metric and Christoffel symbols of the surface are available this method
can be applied. In order to compute the metric and Christoffel symbols, it should be possible to calculate
or (numerically) approximate first and second derivatives of the parametrization of the surface. So, we only
require sufficiently smooth surfaces to apply this method.

Analytical calculation of the MFPT using Eq. (2.10) can be used to compare stochastic simulation results to.
Therefore it can be used as a benchmark for the simulation results.

The model presented by Kusters et al. [21, 22] focuses on one spine only. Therefore interactions between
spines cannot be studied. The model is, however, suitable to be extended to a multisynapse model.

2.2. MULTISYNAPSE MODELS ON SIMPLE TWO-DIMENSIONAL GEOMETRIES

The multisynapse models that exist model dendrites as simple shapes, like flat or cylindrical surfaces. Synapses
are modeled as components coinciding with the surface of the dendrite. The nontrivial shape of spines is re-
flected in different diffusive properties on these components, but is not explicitly taken into account. Here,
we shall discuss some of these models.

2.2.1. CZÖNDÖR ET AL., 2012

Czöndör et al., [24], propose a model that uses random walk simulation on a flat surface. The model takes the
three major mechanisms of receptor trafficking into account: surface diffusion, anchoring at the postsynaptic
density and endo/exocytic recycling of receptors. They define a flat working space, we shall call Ω, of length
L and width w with rebound conditions on each side. Postsynaptic spines are modeled as square obstacles
with lower diffusion constant and each synapse contains a square PSD which allows trapping. Also exocytic
and endocytic events were introduced.

Surface diffusion was modeled by updating the positions x(t ) and y(t ) of a particle each time step by incre-
menting them by

p
2D∆t Zx and

p
2D∆t Zy respectively, were Zx and Zy are realizations of a standard normal
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distribution. This comes down to a simple application of the Euler method to the stochastic differential equa-
tion

dX t =
p

2D dW t , (2.13)

where W t is a Wiener process. This represents two-dimensional diffusion of a single particle with constant
diffusion coefficient D and without convection. The mean squared displacement for each time step and each
particle is therefore
E [||X t+∆t −X t ||] = 4D∆t . The corresponding diffusion equation is the two-dimensional diffusion equation
with constant diffusion coefficient D and no convection

∂c(r , t )

∂t
−D∆c(r , t ) = 0, r ∈Ω. (2.14)

If a receptor reached a postsynaptic area, it was set to diffuse with a lower diffusion coefficient. The simula-
tion method remains otherwise the same. Whenever a receptor reached a PSD area, binding to the PSD was
modeled by a random variable with a bernoulli distribution with succes probability proportional to the time
step ∆t and a certain predefined rate kon . During binding the receptor was set to diffuse with an even lower
diffusion coefficient, furthermore detachment was modeled using a random variable with bernoulli distribu-
tion with succes probability proportional to the time step, but with a possible different rate, ko f f , than for
binding.

To mimic exocytic events, new trajectories were initiated. Here, the number of receptors, exocytic site, timing
and frequency of an exocytosis were specified.

To simulate endocytic events square endocytic zones (EZs) were introduced. The event of absorption is there-
after modeled in the same way as anchoring at the PSD, by a random variable with a Bernoulli distribution
with success probability proportional to the time step and a certain predefined rate kendo .

Czöndör et al. present results of their simulation in which they consider the influence of (extra)synaptic
endo/exocytic events on the receptor concentration in surrounding synapse(s). Furthermore, the outputs
of the simulation are directly comparable to single particle tracking (SPT) and fluorescence recovery after
photobleaching (FRAP) experiments and can therefore be easily benchmarked.

DISCUSSION

The work of Czöndör et al. in [24] incorporates the three major mechanisms influencing synaptic receptor
trafficking. It is very useful that their results are directly comparable to SPT and FRAP data.

They model synapses as flat surfaces which is not the typical shape of spines belonging to excitatory synapses.
However, the way trapping is modeled here can be integrated in a model that incorporates the typical three-
dimensional shape. Furthermore, even though the model allows for integration of multiple synapses, they do
not regard the synaptic crosstalk.

