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1
INTRODUCTION

For decades scientists have been interested in modeling electromagnetic fields described by Maxwell’s equa-
tions. These electromagnetic fields play a role in various applications.One of them is medical imaging, in
which waves travel through a medium and are scattered by objects they meet. After measuring the scat-
tered field, properties of the objects can be determined by solving a system of equations. Those problems
are called inverse scattering problems. Sometimes the object is completely known and one is interested in
how the electromagnetic waves propagate inside the object. The corresponding problems are called forward
scattering problems.
In MRI (Magnetic Resonance Imaging) recent developments gave rise to modeling those forward problems.
It was shown that placing dielectric pads between the human body and the receiver coil in an MRI scanner
reduces artifacts in the constructed images as a result of reduced RF inhomogeneity [1]. Dielectric pads are
pouches filled with a material that has a very high permittivity, which means that the PAD has the ability to
affect the incoming electromagnetic wave considerably. In order to obtain the optimal image quality the ge-
ometry of the PAD is essential. Models that predict the electromagnetic fields are needed to determine the
optimal parameters beforehand and in this way avoid trial and error.

There are different ways to solve Maxwell’s equations. One group of methods chooses Maxwell’s equations
in partial differenital form as a starting point. The finite-difference time-domain (FDTD) and the finite ele-
ment method (FEM) are examples of methods in this group. The other group rewrites Maxwell’s equations
into so-called volume integral equations, which are a form of integro-differential equations. The Method of
Moments (MOM) is an example that deals with the volume integral equation. Even though methods in the
latter group involve full matrices and are therefore computationally expensive, the Method of Moments is a
popular method because the boundary conditions are automatically satisfied by choosing the basis functions
wisely. The Method of Moments is based on discretising the volume integral equations on a chosen mesh and
approximating the fields or related unknowns with the help of chosen basis and test functions.
In practical applications a short computation time is crucial, which is why one often chooses a structured
grid consisting of voxels with the grid points lying at the centers. The equations of interest can be formulated
in terms of the electric fields or in terms of the currents. These formulations form different starting points for
a discretised system.

The main goal of this report is to make the reader familiar with the inaccuracy problem in one of the methods.
To do so, different topics are discussed.
Chapter 2 starts with Maxwell’s equations and its boundary conditions. These equations form the basis of
each model. Also the volume integral form that is needed for the Method of Moments is derived here. Finally,
different formulations of these volume integral equations are discussed, as it turns out that each of them
leads to approximations with different accuracies.
In Chapter 3 the Method of Moments is explained in more detail. In order to provide the reader with a better
understanding of the method, two examples are given in which the Method of Moments is demonstrated.
The first one is our own derivation with a triangular mesh. The second one is the conventional method that is
used to model the electromagnetic fields nowadays and it is also the one of which it is known that a problem
occurs at permittivity interfaces.
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2 1. INTRODUCTION

In Chapter 4 there will be an elaboration on types of solution methods that can be used once a system of
equations is obtained. Short computation time is the motivation.
In Chapter 5 a summary will be given of the existing approaches, including performance results and an
overview of general advantages and drawbacks.
In Chapter 6 results from the second example are shown that demonstrate the inaccuracy at high permittivity
interfaces. Also results from the first example are given to demonstrate some boundary problems.
Finally, in Chapter 7 the report will be concluded with ideas of approaches that could result in better accu-
racy.
Throughout the report constants will be presented upright, vectors will be presented upright in bold, matrices
will be defined with capitals and scalar functions will be shown in italic script.



2
THE ELECTRIC AND MAGNETIC FIELDS IN

MRI

The first step towards calculating the electric and magnetic fields is describing the fields mathematically. J.C.
Maxwell did this a long time ago. In Section 2.1 this mathematical formulation is discussed. The boundary
conditions that complement Maxwell’s equations are derived in 2.2. In this study the focus lies on the volume
integral equation approach, so in 2.3 the volume integral form is derived with its different formulations. The
derivation of the first formulation can also be found in [2].

2.1. MAXWELL’S EQUATIONS
James Clerk Maxwell was a mathematician and physicist that formulated a set of equations describing how
electric and magnetic fields propagate and interact. This set of equations forms the foundation of classi-
cal electrodynamics and is therefore very important in understanding the electromagnetic fields in MRI.
Maxwell’s equations are given by

−∇×H+ J+ ∂D

∂t
= −Jext (2.1)

∇×E+ ∂B

∂t
= −Kext. (2.2)

The variables Jext and Kext are the external sources and are therefore known. More specifically, the external
magnetic source is always zero. Both sources start to act at t = 0. The unknowns are related via the constitu-
tive relations,

D = εE (2.3)

B = µH (2.4)

J = σE, (2.5)

where σ is the conductivity of the material, ε is the permittivity and µ is the permeability. In this study only
nonmagnetic media will be considered, which means that µ=µ0 where µ0 is the permeability of vacuum.
The unknown fields are the electric field strength E and the magnetic field strength H. Both fields vanish
everywhere for t < 0. D and B are the electric displacement field and the magnetic flux density respectively.
To complete Maxwell’s equations, the compatibility relations are derived by taking the divergence of (2.1) and
(2.2). This yields

∇· J+ ∂

∂t
∇·D = −∇· Jext (2.6)

∂

∂t
∇·B = 0. (2.7)

The total current is defined by Jtot = J+Jext and ∇·D = ρ. Then (2.6) becomes ∇·Jtot+ ∂ρ
∂t = 0, which means that

there is conservation of charge. From (2.7) it follows that ∇ ·B is constant in time and because of the initial
condition it follows that this constant is zero. Therefore,

3



4 2. THE ELECTRIC AND MAGNETIC FIELDS IN MRI

∇·D = ρ (2.8)

∇·B = 0. (2.9)

Maxwell’s equations describe that magnetic fields can be created by a change in electric field or by an electri-
cal current. A changing magnetic field creates an electric field. The strength of the electric field is related to
the distance away from the charge and the net magnetic flux is always zero.

2.2. BOUNDARY CONDITIONS
Maxwell’s equations form a system of four equations. The equations are of first order, so from each of the
equations a boundary condition can be derived. In order to find them, each of the four equations is integrated
over a control volume or control area. In the derivation it is assumed that no external sources are present at
the interfaces between different media.

TANGENTIAL COMPONENT OF H
Integration of (2.1) over a rectangular region that is given in Figure 2.1a and applying Stokes’ theorem, gives∫

A
−∇×H+ J+ ∂D

∂t
dA = 0 ⇔∫

∂A
−H×ndΓ+

∫
A

J+ ∂D

∂t
dA = 0.

As the height of the rectangle∆h drops to zero, the integral of the derivative term vanishes. In physical media
the conduction is finite and therefore also J. In that case the J term vanishes and

−
∫
∂A1

H1 ×n1dΓ1 −
∫
∂A2

H2 ×n2dΓ2 = 0 ⇔
n× (H1 −H2) = 0.

This means that the tangential component of the magnetic field is continuous across the interface between
different media.

TANGENTIAL COMPONENT OF E
Integration of (2.2) over a rectangular region that is given in Figure 2.1a and applying Stokes’ theorem, gives∫

A
∇×E+ ∂B

∂t
dA = 0 ⇔∫

∂A
E×ndΓ+

∫
A

∂B

∂t
dA = 0.

As the height of the rectangle drops to zero, the integral of the derivative term vanishes. Therefore,∫
∂A1

E1 ×n1dΓ1 +
∫
∂A2

E2 ×n2dΓ2 = 0 ⇔
n× (E1 −E2) = 0.

Also the tangential component of the electric field is continuous across the interface between different media.

NORMAL COMPONENT OF D
Integration of (2.6) over a cylinder that is shown in Figure 2.1b, gives∫

V
∇·

(
J+ ∂D

∂t

)
dV = 0 ⇔∫

∂V

(
J+ ∂D

∂t

)
·ndΓ = 0
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(a) Control area for deriving the tangential com-
ponents of H and E.

(b) Control volume for deriving the normal components of D
and B.

Figure 2.1

by the divergence theorem. Making the cylinder arbitrarily small in height, results in a vanishing integral over
the curved surface dΓ3. Since both sides of the interface may have different properties, distinction is made
between D1 and D2. Therefore,∫

∂V1

(
J1 + ∂D1

∂t

)
·n1dΓ1 +

∫
∂V2

(
J2 + ∂D2

∂t

)
·n2dΓ2 = 0 ⇔((

J1 + ∂D1

∂t

)
−

(
J2 + ∂D2

∂t

))
·n = 0,

which means that J+ ∂D
∂t is continuous across the interface between different media.

NORMAL COMPONENT OF B
By integrating (2.9) over a cylinder that is shown in Figure 2.1b and applying the divergence theorem, a
boundary condition can be derived for the magnetic flux density:

(B1 −B2) ·n = 0.

The normal component of the magnetic flux denisity is continuous across the interface between different
media.
To summarise the findings, the boundary conditions corresponding to Maxwell’s equations are given by

n× (E1 −E2) = 0((
J1 + ∂D1

∂t

)
−

(
J2 + ∂D2

∂t

))
·n = 0

(B1 −B2) ·n = 0

n× (H1 −H2) = 0.

2.3. THE VOLUME INTEGRAL EQUATION
The solution of Maxwell’s equations can be found by first rewriting Maxwell’s equations into a different form:
the Volume Integral Equation. This will be done for the general 3D case, from which also the 2D case can be
derived. In the final form of this formulation both the unknowns E and H and their integrals are present, but
the equations for E and H are now uncoupled. This means that they can be solved separately. To get there,
consider first the Laplace transform of (2.1) and (2.2),

−∇× Ĥ+ηÊ = −Jext (2.10)

∇×E+ζĤ = −Kext. (2.11)

with the Laplace transform defined by

f̂ (x, s) =L { f (x, t )} =
∫ ∞

0
f (x, t )e−st dt

and η=σ+ sε, ζ= sµ0. The compatibility relations then transform into

∇·ηÊ = −∇· Ĵext (2.12)

∇·ζĤ = −∇· K̂ext. (2.13)
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Now consider (2.10) and (2.11) for the medium vacuum. In that case, ε= ε0 and σ= 0. This gives the system

−∇× Ĥ+η0Ê = −Ĵext (2.14)

∇× Ê+ζ0Ĥ = −K̂ext, (2.15)

with η0 = sε0 and ζ0 = sµ0.

