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1 Introduction

In this report the use of a Kalman filter in the Real Time URBIS model will be dis-
cussed. The Real Time URBIS model is a model which calculate the concentration
NO,, in a city or an industrialized region. The concentration of NO,, is assumed to be
equal to the sum of the concentrations for NO and NO,. Nitrogen oxides are formed
by the burning of fossil fuels in traffic and industry, they will arise if nitrogen from
the air and the fuels reacts with oxygen. These nitrogen oxides reacts under influence
of sunlight to air pollution, like smog and acid rain. Nitrogen oxides can also causes
trouble for the eyes and lungs. Therefore the European commission has set out limit
values for the concentrations of NOs, thus it is important to have a good view on the
concentrations NO, and with that on the concentrations NOs.

The Real Time URBIS model simulates the NO,, concentration by adding emissions
from different sources like traffic, residents, shipping and industry. In this report a
Kalman filter will be used to link the model simulations with a series of measure-
ments made on 9 different stations. With this link a better simulation for the concen-
tration NO,, can be given. Also a statistical uncertainty interval of the concentration
can be given.

In Chapter 2, a more detailed explanation of the Real Time URBIS model is given.
In Chapter 3, a statistical uncertainty of the model is made as well as ideas for the
Kalman filter. In Chapter 4, the general use of a Kalman filter will be explained. In
Chapters 5 and 6, the Kalman filter is applied on the Real Time URBIS model. First
only on the background source, later on all the sources. In the last part of Chapter 6,
the uncertainty intervals calculated with the Kalman filter will be connected with the
population to give a functional application of this method.
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Model and Measurements

Real Time URBIS model

Real Time URBIS is a model to determine the concentration of NO, in a city or
an industrialized region. The model calculates a concentration for the whole region,
based on factors like wind, temperature and time on every hour. This study focuses
on the Rijnmond area around Rotterdam; the domain of the study is shown in Figure
2.1.

The basis of the Real Time URBIS model is the URBIS model. The URBIS model
calculates for the whole Rijnmond area the annual average concentration NO,, for the
whole year. Detailed information about the URBIS model may be found in (Wessel-
ing and Zandveld, 2003).

With the Real Time URBIS model, the annual average concentrations are used to
get an average concentration for every hour. The state of the Real-Time-URBIS
consists of the NO,, concentrations in a large number of grid points in the domain.
Mathematically, the state is described by a vector:

Ck 2.1

where k denotes the hour. In this study, the state vector is defined on about 94096 grid
points covering the Rijnmond area, irregularly distributed over the grid. The state is
computed as a linear combination of standard concentration fields, each representing
the mean concentrations due to emissions from a particular source (traffic, ships,
industry and residents) given a certain wind direction and wind speed. This is given
in the state equation:

cp = Muy 22)

where each column of the matrix M is one of the standard concentration fields. In
the model version used in this study, the total number of standard fields is 88, valid
for 11 different source categories, 4 different wind directions, and 2 different wind
speeds. Plots of all standard fields are included in Appendix A. The elements of
vector uy represent the weight of each standard field in the concentration at hour k.
The weight depends on the meteorological conditions (wind direction, wind speed,
temperature) and the moment (month, day of the week, hour).

In (Kranenburg, 2009) a more detailed description of the Real Time URBIS model
could be found. Note that the Real Time URBIS model described in (Kranenburg,
2009) has an underlying URBIS model valid for the year 2000, while in this report
the underlying URBIS model is valid for the year 2006. This URBIS model for 2006
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has one large difference with the URBIS model for the year 2000. The model for
2000 consists of 10 different source categories instead of 11 in 2006, since an extra
source in category traffic is added, namely source *Zone Cards’. Further is the source
category “boundary’ is renamed into ’rest’.

Measurements

In the Rijnmond area, there are also 11 locations where the concentrations NO and
NO; are measured. The sum of these two concentrations is called NO,. The loca-
tions of these 11 measurement stations are also shown in Figure 2.1. Locations 1-6
are sites operated by DCMR!, the locations 7-11 are sites operated by RIVM?. Mea-
surement stations 6 and 11 are located directly next to each other, in the Real Time
URBIS model both locations are at the same grid point. Only 9 of these locations
are in the domain covered in this study, locations 7 (Schipluiden) and 10 (Westmaas)
are outside of the domain and will only be used as background stations. As will de-
scribed in Chapter 3, the measurements on these 9 locations could be used to estimate
the uncertainty of the model, by comparing the model results with the observations.

The working area with the measurement locations

DCMR - Locations RIVM - Locations

1 Schiedam 7 Schipluiden

2 Hoogvliet 8 Schiedamsevest
3 Maassluis 9 Vlaardingen
4 Overschie 10 Westmaas

5 Ridderkerk 11/6 | Bentinckplein
6 | Bentinckplein

Figure 2.1: Domain of the working area for Real Time URBIS

IDCMR: Dienst Centraal Milieubeheer Rijnmond. www.demr.nl
Environmental protection agency for the Rijnmond area around Rotterdam
2RIVM: RijkslInstituut voor Volksgezondheid en Milieu. www.rivm.nl

Dutch institute for public health and environment
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Statistical Uncertainty of the Real Time URBIS Model

Introduction

In (Kranenburg, 2009), a method is described to compute a bias correction for the
simulations made by the Real Time URBIS model, by comparing the model simu-
lations with the observations made on the measurement stations. After application
of the Real Time URBIS model, the simulation is adjusted with a value dependent
on the different meteorological conditions (wind direction, wind speed, temperature)
and the moment (month, day of the week, hour). This correction is typically an ex-
ample of post-processing; after applying the model, the model results are corrected
with the aid of the measurements. In addition, from the dependencies on the me-
teorological conditions and the moment, the origin of the uncertainties in the Real
Time URBIS model could be found. In this chapter, the same method is applied on
the Real Time URBIS model with the underlying URBIS model for 2006. For the
year 2006 all the differences between the observations and the model simulations are
calculated. All these differences are used to make a correction on the results of the
Real Time URBIS model.

Log-normal distributions

For all 9 measurement stations in the area, the observations are plotted in a his-
togram. This is shown in the left panel of Figure 3.1. In the right panel of Figure
3.1, the simulations for the grid points comparing with the measurement stations are
plotted in a histogram. It is interesting that both the observations as well as the model
simulations have a log-normal distribution. For this reason all corrections should be
done in the log-domain. The main advantage of working in the log-domain is that
when there is a correction added to the state, this correction is made on the logarithm
of the concentration. After correction, the logarithm of the concentration could be-
come negative but the corresponding concentration itself can not. In fact, an additive
correction on the logarithm of the concentration is the same as a fractional correction
on the absolute concentration:

In(ck) — In(cg)+p (3.1a)
o = ) Ly () tn _ g (3.1b)

where ¢y, is the concentration at time & and p is the correction term. Since the correc-
tion factor e is always positive, the concentrations will remain positive too. Detailed
information about corrections in the log-domain is given in (Kranenburg, 2009).
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3.3.1

3.3.2

Observations Simulations

100 150 200 250 300 350 400 50 100 150 200 250 300 350 400
Concen tration NO, [ug/m’ ] Concent tration NO, [jug/m* ]

Figure 3.1: Both the observations and the model simulations have a log-normal distribution.

