Simulating Hearing Loss
Delft University of Technology

Leo Koop

April 9, 2015

Outline

(1) Introductions and Motivation

Introduction
Motivation
The Ear and Cochlea
(2) Modeling the Cochlea

The General Model
Linear and Non Linear Models
(3) Simulating Hearing Loss

Approach
The Linear Case; A Sound Filter
Results
(4) Testing and Outlook

Testing
Outlook

Next Subsection

(1) Introductions and Motivation

Introduction
Motivation
The Ear and Cochlea
(2) Modeling the Cochlea

The General Model
Linear and Non Linear Models
(3) Simulating Hearing Loss

Approach
The Linear Case; A Sound Filter
Results
4) Testing and Outlook

Testing
Outlook

Simulating Hearing Loss

- Applied Mathematics Department at TU Delft
- Supervisor: Kees Vuik

Simulating Hearing Loss

- An incas ${ }^{3}$ project
- Supervisor: Peter van Hengel

Next Subsection

(1) Introductions and Motivation

Introduction

Motivation

The Ear and Cochlea
(2) Modeling the Cochlea

The General Model
Linear and Non Linear Models
(3) Simulating Hearing Loss

Approach
The Linear Case; A Sound Filter
Results
4 Testing and Outlook
Testing
Outlook

Motivation - Hearing Loss, Becoming more Prevalent

entre Publications Countries Programmes Governance About WHO
 Media centre

1.1 billion people at risk of hearing loss

WHO highlights serious threat posed by exposure to recreational noise
Press release

27 FEBRUARY 2015 | GENEVA - Some 1.1 billion teenagers and young adults are at risk of hearing loss due to the unsafe use of personal audio devices, including smartphones, and exposure to damaging levels of sound at noisy entertainment venues such as nightclubs, bars and sporting events, according to WHO. Hearing loss has potentially devastating consequences for physical and mental health, education and employment.

Motivation - Uses of a Hearing Loss Simulator

- Education

Motivation - Uses of a Hearing Loss Simulator

- Education
- Hearing loss prevention

Motivation - Uses of a Hearing Loss Simulator

- Education
- Hearing loss prevention
- Simplifying hearing aid development and testing

Next Subsection

(1) Introductions and Motivation

Introduction
Motivation

The Ear and Cochlea

(2) Modeling the Cochlea

The General Model
Linear and Non Linear Models
(3) Simulating Hearing Loss

Approach
The Linear Case; A Sound Filter
Results
4) Testing and Outlook

Testing
Outlook

The Ear

The Cochlea, a Cross Section

The Cochlea

Next Subsection

(1) Introductions and Motivation

Introduction
Motivation
The Ear and Cochlea
(2) Modeling the Cochlea

The General Model
Linear and Non Linear Models
(3) Simulating Hearing Loss

Approach
The Linear Case; A Sound Filter
Results
(4) Testing and Outlook

Testing
Outlook

Modeling the Cochlea

The Main Equation

$$
\begin{equation*}
\frac{\partial^{2} p}{\partial x^{2}}(x, t)-\frac{2 \rho \partial^{2} y}{h \partial t^{2}}(x, t)=0, \quad 0 \leq x \leq L, \quad t \geq 0 \tag{1}
\end{equation*}
$$

Modeling the Cochlea

The Main Equation

$$
\begin{equation*}
\frac{\partial^{2} p}{\partial x^{2}}(x, t)-\frac{2 \rho \partial^{2} y}{h \partial t^{2}}(x, t)=0, \quad 0 \leq x \leq L, \quad t \geq 0 \tag{1}
\end{equation*}
$$

- $y(x, t)$: The excitation of the oscillator

Modeling the Cochlea

The Main Equation

$$
\begin{equation*}
\frac{\partial^{2} p}{\partial x^{2}}(x, t)-\frac{2 \rho \partial^{2} y}{h \partial t^{2}}(x, t)=0, \quad 0 \leq x \leq L, \quad t \geq 0 \tag{1}
\end{equation*}
$$

- $y(x, t)$: The excitation of the oscillator
- $p(x, t)$: Pressure on the cochlear partition

Modeling the Cochlea

The Main Equation

$$
\begin{equation*}
\frac{\partial^{2} p}{\partial x^{2}}(x, t)-\frac{2 \rho \partial^{2} y}{h \partial t^{2}}(x, t)=0, \quad 0 \leq x \leq L, \quad t \geq 0 \tag{1}
\end{equation*}
$$

- $y(x, t)$: The excitation of the oscillator
- $p(x, t)$: Pressure on the cochlear partition
- ρ : Density of the cochlear fluid

Modeling the Cochlea

The Main Equation

$$
\begin{equation*}
\frac{\partial^{2} p}{\partial x^{2}}(x, t)-\frac{2 \rho \partial^{2} y}{h \partial t^{2}}(x, t)=0, \quad 0 \leq x \leq L, \quad t \geq 0 \tag{1}
\end{equation*}
$$