Next a Fourier transform, defined by

f̃ (k, s) =F { f (x, s)} =
∫

x∈R3
f (x, s)e i k·xdV ,

transforms (2.14) and (2.15) into

i k× H̃+η0Ẽ = −J̃ext (2.16)

−i k× Ẽ+ζ0H̃ = −K̃ext. (2.17)

Note that in the last system both the time derivatives and the spatial derivatives are eliminated. This makes
it much easier to find expressions for H̃ and Ẽ. (2.17) can be rewritten into

H̃ = 1

ζ0

(−K̃ext + ik× Ẽ
)

(2.18)

after which H̃ can be eliminated from (2.16). This yields(
(kT k+γ2

0)I−kkT )
Ẽ = −ζ0J̃ext + ik× K̃ext (2.19)

where ζ0η0 = γ2
0. It would be easy to solve (2.19) for Ẽ if the matrix in front of Ẽ were invertible. Unfortu-

nately, in many cases this becomes a problem. Therefore a clever trick is used. The compatibility relations for
Maxwell’s equation in vacuum,

η0∇· Ê = −∇· Ĵext (2.20)

ζ0∇· Ĥ = −∇· K̂ext, (2.21)

can be transformed into frequency domain,

η0kT Ẽ = −kT J̃ext

ζ0kT H̃ = −kT K̃ext,

and these two equations turn out useful in rewriting the left hand side of (2.19) as(
(kT k+γ2

0)I−kkT )
Ẽ = (kT k+γ2

0)Ẽ+ 1

η0
kkT J̃ext.

Now the new equation for Ẽ is given by

(kT k+γ2
0)Ẽ+ 1

η0
kkT J̃ext =−ζ0J̃ext + ik× K̃ext

from which Ẽ can be written as

Ẽ = 1

kT k+γ2
0

(
−(ζ0I+ 1

η0
kkT )J̃ext + ik× K̃ext

)
. (2.22)

Substitution of (2.22) in (2.18) gives

H̃ = 1

kT k+γ2
0

(
−

(
η0I+ 1

ζ0
kkT

)
K̃ext − ik× J̃ext

)
.

Now that expressions for Ẽ and H̃ have been found, the next step is to transform the expressions back into x
domain by applying the inverse Fourier transform. This is done by introducing the vector potentials Ã and F̃:

Ã = g̃ J̃ext

F̃ = g̃ K̃ext,
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where g̃ = 1
kT k+γ2

0
is the Green’s function of the Helmholtz equation. In terms of these new variables the set

of equations becomes

Ẽ = −
(
ζ0I+ 1

η0
kkT

)
Ã+ ik× F̃

H̃ = −
(
η0I+ 1

ζ0
kkT

)
F̃− ik× Ã

and in Laplace domain

Ê = −ζ0Â+ 1

η0
∇(∇· Â)−∇× F̂ (2.23)

Ĥ = −η0F̂+ 1

ζ0
∇(∇· F̂)+∇× Â (2.24)

where

Â =
∫

x′∈R3
ĝ (x−x′, s)Ĵext(x′, s)dV ′

F̂ =
∫

x′∈R3
ĝ (x−x′, s)K̂ext(x′, s)dV ′

by the convolution theorem.

The inverse Fourier transform of the Green’s function for the 3D configuration is

ĝ (x, s) = e ikb|x|

4π|x| (2.25)

and for the 2D configuration the result is

ĝ (x, s) =− i

4
H (2)

0 (kb|x|),

where
γ0 = kbi.

The derivation for the 2D case can be found in Appendix A.

2.4. THE SCATTERING PROBLEM
So far it was assumed that the source is surrounded by vacuum. In many cases, including the MRI problem
where the human body is a large object, this is not realistic. Charged particles in the object are influenced by
the fields generated by the source. The charged particles start to oscillate in turn, which can be regarded as
induced currents. In order to take these induced currents into account, Maxwell’s equations are rewritten as

−∇×H+ε0
∂E

∂t
= −

(
Jind + Jext

)
∇×E+µ0

∂H

∂t
= −

(
Kind +Kext

)
,

where Jext and Kext are again the external sources and Jind and Kind are induced by the fields. With these new
right hand sides of Maxwell’s equations, it follows by substitution that the volume integral equations become

Ê(x, s) = −ζ0

∫
x′∈R3

ĝ (x−x′, s)
(
Ĵext(x′, s)+ Ĵind(x′, s)

)
dV ′+ 1

η0
∇

(
∇·

∫
x′∈R3

ĝ (x−x′, s)
(
Ĵext(x′, s)+ Ĵind(x′, s)

)
dV ′

)
−∇×

∫
x′∈R3

ĝ (x−x′, s)
(
K̂ext(x′, s)+ K̂ind(x′, s)

)
dV ′ (2.26)

Ĥ(x, s) = −η0

∫
x′∈R3

ĝ (x−x′, s)
(
K̂ext(x′, s)+ K̂ind(x′, s)

)
dV ′+ 1

ζ0
∇

(
∇·

∫
x′∈R3

ĝ (x−x′, s)
(
K̂ext(x′, s)+ K̂ind(x′, s)

)
dV ′

)
+∇×

∫
x′∈R3

ĝ (x−x′, s)
(
Ĵext(x′, s)+ Ĵind(x′, s)

)
(x′, s)dV ′. (2.27)
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There is a relation between the total field with object present and the electromagnetic fields in vacuum where
no object is present. The difference between those two fields is the field radiated by the induced currents,
called the scattered field. This can be written as

Esc = E−Einc (2.28)

Hsc = H−Hinc, (2.29)

where Einc and Hinc are the fields in vacuum (inc is short for incident) and are given by

Êinc(x, s) = −ζ0

∫
x′∈R3

ĝ (x−x′, s)Ĵext(x′, s)dV ′+ 1

η0
∇

(
∇·

∫
x′∈R3

ĝ (x−x′, s)Ĵext(x′, s)dV ′
)

−∇×
∫

x′∈R3
ĝ (x−x′, s)K̂ext(x′, s)dV ′ (2.30)

Ĥinc(x, s) = −η0

∫
x′∈R3

ĝ (x−x′, s)K̂ext(x′, s)dV ′+ 1

ζ0
∇

(
∇·

∫
x′∈R3

ĝ (x−x′, s)K̂ext(x′, s)dV ′
)

+∇×
∫

x′∈R3
ĝ (x−x′, s)Ĵext(x′, s)dV ′ (2.31)

according to Maxwell’s equations. It is important to note that the incident fields are known, because they
are determined by the external sources in vacuum and a closed-form solution is available. Substracting (2.30)
and (2.31) from (2.26) and (2.27) give expressions for the scattered fields and these can be substituted in (2.28)
and (2.29) to find

Êinc(x, s) = Ê(x, s)+ζ0

∫
x′∈R3

ĝ (x−x′, s)Ĵind(x′, s)dV ′− 1

η0
∇

(
∇·

∫
x′∈R3

ĝ (x−x′, s)Ĵind(x′, s)dV ′
)

+∇×
∫

x′∈R3
ĝ (x−x′, s)K̂ind(x′, s)dV ′ (2.32)

Ĥinc(x, s) = Ĥ(x, s)+η0

∫
x′∈R3

ĝ (x−x′, s)K̂ind(x′, s)dV ′− 1

ξ0
∇

(
∇·

∫
x′∈R3

ĝ (x−x′, s)K̂ind(x′, s)dV ′
)

−∇×
∫

x′∈R3
ĝ (x−x′, s)Ĵind(x′, s)dV ′. (2.33)

Together (2.32) and (2.33) still contain four unknowns, which makes it impossible to solve for the fields Ê and
Ĥ. In order to eliminate the unknowns K̂ind and Ĵind the following relations are introduced:

Jind = J+ ∂

∂t
(D−ε0E) (2.34)

Kind = ∂

∂t
(B−µ0H), (2.35)

where J is the electric current density produced by freely moving charged particles. Furthermore, the consti-
tutive relations in Laplace domain,

D̂(x, s) = ε(x, s)Ê(x, s) (2.36)

B̂(x, s) = µ(x, s)Ĥ(x, s) (2.37)

Ĵ(x, s) = σ(x, s)Ê(x, s), (2.38)

turn out useful in finding expressions for Ĵind and K̂ind that depend on the unknowns Ê and Ĥ only. The result
is obtained via transforming (2.34) and (2.35) into Laplace domain and substituting (2.36) - (2.38). The result
is given by

Ĵind(x, s) = (σ(x, s)+ s(ε(x, s)−ε0(x, s))) Ê(x, s) = (
η(x, s)−η0(x, s)

)
Ê(x, s)

K̂ind(x, s) = s
(
µ(x, s)−µ0(x, s)

)
Ĥ(x, s) = (ξ(x, s)−ζ0(x, s))Ĥ(x, s).
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Finally,

Êinc(x, s) = Ê(x, s)+ζ0(s)η0(s)
∫

x′∈R3
ĝ (x−x′, s)χe(x′, s)Ê(x′, s)dV ′−∇

(
∇·

∫
x′∈R3

ĝ (x−x′, s)χe(x′, s)Ê(x′, s)dV ′
)

+ξ0(s)∇×
∫

x′∈R3
ĝ (x−x′, s)χm(x′, s)Ĥ(x′, s)dV ′ (2.39)

Ĥinc(x, s) = Ĥ(x, s)+η0(s)ζ0(s)
∫

x′∈R3
ĝ (x−x′, s)χm(x′, s)Ĥ(x′, s)dV ′−∇

(
∇·

∫
x′∈R3

ĝ (x−x′, s)χm(x′, s)Ĥ(x′, s)dV ′
)

−η0(s)∇×
∫

x′∈R3
ĝ (x−x′, s)χe (x′, s)Ê(x′, s)dV ′ (2.40)

where the contrast functions are defined by

χe(x, s) = η(x, s)

η0(s)
−1

χm(x, s) = ξ(x, s)

ζ0
−1.

In the human body the magnetic contrast χm is zero, so in this research (2.39) and (2.40) simplify to

Êinc(x, s) = Ê(x, s)+ζ0(s)η0(s)
∫

x′∈R3
ĝ (x−x′, s)χe (x′, s)Ê(x′, s)dV ′ (2.41)

−∇
(
∇·

∫
x′∈R3

ĝ (x−x′, s)χe(x′, s)Ê(x′, s)dV ′
)

Ĥinc(x, s) = Ĥ(x, s)−η0(s)∇×
∫

x′∈R3
ĝ (x−x′, s)χe(x′, s)Ê(x′, s)dV ′ (2.42)

and these last two equations form the basis of the volume integral approach.

2.4.1. DIFFERENT FORMULATIONS OF THE SCATTERING PROBLEM
In the last paragraph (2.41) and (2.42) define two volume integral equations derived from Maxwell’s equa-
tions. However, (2.36) - (2.38) allow for altering the derived volume integral equations. In this research
the volume integral equation for the magnetic field will not be considered, because once the electric field
is known, also the magnetic field can be found by substitution. Four different formulations will be discussed
here. In rewriting the formulations, the relation D̂c = εc Ê = η

s Ê = (σs +ε)Ê is often introduced.

EVIE
The first one has already been derived in the beginning of this section, namely the EVIE (Electric Volume
Integral Equation) formulation:

Êinc(x, s) = Ê(x, s)− (
k2

b +∇∇·)S(χeÊ) (2.43)

where

S(J) =
∫
Ω

ĝ (x−x′, s)J(x′, s)dV ′

and k2
b =−ζ0η0. The other formulations are based on the EVIE formulation.