Uncertainty of the Real Time URBIS model

The method from (Kranenburg, 2009) to describe the uncertainty of the model is
now applied on the Real Time URBIS model, with underlying URBIS model for
2006. For the year 2006 all logarithms of the observations made on the 9 monitoring
locations are compared with logarithms of the model simulations. In total there are
at most 9 stations x 8760 hours = 78840 of those differences. Due to some missing
measurements or meteorological data, for 2006 there are only 67080 differences.
With all these differences, the correction on the results of the Real Time URBIS
model is made.

Structural bias

First the differences between the model results and the observations did not have
mean zero, thus there is a systematical error in the model. This structural error causes
a constant correction (i = p.) on the logarithm of the model simulation, which
corresponds with a constant fractional correction of the absolute concentration.

Wind direction dependency

The differences between observations and the logarithms of the simulations made
with the constant corrected model are plotted with respect to the wind direction.
For each of the 36 wind directions, all differences which appear during that wind
direction are taken. In Figure 3.2 all the means per wind direction y; are plotted as
blue dots.
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T

pi = %Z(ln (yik) —In (c]3.)) (3.2a)
! k=1
o = i (i) 10 () — i) (3.2b)
! k=1

where n; represents the number of differences that appears during wind direction %,
y; represents the observations and c[* the model simulations, during wind direction
i. The standard deviations o; of the differences per wind direction are represented by
the length of the error bars in Figure 3.2. Per wind direction, Figure 3.2 shows a 1o
uncertainty interval for the difference between the logarithm of the observation and
the logarithm of the model simulation. The green line forms the correction which is
added to the logarithm of the model simulations. The correction on the model is now
a function of the wind direction ¢, thus 1 = e + fwdir (0).

This green line is a composed sinus function, that fits best on the differences between
the model simulations and the observations. This best fitting is made with the blue
dots and the wind rose in Figure 3.3, the weights for each blue dot are given in this
wind rose. When a wind direction occurs a lot, the weight must be larger in the
calculation of the best fitting sinus.

15

e e Mean difference
— Best fitting sinus

1.0

g

(B e

\

re

*

Mean difference

-0.5 1

-1.0p

-1.5

NE E SE S SW w NW N
Wind direction

Figure 3.2: Mean differences between the logarithms of the observations and the logarithms
of the model simulations against the wind direction after constant correction.



| 2010-0000 10/72

3.3.3

wind ros% for 2006

Figure 3.3: Wind rose over 2006

Hourly differences

After the correction on the wind direction, all the differences are plotted for every
hour of the day in Figure 3.4. In this figure, the mean of all differences per hour of the
day is plotted with a blue dot and the standard deviation is represented by the width of
the error bars, computed similar to equations 3.2a and 3.2b. The green line is again
a composed sinus function, which fits best on the blue dots. Because of missing
measurements or meteorological data, not every hour has the same contribution in
calculating the best fitting sinus. This best fitting sinus forms the correction added
to the logarithms of the model simulations as a function of the hour of the day. The
total correction on the model is now built from three parts: a constant part, a function
dependent on the wind direction and a function dependent on the hour of the day (k).

n = U + Mawdir (¢) + Hhour (h)

After this correction, the differences were plotted against the other input parameters
wind speed, temperature, month and day of the week. It was found that the differ-
ences are no longer dependent on one of these input parameters.
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Figure 3.4: Mean difference between the logarithms of the observations and the logarithms
of the model simulations against the hour of the day, after correction on the
wind-direction

Standard deviation of the differences

The standard deviation of the differences was found to be a function of the wind
speed. This is shown in Figure 3.5. The blue dots represent the standard deviation
of all differences as a function of wind speed. This is done with an equation similar
to equation 3.2b. The red line is the best fitting exponential function on the standard
deviations per wind speed. In the calculation of this best fitting exponential the
number of times that a wind speed occurs is also taken. When a wind speed occurs a
lot, the weight must be larger in the calculation of the best fitting exponential.
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Figure 3.5: The standard deviations of the differences between the logarithms of the obser-
vations and the model simulations against the wind-speed, after correction on
the hour of the day

Discussion

With the method described above, an uncertainty interval for the concentration NO,,
can be given. In Figure 3.6 the 1o uncertainty interval for the first week of 2006 is
given for the grid cell with station Schiedam. The red dots represents the observa-
tions available in that period. The described method gives a useful approximation of
the uncertainty of the model, however the uncertainty of the model is very large at
some times.

The next objection is to decrease the uncertainty of the model by an improvement
of the model. An indication for the largest inaccuracy of the model is given by the
uncertainty analysis above. The differences between the observations and the model
simulations are mostly dependent on the wind direction. For this reason it is assumed
that the standard concentration fields for the source background are not accurate in
the URBIS model. The source background corresponds with emission produced in
the rest of the country which is blown into the Rijnmond area. Of course this source
has a large dependency on the wind direction. In Chapter 5 a Kalman filter will be
used to get better estimates of the background concentrations per wind direction. The
advantage of using a Kalman filter is that also the uncertainty of the measurements is
involved in the estimation. In Chapter 4 the working of a Kalman filter is explained.
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First week of 2006

Figure 3.6: Uncertainty interval for the first week on location Schiedam
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4.1

4.2

Kalman Filter

Introduction

A Kalman filter is mostly used to smooth random errors in the model of a dynamical
system. In Figure 4.1 a schematic representation of the working of a Kalman filter
is given. The simulations made by the model for time step k are corrected with the
aid of a measurement on time step k. In this correction, also the uncertainties of the
model and the measurements are taken into account. This application is very useful
in a real time application such as the Real Time URBIS model.

Maize

Ek Ek+1

% MODEL [y

-

Moaize
FILTER F_

Corrected Mesult

Figure 4.1: Schematic representation of the Kalman filter

Algorithm of Kalman Filtering

In this section the working of a Kalman filter is explained with a simple one dimen-
sional example. The simulations made with the Real Time URBIS model, for loca-
tion Schiedam are compared with a series of measurements on location Schiedam.
This is done for the year 2000, in this year the Real Time URBIS model gives for
7906 of the 8760 hours a concentration NO,,. For the other hours, one of the meteo
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input data is missing, thus the model cannot give a result. For 8603 of the 8760 hours
there is an observation, on the other hours, the measurement was incorrect or miss-
ing. When the model does not give a result, the Kalman filter cannot give a result on
that time step. When there is no measurement, the Kalman filter can give a result,
which is computed from the previous time step. In the figures in this chapter there
will be some ’holes’, this is due to the missing model data.

Dynamical system

First of all it is important to have a well defined dynamical system. For the example
in Schiedam, this dynamical system is given by:

In(cg) = In(cf) +% (4.1a)
Yoyl = o+ Frwr wrp~ N(0,1) (4.1b)

In this equations the value ¢, is the concentration of NO, on time step k£ on location
Schiedam. Every time step (hour) the Real Time URBIS model calculates a concen-
tration NO,, on location Schiedam; these are called ¢j*. Because of the log-normal
distribution of the concentration NO,, the dynamical system deals with the loga-
rithms of the concentration NO,.. More about this is discussed in Section 3.2 and in
(Kranenburg, 2009). The parameter 7, is an estimate for the difference between the
logarithm of the real concentration and the logarithm of the model result, also called
the perturbation on the model. With a Kalman filter these perturbations ~; will be
estimated.