- $y(x, t)$: The excitation of the oscillator
- $p(x, t)$: Pressure on the cochlear partition
- ρ : Density of the cochlear fluid
- h : Height of the scala
- L : Length of the cochlea
- t Time

Modeling the Cochlea

The pressure term

$$
\begin{equation*}
p(x, t)=m \ddot{y}(x, t)+d(x) \dot{y}(x, t)+s(x) y(x, t) \tag{2}
\end{equation*}
$$

Modeling the Cochlea

The pressure term

$$
\begin{equation*}
p(x, t)=m \ddot{y}(x, t)+d(x) \dot{y}(x, t)+s(x) y(x, t) \tag{2}
\end{equation*}
$$

- m : Mass of the membrane
- $d(x)$: Position dependent damping
- $s(x)$: Position dependent stiffness

Simplifying the equations

We introduce $g(x, t)$ as follows:

$$
\begin{equation*}
g(x, t)=d(x) \dot{y}(x, t)+s(x) y(x, t) \tag{3}
\end{equation*}
$$

Then rewrite $m \ddot{y}(x, t)$ as:

$$
\begin{equation*}
m \ddot{y}(x, t)=p(x, t)-g(x, t) \tag{4}
\end{equation*}
$$

This allows us to then rewrite Equation (1) as:

$$
\begin{equation*}
\frac{\partial^{2} p}{\partial x^{2}}(x, t)-\kappa p(x, t)=-\kappa g(x, t) \tag{5}
\end{equation*}
$$

Where $\kappa=\frac{2 \rho}{h m}$.

Simplifying the equations

Equation 5 can be further reduced to 2 first degree ODEs by introducing v as follows:

$$
\begin{gather*}
\frac{\partial y}{\partial t}(x, t)=v(x, t) \tag{6}\\
\frac{\partial v}{\partial t}(x, t)=\frac{p(x, t)-g(x, t)}{m} \tag{7}
\end{gather*}
$$

Which can then be solved with a numerical integrator, say Classical Runge Kutta 4

Next Subsection

(1) Introductions and Motivation

Introduction
Motivation
The Ear and Cochlea
(2) Modeling the Cochlea

The General Model
Linear and Non Linear Models
(3) Simulating Hearing Loss

Approach
The Linear Case; A Sound Filter
Results
(4) Testing and Outlook

Testing
Outlook

Damping and Stiffness Terms

The pressure term

$$
p(x, t)=m \ddot{y}(x, t)+d(x) \dot{y}(x, t)+s(x) y(x, t)
$$

Damping and Stiffness Terms

The pressure term

$$
p(x, t)=m \ddot{y}(x, t)+d(x) \dot{y}(x, t)+s(x) y(x, t)
$$

Linear damping term

$$
d(x)=\epsilon \sqrt{m s(x)}
$$

Damping and Stiffness Terms

The pressure term

$$
p(x, t)=m \ddot{y}(x, t)+d(x) \dot{y}(x, t)+s(x) y(x, t)
$$

Linear damping term

$$
d(x)=\epsilon \sqrt{m s(x)}
$$

Non-linear damping term

$$
\begin{aligned}
& d(x, \dot{y})=\left\{(1-\gamma)\left(\delta_{\text {sat }}-\delta_{\text {neg }}\right)\left[1-\frac{1}{1+e^{(\Lambda-\alpha) / \mu_{\alpha}}}\right]\right. \\
& \left.\quad+\gamma\left(\delta_{\text {sat }}-\delta_{\text {neg }}\right)\left[1-\frac{1}{1+e^{\Lambda-\beta / \mu_{\beta}}}\right]+\delta_{\text {neg }}\right\} \sqrt{m s(x)}
\end{aligned}
$$

THDelft

Damping and Stiffness Terms

The pressure term

$$
p(x, t)=m \ddot{y}(x, t)+d(x) \dot{y}(x, t)+s(x) y(x, t)
$$

Damping and Stiffness Terms

The pressure term

$$
p(x, t)=m \ddot{y}(x, t)+d(x) \dot{y}(x, t)+s(x) y(x, t)
$$

Linear stiffness term

$$
s(x)=s_{0} e^{-\lambda x}
$$

Damping and Stiffness Terms

The pressure term

$$
p(x, t)=m \ddot{y}(x, t)+d(x) \dot{y}(x, t)+s(x) y(x, t)
$$

Linear stiffness term

$$
s(x)=s_{0} e^{-\lambda x}
$$

Non-linear case; an additional delayed feedback stiffness term

$$
\begin{array}{r}
c(x, \dot{y})=\left\{(1-\gamma)\left(\sigma_{\text {zweig }}\right)\left[\frac{1}{1+e^{(\Lambda-\alpha) / \mu_{\alpha}}}\right]\right. \\
\left.+\gamma\left(\sigma_{\text {zweig }}\right)\left[\frac{1}{1+e^{\Lambda-\beta / \mu_{\beta}}}\right]\right\} \tag{8}
\end{array}
$$