DVIE
Substitution of the relation D̂c = εc Ê in (2.43) gives the DVIE formulation:

Êinc(x, s) = 1

εc
D̂c(x, s)− (k2

b +∇∇·)S(
χe

εc
D̂c). (2.44)

JVIE
Substitution of the relation Ĵ = η0χeÊ =σÊ+ sÊ(ε−ε0) in (2.43) gives the JVIE formulation:

Êinc(x, s) = 1

η0χe(x, s)
Ĵ(x, s)− 1

η0

(
k2

b +∇∇·)S(Ĵ). (2.45)
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In the last formulation a problem would occur if the contrast is zero. Therefore the JVIE is usually formulated
as

η0χe (x, s)Êinc(x, s) = Ĵ(x, s)−χe (x, s)
(
k2

b +∇∇·)S(Ĵ). (2.46)

For the above three formulations it has been shown in [3] that they are equivalent, that a unique solution exists
and that the problems are well-posed in their corresponding function spaces. The corresponding function
spaces will be discussed at the end of this subsection.

With the help of the identity ∇×∇×S(F) = ∇∇ ·F−∇2F and the knowledge that the operator S satisfies the
inhomogeneous Helmholtz equation ∇2S(F)+k2

bS(F) =−F , the expression (k2
b +∇∇·)S(F) can be written as

(k2
b +∇∇·)S(F) =∇×∇×S(F)−F. (2.47)

Now each of the three discussed formulations can be written in another form.

EVIE IN CURL FORM

Substitution of (2.47) in (2.43) gives

Êinc(x, s) = (1+χe (x, s))Ê(x, s)−∇×∇×S(χe Ê). (2.48)

DVIE IN CURL FORM

Substitution of (2.47) in (2.44) gives

Êinc(x, s) = 1

εc
(1+χe (x, s))Dc(x, s)−∇×∇×S(

χe

εc
D̂c). (2.49)

JVIE IN CURL FORM

Substitution of (2.47) in (2.45) gives

η0χe (x, s)Êinc(x, s) = (1+χe (x, s))J(x, s)−χe (x, s)∇×∇×S(Ĵ) (2.50)

or rewritten as in [4]:
η0χe (x, s)

(1+χe (x, s))
Êinc(x, s) = Ĵ(x, s)− χe (x, s)

(1+χe (x, s))
∇×∇×S(Ĵ). (2.51)

Although the first three formulations are very similar and the last three formulations as well, there is a dif-
ference between them that becomes clear when studying the domain and the range of the operators corre-
sponding with the equations (2.43)-(2.50). The domains of the operators follow from Maxwell’s equations,
since E satisfies a curl equation and D a divergence equation. J is expected to live in [L2(R3)]3 because of the
radiation conditions, [3].
The ranges of the operators in the first three formulations are derived in [3]. The ranges of the operators in
the second three formulations are given in [4]. Summarised, the different formulations have the following
mapping properties:

EVIE: H(curl,R3) 7→ H(curl,R3) EVIE curl: H(curl,R3) 7→ H(div,R3)

DVIE: H(div,R3) 7→ H(curl,R3) DVIE curl: H(div,R3) 7→ H(curl,R3)

JVIE: [L2(R3)]3 7→ [L2(R3)]3 JVIE curl: [L2(R3)]3 7→ [L2(R3)]3.

where
H(curl,R3) = {

f | f ∈ L2(R3)∧∇× f ∈ L2(R3)
}

and
H(div,R3) = {

f | f ∈ L2(R3)∧∇· f ∈ L2(R3)
}

.

In the remainder of this report (2.43) will be used to demonstrate the principles of modeling electromagnet-
ics.



3
THE METHOD OF MOMENTS

The Method of Moments is the most popular method to solve the volume integral equation. The reason for
this is that Sommerfeld’s radiation condition is automatically satisfied, so one does not have to deal with
absorbing boundary conditions like in FEM or FDTD to obtain a unique solution. The steps in this procedure
are similar to the ones in the Finite Element Method, but the resulting system matrix is full instead of banded.
The first step is deriving the weak form of the volume integral equation. Once the weak form is obtained, the
discretisation procedure begins by approximating the unknown by a sum of basisfunctions multiplied with
unknown coefficients. These coefficients are the ones that need to be solved from the final system. To be able
to do so, basis functions are chosen in such a way that they span the solution space and that the coefficients
are easy to obtain. Two choices of test functions are commonly used. One results in Galerkin’s Method and the
other one in the Point Callocation Method. Both of these methods will be described in this chapter. Finally,
two examples in which Galerkin’s Method is used are given.

3.1. WEAK FORM
From this point on, the method will be explained for the 2D case. In the 2D configuration

Êinc = Ê+ (ξ0η0 −∇∇·)S(χe Ê)

is a system of two coupled equations, where the electric field E is a vectorial unknown. Therefore two weak
forms are derived. By doing this, both the x-component and the y-component of the electric field can be
expanded with (possibly) different basis functions and different coefficients in the next step. In order to
derive these two weak forms, the system is written in seperate equations for the two components:

Ê inc
x = Êx +ξ0η0S(χe Êx )− ∂

∂x

(
∂

∂x
S(χe Êx )+ ∂

∂y
S(χe Êy )

)
(3.1)

Ê inc
y = Êy +ξ0η0S(χe Êy )− ∂

∂y

(
∂

∂x
S(χe Êx )+ ∂

∂y
S(χe Êy )

)
(3.2)

where

S(Jα) =
∫
Ω

ĝ (x−x′, s)Jα(x′, s)dV ′.

Multiplication of (3.1) and (3.2) by test functions ηx and ηy respectively and integrating over the domain of
interestΩ, gives∫

Ω
Ê inc

x ηx dΩ =
∫
Ω

Êxηx dΩ+ξ0η0

∫
Ω

S(χe Êx )ηx dΩ−
∫
Ω

∂

∂x

(∇·S(χe Ê)
)
ηx dΩ (3.3)∫

Ω
Ê inc

y ηy dΩ =
∫
Ω

Êyηy dΩ+ξ0η0

∫
Ω

S(χe Êy )ηy dΩ−
∫
Ω

∂

∂y

(∇·S(χe Ê)
)
ηy dΩ. (3.4)

11
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Partial integrating and using Green’s theorem, transforms the weak formulations (3.3) and (3.4) into∫
Ω

Ê inc
x ηx dΩ =

∫
Ω

Êxηx dΩ+ξ0η0

∫
Ω

S(χe Êx )ηx dΩ+
∫
Ω
∇·S(χe Ê)

∂

∂x
ηx dΩ−

∫
∂Ω

∇·S(χe Ê)ηx dΓ (3.5)∫
Ω

Ê inc
y ηy dΩ =

∫
Ω

Êyηy dΩ+ξ0η0

∫
Ω

S(χe Êy )ηy dΩ+
∫
Ω
∇·S(χe Ê)

∂

∂y
ηy dΩ−

∫
∂Ω

∇·S(χe Ê)ηy dΓ. (3.6)

Both weak formulations can be used to discretise the system. The advantage of the second weak form is that
one spatial derivative now acts on the test function and is very easy to calculate. Moreover, the first derivative
of the green’s function contains a singularity that is weaker than the singularity of the second derivative of the
green’s function. The boundary terms in the second weak form are not implemented in reality, because on
the boundary the contrast can always be chosen zero.

3.2. DISCRETISATION
Now that the weak forms are known, the volume integral equation can be transformed into a discretised
system of equations. This can be done in several ways. The first possibility is approximating the unknowns
Êx and Êy by series Ê n

x (x) =∑n
j=1 e j ,xφ j ,x (x) and Ê n

y (x) =∑n
j=1 e j ,yφ j ,y (x) that converge to Êx and Êy as n →∞.

The second possibility is to expand not only the unknown electric field, but also the vector potential S(χeÊ)
that operates on the unknown electric field. Additional substitutions Sn

x (x) = Sn(χeÊx )(x) = ∑n
j=1 s j ,xφ j ,x (x)

and Sn
y (x) = Sn(χeÊy )(x) =∑n

j=1 s j ,yφ j ,y (x) are carried out in this case. Also the incident field can be expanded.

3.2.1. EXPANDING THE ELECTRIC FIELD

Substitution of Ê n
x and Ê n

y in (3.3) and (3.4) respectively results in

∫
Ω

Ê inc
x ηi ,x dΩ =

n∑
j=1

e j ,x

{∫
Ω
φ j ,xηi ,x dΩ+ξ0η0

∫
Ω

S(χeφ j ,x )ηi ,x dΩ−
∫
Ω
ηi ,x

∂

∂x

∂

∂x
S(χeφ j ,x )dΩ

}

−
n∑

j=1
e j ,y

{∫
Ω
ηi ,x

∂

∂x

∂

∂y
S(χeφ j ,y )dΩ

}
i = 1, ..,n

∫
Ω

Ê inc
y ηi ,y dΩ =

n∑
j=1

e j ,y

{∫
Ω
φ j ,yηi ,y dΩ+ξ0η0

∫
Ω

S(χeφ j ,y )ηi ,y dΩ−
∫
Ω
ηi ,y

∂

∂y

∂

∂y
S(χeφ j ,y )dΩ

}

−
n∑

j=1
e j ,x

{∫
Ω
ηi ,y

∂

∂y

∂

∂x
S(χeφ j ,x )dΩ

}
i = 1, ..,n.

Also, substitution of Ê n
x and Ê n

y in (3.5) and (3.6) respectively results in

∫
Ω

Ê inc
x ηi ,x dΩ =

n∑
j=1

e j ,x

{∫
Ω
φ j ,xηi ,x dΩ+ξ0η0

∫
Ω

S(χeφ j ,x )ηi ,x dΩ

+
∫
Ω

∂

∂x
S(χeφ j ,x )

∂

∂x
ηi ,x dΩ−

∫
∂Ω
ηi ,x

∂

∂x
S(χeφ j ,x )dΓ

}
+

n∑
j=1

e j ,y

{∫
Ω

∂

∂y
S(χeφ j ,y )

∂

∂x
ηi ,x dΩ−

∫
∂Ω
ηi ,x

∂

∂y
S(χeφ j ,y )dΓ

}
i = 1, ..,n

∫
Ω

Ê inc
y ηi ,y dΩ =

n∑
j=1

e j ,x

{∫
Ω

∂

∂x
S(χeφ j ,x )

∂

∂y
ηi ,y dΩ−

∫
∂Ω
ηi ,y

∂

∂x
S(χeφ j ,x )dΓ

}

+
n∑

j=1
e j ,y

{∫
Ω
φ j ,yηi ,y dΩ+ξ0η0

∫
Ω

S(χeφ j ,y )ηi ,y dΩ

+
∫
Ω

∂

∂y
S(χeφ j ,y )

∂

∂y
ηi ,y dΩ−

∫
∂Ω
ηi ,y

∂

∂y
S(χeφ j ,y )dΓ

}
i = 1, ..,n.