This estimation does not lead to a computation of the optimal value for ;. Instead
the result after application of the Kalman filter is that the value of v can be found
in a Gaussian distribution with mean 4, and a variance pz. With this Gaussian dis-
tribution, the value for In (¢j) can be found in a Gaussian distribution with mean
(In (c*) + 4&) and variance pi. This all leads to an uncertainty interval for the log-
arithm of the concentration NO,, at every time step and with that, an uncertainty
interval for the concentration NO,, .

For the perturbations, it is assumed that a perturbation at time & is correlated with
the perturbation on the time step before, but that it also has a random component.
A suitable mathematical description is an *AR1’ (auto-regressive 1) process, this is
also called ’colored noise’. The temporal correlation is described by the parameter
a, which also appears in the formula for the amplitude of the random contribution:

B = V1-—ad2oy 4.2)

When a = 0, the perturbation only has the random process, thus only white noise
with standard deviation o.

When « is close to one, the temporal correlation is strong and the fluctuations per
time step are small. The value « is computed from:
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a=e /T (4.3)

where 7 is a de-correlation scale. In this example the value of 7 is chosen equal to
12, such that the perturbation is practically independent of the perturbation 12 time
steps before.

Kalman filter form

For application of the Kalman filter, the dynamical system has to be written in the
Kalman filter form:

e+l = QY + Brwy wr ~ N(0,1) (4.4a)

In(yr) = H(In(cf") + )+ vk v, ~ N (O, 7",%) (4.4b)

In here y;, is the observation on time step k, and H is the system operator, which
projects the model state onto the observations. The observation error v, represents
the error of the measurement, combined the instrumental error and the representation
error, which is supposed to be Gaussian with zero mean and variance r,%.

For the example on location Schiedam, the system operator H is equal to 1, which
means that the observation is just the model plus some perturbation. The value of r
is assumed to be equal to 0.2. This means that the logarithms of the measurements
has an uncertainty of 20%. Also the value oy, is set to 0.2 too, which means that the
perturbation on the model also has an uncertainty of 20 %.

The Kalman filter process could be started with initial values 79 = 0, and pg = 0;
this is equivalent to the assumption that the expected concentration at time 0 equals
the model result and the uncertainty is zero at this time.

Forecast step

In this first step of the Kalman filter, a forecasted mean 'Ay,f of the perturbation is

calculated with the mean from the previous time step. This forecasted mean is the
expectation of 7, .

’AY;J:H = E[yp41]

= Elay + Bwi]

= aBE [y + BE [wy]

= aE[y]

= oY 4.5)

where is used that E [wy] = 0. For the example of Schiedam the time correlation:
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a=e Y12 x0.92

2
Also a forecasted variance (p£ +1) is calculated with the variance from the time
step before.

()" = VARG
= E :(’Yk—l-l_E[’Yk—&-l])Q}

- Y
= E (Oé’Yk + Brwi, — ’Yk+1) }

= B(o (n-50) + )

r 2
= E|a? (7,3 — ﬁ,f) + 2a8 (’yk — ﬁ/,{) w + ,Bzw,%]

= o8 |(w - 3)"| + 20808 [~ 3] B L] + 25 [of]

= o’E [(w ~-E [%])2} + B2
= o’VAR () + 6}
= 2 (p)’+(1-a?) o} (4.6)

where the independency of 7 and wy, is used, as well as E [wg] = 0 and E [w,%] =
VAR (wk) =1

Analysis step

In the second step, the Kalman filter analyzes the results of the forecast step with
an observation. A basic assumption in a Kalman filter is that the mean after the
analyzing step 4} is a linear combination of the forecasted mean and the difference
between the logarithm of the observation and the logarithm of the model simulation.
This results in an analyzed mean which is the forecasted mean plus a perturbation
relative to the difference between the observation and its related simulation:

S = Al + Keo (ln (i) — H <1n () +41 +1>> 4.7)

. o . 2. .
The variance in this analyzing step (p% +1) is created by the variance from the fore-
cast step and the variance from the representation error of the measurements.
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(W) = VAR (i)
= E[(wn — Blwn))?]

= E :('YkJrl - ’7;?+1)2}

= E (’Yk—i—l - <“AY;J:+1 + Kgt1 (hl (Ykr1) — H (hl (i) + %{H))))Q}

= E :('Yk+1 - (’%{H + K1 (H (In (effyy) + 1) + Vi)

—H (I () + &,{H)))T (4.82)
= E [((1 — Ky+1H) (’Yk+1 - %J:H) - Kk+17/k:+1)1

2

= E [(1 — Ky H)? <7k+1 - ’y,fH)

—2Kj11 (1 — K1 H) <%+1 - %f;rl) Vky1 + K1%+1V13+1}
= (L= KiriH)E | (e = B’

+2Kp1 (1 — Ky H)E K%H - ‘Y;{HH E [V 1] + KB Vi)
= (1- Ky H)? <p£+1)2 + Ki 1T (4.8b)

where the independency of 7 and vy, is used, as well as E [v 1] = 0and E [}, | =
1.

In line 4.8a, the Formula 4.4b is used. After this analyzing step, the values for 4}

and (p%)2 are the mean 4, and the variance (p;)? for the state of the system on time
k.

A common choice for K, is the minimum variance gain. For that gain, the value K,
is chosen such that the variance (p%)2 reaches a minimum. To obtain the minimum
variance, the solution for K} of

0 (p%+1)2

=0 4.9
0Ky 11 9

has to be found. This is done in the next formula:
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a(szrl)Q — 0
OKj41

2
2K 112y, — 2H (1 — Ky  H) (p,{ﬂ) — 0
2 2
2Kk+1 <7"]%+1 =+ H2 <p£+1) > = 2H (p£+1>
2
f
H (pk+1>

k+1 k+1

Kii1 = (4.10)

Because of the second derivative

02 (pri1)?

0K

o f \? 9
2H? (pf,,) +2r%eq >0 4.11)

this extreme corresponds with a minimum.
Simple example of Kalman filtering

All steps of the Kalman filter are applied on location Schiedam for the first week
of 2006. Figure 4.2 shows for the first week of 2006 all the model simulations and
observations. At every hour the logarithm of the model result is shown together with
the logarithm of the observation.

Schiedam
6.0 T T T ;
- Observations
—_ = = Simulations
= 55|
£
o 50f . .
=z -
X *
§ Y T -
= . . hd * oy " . . .
Boasp WL L F TR # e e
< oy LT T . - * o
8 P * % . oW Do * P
= ) . : N
o 40F * *ox * s - S
) * *" > . * . *
< - e s - *
=] iy e 5 . * *
Pt * . A
e | * * * 2 w .
e 35F . . . =
s - S o
9 3.0f
25 . L . L L . L .
0 20 40 60 80 100 120 140 160 180

Time in hours, starting at 01-01-'06 at 0:00

Figure 4.2: Simulated and measured concentrations for the first week of 2006 on location
monitoring location Schiedam

In Figure 4.3 all steps of the Kalman filter are applied on the model results and the
observations for the first week of 2006. The logarithm of the real concentration can
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be found in a Gaussian distribution. The 1o interval is given by the blue lines, this
interval corresponds with

[model result + 4 — p, model result + 4 + p] (4.12)

where # is the mean after the Kalman filter and p corresponds with the square root of
the variance after the Kalman filter. It is clear that in this case the uncertainty interval
is mostly between the model result and the observation. In Subsection 4.3 is shown
how this interval depends on the several input parameters 72, a and o2.