2.2.2. BRESSLOFF ET AL., 2008

Bressloff et al. [25] proposed a model in which they model a dendrite as a two-dimensional cylindrical sur-
face with small, partially absorbing holes, which represent the transverse intersections of the spines with the
dendrite. In [25], they present an extension of their work in [26] where a model of receptor trafficking at a
single dendritic spine is treated.

They formulate a diffusion-trapping model on a cylinder with length L and radius l . They neglect the ex-
trinsic curvature of the membrane because protein receptors and spine necks are much smaller than the
circumference of the cylinder. Therefore, they represent their surface as a long rectangular domainΩ0,
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Ω0 = {(x, y) : 0 < x < L, |y | <πl }. (2.15)

Here, x is the coordinate in the direction of the axis of the cylinder and y is the coordinate in the radial
direction of the cylinder. At x = 0 they impose a nonzero flux boundary condition, which represent a constant
inflow of of new receptors. On the other end, at x = L, they impose a no-flux boundary condition, modeling a
reflecting boundary. On y =±πl they impose periodic boundary conditions,

c(t , (x,πl )) = c(t , (x,−πl )) (2.16)
∂c

∂y
(t , (x,πl )) = ∂c

∂y
(t , (x,−πl )) (2.17)

Each spine neck is modeled as a circular intersection with radius ε, Ω j , where j labels the j th spine. The
surface of the cylinder excluding these small discs is denoted by Ωε = Ω0\∪N

j=1 Ω j . Because of the small

area of each spine, they assume the receptor concentration within each spine to be spatially homogeneous
and equal to c̃ j for spine j . The dendritic surface receptor concentration evolves according to the diffusion
equation

∂c

∂t
= D∇2c. (2.18)

On the boundary of eachΩ j , ∂Ω j , they impose the mixed boundary condition

ε∂nc(r , t ) =− ω j

2πD

(
c(r , t )− c̃ j

)
, r ∈ ∂Ω j , j = 1, . . . , N , (2.19)

where ∂nc is the outward normal derivative to Ωε. The physical interpretation is that the flux of receptors
between a specific spine and the dendrite depends on the difference in concentration between either side of
the boundary with ω j as effective hopping rate.

A pair of differential equations determines the value of c̃ j over time and concludes the model. These equa-
tions shall not be discussed here, but an extensive review of the full method can be read in [25].

An analysis of this model is done by constructing the steady-state solution using singular perturbation tech-
niques. These results are compared with numerical solutions of the full model and with a reduced one-
dimensional model.

They show that for long, thin dendrites the variation of the receptor concentration around the circumference
of the dendrite is negligible so that the dendrite can be modeled a simpler one-dimensional cable. They
remark that the difference between the one and two-dimensional can become significant in the case of short
dendrites with few spines. Also, they note that an important extension of their work would be to consider a
much more detailed model of receptor trafficking within each spine.

DISCUSSION

The paper of Bressloff et al., [25], is the most mathematical work considered. They give an extensive analysis
of their model and verify their results.

This work does not investigate how (the shape of) spines influence their own concentration or the concentra-
tion in neighboring spines. Moreover, they assume a constant inflow of receptors at one side of the domain
and do not explore the effect of the precise location of exocytosis.
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2.2.3. OTHER MULTISYNAPSE MODELS

More multisynapse models do exist, but we will not give an extensive review of these.

Holman and Triller (2006), [27], propose a two-dimensional model in which they account for binding to scaf-
folding molecules in the PSD and the presence of obstacles to diffusion. They derive Markovian equation
and analyze steady-state solutions. They argue that when the fluxes involve a sufficiently large number of
receptors, the dynamics of the receptors can be modeled using standard differential equations of chemical
reactions and a system of differential equations is proposed and analyzed. Furthermore they suggest a way
to use the model to interpret FRAP data.

Earnshaw and Bressloff propose a model in [28] that is similar to their work in [25], discussed in section 2.2.2,
but also integrates binding of receptors to scaffold molecules in the PSD.