Note that the expansion of the electric field in the first weak form results in volume integrals only, whereas the
expansion of the electric field in the second weak form results in volume integrals and boundary integrals.
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3.2.2. EXPANDING BOTH THE ELECTRIC FIELD AND THE VECTOR POTENTIAL

Substitution of Ê n
x , Ê n

y , Sn(χeÊx ) and Sn(χeÊy ) in (3.3) and (3.4) results in∫
Ω

Ê inc
x ηi ,x dΩ =

n∑
j=1

e j ,x

{∫
Ω
φ j ,xηi ,x dΩ

}

+
n∑

j=1
s j ,x

{
ξ0η0

∫
Ω
φ j ,xηi ,x dΩ−

∫
Ω
ηi ,x

∂

∂x

∂

∂x
φ j ,x dΩ

}

−
n∑

j=1
s j ,y

{∫
Ω
ηi ,x

∂

∂x

∂

∂y
φ j ,y dΩ

}
i = 1, ..,n (3.7)

∫
Ω

Ê inc
y ηi ,y dΩ =

n∑
j=1

e j ,y

{∫
Ω
φ j ,yηi ,y dΩ

}

−
n∑

j=1
s j ,x

{∫
Ω
ηi ,y

∂

∂y

∂

∂x
φ j ,x dΩ

}

+
n∑

j=1
s j ,y

{
ξ0η0

∫
Ω
φ j ,yηi ,y dΩ−

∫
Ω
ηi ,y

∂

∂y

∂

∂y
φ j ,y dΩ

}
i = 1, ..,n. (3.8)

Also, substitution of Ê n
x , Ê n

y , Sn(χeÊx ) and Sn(χeÊy ) in (3.5) and (3.6) results in∫
Ω

Ê inc
x ηi ,x dΩ =

n∑
j=1

e j ,x

{∫
Ω
φ j ,xηi ,x dΩ

}

+
n∑

j=1
s j ,x

{
ξ0η0

∫
Ω
φ j ,xηi ,x dΩ+

∫
Ω

∂

∂x
φ j ,x

∂

∂x
ηi ,x dΩ−

∫
∂Ω
ηi ,x

∂

∂x
φ j ,x dΓ

}

+
n∑

j=1
s j ,y

{∫
Ω

∂

∂y
φ j ,y

∂

∂x
ηi ,x dΩ−

∫
∂Ω
ηi ,x

∂

∂y
φ j ,y dΓ

}
i = 1, ..,n (3.9)

∫
Ω

Ê inc
y ηi ,y dΩ =

n∑
j=1

e j ,y

{∫
Ω
φ j ,yηi ,y dΩ

}

+
n∑

j=1
s j ,x

{∫
Ω

∂

∂x
φ j ,x

∂

∂y
ηi ,y dΩ−

∫
∂Ω
ηi ,y

∂

∂x
φ j ,x dΓ

}
i = 1, ..,n

+
n∑

j=1
s j ,y

{
ξ0η0

∫
Ω
φ j ,yηi ,y dΩ+

∫
Ω

∂

∂y
φ j ,y

∂

∂y
ηi ,y dΩ−

∫
∂Ω
ηi ,y

∂

∂y
φ j ,y dΓ

}
. (3.10)

The coefficients e j ,x and s j ,x are related, just like the coefficients e j ,y and s j ,y , via

n∑
j=1

s j ,αφ j ,α(x) = Sn(χeÊα)(x) ≈
∫

x′
ĝ (x−x′)χe(x′)Êα(x′)dV ′ ≈

∫
x′

ĝ (x−x′)χe(x′)
n∑

j=1
e j ,αφ j ,α(x′)dV ′. (3.11)

In some approaches where both the electric field and the vector potential have been expanded, one can
make use of the fact that the vector potential is a convolution of the Green’s function and the product of the
contrast function and the electric field. The result of a convolution can easily be calculated with Fast Fourier
Transforms. The big advantage is that the Green’s function only has to be calculated in all the grid nodes
once instead of in all possible combinations of differences between two grid points, as one would expect. An
example of a formulation in which this is possible will be shown in Section 3.5.

After both of the expansion procedures the resulting equations can be written as a system of size 2n×2n of
the form [

Aa Ab

Ac Ad

][
ea

eb

]
=

[
fa

fb

]
(3.12)

where the elements of the submatrices ea and eb are defined by

ea
j = e j ,x j = 1, ..,n

eb
j = e j ,y j = 1, ..,n
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and the elements of the subvectors fa and fb by

f a
i = ∫

Ω Ê inc
x φi ,x dΩ i = 1, ..,n

f b
i = ∫

Ω Ê inc
y φi ,y dΩ i = 1, ..,n.

The elements of the submatrices Aa, Ab, Ac and Ad depend on the choice of basis and test functions and on
the weak formulation.

3.3. CHOICE OF BASIS AND TEST FUNCTIONS

There are numerous possibilities to choose the basis and test functions. Two choices of test functions are
popular and result in different techniques: the Point Callocation Method and Galerkin’s Method. Below both
of the methods will be discussed.
When constructing the test and basis functions, it is useful to keep in mind the type of function that needs
to be approximated. A continuous function can be approximated with continuous or discontinuous basis
functions. A discontinuous function, however, is in general better approximated with discontinuous basis
functions.

3.3.1. GALERKIN’S METHOD

In Galerkin’s method the test functions are chosen to be the same as the basis functions, so ηx = φi ,x and
ηy =φi ,y for i = 1, ..,n. The resulting equations

∫
Ω

Ê inc
x φi ,x dΩ =

n∑
j=1

e j ,x

{∫
Ω
φ j ,xφi ,x dΩ+ξ0η0

∫
Ω

S(χeφ j ,x )φi ,x dΩ+
∫
Ω

∂

∂x
S(χeφ j ,x )

∂

∂x
φi ,x dΩ

−
∫
∂Ω

∂

∂x
S(χeφ j ,x )φi ,x dΓ

}
+

n∑
j=1

e j ,y

{∫
Ω

∂

∂y
S(χeφ j ,y )

∂

∂x
φi ,x dΩ−

∫
∂Ω

∂

∂y
S(χeφ j ,y )φi ,x dΓ

}
, i = 1, ..,n

∫
Ω

Ê inc
y φi ,y dΩ =

n∑
j=1

e j ,y

{∫
Ω
φ j ,yφi ,y dΩ+ξ0η0

∫
Ω

S(χeφ j ,y )φi ,y dΩ+
∫
Ω

∂

∂y
S(χeφ j ,y )

∂

∂y
φi ,y dΩ

−
∫
∂Ω

∂

∂y
S(χeφ j ,y )φi ,y dΓ

}
+

n∑
j=1

e j ,x

{∫
Ω

∂

∂x
S(χeφ j ,x )

∂

∂y
φi ,y dΩ−

∫
∂Ω

∂

∂x
S(χeφ j ,x )φi ,y dΓ

}
, i = 1, ..,n.

define the system in which the submatrices Aa, Ab, Ac and Ad in (3.12) are defined by

Aa
i j =

∫
Ωφ j ,xφi ,x dΩ+ξ0η0

∫
Ω S(χeφ j ,x )φi ,x dΩ+∫

Ω
∂
∂x S(χeφ j ,x ) ∂

∂xφi ,x dΩ−∫
∂Ω

∂
∂x S(χeφ j ,x )φi ,x dΓ i , j = 1, ..,n

Ab
i j =

∫
Ω

∂
∂y S(χeφ j ,y ) ∂

∂xφi ,x dΩ−∫
∂Ω

∂
∂y S(χeφ j ,y )φi ,x dΓ i , j = 1, ..,n

Ac
i j =

∫
Ω

∂
∂x S(χeφ j ,x ) ∂

∂yφi ,y dΩ−∫
∂Ω

∂
∂x S(χeφ j ,x )φi ,y dΓ i , j = 1, ..,n

Ad
i j =

∫
Ωφ j ,yφi ,y dΩ+ξ0η0

∫
Ω S(χeφ j ,y )φi ,y dΩ+∫

Ω
∂
∂y S(χeφ j ,y ) ∂

∂yφi ,y dΩ−∫
∂Ω

∂
∂y S(χeφ j ,y )φi ,y dΓ i , j = 1, ..,n.

3.3.2. POINT CALLOCATION METHOD

In the Point Callocation Method the test functions are chosen to be the dirac delta functions, ηx,i = δ(x − xi )
for i = 1, ..,n. This means that the weak form that was used in Galerkin’s method would give problems here,
because the derivative of the dirac delta function would appear in the formulation. Therefore the first weak
form is used to demonstrate the Point Callocation Method.
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Ê inc
x (xi ) =

n∑
j=1

e j ,x

{
φ j ,x (xi )+ξ0η0S(χeφ j ,x )(xi )− ∂

∂x

∂

∂x
S(χeφ j ,x )(xi )

}

−
n∑

j=1
e j ,y

{
∂

∂x

∂

∂y
S(χeφ j ,y )(xi )

}
i = 1, ..,n

Ê inc
y (xi ) =

n∑
j=1

e j ,y

{
φ j ,y (xi )+ξ0η0S(χeφ j ,y )(xi )− ∂

∂y

∂

∂y
S(χeφ j ,y )(xi )

}

−
n∑

j=1
e j ,x

{
∂

∂y

∂

∂x
S(χeφ j ,x )(xi )

}
i = 1, ..,n.

define the system in which the submatrices Aa, Ab, Ac and Ad in (3.12) are defined by

Aa
i j = φ j ,x (xi )+ξ0η0S(χeφ j ,x )(xi )− ∂

∂x
∂
∂x S(χeφ j ,x )(xi ) i , j = 1, ..,n

Ab
i j = − ∂

∂x
∂
∂y S(χeφ j ,y )(xi ) i , j = 1, ..,n

Ac
i j = − ∂

∂y
∂
∂x S(χeφ j ,x )(xi ) i , j = 1, ..,n

Ad
i j = φ j ,y (xi )+ξ0η0S(χeφ j ,y )(xi )− ∂

∂y
∂
∂y S(χeφ j ,y )(xi ) i , j = 1, ..,n.

The choice of test functions makes the integral over the domain of the test functions disappear. This is com-
putationally more efficient than Galerkin’s Method, where the integration over the domain of the test func-
tion often results in extra matrices that connect neighbouring elements. However, a drawback of the Point
Callocation Method is that the test function does not take into account the boundary conditions that were
discribed in Section 2.2, whereas in Galerkin’s Method it is possible to choose the basis functions so that they
do take into account the boundary conditions.