Schiedam
6.0 : :

— Uncertainty interval
- Observations

5.5} : i
— Simulations

5.0F

Logarithm of the concentration NO, [ug/m® ]

sop 7

2.5

0 20 40 60 80 100 120 140 160 180
Time in hours, starting at 01-01-'06 at 0:00

Figure 4.3: Kalman filter applied on the first week of 2006 on location Schiedam

In Figure 4.4 and 4.5 is shown what happens when there is a certain period without
observations. When there is no observation, only the forecast step of the Kalman
filter is applied. The mean value 4 tends to the model results and the standard de-
viation p tends to the standard deviation of the model. In Figure 4.4 there are no
observations analyzed, thus the uncertainty interval tends around the model and the
width of the interval corresponds with the standard deviation of the model.

In Figure 4.5 there are no observations analyzed between time step 15 and time step
90. Between those time steps the uncertainty interval after the Kalman filter tends to
the model. After time step 90, the Kalman filter analyzes the observations again and
the intervals are again between the model results and the observations. In Figure 4.6
and 4.7 this phenomenon is better visible. In these figures, the differences between
the model result and the measurement outcomes are shown, with black dots. The
intervals in these figures are just the intervals [ — p,% + p]. When there are no
measurements analyzed the mean of the interval has to tend to zero and the width
of the interval corresponds with the variance of the model. If the observations are
analyzed again the interval lies between zero and the black dots
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Figure 4.4: Kalman filter applied on the first week of 2006 on location Schiedam, with no
measurements analyzed.
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Figure 4.5: Kalman filter applied on the first week of 2006 on location Schiedam, with no
measurements analyzed from time step 15 till time step 90
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Figure 4.6: Uncertainty interval of the perturbations with no measurements analyzed, the
black dots are the differences between the outcomes of the measurements and the

model.
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Figure 4.7: Uncertainty interval of the perturbations with no measurements analyzed from
time step 15 until time step 90

4.3  Sensitivity Tests

In this example for Schiedam, some parameters can be changed to get a better view
on their influence. When some parameters are changed the behavior of the Kalman
filter is different.
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4.3.1

4.3.2

Uncertainty of measurements (1)

The first parameter to change is the uncertainty of the measurements (2). In Figure
4.8 is shown what happens when there is respectively a small and a large uncertainty.
The left panel of Figure 4.8 shows that when the uncertainty is small, the interval
after filtering lies around the measurements. The width of this interval is also small,
due to the small uncertainty of the measurements. The right panel in Figure 4.8
shows that, when the measurements have large uncertainty, the interval after filtering
lies around the model results. The width of the interval is approximately as large as
the uncertainty of the model.

Schiedam Schiedam

— Uncertainty interval . — Uncertainty interval
+ Observations + Observations
— Simulations — Simulations

5.5

oncentration NO, [jig/m" ]
«
>
oncentration NO, [jig/m" ]
«
>

Logarithm of the ¢
Logarithm of the ¢

20 20 60 80 100 120 140 160 180 - 20 20 60 80 100 120 140 160 180
Time in hours, starting at 01-01-'06 at 0:00 Time in hours, starting at 01-01-'06 at 0:00

Figure 4.8: Kalman filter applied on first week for location Schiedam with uncertainty of the
measurements assumed small r = 2% (left panel) and large r = 200% (right
panel)

Time correlation parameter (o)

The second parameter to change is the time correlation parameter «, in Figure 4.9 the
intervals of the perturbations are shown. In the left figure 7 = 1, thus o = e~ V/7 ~
0.37, in the right figure 7 = 250, thus @ = e~ /7 ~ 1.00. The left panel of Figure
4.9 shows that, when « is small, there is hardly no time correlation. It is possible
to get high fluctuations of the interval . If there are no observations analyzed from
time step 15 till time step 90, the mean of the perturbation will tend rapidly to zero,
the width of the interval will rapidly tend to the uncertainty of the model. The right
panel of Figure 4.9 shows that when « is large the time correlation is large and the
interval cannot make large fluctuations. For that reason the mean of the interval will
tend slowly to O when there are no measurements analyzed from time step 15 till time
step 90. Also the width of the interval will tend slowly to the width corresponding
with the uncertainty of the model.
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4.3.3

4.4
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Figure 4.9: Uncertainty interval for the perturbation for location Schiedam for the first week
of 2006, with time correlation assumes small o = 0.37 in the left panel and large
a == 1.00 in the right panel.

Uncertainty of the model (o)

The last parameter to change is the uncertainty of the model 0. In Figure 4.10 it is
shown what happens when there is respectively a small and a large model uncertainty.
In the left panel of Figure 4.10, the Kalman filter is applied with relatively small
model uncertainty. The interval after filtering mostly follows the model and the width
of the interval is also small because of the small uncertainty of the model. The right
panel of Figure 4.10 shows the uncertainty interval when the model uncertainty is
relatively high. The mean of the interval lies around the observations after filtering.
The uncertainty interval has approximately the same width as the uncertainty interval
corresponding with the uncertainty of the measurements.
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Logarithm of the concentration NO, [jug/m’ ]
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Figure 4.10: Kalman filter applied on the first week of 2006 for location Schiedam, with
model uncertainty assumed small o, = 2% in the left panel and large o), =
200% in the right panel

Higher dimensional Kalman filtering

The algorithm described in Section 4.2 is an algorithm for a one dimensional prob-
lem. This algorithm can easily be extended to a higher dimensional problem. This
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4.4.1

4.4.2

is also explained with an example of the Real Time URBIS model. In the Rijn-
mond area there are 9 locations where the concentration NO,, is measured. On each
of these 9 locations there is a real concentration NO,, called ¢, (vector of length 9).
Also the Real Time URBIS model gives for every hour a concentration NO,, on each
location, called ¢j*. Again it is necessary to work in the log-domain, thus Y is the
perturbation on the model to estimate the real concentrations.

Dynamical system

The dynamical system of this problem

In(c) = In (Cm>k +7, (4.13)
= Ay, tw,  w,~N(0,Qk) (4.14)

Tpt1

where In (c¢) stands for a vector with logarithms of the concentrations.

The dynamical system has become a matrix-vector equation, where matrix A re-
places « as time correlation parameter. In the example over all locations A is a
diagonal matrix with time correlations «; on the diagonal representing the time cor-
relations for each entry of Ac;,. @y is a covariance matrix, built from the time cor-
relation and the uncertainty of the model. The matrix () is diagonal with elements
qi2 = (1 — aZ) o?.