3
A MULTISYNAPSE MODEL INTEGRATING

THREE-DIMENSIONAL MORPHOLOGIES

3.1. DOMAIN OF COMPUTATION

We consider a domain that consists of a dendrite and n dendritic spines distributed along the dendrite. The
dendrite is modeled as a cylinder of length l and radius Rd . As shown in Figure 3.1, the surface of the dendrite
is represented as a rectangular domainΩdendr i te ,

Ωdendr i te := {
(x, y) | 0 < x < l , |y | <π ·Rd

}
. (3.1)

The cylindrical property is preserved by imposing periodic boundary conditions on y = ±π · Rd . On this
cylindrical surface dendritic spines are located. Each spine intersects the surface, such that the intersection
is a closed discΩbase

j of radius Rexi t
j around the coordinate r j = (x j , y j ). Its boundary is called ∂Ω j ,

Ωbase
j :=

{
r = (x, y) ∈Ωdendr i te

∣∣∣ |r − r j | ≤ Rexi t
j

}
, (3.2)

∂Ω j :=
{

r = (x, y) ∈Ωdendr i te

∣∣∣ |r − r j | = Rexi t
j

}
. (3.3)

Furthermore, the surface of the cylinderΩdendr i te , excluding the discsΩ j is denoted byΩ0, so that

Ω0 =Ωdendr i te \
n⋃

j=1
Ω j . (3.4)

The domain of computation is an union of the domainΩ0 and the dendritic spinesΩ j . The dendritic spines
are modeled as out-of-plane protrusions of this surface. The morphology of these spines will be discussed in
the next section.

3.1.1. MORPHOLOGY OF DENDRITIC SPINES

The dendritic spines are modeled as out-of-plane protrusions of the surface Ωdendr i te . They intersect the
dendritic surface, such that the domain of intersection isΩbase

j . A receptor diffuses over the domainΩ0 until

15
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x

y

y =−π ·Rd

x = l

y =π ·Rd
Ω0

x = 0

Ωbase
j∂Ω j

(x j , y j )

Figure 3.1: Top view of domain of computation.

it encounters the boundary of such an intersection ∂Ω j . From then on it diffuses over the surface of the
respective spineΩ j . We define this surface, using the unpublished work of Miermans, Kusters & Storm [29].

They use a Canham-Helfrich model to model the shape of membrane protrusions. This model is based on a
minimum energy principle. At equilibrium, the free energy of the shape is minimized. Canham [30] proposed
that the behavior of membranes is governed by minimizing the bending energy. Helfrich [31] built on this
model and gave a more precise formulation.

Here, we shall give a brief explanation of the method of Miermans [29]. At t = 0 they define a flat membrane
and fix a circle with radius 1 on it, in Figure 3.2 denoted by Γ. The surface area A of the membrane enclosed
by this circle is in this state A0 = π. Then an iterative method is used to determine the shape of the mem-
brane in subsequent time steps. Every time step the surface area A is incremented while its boundary, Γ
stays fixed in plane. By minimizing the free bending energy the shape of the membrane is computed. This
results in an out-of-plane deformation of the part of the domain that is within these boundaries (the blue
domain in Figure 3.2). Boundary conditions are imposed on Γ to ensure smoothness of the membrane and
to keep the boundary Γ at its fixed location. The solution on each time step is obtained solving a constrained
minimization problem using Lagrange multipliers.

A0

Γ

line of intersection

Figure 3.2: Top view of working space of Miermans et al. The blue disk, enclosed by Γ, is incrementally swollen every iteration, which
results in an out-of-plane deformation (not shown here). The red line indicates the place where the intersections shown later are located.
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The result of the described method are protrusions of the membrane as shown in Figure 3.3. It is these mor-
phologies we shall use for the dendrite spines. In some cases these shapes shall be scaled for a fair compari-
son, however, this shall be clearly remarked when done so.

(a) A= 1.500 ·A0. (b) A= 3.000 ·A0. (c) A= 5.000 ·A0.