TUD F Ift

A Sample Model Output

Figure: Modeling the response of the basilar membrane to a tone sound

Next Subsection

(1) Introductions and Motivation

Introduction
Motivation
The Ear and Cochlea
(2) Modeling the Cochlea

The General Model
Linear and Non Linear Models
(3) Simulating Hearing Loss

Approach
The Linear Case; A Sound Filter
Results
(4) Testing and Outlook

Testing
Outlook

Simulation Approach

- We have a good model of the normal cochlea
- Can we find the Cause given the Effect?

Simulation Approach

- We have a good model of the normal cochlea
- Can we find the Cause given the Effect?

Idea

Find a method to get back the original sound from the model of a healthy ear. Use this method on a model of a damaged ear to simulate hearing loss

THDelft

Next Subsection

(1) Introductions and Motivation

Introduction
Motivation
The Ear and Cochlea
(2) Modeling the Cochlea

The General Model
Linear and Non Linear Models
(3) Simulating Hearing Loss

Approach
The Linear Case; A Sound Filter
Results
(4) Testing and Outlook

Testing
Outlook

The Model Viewed as a Convolution

Sound: A cappella singing

Finding the Inverse Filter

If the original sound is x and the result from the model is y then the model is h

$$
y(t)=x(t) * h(t)
$$

Performing a Fourier Transformation results in:

$$
Y(f)=X(f) \cdot H(f)
$$

A change in basic operation from convolution to multiplication

Finding the Inverse Filter

Then H and H^{-1} are:

$$
\begin{aligned}
H(f) & =\frac{Y(f)}{X(f)} \\
H^{-1}(f) & =\frac{1}{H(f)}
\end{aligned}
$$

$X(f)$ Can then easily be found

$$
X(f)=\frac{Y(f)}{H(f)}
$$

And then:

$$
x(t)=\text { Inverse Fourier Transform of }(X(f))
$$

Next Subsection

(1) Introductions and Motivation

Introduction
Motivation
The Ear and Cochlea
(2) Modeling the Cochlea

The General Model
Linear and Non Linear Models
(3) Simulating Hearing Loss

Approach
The Linear Case; A Sound Filter
Results
(4) Testing and Outlook

Testing
Outlook

Some Results

Resynthesized sound

What Affects Sound Reproduction Quality

- Length of impulse response!!

What Affects Sound Reproduction Quality

- Length of impulse response!!
- Type of window used, Gaussian seems to be a good choice

What Affects Sound Reproduction Quality

- Length of impulse response!!
- Type of window used, Gaussian seems to be a good choice
- Which oscillator is used

What Affects Sound Reproduction Quality

- Length of impulse response!!
- Type of window used, Gaussian seems to be a good choice
- Which oscillator is used
- Integration time step used (affects sound quality)

What Affects Sound Reproduction Quality

- Length of impulse response!!
- Type of window used, Gaussian seems to be a good choice
- Which oscillator is used
- Integration time step used (affects sound quality)
- Number of oscillators in the Model

Next Subsection

(1) Introductions and Motivation

Introduction
Motivation
The Ear and Cochlea
(2) Modeling the Cochlea

The General Model
Linear and Non Linear Models
(3) Simulating Hearing Loss

Approach
The Linear Case; A Sound Filter
Results
4) Testing and Outlook

Testing
Outlook

Testing

- Objective testing may be limited
- Subjective testing
- Comparing two sounds on Right and Left channel does not work
- Consecutive listening tends to work better
- System limitations should be considered

Testing and Optimization, a Possibility

Resynthesized sound

Next Subsection

(1) Introductions and Motivation

Introduction
Motivation
The Ear and Cochlea
(2) Modeling the Cochlea

The General Model
Linear and Non Linear Models
(3) Simulating Hearing Loss

Approach
The Linear Case; A Sound Filter
Results
4) Testing and Outlook

Testing
Outlook

Outlook

- We have a good model of the ear

Outlook

- We have a good model of the ear
- Can we get good sound back from the model?

Outlook

- We have a good model of the ear
- Can we get good sound back from the model?
- Improving the sample rate

Outlook

- We have a good model of the ear
- Can we get good sound back from the model?
- Improving the sample rate
- Using multiple oscillators

Outlook

- We have a good model of the ear
- Can we get good sound back from the model?
- Improving the sample rate
- Using multiple oscillators
- Look for optimality using the settings required for the Non-linear model

Outlook

- We have a good model of the ear
- Can we get good sound back from the model?
- Improving the sample rate
- Using multiple oscillators
- Look for optimality using the settings required for the Non-linear model
- Resynthesizing sound from the non-linear model