K3 (2

Kalman filter form

The dynamical system has to be written in Kalman filter form

T Ay tw, wp~ N(0,Qk) (4.15)

(), = H(nE), +7)+u  w~NOR) @16

where Ry is a covariance matrix with uncertainty of the measurements. The matrix
Ry, is also a diagonal matrix with elements riQ , the uncertainty of each entry of the
vector with measurement outcomes In (y)k, H is now a higher dimensional system
operator, which projects the model state onto the measurement outcomes. The result
after Kalman filtering is again that the vector Ac;, can be found in a Gaussian dis-
tribution with mean jk and covariance matrix Pj. With this Gaussian distribution,
the logarithm of the concentration NO,, can be found in a Gaussian distribution with

mean <ln (ém)k +4 k) and covariance matrix Pj,. Py is a covariance matrix with

covariances between the entries of state vector ~, . On the main diagonal of a covari-
ance matrix are variances. From this diagonal, the uncertainty interval for each entry
of v . can be computed by taking the square root of these variance. The value for the

mean of 7y, , called 7, is simply E [lk} .
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4.4.3

4.44

Forecast step

In the forecast step the mean ji 4 is computed with the mean 7, from the time step
before.

j£+1 = kB [Zkﬂ]
= B4y, +uw
= AE {lk] + E [wy]
= AE [lk]
= A3, 4.17)

where is used that E [wy] = 0.

The covariance matrix P,f 41 0fy k is as in one dimension a function of the covariance
matrix from the time step before.

P, = COV(y,,)

= E (lk+1 —-E [ZkHD (lk+1 -F [71&1})?

- E :((Afyk +gk> - A%) <(Alk +£’€> - Aﬁk)j

_ g :A <lk —ik> @k _jk)TAT+gk (lk —ik) AT
+4 (lk - 1k> wi + Mﬂ

—  ACOV (lk) AT +E[w,]E [(lk - jk)i| AY

+4E (1, — 4, )| B [wF] + COV (wy)
= APAT +Qy (4.18)

where the independency of wy, and v, is used, as wellas E [w;,| = 0 and COV (w;,) =

Q-
Analysis step

In the analyzing step the results of the forecast step are analyzed with outcomes of
a series of measurements. The mean from the forecast step is analyzed with a linear
Kalman gain K, such that the mean after the analyzing step is similar with the one
dimensional case.

Voo = Ay + Ken (L @)y —H (L(Cm)kﬂ +ﬁk+1)> (4.19)
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The covariance matrix after the analyzing step is as in the one dimensional case a
function of the covariance matrix from the forecast step.

P = COV (lk-ﬁ-l)
= E _(7k+1 -E [lkHD <lk+1 —B [l’f“} >T}
T
= E{—('Vk_,_l - iak+1) (lk-ﬂ N iak—%l) )
= b _(lkﬂ B (ifkﬂ + By (ln( Wi ~ (wkﬂ +£k+1)>))
(lk+1 - (ifk—&-l + K1 (ln( Wy —H (wkﬂ + 7fk+1))>>T]
= B [(lkﬂ o A gpr — B (H (w/’ﬂrl +lk“> s
—H (Mkﬂ +3 k+1>>)

_Af
(lk;_i,-l Y g1~ Ky < (1 k+1 +lk+1> + Ve

_H (M,M +7 k+1>)) ]

T
(= Koo 1) (3,4, =4 401) = Kriavinn) ]

= B [(I — K1 H) (1k+1 _ifkﬂ) (lkﬂ - ifkﬂ)T (I - Kk+1H)T]
—bE [(I — K11 H) (1k+1 - ika) ZE+IKI;F+1]
—-E {Kk—l—lyk-y-l (ij - ika)T (- Kk-i—lH)}
+E [Kp1p 121 K]

= (I - KinH)E |:(7k+1 —E {lk—f—l]) (lkﬂ —E ['MHDT] (I = Ky H)'
+Kp 1B [y ] K

= (I — Kg11H)COV (lk+1> (I — K1 H)" + Ky 1 COV () Kby

= (I - Kg1H) Pk+1 (I — K1 H)" + Ky R K (4.20)

where the independency of , and vy, as well as E ;] = 0 and COV (v,) = Ry,

Also in this higher dimensional problem it is a common use to take for K the gain
that minimizes the variance P}’ in [ norm. This gain is expressed similar tot the one
dimensional case

-1
Ki = PlHT (HP[H" + Ry) @21)

More information about higher dimensional Kalman filtering can be found in (Segers,
2002)
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5.1

Kalman Filter on Background Concentrations

Introduction

In the Real Time URBIS model, a simulation is made for the mean concentration
NO, per hour. This results in a model simulation for the concentration NO,, called
c;t. These simulation is made with the aid of the underlying URBIS model by the
following formula:

& = Mu, (5.1)

where each column of M corresponds with a standard concentration field, computed
by the URBIS model, shown in Appendix A. The vector u; represents the weight
for every standard concentration field.

The figures in Appendix A shows that the standard concentration fields for the emis-
sion source 'background from the rest of the Netherlands’ are the same for every
wind direction and wind speed. This is contradicting with the ideas of Chapter 3.
In that chapter, it was shown that the differences between the model simulations and
the observations depend on the wind direction and the wind speed. This analysis is
done for all stations, thus it is assumed that the dependency on the wind direction is
the same for the whole area. It is possible that the dependency on the wind direction
is caused by inaccurate local emission source, but it is not likely that an inaccurate
local emission source influences all stations.

Therefore the emission from source ’Rest of the Netherlands’ is marked as the inac-
curate emission source. This source is typically a source that has to be dependent of
the wind direction and the wind speed. It is likely that the wind dependency found
in Chapter 3, is caused by the lack of wind dependency in the source *background
from the rest of the Netherlands’ in the URBIS model. In this chapter the standard
concentration fields for this emission source will be recalculated with a Kalman fil-
ter. The idea is that the new concentration fields have different patterns for each of
the four wind-directions and two wind-speeds.

Figure 3.2 gives an idea of how the standard concentration fields have to be changed.
When the wind is from direction north-west the model simulation is too high, thus
the concentration fields from directions west and north have to be lower. When the
wind is from direction south-east, the model simulation is too low, thus the standard
concentration field from directions east and south has to be higher. Figure 3.5 gives
the idea is that when the wind speed is high, the concentration is lower because of a
larger dilution of the emission.

This application of the Kalman filter will also lead to an uncertainty interval of the
total concentration NO,, for every time and location in the Rijnmond area. The total
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5.2

5.2.1

concentration is only changed by a correction on the background. Because of the
nearly constant background on the whole area, the change on the total concentration
is nearly the same on every location. Also the width of the uncertainty interval is
nearly the same for every location.

Kalman filter

To make a correction on the standard concentration fields, every field gets a correc-
tion factor €”*. These factors are larger then zero, thus there is no problem with
negative concentrations. Adding these corrections to the model from Equation 5.1
leads to the following equation for the corrected model:

88
= ) pipme” (5:2)
i=1

In this equation vectors m; are the columns of M, representing the standard con-
centration fields. In the log-normal distribution the expected concentration E [¢;] is
given by:

88
Ele] = Y pigmedt s (5.3)

=1

where 4 is the median of v and sd is the standard deviation of each entry of ~.