Figure 3.3: Intersection of shapes for selected values of the surface area A as a multiple of the original surface area A0. Intersection is
taken at the location of red dashed line in Figure 3.2. Results produced by [29].

The total domain of computation is the union of the cylindrical dendriteΩ0, the dendritic spinesΩ j and the
borders between spines and dendrite ∂Ω j and shall be denoted byΩ,

Ω=Ω0 ∪
n⋃

j=1

{
Ω j ∪∂Ω j

}
. (3.5)

3.2. DIFFUSION PROCESS

On the domain of computation Ω surface receptors are allowed to diffuse freely. Let V (r , t ) denote the
concentration of surface receptors within the domain of computation. The receptor surface concentration
evolves according to the diffusion equation

∂V

∂t
= D∇2V , (r , t ) ∈Ω×R+, (3.6)

where D is the diffusion coefficient and ∇2 denotes the Laplace-Beltrami operator.

3.2.1. BOUNDARY CONDITIONS

To preserve the cylindrical topology of the dendritic shaft, we impose periodic boundary conditions at the
ends y =±πRd ,

V (x,πRd , t ) = V (x,−πRd , t ) (3.7)
∂V

∂y
(x,πRd , t ) = ∂V

∂y
(x,−πRd , t ). (3.8)

To model zero flux at the ends x = 0 and x = l we impose homogeneous Neumann boundary conditions

∂V

∂x
(0, y, t ) = ∂V

∂x
(l , y, t ) = 0. (3.9)
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3.2.2. CORRESPONDING STOCHASTIC PROCESS

Our domain of computation, Ω can be seen as a two-dimensional Riemannian manifold B equipped with a
Riemannian metric g . This metric defines a volume measure onB, which we denote with dVolg . The diffusion
process considered here is then defined by

∂Ṽ

∂t
= LṼ , where (3.10)

L = D∇2
g . (3.11)

Here, ∇2
g is the Laplace-Beltrami operator associated with the metric g . The Laplace-Beltrami operator can

be expressed in the coordinates associated with the manifold B

∇2
g Ṽ = 1√|det g |

2∑
i , j=1

∂i

(√
|det g |g i j∂ j Ṽ

)
, i , j = 1,2, (3.12)

where gi j are entries of the of the metric g and g i j entries of the matrix inverse to the metric g . The operator
L is an elliptic operator. Furthermore, Eq. (3.10) conserves the integral of Ṽ with respect to dVolg . The adjoint
L∗ of L is the generator of the stochastic process corresponding to Eq. (3.10). A review of the basics underlying
the construction of diffusion on manifolds can be found in [32].

3.3. SIMULATING A STOCHASTIC PROCESS ON A CURVED SURFACE

Simulating a diffusion process on a curved surface is not trivial. Diffusion processes on manifolds are often
obtained by projecting a stochastic process on a flat space onto the surface [33]. But for many anisotropic
systems these methods do not work. Christensen [23] states that in such cases extreme care has to be taken,
because otherwise a different diffusion operator is represented from what was initially intended.

Christensen proposes an approach to simulations of diffusive processes in general, which can also be applied
to diffusion on general manfolds. He introduces a Monte Carlo type method with simulates the paths of
single particles. We give a brief summary of the principles on which this method is based and an insight
in our implementation. We shall focus on an application of this method to diffusion with an constant (and
isotropic) diffusion tensor.

3.3.1. METHOD OF CHRISTENSEN, 2004

The method of [23] is based on the observation that every Monte Carlo update scheme moving a particle from
r 0 to r in a time interval ∆t prescribes a certain transition rate and that a correct numerical method matches
the first and second moments of this transition rate to the ones of the original diffusion equation.

The method of Christensen starts of with an equation describing the development of a particles probability
distribution P , with constant and scalar diffusion tensor D

∂P

∂t
= D∇2P. (3.13)

Then an update routine is constructed, involving two spatial and two temporal components specified in Ta-
ble 3.1. f (ξ) and l together represent the radial jump distribution in the physical space and h(ζ) and τ repre-
sent the distribution of waiting times between successive jumps.
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Component Description
f (ξ) dimensionless radial distribution
l > 0 typical jump length
h(ζ) > 0 dimensionless temporal distribution
τ> 0 time scale

Table 3.1: Components representing jump distribution in physical space and waiting times between jumps of method proposed by
Christensen [23].