3.4. EXAMPLE: TRIANGULAR MESH WITH LINEAR BASIS FUNCTIONS
In order to find the elements of the matrix A, the integrals over the domain Ω are written as a sum of inte-
grals over small subdomains, called elements e. By first integrating the expressions over small subdomains,
numerical integration rules can be used to simplify the calculations. In this report the domain is devided into
triangles and linear basis functions are defined on each triangle. In total there are n basis functions for each
component,

φi ,x (x) = αi ,x +βi ,x x +γi ,x y i = 1, ..,n

φi ,y (x) = αi ,y +βi ,y x +γi ,y y i = 1, ..,n,

satisfying φi ,x (x j ) = δi j and φi ,y (x j ) = δi j , so that the i’th basis function behaves as shown in Figure 3.1. The
actual form of the basis functions is determined by the coefficients αi ,x ,βi ,x and γi ,x for the basis function
in the x-direction and αi ,y ,βi ,y and γi ,y for the basis function in the y-direction. On each triangle there exist
three basis functions that satisfy the delta property in the three vertices. Therefore the coefficients for the
x−directional basis functions φ1,x ,φ2,x and φ3,x on triangle e follow from the system1 x1 y1

1 x2 y2

1 x3 y3

α1,x β1,x γ1,x

α2,x β2,x γ2,x

α3,x β3,x γ3,x

=
1 0 0

0 1 0
0 0 1


where (x1, y1), (x2, y2) and (x3, y3) are the vertices of one element. The same procedure also gives the coeffi-
cients for the y-directional basis functions.

An important theorem used to deal with the integration of (a product of) linear basis functions over a trian-
gular element is named as Holand & Bell’s thorem.

Theorem 1. Let e be a triangle in R2 with vertices x1,x2,x3 and let λ1,λ2λ3 on e be linear on e. Further, let
λi (x j , y j ) = δi j and finally let m1,m2,m3 ∈N. Then,

∫
e λ

m1
1 λ

m2
2 λ

m3
3 dΩ= |∆|m1!m2!m3!

(2+m1+m2+m3)! , where |∆| is two times
the area of e.
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Figure 3.1: Basis function number i

The first approximation where Holand & Bell’s theorem is used is

∫
e
φ j ,xφi ,x dΩe

Holand & Bell≈ |∆|
24

(1+δi j ) i , j = 1,2,3∫
e
φ j ,yφi ,y dΩe

Holand & Bell≈ |∆|
24

(1+δi j ) i , j = 1,2,3

where it is important to note that i and j run in this special case over the vertices of element e, because the
product of the i’th and j’th basis functions vanish if one or both of nodes i and j are located outside element
e. A bit more complicated approximation follows from

ξ0η0

∫
e

S(χeφ j ,x )φi ,x dΩe
Interpolation≈ ξ0η0

∫
e
∑

p=1,2,3 S(χeφ j ,x )(xp )φi ,x (xp )λp (x)dΩe i = 1,2,3 j = 1, ..,n

= ξ0η0
∑

p=1,2,3 S(χeφ j ,x )(xp )φi ,x (xp )
∫

e λp (x)dΩe i = 1,2,3 j = 1, ..,n

Holand & Bell= ξ0η0
∑

p=1,2,3 S(χeφ j ,x )(xp )φi ,x (xp ) |∆|6 i = 1,2,3 j = 1, ..,n

φi ,x (xp )=δi p= ξ0η0S(χeφ j ,x )(xi ) |∆|6 i = 1,2,3 j = 1, ..,n

ξ0η0

∫
e

S(χeφ j ,y )φi ,y dΩe ≈ ξ0η0S(χeφ j ,y )(xi ) |∆|6 i = 1,2,3 j = 1, ..,n.

The i ’th basis function vanishes if node i is located outside tirangle e, whereas the function S(χeφ j ,y ) is de-
fined on all nodes. Therefore i runs over the vertices of triangle e and j runs over all nodes. Also p runs over
the vertices of the triangle.
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Next, the derivative terms are approximated as∫
e

∂

∂x
S(χeφ j ,x )

∂

∂x
φi ,x dΩe

∂
∂x φi ,x=βi ,x= βi ,x

∫
e
∂
∂x S(χeφ j ,x )dΩe i = 1,2,3 j = 1, ..,n

Interpolation≈ βi ,x
∫

e
∑

p=1,2,3
∂
∂x S(χeφ j ,x )(xp )λp (x)dΩe i = 1,2,3 j = 1, ..,n

= βi ,x
∑

p=1,2,3
∂
∂x S(χeφ j ,x )(xp )

∫
e λp (x)dΩe i = 1,2,3 j = 1, ..,n

= βi ,x
∑

p=1,2,3
∂
∂x S(χeφ j ,x )(xp ) |∆|6 i = 1,2,3 j = 1, ..,n∫

e

∂

∂y
S(χeφ j ,y )

∂

∂y
φi ,y dΩe

∂
∂y φi ,y=γi ,y= γi ,y

∑
p=1,2,3

∂
∂y S(χeφ j ,y )(xp ) |∆|6 i = 1,2,3 j = 1, ..,n∫

e

∂

∂y
S(χeφ j ,y )

∂

∂x
φi ,x dΩe

∂
∂x φi ,x=βi ,x= βi ,x

∑
p=1,2,3

∂
∂y S(χeφ j ,y )(xp ) |∆|6 i = 1,2,3 j = 1, ..,n

∫
e

∂

∂x
S(χeφ j ,x )

∂

∂y
φi ,y dΩe

∂
∂y φi ,y=γi ,y= γi ,y

∑
p=1,2,3

∂
∂x S(χeφ j ,x )(xp ) |∆|6 i = 1,2,3 j = 1, ..,n

where again the derivative of the i ’th basis function vanishes if node i is located outside element e and there-
fore i runs over the vertices of triangle e and j runs over all nodes.

Finally,∫
∂e

∂

∂x
S(χeφ j ,x )φi ,x dΓe

Interpolation≈ ∫
∂e

∑
p=1,2

∂
∂x S(χeφ j ,x )(xp )φi ,x (xp )λp (x)dΓe i = 1,2 j = 1, ..,n

= ∑
p=1,2

∂
∂x S(χeφ j ,x )(xp )φi ,x (xp )

∫
∂e λp (x)dΓe i = 1,2 j = 1, ..,n

φi ,x (xp )=δi p= ∂
∂x S(χeφ j ,x )(xi )

∫
∂e λp (x)dΓe i = 1,2 j = 1, ..,n

Holand & Bell≈ ∂
∂x S(χeφ j ,x )(xi ) ||xk−xl ||

2 i = 1,2 j = 1, ..,n∫
∂e

∂

∂y
S(χeφ j ,y )φi ,x dΓe ≈ ∂

∂y S(χeφ j ,y )(xi ) ||xk−xl ||
2 i = 1,2 j = 1, ..,n∫

∂e

∂

∂x
S(χeφ j ,x )φi ,y dΓe ≈ ∂

∂x S(χeφ j ,x )(xi ) ||xk−xl ||
2 i = 1,2 j = 1, ..,n∫

∂e

∂

∂y
S(χeφ j ,y )φi ,y dΓe ≈ ∂

∂y S(χeφ j ,y )(xi ) ||xk−xl ||
2 i = 1,2 j = 1, ..,n

where i runs over the endpoints of line e and j runs over all nodes. The indices k and l correspond to the two
endpoints of line e. In practice, however, the contrast is set to zero at the boundary of Ω and therefore the
contributions of all boundary elements vanish.

In all these approximated terms, there still is a term that needs some more explanation. The term S(χeφ j ,x )
is a function of x that contains an integral over the entire domain. However, the fact that the j ’th basis func-
tion has a compact support makes the calculations easier. More specifically, the support of basis function j
only contains points lying in the triangles that have node j as a vertex. The following derivation shows the
simplification of the integral term for an internal node j .

S(χeφ j ,x )(x) =
∫
Ω

ĝ (x−x′, s)χe(x′)φ j ,x (x′)dV ′

=
∫

supp(φ j ,x )
ĝ (x−x′, s)χe(x′)φ j ,x (x′)dV ′

=
∫

e j1

ĝ (x−x′, s)χe(x′)φ j ,x (x′)dV ′+·· ·+
∫

e j6

ĝ (x−x′, s)χe(x′)φ j ,x (x′)dV ′

Interpolation= ∑
p=1,2,3

ĝ (x−xp , s)χe(xp )δ j p
|∆|
6

+·· ·+ ∑
q=1,2,3

ĝ (x−xq , s)χe(xq )δ j q
|∆|
6

= ĝ (x−x j , s)χe(x j )
|∆|
6

+·· ·+ ĝ (x−x j , s)χe(x j )
|∆|
6

= ĝ (x−x j , s)χe(x j )|∆| (3.13)
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The same result would have been obtained if the integral was approximated by using the Midpoint rule and
the delta property. For nodes that lie on the boundary (3.13) has to be multiplied with a factor N T /6, where
N T is the number of triangles in which node j is a vertex.
Now that (3.13) is found, the spatial derivatives of S(χeφ j ,x ) can be calculated directly by differentiating the
Green’s function. In Chapter B the singularity in the Green’s function will be dealt with.

VECTOR AND MATRIX ASSEMBLY

In the assembling part the total system matrix is constructed. The term
∫

e φ j ,xφi ,x dΩe contributes to a maxi-
mum of seven diagonals in the system matrix, because each node is present in six surrounding triangles that
all have two other vertices. The other terms make the system matrix a full matrix (in case of nonzero contrast
everywhere) because of the vector potential present in each of the terms. Figure 3.2 shows the sparsity pat-
tern of the final system matrix in case of 32 triangular elements (25 nodes). Filled column j corresponds with
node j that has nonzero contrast. In this case only six nodes have nonzero contrast.

Figure 3.2: Sparsity pattern of the system matrix with 32 triangular elements.

3.5. EXAMPLE: RECTANGULAR MESH WITH ROOFTOP BASIS FUNCTIONS
Another way of solving the volume integral equation is using rectangular elements, with each node lying in
the center of a rectangular element. Basis functions φmn and test functions φpq are defined on each node
such that the basis functions are linear in one direction and constant in the other direction for a specified
region. Galerkin’s Method is used, so the basis functions are chosen the same as the test functions. The
starting point in this example is the second weak form, but next to expanding the electric field and the vector
potential, also the electric incident field is expanded. In case of simple basis functions one could also choose
for analytically calculating the weighting on the incident field without expanding it.
It is important to note that in (3.9) a first derivative with respect to the x-direction acts on the x-directional
basis function and on the x-directional test function, and a first derivative with respect to the y-direction acts
on the y-directional basis function and on the y-directional test function. The same holds for (3.10). For this
reason, the basis functions for the x-component should be piecewise differentiable with respect to x and the
basis functions for the y-component should be piecewise differentiable with respect to y . Basis functions
that satisfy this condition are

φx
mn = Λm(x)Πn(y)
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Figure 3.3: Basis function corresponding to node mn

for the x component and

φ
y
mn = Πn(x)Λm(y)

for the y component, where

Λm(x) =
{

1− 1
∆x |x −xm | |x −xm | ≤∆x

0 |x −xm | >∆x

and

Πn(y) =


1 yn− 1

2
< y < yn+ 1

2
1
2 y = yn− 1

2

∨
y = yn+ 1

2

0 y > yn− 1
2

∨
y > yn+ 1

2

.

Figure 3.3 shows the behaviour of the basis function corresponding to node m,n.