Dynamical system

In Chapter 3, the idea is that the background concentrations are not accurate in the
model. The other fields were supposed to be good enough, thus the correction factor
on those fields are stated equal to one (y = 0). This leads to the following equation:

8 88
> pismae™ Y i gme” (5.4)
i=1 =9

The vectors m; for ¢ = 1..8 corresponds with the standard concentration fields for the
source: “background from the rest of the Netherlands’, these fields have a correction
e7. The second term of Equation 5.4 is not dependent of any ~;, thus a constant
called g;”’d is introduced to describe the concentration calculated by the model for
all sources, different from the source ’background from the rest of the Netherlands’:

88
At = > (5.5)
=9
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Because of the log-normal distribution of the model simulations, a transformation to
the logarithms of the simulations is required:

8
In(cf') = In <Z (i pme’) + c;n’d> (5.6)

=1

This is a non-linear equation for 7. The Kalman filter requires a linear model, there-
fore a linearization of this equation is made around v = 0 :

8
1“( wmw%)wﬁd) = ()
i=1

1
=8

1+0(y-y) 7
j=1

Mg, kT 5

m,b m,d
(&3 + [&X

_l’_

where g}?’b is the concentration calculated by the model for the source: *background
from the rest of the Netherlands’:

8
= ey (5.8)
=1

In Equation 5.7, the quotient of two vectors is defined as the element wise quotient.

The dynamical system for the background concentration will then become the fol-
lowing.

j=8

145,11
o) = (g +e) + | (5.9)
Yyt Ay, twp w ~ N(0,Qk) (5.10)

The first equation is the linearization of the equation for the logarithm of the con-

centration, the second equation is the auto correlation process for the series of per-
k=n

turbations {fyk}k , with n = 8760, the number of hours in a year. In the Kalman
—k) k=1

filter, an estimate of the uncertainty interval of the vector Vs will be found, this un-

certainty interval of 7, will then be use to get a better uncertainty interval for the

total concentration at time k.

The interpretation of the dynamical system is now that the logarithm of the real
concentration is the logarithm of the model simulation plus a correction on the back-
ground. The correction on the background is a time correlated process, the temporal
correlation is calculated in Section 5.4. The covariance matrix (i, is built from the
temporal correlation and the model uncertainty. Matrix (), is a diagonal matrix with
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523

on the main diagonal elements ql-Q. This is a colored noised process driven by a white
noise process, assuming that both the temporal correlation and the uncertainty of the

model is independent of time.
% = \/l1-ajo; (5.11)

where o; corresponds with the overall uncertainty of the perturbations.
Kalman filter form

The dynamical system in Equations 5.9 and 5.10 has to be written in a Kalman filter
form. There are 9 series of measurements y, which are made on the 9 measurement
stations in the domain. This series of measurements have to be compared with the
model results.

This leads to the following system of equations in Kalman filter form.

In (gk> = H (ln <g}?’b + gkm’d>
j=8
Mg kT 5

+ Y | tue  we~N(0,Rp)  (5.13)

m,b m,d
G TG i

Matrix H is the system operator which projects the model state onto the observa-
tions. The covariance matrix R represents the uncertainty of the logarithms of the
measurements, combined the instrumental error and the representation error. This
matrix R is a diagonal matrix with diagonal elements r?, the values for r; will be
estimated in Section 5.3. To simplify notations, the system is rewritten to:

Vet Ay, +wy (5.14)
g, = Hpy,+v, v~ N(0,Ry) (5.15)

where vector g, and matrix H;, are defined by:

j, = In (yk) —Hln (g;”*” +gk’”’d> (5.16)
j=8
. 1,510
H, = ﬁ (5.17)
[ e

Forecast of background correction

On this Kalman filter form the algorithm for the Kalman filter can be applied. The
forecast step gives then the following formulas for the expected median ji and the

variance P,{ of Y
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5.3

~f - N
Yer1 = Alk (5.18)
Pl = APAT 1@ (5.19)

Analysis of background correction

In the analyzing step, the filter makes a comparison with a series of measurements, in
this case 9 measurements per time step for the 9 measurement stations in the domain.
This leads to the following formulas for the expected median 4} and variance Py’ of

gl
iZH - ig—f—l + K11 (gkﬂ - ﬁkﬂiﬁﬂ) (5.20)
~ ~ T
Pt = (I . KkHHkH) (P,fH) (I - KkHHkH)
+ Ky R K (5.21)

where Ky is the Kalman gain that minimizes the variance Py, ;.

~ ~ ~ —1
Ke = PLAT (HPLAT + Ry (5.22)

The values j“ and Py, are stated as the median and the covariance matrix for 7 on
time step k, and will be used as input for the next time step.

Uncertainty of the observations

The observation error (R in Equation 5.13) is an important parameter in the Kalman
filter. Section 4.3 shows the influence on the solution when parameter 2 is changed.
Because of R is built from all r?, the observation errors of each entry of the observa-
tion, the influence of covariance matrix R is also large.

The uncertainty of the measurements is assumed the square of a percentage (7 frqc)
of the outcome of the measurement:

2 9
Rii7k = rfracyi,k
where 77,4, will contain both the instrumental error and the representation error.

At location Bentinckplein in Rotterdam, there are two measurement stations located
directly next to each other, one measurement station from DCMR and one from
RIVM. With these two series of measurements an indication of the instrumental error
can be found. In Figure 5.1, the logarithms of the observations on the two measure-
ment stations at Bentinckplein are shown in a scatter plot. An assumption for the
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logarithm of the real concentration at this location is the mean of the logarithms of
the two observations.

- In (yg) + In (2%
In(yp) = () ) (2%) (5.23)
where ;. is the real concentration at time k and yy, z, are respectively the measured

concentrations on the DCMR and the RIVM station.

In Figure 5.2, a histogram with differences between the logarithms of the observa-
tions at the DCMR station and the assumed logarithms of the real concentrations is
shown. The red line is the probability density function of the normal distribution
with mean O and standard deviation 0.08, this standard deviation is the same as the
standard deviation of the differences plotted in the histogram. The peak of the his-
togram is not located on zero, which means that the annual mean concentration is not
the same on both stations. The annual mean on the RIVM station is larger than the
annual mean on the DCMR station. Although the normal distribution did not fit very
well with the histogram, the assumption that the differences are normal distributed
with standard deviation 0.08 is at least a good approximation. This will be used as
an estimate for the instrumental error in 7f,.4., a random noise on the observation.
The histogram for the RIVM station is the same as for the DCMR station, but then
the negative version so that the histogram is mirrored in the y-axis.

This contribution of the representations error is not easy to calculate, this will be
done by a method of trial and error. The Kalman filter will be run applicated with
different values for ., > 0.08 to obtain the optimal value for 7 4.

The last assumption is that the observation error is the same for all stations, and not
correlated between the stations. The matrix R is then a diagonal matrix with on the
main diagonal elements 0.08y]2~. This corresponds to an uncertainty for the logarithm
of the observation of 8%.

Logarithms of concentrations NO, [ug/m® ] at Bentinckplein
7.0 . . . . . .

-

RIVM-station
» - w w o ]
o [§,] o w o w
- -
\
N

i
[
T

i . . . . . .
3'%.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
DCMR-station

Figure 5.1: The logarithms of the observations of the two monitoring stations at location
Bentinckplein
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Bentinckplein-DCMR
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In{observation at DCMR station) - assumed In(real concentration)

Figure 5.2: Histogram of the differences between the logarithms of the observations and the
assumed logarithm of the real concentration at location Bentinckplein. The red
line is the probability density function of the normal distribution with mean zero
and standard deviation 0.08.