The moments of f (ξ) and h(ζ) are denoted by ξm and ζm respectively. Furthermore, the dimensionless

(scalar) diffusion tensor b = Dζτ/ξ2l 2 is introduced. Now, we provide the update mechanism that imple-
ments the simulation of a moving particle from a starting position (r , t ) to (r +∆r , t+∆t ) in an n-dimensional
environment. The procedure is given in Alg. 1.

Algorithm 1 Algorithm as presented by [23].

Initialization: Calculate b = Dζτ/ξ2l 2.
1: Draw a dimensionless waiting time ζ from distribution h and set ∆t = ζτ/(2n).
2: Choose a test step ∆r :

a. Choose a unit vector w from a uniform distribution over all directions.
b. Choose a dimensionless, radial jump length ξ from distribution f .
c. Calculate ∆r by moving a length |pbw |ξl along a geodesic in the direction of w .

3: Update (r , t ) −→ (r +∆r , t +∆t ).

Analytic solutions of a geodesic are not generally found. However, if the jump length is small enough, good
approximations can be easily obtained using a Taylor expansion.

3.3.2. SIMPLIFICATIONS AND IMPLEMENTATION

Simplifications to the scheme of [23] are possible. Christensen recommends to use fixed steps in space and
time, because any couple of distributions f and h will do if l is small enough. We adopt this recommendation
and fix a spacial step sizeλ. Furthermore, since we consider diffusion on a surface we fix the dimension n = 2.
Alg. 1 then reduces to Alg. 2.

Algorithm 2 Algorithm as presented by [23], adapted to a fixed spacial step size λ.

Initialization:
Fix a spacial step size λ> 0.
Set ∆t =λ2/4D .

1: Choose a test step ∆r :
a. Choose a unit vector w from a uniform distribution over all directions.
b. Calculate ∆r by moving a length λ along a geodesic in the direction of w .

2: Update (r , t ) −→ (r +∆r , t +∆t ).

A geodesic curve parametrized by arch length s can be approximated in the same way [22] did, as given in
Eq. (2.6). The Taylor expansion used is

r (s +ds) = r (s)+ dr (s)

ds
ds + 1

2

d2r (s)

ds2 ds2 +O(ds3). (3.14)

If the spatial step size λ is small enough, leaving out the O(ds3)-term in Eq. (3.14) constitutes a good approx-
imation. The second order terms can be calculated as in Eq. (2.7). The resulting updating scheme for the
positions is then given by Eqs. (2.8, 2.9).
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3.3.3. DEALING WITH BOUNDARY CONDITIONS

An additional advantage of this implementation is that boundary conditions like reflection, absorption or a
mixture of the two are easily implemented. Since the paths single particles are simulated we can apply the
boundary conditions per individual particle. If a particle encounters a reflecting boundary, geometrical rules
of reflection can be applied. If a particle encounters an absorbing boundary, it is taken out of the system.



4
FIRST RESULTS

Is this Chapter we shall present the results of the first test cases that were implemented. The test cases have
a similar design. A dendrite of certain length and radius is introduced with two spines attached to it. The
geometry of the two spines is identical per test case, but different for each distinct test case.

4.1. DESIGN OF THE TEST CASES

The geometry of the test cases is schematically shown in Figure 4.1. We define a working space of length L
and width w = 2π ·Rd , where Rd denotes the radius of the dendrite. We have reflection conditions at x = 0
and x = L and periodic boundary conditions at y =±π ·Rd .

This area is populated by two circular geometries modeling the entry of two spines. The centers of these
circles are spaced at a distance of a in the x-direction and the radius is denoted by Rexi t .

x

y

w =π

L = 9

spine 1 spine 2

Rexi t = 1 Rexi t = 1

a = 4.5

exocytosis

Figure 4.1: Top view of geometry of test cases, all units µm. Red dot indicates dendritic exocytosis in the middle between the two spines.