With the help of these basis functions the weighting procedure can be performed. In this example three
equations that have to be taken into account:

• Êinc = Ê+ (ξ0η0 −∇∇·)S(Ĵ)

• S(Ĵ) = ∫
x′ ĝ (x−x′)Ĵdx′

• Ĵ =χeÊ.

The corresponding expansions are

Êα ≈∑
m

∑
n

eαmnφ
α
mn ,

Sα ≈∑
m

∑
n

sαmnφ
α
mn ,

Ĵα ≈∑
m

∑
n

jαmnφ
α
mn ,

and

Ê inc
α ≈∑

m

∑
n

e inc,α
mn φαmn .

In the first equation Ê, Êinc and S(Ĵ) are all expanded in pulse times linear basis functions (rooftop basis
functions). In the second equation, S(Ĵ) and Ĵ are both expanded in pulse times pulse basis functions so that
the vector potential is eventually approximated following the midpoint rule. In the third equation, Ĵ and Ê are
also both expanded in pulse times pulse basis functions. After applying the weighting procedure to Ĵ = χeÊ ,
the coefficients jαmn can be determined and used to find the coefficients sαmn .
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X-COMPONENT

Substitution of the basis functions and the test functions in the weak form for the x-component, gives

M∑
m=1

N∑
n=1

ex
mn

{∫
Ω
Λm(x)Πn(y)Λp (x)Πq (y)dΩ

}
−

M∑
m=1

N∑
n=1

sx
mn

{∫
Ω

k2
bΛm(x)Πn(y)Λp (x)Πq (y)dΩ−

∫
Ω

∂

∂x

[
Λm(x)Πn(y)

] ∂

∂x

[
Λp (x)Πq (y)

]
dΩ

}
+

M∑
m=1

N∑
n=1

s y
mn

{∫
Ω

∂

∂y

[
Πm(x)Λn(y)

] ∂

∂x

[
Λp (x)Πq (y)

]
dΩ

}
=

M∑
m=1

N∑
n=1

e inc,x
mn

{∫
Ω
Λm(x)Πn(y)Λp (x)Πq (y)dΩ

}
(3.14)

for p = 1, ..,M and q = 1, ..,N with M the number of nodes in x-direction and N the number of nodes in y-
direction. Each of the integrals can be evaluated making use of the fact that all integrands can be written as a
product of functions of x and functions of y .

∫
Ω
Λm(x)Πn(y)Λp (x)Πq (y)dΩ =

∫
x
Λm(x)Λp (x)dx

∫
y
Πn(y)Πq (y)dy

= δn,q∆y
∫

x
Λm(x)Λp (x)dx

= 1

6
δn,q∆x∆y

(
δm,p−1 +4δm,p +δm,p+1

)
(3.15)

∫
Ω

k2
bΛm(x)Πn(y)Λp (x)Πq (y)dΩ = 1

6
k2

bδnq∆x∆y
(
δm,p−1 +4δm,p +δm,p+1

)
(3.16)

∫
Ω

∂

∂y

[
Πm(x)Λn(y)

] ∂

∂x

[
Λp (x)Πq (y)

]
dΩ =

∫
x

[
∂

∂x
Λp (x)

]
Πm(x)dx

∫
y

[
∂

∂y
Λn(y)

]
Πq (y)dy

= −1

2

(
δm,p+1 −δm,p−1

) 1

2

(
δn,q+1 −δn,q−1

)
(3.17)

∫
Ω

∂

∂x

[
Λm(x)Πn(y)

] ∂

∂x

[
Λp (x)Πq (y)

]
dΩ =

∫
x

∂

∂x
Λm(x)

∂

∂x
Λp (x)dx

∫
y
Πn(y)Πq (y)dΩ

= −δn,q
1

∆x
∆y

(
δm,p−1 −2δp,m +δm,p+1

)
(3.18)

Substitution of (3.15), (3.16), (3.17) and (3.18) in (3.14) and deviding by ∆x∆y finally gives

1

6

(
ex

p−1,q +4ex
p,q +ex

p+1,q

)
− 1

6
k2

b

(
sx

p−1,q +4sx
p,q + sx

p+1,q

)
− 1

∆x2

(
sx

p−1,q −2sx
p,q + sx

p+1,q

)
− 1

4∆x∆y

(
s y

p+1,q+1 − s y
p−1,q+1 − s y

p+1,q−1 + s y
p−1,q−1

)
= 1

6

(
e inc,x

p−1,q +4e inc,x
p,q +e inc,x

p+1,q

)
(3.19)

for p = 1, ..,M and q = 1, ..,N.

Y-COMPONENT

Substitution of the basis functions and the test functions in the weak form for the y−component, gives
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M∑
m=1

N∑
n=1

e y
mn

{∫
Ω
Πm(x)Λn(y)Πp (x)Λq (y)dΩ

}
−

M∑
m=1

N∑
n=1

s y
mn

{∫
Ω

k2
bΠm(x)Λn(y)Πp (x)Λq (y)dΩ−

∫
Ω

∂

∂y

[
Πm(x)Λn(y)

] ∂

∂y

[
Πp (x)Λq (y)

]
dΩ

}
+

M∑
m=1

N∑
n=1

sx
mn

{∫
Ω

∂

∂x

[
Λm(x)Πn(y)

] ∂

∂y

[
Πp (x)Λq (y)

]
dΩ

}
=

M∑
m=1

N∑
n=1

e inc,y
mn

{∫
Ω
Πm(x)Λn(y)Πp (x)Λq (y)dΩ

}
(3.20)

for p = 1, ..,M and q = 1, ..,N with M the number of nodes in x-direction and N the number of nodes in y-
direction. The integrals can be calculated in the same way as for the x-component. The resuts are given
by ∫

Ω
Πm(x)Λn(y)Πp (x)Λq (y)dΩ = 1

6
δmp∆x∆y

(
δn,q−1 +4δn,q +δn,q+1

)
(3.21)∫

Ω
k2

bΠm(x)Λn(y)Πp (x)Λq (y)dΩ = 1

6
k2

bδmp∆x∆y
(
δn,q−1 +4δn,q +δn,q+1

)
(3.22)∫

Ω

∂

∂x

[
Λm(x)Πn(y)

] ∂

∂y

[
Πp (x)Λq (y)

]
dΩ = −1

2

(
δm,p+1 −δm,p−1

) 1

2

(
δn,q+1 −δn,q−1

)
(3.23)∫

Ω

∂

∂y

[
Πm(x)Λn(y)

] ∂

∂y

[
Πp (x)Λq (y)

]
dΩ = −δm,p∆x

1

∆y

(
δn,q−1 −2δn,q +δn,q+1

)
. (3.24)

Substitution of (3.21), (3.22), (3.23) and (3.24) in (3.20) and deviding by ∆x∆y this time gives

1

6

(
e y

p,q−1 +4e y
p,q +e y

p,q+1

)
− 1

6
k2

b

(
s y

p,q−1 +4s y
p,q + s y

p,q+1

)
− 1

∆y2

(
s y

p,q−1 −2s y
p,q + s y

p,q+1

)
− 1

4∆x∆y

(
sx

p+1,q+1 − sx
p−1,q+1 − sx

p+1,q−1 + sx
p−1,q−1

)
= 1

6

(
e inc,y

p,q−1 +4e inc,y
p,q +e inc,y

p,q+1

)
(3.25)

for p = 1, ..,M and q = 1, ..,N.

Now (3.19) and (3.25) can be written as a system like (3.12), but of reduced size because the expressions do
not depend on the number of the basis function anymore, only on the number of the test function. In this
example the complete system can be calculated quickly by defining central difference matrices. The result
would be

BNE x RT
N −k2

bBNSx RT
N −Lxx Sx RT

N −Lx S y Ly = BNE inc,x RT
N

RME y B T
M −k2

bRMS y B T
M −RMS y LT

y y −Lx Sx Ly = RME inc,y B T
M

where

B (M×M+2)
M = 1

6


1 4 1

. . .
. . .

. . . 0

0
. . .

. . .
. . .

1 4 1

 and B (N×N+2)
N = 1

6


1 4 1

. . .
. . .

. . . 0

0
. . .

. . .
. . .

1 4 1

 .

The finite difference matrices are written as

L(M×M+2)
xx = 1

∆x2


1 −2 1

. . .
. . .

. . . 0

0
. . .

. . .
. . .

1 −2 1

 and L(N×N+2)
y y = 1

∆y2


1 −2 1

. . .
. . .

. . . 0

0
. . .

. . .
. . .

1 −2 1

 ,
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L(M×M+2)
x = 1

2∆x


−1 0 1

. . .
. . .

. . . 0

0
. . .

. . .
. . .

−1 0 1

 and L(N×N+2)
y = 1

2∆y


−1 0 1

. . .
. . .

. . . 0

0
. . .

. . .
. . .

−1 0 1

 .

Finally, the matrices

R(M×M+2)
M =


0 1 0
...

. . . 0
...

... 0
. . .

...
0 1 0

 and R(N×N+2)
N =


0 1 0
...

. . . 0
...

... 0
. . .

...
0 1 0


strip the first and the last row or column of matrices respectively.

The matrices Sx and S y are constructed in a couple of steps. First note that

S( Ĵα)(x) =
∫

x′
ĝ (x−x′) Ĵα(x′)dx′

=
∫

x′
ĝ (x−x′)

M∑
m=1

N∑
n=1

jmnΠm(x ′)Πn(y ′)dx′

=
M∑

m=1

N∑
n=1

jmn ĝ (x−xmn)∆x∆y

and ∫
Ω

∑
k

∑
l

sklΠk (x)Πl (y)Πp (x)Πq (y)dΩ =
∫
Ω

∑
m

∑
n

jαmn ĝ (x−xmn)∆x∆yΠp (x)Πq (y)dΩ⇔
∑
k

∑
l

sklδkpδl q∆x∆y = ∑
m

∑
n

jαmn∆x∆y
∫
Ω

ĝ (x−xmn)Πp (x)Πq (y)dΩ⇒

spq ≈ ∑
m

∑
n

jαmn ĝ (xpq −xmn)∆x∆y. (3.26)

Furthermore, the weighting procedure applied to Ĵ =χeÊ determines the coefficients jαmn . It follows that∫
Ω

∑
m

∑
n

jαmnΠm(x)Πn(y)Πp (x)Πq (y)dΩ =
∫
Ω
χe

∑
m

∑
n

eαmnΠm(x)Πn(y)Πp (x)Πq (y)dΩ⇔

jαpq∆x∆y = ∑
m

∑
n

eαmn

∫
Ω
χeΠm(x)Πn(y)Πp (x)Πq (y)dΩ⇒

jαpq ≈ χepq eαpq (3.27)

where in the last step the contrast function is assumed to be constant within each voxel.

Substituting (3.27) in (3.26) gives the final expression for the coefficients of the matrices Sx and S y . The
first possibility is to compute each coefficient seperately by evaluating (3.26) for each node p, q . The second
possibility is to recognise a convolution in (3.26) and compute the result with fast fourier transforms (FFT). In
practise the second possibility will always be used when possible, because it reduces the computation time
considerably.

