B-spline MPM in 2D and 3D

Pascal de Koster

Department of Numerical Analysis
Delft, University of Technology
March, 2018

Supervisors:
Dr. M. Möller and Dr. V. Galavi

Deltares

Enabling Delta Life

Introduction

Introduction

- Pile driving

Introduction

- Pile driving
- Large deformations

Introduction

Introduction

- Discretise the domain

Introduction

- Discretise the domain
- Derive equations of motion

Introduction

- Discretise the domain
- Derive equations of motion
- Solve using MPM (type of FEM)

Goal: improve basis functions

Goal: improve basis functions

- Current: Piecewise linears

Goal: improve basis functions

- Current: Piecewise linears
- Wanted: High order, non-negative, smooth

Goal: improve basis functions

- Current: Piecewise linears
- Wanted: High order, non-negative, smooth
- B-splines

Outline

(1) Mathematical model
(2) Material Point Method
(3) Higher order basis functions

- Lagrange basis functions
- B-spline basis functions
(4) Preliminary results
(5) Conclusion

Outline

(1) Mathematical model

(2) Material Point Method

(3) Higher order basis functions

- Lagrange basis functions
- B-spline basis functions
(4) Preliminary results
(5) Conclusion

Mathematical model

Mathematical model

- Conservation of momentum

Mathematical model

- Conservation of momentum

$$
\underbrace{\rho \frac{\partial \boldsymbol{v}}{\partial t}}_{m \cdot \boldsymbol{a}}=\underbrace{\nabla \cdot \boldsymbol{\sigma}}_{\boldsymbol{F}_{\text {int }}}+\underbrace{\rho \boldsymbol{g}}_{\boldsymbol{F}_{\text {ext }}}
$$

Mathematical model

- Conservation of momentum

$$
\underbrace{\rho \frac{\partial \boldsymbol{v}}{\partial t}}_{m \cdot \boldsymbol{a}}=\underbrace{\nabla \cdot \boldsymbol{\sigma}}_{\boldsymbol{F}_{i n t}}+\underbrace{\rho \mathbf{g}}_{\boldsymbol{F}_{\text {ext }}}
$$

- Displacement \rightarrow Stress \rightarrow Force \rightarrow Displacement

Outline

(1) Mathematical model

(2) Material Point Method
(3) Higher order basis functions

- Lagrange basis functions
- B-spline basis functions

4 Preliminary results
(5) Conclusion

Material Point Method

Material Point Method

- Particle in grid method: particles store information, equations solved on grid

Material Point Method

- Particle in grid method: particles store information, equations solved on grid
- Particles properties are projected onto the grid

Material Point Method

- Particle in grid method: particles store information, equations solved on grid
- Particles properties are projected onto the grid
- Equations are solved on the grid

Material Point Method

- Particle in grid method: particles store information, equations solved on grid
- Particles properties are projected onto the grid
- Equations are solved on the grid
- Update particles and reset the grid

Outline

(1) Mathematical model

(2) Material Point Method

(3) Higher order basis functions

- Lagrange basis functions
- B-spline basis functions
(4) Preliminary results
(5) Conclusion

Triangulations

- Easy refinement, good geometry description
- Basis functions: local support, non-negative, smooth

Lagrange basis functions

Lagrange basis functions

- Polynomial over each element

Lagrange basis functions

- Polynomial over each element
- Interpolatory property: $\delta_{i j}$

Lagrange basis functions

- Polynomial over each element
- Interpolatory property: $\delta_{i j}$
- Discontinuous derivatives over edges, negative parts

Problems with Lagrange basis

- Discontinuous derivatives

Problems with Lagrange basis

- Discontinuous derivatives
\rightarrow Grid crossing error

Problems with Lagrange basis

- Discontinuous derivatives
\rightarrow Grid crossing error
- Negative parts

Problems with Lagrange basis

- Discontinuous derivatives
\rightarrow Grid crossing error
- Negative parts
\rightarrow Negative masses

B-spline basis functions

B-spline basis functions

- Piecewise quadratic (or higher order polynomial), smooth, non-negative

B-spline basis functions

- Piecewise quadratic (or higher order polynomial), smooth, non-negative
- Not interpolatory ($\delta_{i j}$)

B-spline basis functions in 2D

- Basis functions over triangulations
- Smooth, continuous, smooth to zero at edge

Refine grid

- 6 sub-elements per element

Piecewise parabola

- Define parabola over each subtriangle

$$
p(x, y):=b(\boldsymbol{\zeta})=\sum_{\substack{i+j+k=2, i, j, k \geq 0}} b_{i, j, k} B_{i, j, k}^{2}(\boldsymbol{\zeta}) .
$$

Piecewise parabola

- Define parabola over each subtriangle
- Barycentric coordinates and Bézier ordinates

$$
p(x, y):=b(\boldsymbol{\zeta})=\sum_{\substack{i+j+k=2, i, j, k \geq 0}} b_{i, j, k} B_{i, j, k}^{2}(\zeta) .
$$

2D B-spline

2D B-spline

2D B-spline

2D B-spline

- Piecewise parabola, smooth, local, non-negative, partition of unity

2D B-spline

- Piecewise parabola, smooth, local, non-negative, partition of unity
- 3 basis functions per vertex

Outline

(1) Mathematical model

(2) Material Point Method

(3) Higher order basis functions

- Lagrange basis functions
- B-spline basis functions
(4) Preliminary results
(5) Conclusion

Spatial convergence of basis functions

MPM benchmark: vibrating bar

Results: vibrating bar

Lagrange basis

With grid crossing

Without grid crossing

Results: vibrating bar

Lagrange basis

B-spline basis

With grid crossing

Without grid crossing

6 particles per element

96 particles per element

Results: vibrating bar

B-spline basis

96 particles per element

Results：vibrating bar

B－spline basis

－No grid crossing error

6 particles per element

96 particles per element
ロ＞4 司＞4 三＞4 三＞三

Results: vibrating bar

B-spline basis

- No grid crossing error
- Many integration points necessary

6 particles per element

96 particles per element

Results: vibrating bar

B-spline basis

- No grid crossing error
- Many integration points necessary
- Non-zero y-velocity

6 particles per element

96 particles per element

Outline

(1) Mathematical model

(2) Material Point Method

(3) Higher order basis functions

- Lagrange basis functions
- B-spline basis functions

4 Preliminary results
(5) Conclusion

Conclusion for B-spline basis

Conclusion for B-spline basis

- Disadvantages
- Cumbersome implementation
- Hard to extend to higher order polynomials
- Many particles required for integration

Conclusion for B-spline basis

- Disadvantages
- Cumbersome implementation
- Hard to extend to higher order polynomials
- Many particles required for integration
- Advantages
- No grid-crossing error
- Higher order spatial convergence

Summary

Summary

- Goal: implement B-spline basis in MPM

Summary

- Goal: implement B-spline basis in MPM
- Grid refinement
- Piecewise parabolic basis function

Summary

- Goal: implement B-spline basis in MPM
- Grid refinement
- Piecewise parabolic basis function
- Problems with quadrature integration

Summary

- Goal: implement B-spline basis in MPM
- Grid refinement
- Piecewise parabolic basis function
- Problems with quadrature integration
- Outlook
- Gauss point for integration
- Implement B-splines in Deltares code

Questions?