For the morphology of the spines we use the results of [29], as discussed in Section 3.1.1. We use three different
morphologies, corresponding to a surface area of A = 1.5, 3.0 and 5.0. The radii of these spines can be found
in Figure 4.2. Because the spines are axially symmetric, these radii completely define the geometry of the
spines.

The post synaptic density is modeled by an absorbing boundary at the top of each spine. This absorbing
boundary is chosen to be a circle with radius RPSD .

21
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Figure 4.2: Radii of used spines. A indicates the factor the surface area of the spine has swollen.

The parameters used are:

L = 9,
Rdendr i te = 0.5,

a = 4.5,
Rexi t = 1,
RPSD = 0.2.

(4.1)

An exocytic event of 5000 particles is simulated for each test case. To begin with, the exocytosis is located in
the middle between the two spines, as indicated in red in Figure 4.1.

After simulating the exocytic event, simulations were run until all particles left the system through either the
absorbing boundary (modeling the PSD) in spine 1 or spine 2. The place of departure of the system and the
corresponding exit time were recorded.

4.2. RESULTS

The described procedure constitutes a Monte Carlo simulation. After the simulation is done, each particle
released at the exocytosis serves as a realization in the Monte Carlo method. Per realization the exit location
(the absorbing boundary in either spine 1 or spine 2) and the exit time are recorded. From the results of
this simulation sample mean and sample standard deviations can be calculated, including there respective
confidence intervals. The overall MFPT is denoted with µF PT and its (unbiased) estimator, the sample mean
with µ̂F PT . The standard deviation of the MFPT is denoted withσF PT and its (unbiased) estimator, the sample
standard deviation, with σ̂F PT . A similar and intuitive notation is used for the specific boundaries:

µi
F PT MFPT of particles exiting from spine i ;

µ̂i
F PT corresponding sample mean;

σi
F PT standard deviation of MFPT of particles exiting from spine i ;

σ̂i
F PT corresponding sample standard deviation.
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4.2.1. DENDRITIC EXOCYTOSIS IN THE MIDDLE BETWEEN TWO SPINES

First we compare the different shapes by simulating an exocytic event in the middle of the two spines. These
test cases are symmetric and the MFPT at spine 1 is (statistically) the same as the MFPT at spine 2. An estimate
for the MFPT and its standard deviation are given in Table 4.1. We also present 95% confidence intervals.

Shape parameter µ̂F PT [s] σ̂F PT [s] [95% conf.]

A = 1.5 75 ±1.8 66.3 [65.0,67.6]
A = 3.5 144 ±3.6 128.6 [126.1,131.2]
A = 5.0 199 ±4.7 171.1 [167.8,174.5]

Table 4.1: Sample mean and sample deviation of first passage times for dendritic exocytosis of 5.000 particles in the middle between two
spines as a function of the morphology of the spines. The intervals given are 95% confidence intervals.

The results of these simulations can also be shown as empirical probability distribution functions. These are
plotted in Figure 4.3.

Figure 4.3: Empirical probability distribution functions for an exocytic event in the middle between two spines of identical morphology.
Simulation performed for three values of A.

4.2.2. SPINAL EXOCYTOSIS IN ONE SPINE

Next, we simulate an exocytic event in one of the two spines. The geometry of the domain stays otherwise the
same.

Since the surface area nor the height of the spines are equal among the shapes we investigate (Fig. 4.2), there
is no straightforward exocytosis location that allows us to make a meaningful comparison. We chose to define
the location of exocytosis at that point at which there is as much surface area between the absorbing bound-
ary modeling the PSD and the boundary coupling the spine to the dendrite. There are many other options
for this choice, for example equating the shortest distance between the chosen location and the PSD and the
chosen location and the boundary between spine and dendrite. All options have their own considerations,
but a choice has to be made.