3.6. RESULTS
The methods discussed in 3.4 and 3.5 have both been tested with 61 grid nodes in each direction. In the test
case the incident field, a plane wave, enters a rectangular region. The incident field points in the x-direction
and propagates in the y-direction, described as Ex (x, y) = e−ikb y and Ey (x, y) = 0. In the middle of the rect-
angular region there is a circular region with a permittivity of five times the background permittivity. The
diameter of the circle is 0.14 meters and the background material has the permittivity of vacuum. There is no
conduction in this case and the frequency used is 128 ·106 Hz. Figures 3.4a and 3.4b show the absolute value
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of the x-component and the y-component of the resulting electric field obtained with the method described
in Example 1. Figures 3.6a and 3.6b show the x-component and the y-component of the resulting electric
field obtained with the method described in Example 2. As can be seen in those figures, the circular region
scatters the plane wave in x- and y-directions. In all figures ten percent of the domain has been cut off from
all boundaries. This is done because at this point the method described in Example 1 shows inaccuracies at
the boundaries.
Figures 3.5 and 3.7 show the behaviour of the electric fields along the symmetry axes of the circular domain.
Example 2 has also been tested with a finer mesh and it resulted in a better accuracy. An important point of
focus is that the tangential components of the electric field (Ey along x and Ex along y) have to be continuous
as the boundary conditions prescribe, and the normal components (Ey along y and Ex along x) may be dis-
continuous. Figure 3.8 shows the electric fields along the axes for the case where tested with 257 grid nodes
in each direction. Example 1 has not been tested with the same resolution because of memory limitations.
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Figure 3.4: Absolute value of the electric fields in x- and y-directions obtained with the method explained in Example 1 and 61 grid nodes
per direction.
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Figure 3.5: Electric fields along the axes obtained with the method explained in Example 1 and 61 grid nodes per direction.
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Figure 3.6: Electric fields in x- and y-directions obtained with the method explained in Example 2 and 61 grid nodes per direction.
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Figure 3.7: Electric fields along the axes obtained with the method explained in Example 2 and 61 grid nodes per direction.
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Figure 3.8: Electric fields along the axes obtained with the method explained in Example 2 and 257 grid nodes per direction.





4
SOLVERS

Once a discretised system Ax = b has been obtained, it can be solved with several numerical solution meth-
ods. Which ones are suitable depends among others on the structure of the system matrix and the problem
size. Smaller systems are usually solved with a direct solution methods like LU decomposition or Cholesky
decomposition. For larger systems one should switch to iterative solution methods. Also in the method ex-
plained in Section 3.5 an iterative solution method is preferable, because then matrix vector products can be
accelerated by using fast fourier transforms.
Two groups of iterative methods are Basic Iterative Methods (BIM’s) and Krylov Subspace Methods. Basic It-
erative Methods form the basis of the more advanced Krylov Subspace Methods. In this chapter some of the
Krylov Subspace Methods will be discussed.

Krylov subspace methods are based on the idea that the iterated solution xi is an element of K i (A;r0), where

K i (A;r0) = span
{

r0, Ar0, ..., Ai−1r0
}

(4.1)

For systems with a symmetric positive definite system matrix A, the Chebyshev method and Conjugent Gra-
dient (CG) method can be used. However, for scattering problems the system matrix is in general not sym-
metric. Also for these matrices Krylov Subspace Methods have been developed. Bi-CG, Bi-CGSTAB, GMRES
and IDR(s) are methods of this kind. In this chapter GMRES and IDR(s) will be discussed briefly.

4.1. GMRES
In each iteration of the GMRES method the solution is approximated such that

||ri ||2 = ||b− Axi ||2 = minz∈K i (A,r0)||r0 − Az||2. (4.2)

This means that the residual in iteration i is orthogonal to AK i (A;r0). GMRES is a stable method with super-
linear convergence in many cases. However, GMRES is also an example of a method with long recurrences,
which means that the work per iteration and memory requirements increase as the number of iterations
increases. A solution to this problem is to restart GMRES after a certain number of iterations with the last
approximate solution as a starting vector. Drawbacks of this approach are that optimality and superlinear
convergence are lost.

4.2. IDR(S)
The Induced Dimension Reduction method (IDR(s)) is a relatively new method that is used to solve large
nonsymmetric systems. The idea behind the method is based on the IDR theorem of which a generalised
version has been published in [5]:

Theorem 2. Let A be any matrix inCN×N , let v0 be any nonzero vector inCN , and let G0 be the full Krylov space
K N (A,v0). Let S denote any (proper) subspace of CN such that S and G0 do not share a nontrivial invariant
subspace of A, and define the sequence G j , j = 1,2, ..., as

G j = (I −ω j A)(G j−1 ∩S ),
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where the ω j ’s are nonzero scalars. Then the following hold:
i) G j ⊂G j−1∀ j > 0.
ii) G j = {0} for some j ≤ N .

In the algorithm the residuals ri are forced to be elements of the nested subspaces Gi . These subspaces are
decrasing in dimension, which means that there is a residual rm that is an element of Gm = {0}. Once this
residual is obtained, the algorithm stops.

4.3. PRECONDITIONING
In order to accelerate convergence, both sides of the equation Ax = b can be multiplied with a preconditioner
M . By doing this, a new system with system matrix M−1 A arises. By choosing the precondioner wisely, the
spectrum of the new system matrix can become much more favorable (clustered around 1) which in turn
results in faster convergence. Ideally the matrix M would be equal to A, but the computation of A−1 is very
expensive for systems that are being solved iteratively. A preconditioner equal to the identity matrix would
result in a fast computation of M−1 A, but then the spectrum of the system matrix does not improve. In
practice the preconditioner is chosen somewhere in between.



5
NUMERICAL CHALLENGES

There are a couple of numerical challenges that have to be dealt with. In this chapter those numerical chal-
lenges will be described and clearified with figures.

In Chapter 1 it has already been discussed that the method described in Section 3.5 shows inaccuracies at
permittivity interfaces. This inaccuracy is visible only in case of a lossy dielectric material, which means that
there is conduction. To show the inacurracy, the electric field is approximated when scattering on a two-
layered cylinder. The outer layer has a relative permittivity of 7.5 and a conductivity of 0.048 siemens per
meter. The inner cylinder has a relative permittivity of 72 and a conductivity of 0.9 siemens per meter. The
cylinder is surrounded by vacuum and the incident field points in the x-direction and propagates in the y-
direction.
Figure 5.1 shows the electric field along the symmetry axes of the cylinders in this situation. The electric
jumps are clearly visible in the graph for the y-component of the electric field along the x-axis and slightly less
visible in the graph for the x-component along the y-axis. These components correspond with the tangential
components of the electric field along the cylinder layers. The boundary conditions of Maxwell’s equations,
however, tell that these components are supposed to be continuous.
The jumps occur at permittivity interfaces only. This gives rise to the idea that weakening the contrast func-
tion at permittivity interfaces would improve the results. Weakening the contrast function can be seen as a
result of choosing different basis functions. Using an expansion with linear basis functions in both x- and
y-directions indeed decreases the jumps, as can be seen in Figure 5.2. Even though in this case the contrast
function is weakened by averaging over the four neighbouring grid points, a jump is still there. Moreover,
when working with lower resolution, the improved result is even more different from what is expected.

The second thing that attracts attention is that in the method described in Section 3.4, the electric field blows
up at the boundaries of the compuational domain. Also in the method described in Section 3.5 a jump is
visible at the boundary, although much smaller than in Section 3.4. At this point it is not clear what is causing
this.

One general requirement that has to be taken into account is that the computation time has to be kept short.
The triangular mesh with grid points at the vertices of the triangle results in a long computation time because
the system matrix is being filled via assembly. The rectangular mesh with grid points at the centers of the
voxels results in a shorter computation time, because the entire system matrix can be constructed via matrix
vector products.
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Figure 5.1: Electric fields along the axes obtained with the method explained in Example 2 and 257 grid nodes per direction.
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Figure 5.2: Electric fields along the axes obtained with the method explained in Example 2 and 257 grid nodes per direction.



6
GOAL OF THE PROJECT AND WORKING

METHOD

As described in Chapter 5 a couple of problems have to be dealt with. In this chapter some ideas will be
proposed that could result in a better solution method. The main goals are

1. to obtain an accurate solution and

2. to obtain it fast.

From studying the literature, two things come forward. The first observation is that the choice of basis func-
tions affects the results considerably. This was also shown in Chapter 5. Second, different formulations result
in different accuracies, see [6]. Warnings regarding convergence have been made in [7]: choose the right ba-
sis functions for a specific formulation. The choice of basis functions seems to be very closely related to the
choice of formulation. Finally, the mesh is a variable aspect as well.

6.1. PROBLEM FORMULATION
In order to continue the research, two things have to be decided. What kind of mesh will be chosen and which
formulation will be implemented?
Earlier it was discussed that a triangular mesh with grid points at the vertices implies a long computation
time because of matrix assembly. The conventional method is to choose a rectangular mesh with grid points
at the centers, like in the method in Section 3.5. Also this study will focus on the rectangular mesh.
In order to choose a formulation, it is interesting to have a look what has been done already. Several people
have been working with the rectangular mesh and Table 6.1 gives a short summary of the methods used. In
[8] and [9] P. Zwamborn tests his method on the two-layered cylinder and does not find any surprising jumps.
In contrast to the method described in Section 3.4, P. Zwamborn weakens the constrast function before he ap-
plies the testing procedure. Also the formulation is different: P. Zwamborn chooses for the DVIE formulation
instead of the EVIE formulation. Therefore the question arises how well the method in Section 3.5 performs,
once formulated in term of the displacement current.
There is one general fact that has to be taken into account when choosing a formulation and basis functions.
For Galerkin’s Method to converge in norm, the test functions should span the dual space of the range of the
operator corresponding with the volume integral equation. Many methods do not take this into account. The
range of the EVIE formulation contains all functions that are square integrable and who’s divergence is square
integrable as well. The dual range is therefore a larger function space than [L2(R3)]3 and it is not straightfor-
ward how to choose test functions that span this space. The same holds for the DVIE formulation.
A possibility is to avoid this problem is to use the JVIE formulation. The range of the JVIE operator is [L2(R3)]3

and its dual is again [L2(R3)]3. Therefore the basis and test functions can be chosen such that they span the
function space [L2(R3)]3. Functions that span [L2(R3)]3 are for example step functions, but also rooftop func-
tions or linear functions in all directions. Again it is important to take into account the behaviour of J when
choosing the test functions. From the E and D boundary conditions and the expression for J one can derive
that the normal and the tangential components of the induced current density should be discontinuous. This

31



32 6. GOAL OF THE PROJECT AND WORKING METHOD

means that in the JVIE formulation constant basis functions in both directions would take into account the
physical properties of J better than rooftop basis functions.