Time correlation parameter

Another important parameter is the temporal correlation. In the dynamical system
given by equations 5.9 and 5.10, the matrix A contains the temporal correlation pa-
rameters c; j for the perturbation on the logarithm of the several background con-
centrations. The measurement locations Schipluiden and Westmaas, numbers 7 and
10 in Figure 2.1, are two locations, in a region far away from industry sources or
main roads. These measurement sites are chosen to obtain estimates of the back-
ground concentrations. With the observations on this locations it is possible to get an
estimate for the time correlation parameters.

In general, the correlation between two series of measurements {y; }; and {z};;
could be computed with the following formula:

1 n o 3
corr = — Y (i =9) (zi = 2) (5.24)
n 4 oy o
1=1
where 7, Z are the mean of the series {y; };* ;and {z;};" |, and 0y, o are the standard
deviations of the series {y;};—;and {z;};_;.

Assumed is that there is no correlation between the perturbations from different wind
directions and wind speeds. The matrix A will then be a diagonal matrix with on
the main diagonal elements «;. An estimation for «; is made with Equation 5.24
from two series of measurements {z; },_;" and {z;},_, .. where z, is the difference
between the logarithm of the observation and the logarithm of the model simulation
at time step k on location Schipluiden.



| 2010-0000 35/72

Another estimate for «; is made with the differences on location Westmaas. For both
locations this is done for m € [0, 60].

zr = In(yx) —In(cy") (5.25)

Both locations Westmaas and Schipluiden are outside the model domain, thus there
is no model simulation. Because of both stations are assumed to be background
stations, the concentration is caused mainly by the background. This background
is assumed constant, therefore the calculation of the correlation could be done with

zr = In (yg).

For every period, the correlation is calculated for the perturbation on time k& com-
pared with the perturbation on time k+m. In Figure 5.3 these correlations are plotted
with respect to the period m. This figure shows some peaks at period 24 hours, and
period 48 hours. This means that the correlation has a daily pattern. This is a rea-
sonable idea, because it is expected that the emission in Schipluiden and Westmaas
is mostly produced by people living in Schipluiden and Westmaas.

A reasonable assumption is that the concentration on time step k£ does not depend on
the concentration on time £ — m when m is large. Therefore the correlation between
the perturbation on time & and the perturbation on time k +m should go to zero when
m — oo. Mathematically there is a correlation between the concentration on time
step k and time step k-+m, this can be understood by the time patterns in the emission
and diurnal cycles in meteorological parameters. For example the concentration on
Monday at 08:00 in the morning is roughly the same as the concentration at Tuesday
08:00 in the morning. Mathematically this gives a high temporal correlation for
At = 24, but physically this concentrations are not realted. For that reason it is only
important to look at the temporal correlation for a few hours.

In Figure 5.3 is a fitting exponential function drawn for the first few periods. In this
case the formula for this function is o (At) = e~2%/12, The de-correlation parameter
7 = 12 gives the idea that the concentration on time k£ + 12 is not dependent on the
concentration at time k.

At last this de-correlation parameter 7 = 12 must be seen as an estimate, this is the
temporal correlation for the concentration with varying wind speeds and wind direc-
tions. When the wind is with constant speed from the same direction, the correlation
is perhaps different. In the application an optimal value for each a; will be found by
testing the Kalman filter with different values for each «;.
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Figure 5.3: The temporal correlation for background stations Schipluiden and Westmaas.
The black line corresponds with correlation o (At) = e=A/12

Kalman filter runs

The application of the Kalman filter, assuming the model uncertainty o equal to 0.4,
leads to a calculation of 7, , the expected mediaan of vector 7, and P, the covariance
matrix of vector . atevery time step k. In this application the vector ~ represents
the perturbations on the logarithms of the background concentration for four different
wind directions and two different wind speeds. For the first week of 2006, the 1o
intervals of these eight perturbations are given in Figure 5.4. On every time step the
weight 1, 5, for a standard concentration field is different, the values for y; ;. are also
given in Figure 5.4. When the contribution of a standard concentration field is high,
the change in the correction factor ~y; is also high. If for a longer period a standard
concentration field has no contribution, the mean of the correction factor ~y; tends to
zZero.

An interesting aspect of this result is that the values for ~y; are relatively high for
some time steps, this means that the background concentration receives a relatively
high correction factor for that time step. This is due to the fact that in this application
it is assumed that the difference between the observation and the model simulation is
completely depending on the background concentration. A better assumption is that
when the difference between the observation and the model simulation is large, that
there are some other errors in the model.

Another aspect is that the linearization of the dynamical system around v = 0 has
accuracy O (1 . 1), when 7 become large the accuracy of the linearization decreases
quadratically. For those reasons a screening process is implemented in the Kalman
filter. When the difference between the observation and the model simulation is too
high the analysis step will not be executed. The result is that the values for ~y; are
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limited. This screening process is explained in Section 5.6.

In Figure 5.5 the problems with large values for -y; are shown. In this figure, at every
time step the concentrations are calculated with the values for . and with Equations
5.2 and 5.4. In each figure the yellow line represents the largest contribution on the
correction of the background max (1, e"**) for every times step k. In this figures
it is clear that the concentrations after applying the Kalman filter are not accurate in
the regions where the values for ~; became large.
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Figure 5.4: Uncertainty intervals for the correction factors ~;, together with the weights for
each standard concentration field, for the first week of 2006
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5.6
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Figure 5.5: Concentrations for the first week of 2006 after application of the Kalman filter
on the background concentrations, for locations Schiedam and Overschie.

Screening process

As mentioned in Section 5.5, for some time steps the difference between the obser-
vation and the model simulation could not be only explained by inaccuracies of the
background concentrations. For that reason, a screening process is implemented in
the Kalman filter. When the difference between the observation and the forecasted
concentration is too high, the difference between the observation and the model sim-
ulation is not only caused by the inaccurate background, but also by some other
sources or incidental occasions. If this situation occurs, the analysis step will only
be executed on the observations which are close to the forecasted mean, such that
the values for ~; will stay small. The result is that the background concentrations
will not get large correction factors and the linearization still have good accuracy. It
is also important to have a view on which observations are screened, this could give
an idea of other inaccuracies in the model. For example, if many observations are
screened in the weekend, the model have large uncertainty in the weekend.

To implement a screening process, a criterion has to be made, whether a difference
between an observation and a model simulation is too high. For the Kalman filter on
the background concentration the assumption is the following:

8
f 1/g f 2 ,
Yy — Zmiﬂi,ke’Yi‘kJr/ (sdi) +cZ‘d ~ N (0, Paps k + Rabs k)
i—1
(5.26)

In here, Pups i and Ry i represents the variance for respectively the model simu-
lations and the observations. The variance for the model is not known explicitely,
due to the log-normal distribution. Therefore this variance is assumed to be equal
to the square of the difference between the upper band and the median of the 1o
interval of the concentration. The variance of the measurements corresponds with an
uncertainty of the measurements coupled with the uncertainty of the logarithm of the
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observation, 7 f.q. > 0.08.