Since the problem is nonsymmetric, we shall present results for the two spines separately. For particles exiting
the system through the same spine in which the exocytosis took place we shall make a distinction between
particles first leaving this spine to the dendrite before returning and particles that hit the absorbing boundary
at the PSD before leaving to the dendrite. This last class of particles shall be denoted with indirect absorption.
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SAMPLE MEAN, SAMPLE STANDARD DEVIATION AND OTHER EXIT STATISTICS

In Table 4.2-4.4 the exit statistics for the three test are presented. For shape parameters A = 1.5 and A = 3.0
81% of the particles exit the system through the spine in which they originate at exocytosis. For A = 5.0 this is
slightly more, 85%. We can conclude that in this experiment the shape belonging to A = 5.0 (Fig. 4.2) allows
the synapse to be controlled more specifically with spinal exocytosis then the other shape parameters.

A = 1.5 µ̂F PT [s] σ̂F PT [s] Exit %

Overall 50.8 ±1.8 63.9 [62.6,65.2] 5000 (100%)
Spine 1 39.6 ±1.8 57.9 [56.6,59.2] 4049 (81 %)

Spine 1, direct 2.7 ±0.2 2.0 [1.9,2.2] 1150 (23%)
Spine 1, indirect 54.3 ±1.2 62.6 [61.0,64.3] 2899 (58%)

Spine 2 98.3 ±4.2 66.5 [63.6,69.7] 951 (19%)

Table 4.2: Sample mean and sample deviation of first passage times for spinal exocytosis of 5.000 particles in spine 1, with shape param-
eter A = 1.5. The intervals given are 95% confidence intervals.

A = 3.0 µ̂F PT [s] σ̂F PT [s] Exit %

Overall 83.3 ±3.2 113.7 [111.5,116.0] 5000 (100%)
Spine 1 61.9 ±3.1 100.3 [98.1,102.5] 4117 (81 %)

Spine 1, direct 9.8 ±0.3 7.7 [7.4,7.9] 2130 (43%)
Spine 1, indirect 117.9 ±5.4 121.4 [117.7,125.2] 1987 (40%)

Spine 2 182.9 ±7.9 119.7 [114.3,125,6] 883 (18%)

Table 4.3: Sample mean and sample deviation of first passage times for spinal exocytosis of 5.000 particles in spine 1, with shape param-
eter A = 3.0. The intervals given are 95% confidence intervals.

µ̂F PT [s] σ̂F PT [s] Exit %

Overall 108.1 ±4.1 148.9 [146.0,151.9] 5000 (100%)
Spine 1 82.8 ±3.9 131.0 [128.3,133.8] 4260 (85%)

Spine 1, direct 22.5 ±0.7 19.9 [19.4,20.4] 2740 (55%)
Spine 1, indirect 191.5 ±8.6 170.3 [164.5,176.6] 1520 (30%)

Spine 2 253.6 ±11.7 162.2 [154.3,170.9] 740 (15%)

Table 4.4: Sample mean and sample deviation of first passage times for spinal exocytosis of 5.000 particles in spine 1. The intervals given
are 95% confidence intervals.

In Fig. 4.4-4.6 the empirical probability distribution functions can be found. The particles are sorted based
on their exit location (spine 1 or spine 2) . Also, for the particles leaving the system through the absorbing
boundary in spine 1 a distinction is made when particles leave the spine to the dendrite prior to returning
and leaving the system through spine 1. These particles are referred to with indirect and the corresponding
EPDF can also be found in Fig. 4.4-4.6.

From these figures we can see that the distributions qualitatively look the same for each test case , but the
time scales are different. The time scales increase when A increases. This might not only be due to shape, but
also because the domain of computation consists of a greater area.
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Figure 4.4: Empirical probability distribution functions for a spinal exocytic event in spine 1, with shape parameter A = 1.5.

Figure 4.5: Empirical probability distribution functions for a spinal exocytic event in spine 1, with shape parameter A = 3.0.

Figure 4.6: Empirical probability distribution functions for a spinal exocytic event in spine 1, with shape parameter A = 5.0.
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