Name Weak Form Formulation Expansion Mesh Basis functions Grid points

Abubakar 1 EVIE E,S,Einc Voxel Rooftop Middle
Kooij 1 EVIE E Voxel Rooftop Middle
Polimeridis 2 JVIE J,ε Voxel Pulse Middle
Stijlen 1 EVIE E,S,Einc Voxel Rooftop Middle
Zwamborn 2 DVIE D,S,Einc Voxel Rooftop Middle
Zwamborn 2 DVIE D,S Voxel Rooftop Staggered, at boundaries

Table 6.1: Overview of previous methods.

6.2. APPROACH
The first part of the research will focus on the accuracy of the solution and in particular on localising the cause
of the jumps that were shown in Chapter 5. Since two methods are available, one that works (P. Zwamborn)
and one that does not work accurately (described in Section 3.5), it is interesting to compare the two methods.
In order to find the step that causes the problem, the following poceedings will be carried out.

• Expanding J in Section 3.5 with linear basis functions so that all expansions are consequent.

• Implement the DVIE formulation with rooftop basis functions to check the method in Section 3.5 with
Zwamborn’s method.

• If the latter step makes no or insufficient difference, the contrast function will be weakened before the
expansion procedure takes place.

• Implement the JVIE formulation with rooftop basis functions to see the difference between the EVIE,
DVIE and JVIE formulations.

• Run the triangle example with linear basis functions on a server to check whether jump is visible in this
case. This method differs from the conventional method on the following aspects: grid points at the
vertices of elements, linear basis functions in all directions and a triangular mesh.

• Check whether the jumps are caused by inaccurate modeling of the borders of high permittivity do-
mains by choosing clever geometries.

Once an accurate solution has been obtained, the aim is to reduce the computation time by applying a suit-
able iterative method. First GMRES will be applied and later IDR(s) will be studied as a new alternative itera-
tive method.

6.3. BENCHMARK PROBLEM
To study the performance of future methods, a benchmark problem is introduced. The transverse electric
(TE) polarisation is considered, which means that the electric field has its components in the transverse (x y-
) plane and the magnetic field is perpendicular to the electric field. This means that a 2D configuration is
satisfactory to model the electric field.
The 2D benchmark problem consists of a rectangular region with a two-layered cylinder in the middle. The
outer layer has a relative permittivity of 7.5 and a conductivity of 0.048 siemens per meter. The inner cylinder
has a relative permittivity of 72 and a conductivity of 0.9 siemens per meter. The cylinder is surrounded
by vacuum and the incident field points in the x-direction and propagates in the y-direction. Figure 6.1a
schematically shows the situation. In this figure εr = ε

ε0
.

Next to this benchmark problem, also the configuration shown in Figure 6.1b will be studied. Earlier studies
showed that in this case, where one of the directional derivatives is zero, no jump is visible. In order to exclude
the staircasing effect from the list of causes for the jumps, the incident field can be changed from a plane wave
propagating in one direction to a plane wave propagating in two directions. By doing this, the borders of the
domain with high permittivity are modeled accurately and both directional derivatives exist.
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(a) (b)

Figure 6.1: Benchmark problems with different geometries.





A
INVERSE FOURIER TRANSFORM OF THE

GREEN’S FUNCTION

First the identity

γ0 =
√
η0ξ0 =

√
(sε0)(sµ0) = s

p
ε0µ0 = s

c
= s

ω
kb

s=ωi= kbi

is introduced. The Green’s function therefore translates to

g̃ = 1

kT k−k2
b

and in two dimensions,

ĝ (x, s) = 1

(2π)2

∫
k∈R2

1

kT k−k2
b

e−ik·xdV

= 1

(2π)2

∫
k∈R2

1

k2
1 +k2

2 −k2
b

e−ik1x1−ik2x2 dV

Γ=
√

k2
b−k2

1= 1

(2π)2

∫
k1∈R

e−ik1x1

∫
k2∈R

1

k2
2 −Γ2

e−ik2x2 dk2dk1.

Since the function in the inner integral has two simple poles, the residue theorem gives∫
C

1

z2 −Γ2 e−izx2 dz = 2πi Res( f ,Γ) = πi

Γ
e−iΓ|x2|,

where C is the closed curve along the semicircle with radius R in the upper half plane and f (z) = 1
z2−Γ2 e−izx2 .

The integral along the curved path βr = Re it drops to zero when R →∞, since∣∣∣∣∫
βr

1

z2 −Γ2 e−izx2 dz

∣∣∣∣= ∣∣∣∣∫
βr

Ri

+R2e2it −Γ2
e i(t−Re it x2)dt

∣∣∣∣≤ ∫
βr

|Ri|∣∣R2e2it −Γ2
∣∣ ∣∣∣e i(t−Re it x2)

∣∣∣d t ≤
∫
βr

1∣∣∣Re2it − Γ2

R

∣∣∣dt .

Therefore ∫
k2∈R

1

k2
2 −Γ2

e−ik2x2 dk2 = πi

Γ
e−iΓ|x2|

and

ĝ (x, s) = i

4π

∫
k1∈R

e−ik1x1−iΓ|x2|

Γ
dk1

= i

4π

∫
k1∈R

e
−ik1x1+

√
k2

b−k2
1 |x2|√

k2
b −k2

1

dk1. (A.1)

In (A.1) a Hankelfunction of the second kind can be recognised. [10] states

ĝ (x, s) =− i

4
H (2)

0 (kb|x|).
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B
WEAKENING OF THE GREEN’S FUNCTION

The function

ĝ (x, s) =− i

4
H (2)

0 (kb|x|)
has a singularity at x = 0.

Recall that the Green’s function satisfies

∇2 ĝ (x, s)+k2
b ĝ (x, s) =−δ(x).

In order to avoid the singularity in the Green’s function, the whole function is approximated by a ’weakened’
Green’s function, that satisfies

∇2 ĝ w(x, s)+k2
b ĝ w(x, s) =− f (x) (B.1)

with

f (x) =
{ 1
πa2 if x ∈D

0 if x 6∈D
and D a circular domain with radius a = 1

2 min{∆x∆y}. In this way D is contained in one cell and the function
f (x) approaches the Dirac delta function as a ↓ 0.

The solution of (B.1) is given by

ĝ w(x, s) =
∫

x′∈R2
ĝ (x−x′, s) f (x′)dV ′

= 1

πa2

∫
x′∈D

ĝ (x−x′, s)dV ′

In order to actually compute ĝ w the problem is split in two cases: x 6∈D and x ∈D. In both cases the integral

ĝ w(x, s) = − i

4πa2

∫
x′∈D

H (2)
0 (kb|x−x′|)dV ′ (B.2)

has to be evaluated.

The Hankel function inside the integral can be written as an infinite sum, using the addition theorem for the
Hankel function H (2)

0 which can be found in [11]. With φ the angle between x and x′ and Jk the k-th order
Bessel function of the first kind, the result is given by

H (2)
0 (kb|x−x′|) =

{∑∞
k=−∞ Jk (kb|x|)H (2)

k (kb|x′|)e ikφ, |x| ≤ |x′|∑∞
k=−∞ Jk (kb|x′|)H (2)

k (kb|x|)e ikφ, |x′| ≤ |x| . (B.3)

In the first case, where x 6∈D, it holds that |x| > |x′| for all x′ ∈D and therefore

ĝ w(x, s) = − i

4πa2

∫
x′∈D

∞∑
k=−∞

Jk (kb|x′|)H (2)
k (kb|x|)e ikφdV ′. (B.4)
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Transforming (B.4) into polar coordinates, gives

ĝ w(x, s) = − i

4πa2

∫ 2π

0

∫ a

0

∞∑
k=−∞

Jk (kbr )H (2)
k (kb |x|)e i kφr dr dφ

= −
∞∑

k=−∞

i

4πa2 H (2)
k (kb|x|)

∫ 2π

0
e ikφdφ

∫ a

0
Jk (kbr )r dr

= − i

2a2 H (2)
0 (kb|x|)

∫ a

0
J0(kbr )r dr

= − i

2a2 H (2)
0 (kb|x|)

1

k2
b

∫ kba

0
z J0(z)dz

= − i

2a2 H (2)
0 (kb|x|)

1

k2
b

∫ kba

0

d

dz
(z J1(z))d z

= − i

2akb
H (2)

0 (kb|x|)J1(kba).

In the second case, where x ∈ D, only ĝ w(0, s) is of interest for the discretisation procedure. To obtain this
value, |x| = ε < a is fixed after which the limit ε ↓ 0 is taken. The integration region is split in two parts: the
circular disc Dε with radius ε and the rest of D, denoted by D\Dε. In the point x = 0 (B.2) now becomes

ĝ w (0, s) = − i

4πa2 lim
ε↓0

[∫
x′∈Dε

H (2)
0 (kb|x−x′|)dV ′+

∫
x′∈D\Dε

H (2)
0 (kb|x−x′|)dV ′

]
. (B.5)

For the second integral in (B.5) it holds that |x| < |x′| and (B.3) tells that∫
x′∈D\Dε

H (2)
0 (kb|x−x′|)dV ′ =

∫
x′∈D\Dε

∞∑
k=−∞

Jk (kbε)H (2)
k (kb|x′|)e ikφdV ′

=
∞∑

k=−∞
Jk (kbε)

∫ 2π

0
e ikφdφ

∫ a

ε
H (2)

k (kbr )r dr

= J0(kbε)
2π

k2
b

∫ kba

kbε
H (2)

0 (z)zdz

= J0(kbε)
2π

kb

(
H (2)

1 (kba)a−H (2)
1 (kbε)ε

)
. (B.6)

For the first integral in (B.5) it holds that |x| > |x′| and (B.3) tells that∫
x′∈Dε

H (2)
0 (kb|x−x′|)dV ′ =

∫
x′∈Dε

∞∑
k=−∞

Jk (kb|x′|)H (2)
k (kb|x|)e ikφdV ′

=
∞∑

k=−∞
H (2)

k (kbε)
∫ 2π

0
e ikφdφ

∫ ε

0
Jk (kbr )r dr

= 2πH (2)
0 (kbε)

∫ ε

0
J0(kbr )r dr

= 2πε

kb
H (2)

0 (kbε)J1(kbε). (B.7)

Substitution of (B.6) and (B.7) in (B.5) and taking the limit gives

ĝ w(0, s) = − i

4πa2 lim
ε↓0

[
2πε

kb
H (2)

0 (kbε)J1(kbε)+ J0(kbε)
2π

kb

(
H (2)

1 (kba)a−H (2)
1 (kbε)ε

)]
= − i

2kba

(
H (2)

1 (kba)− 2i

πkba

)
.

The weakened Green’s function is therefore given by

ĝ w(x, s) =
{− i

2akb
H (2)

0 (kb|x|)J1(kba) if x 6∈D
− i

2kba

(
H (2)

1 (kba)− 2i
πkba

)
if x = 0

and this function can be used to approximate the Green’s function in all grid points.
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