8 8 2
Paps e = Zmiﬂiem’k to " — Zm#ﬁi,ke’y“" B

=1 =1
(5.27)

Rabs,k = (Tfracyk:)2 (528)

where A/ ;. 1s the standard deviation of %f - With the assumption from Equation 5.26

1y

a criterion is chosen whether an observation is *good’ enough:

8 2
.f 1/o f 2 ,d
(yk - (Z m g peon TR 4 )) < B?(Pupsk + Rapsk)

=1

(5.29)

The parameter 3 defines the screening criterion. If the square of a difference is more
than 32 times the variance of model simulation plus the variance of the observations,
the observation does not fit on the assumption that the difference is only caused by
the inaccuracy of the background. In that case the observation is not involved in the
analyzing process. This is a vector inequality, which means that when for an entry
of both vectors this inequality holds, the observation corresponding with that entry
is not involved in the analyzing step.

This screening process is implemented in the Kalman filter with parameter 3 =
2, this means that the square of a difference may not be larger then 4 times the
sum of variations. The value 5 = 2 is chosen because in the normal distribution
approximately 95% of the data lies in the 20 interval.

The application of the Kalman filter with this screening process results in concentra-
tions for Schiedam and Overschie for the first week of 2006, as shown in Figure 5.6.
The largest correction max (j; €7**) became much smaller, and the concentrations
have less extremes. In these figures, it is also shown that a lot of observations are
not taken into the analysis step, about 68% of the observations are not taken into the
analysis step. A possibility is that the temporal correlation is too large, a large tem-
poral correlation in the Kalman filter leads to a result without large fluctuations in
the concentration. When the observations have large fluctuations, it is possible that
many observations will be screened. If the temperal correlation is set with decorre-
lation parameter 7 = 1, there are still 66% of the observations are not taken into the
analysis step.

Another idea is that the differences are not completely caused by the inaccuracy of
the background concentrations. In Chapter 6 the Kalman filter is applied on all the
different emission sources, to get a better estimate of all the different concentra-
tion fields of the URBIS model. The idea is that the large differences between the
observations and the simulations are caused by inaccuracies of one of the standard
concentration fields.
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5.7
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Figure 5.6: Concentrations for the first week of 2006 after application of the Kalman filter on
the background concentrations, with a screening process, at locations Schiedam
and Overschie

Discussion

The ideas from Chapter 3 were that the differences between the model simulations
and the observations are caused by inaccuracies of the background. In this chapter, it
is shown that this assumption does not hold for most of the differences. A correction
on the background is not sufficient to eliminate the difference between the model
simulation and the observation from a measurement location.

With the corrections made on the background, it is possible to create better standard
concentration fields. Because of the large number of measurements which are not
involved in the Kalman filter process, it is not expected that the new standard concen-
tration fields for the background will be very accurate. For that reason, the Kalman
filter will be applied to all different emission sources to get a "better’ standard con-
centration field for every source. This application will be explained in Chapter 6,
together with the different runs to obtain the optimal values for each «;, o and R.
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6.1

Kalman filter on all Concentration sources

Introduction

In Chapter 5, it was shown that a correction on the background concentrations leads
to a better estimate of the real concentrations for only a small number of time steps.
For the other time steps the Kalman filter did not give a correction on the background
because the difference between the observation and the model simulation was not
only caused by the inaccurate background.

Therefore an additional analysis on the differences between the observations and
the model simulations is made. In Figure 6.1 is shown in which cases the differ-
ences between the observations and the model simulations on location Schiedam are
relatively large. The red bar plots gives the percentage of the situations where the
observation is more than 2 times the model simulation. The blue bar plots gives the
total number of differences that occurs for every input parameter (wind direction,
wind speed, temperature, hour of the day, day of the week and month of the year).

For the wind direction, a high percentage of the differences is relatively large when
the wind is from the south-east, but the total number of wind directions from the
south-east is not very high. Thus it is assumed that the contribution to the total
inaccuracy is not very large. For the wind speed, a high percentage of the differences
is relatively large when the wind speed is below 2 m/s. Also the total number of
times that the wind speed is above 2 m/s, is relatively large. This suggests that the
inaccuracies in the model when the wind speed is low, have a large contribution to
the total inaccuracy.

Another notable parameter is the hour of the day, in the morning and the end of the
evening there are relatively many large differences. This is an indication that there
are some inaccuracies in the sources which are time dependent (traffic and emission
produced by the residents of the Rijnmond area). The last interesting parameters
are the day of the week and the month of the year. Only on Sunday there are not
very much large differences, in the autumn and the winter are relatively many large
differences. This is also an indication the time dependent sources have inaccuracies.
In section 2.2 of Report (Kranenburg, 2009) was already mentioned that the sources
industry and shipping could have a time dependency. Thus also the sources shipping
and industry may have inaccuracies

The idea in this chapter is that the uncertainty of the model is caused by several differ-
ent emission sources, therefore the Kalman filter will be applied on all the different
sources. With this application all the standard concentration fields for all emission
sources will be estimated. These estimates are again calculated by multiplying each
field with a correction factor, which leads to a corrected state equation:
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88
o = ) pigme” ©6.1)
i=1

In this chapter it is no longer assumed that some of the entries of 7 are equal to zero.
The Kalman filter process will estimate all values of -y by a comparison of the model
with the measurements.

An advantage of this application is that the uncertainty intervals for the total concen-
tration is a combination of uncertainty intervals for the different emission sources.
This leads to an uncertainty interval which is different for every location. For exam-
ple, on locations where the concentration is mostly caused by emission from traffic,
the uncertainty interval is approximately equal to the uncertainty interval of the con-
centration from traffic sources. If the uncertainty for the source traffic can be reduced,
the uncertainty on all locations with high traffic emission will be reduced.
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6.2
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Figure 6.1: Bar plots of relatively large differences between observations and model simula-
tions at location Schiedam. In the lower graphs is the total number of differences
plotted for each input parameter, in the upper graphs is the percentage given
when the observation is more than two times the model simulation.

Kalman filter

The application of the Kalman filter is nearly the same as in the application for the
background concentrations. Every standard concentration fields gets a correction
factor. So for each of the entries of v a temporal correlation parameter has to be
found. For some sources this will be difficult because there is no good series of mea-
surements to calculate the correlation. In Section 6.4 the different values for o will
be calculated. Not all the values for o declared exactly, also the uncertainty of the
model o is not known exactly. The uncertainty of the logarithms of the observations
(R), estimated in Section 5.3 is also not known exactly. Therefore some sensitivity
runs are done to find the optimal values for o, o and R, this is explained in Section
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6.2.1

6.2.2

6.5
Dynamical system

To create a dynamical system for 1, it is again necessary to make a switch to the
logarithms of the concentrations. This is done in the next formula:

88
In(c;) = In <Zﬂi,kmi€%> (6.2)
i1

This equation is non-linear for ~, therefore a linearization is made around v = 0:

m
S 1j=1

88 10 pm. 1988
In <Z ,u,mmie”") = In(c") + [H} v+ O (1 . 1) (6.3)
i=1

where ¢;* is the total concentration, calculated by the model. The dynamical system
will then become:

7988

In(c,) = In(¢f)+ ['ujckmﬂ] v (6.4)
Cr j=1

Tt Ay, +w, wi~ N(0,Q) (6.5)

Matrix A contains the temporal correlation parameters, these are calculated in Sec-
tion 6.4. Covariance matrix (Jj is again a diagonal matrix, with diagonal elements
q?. This is a colored noise process, driven by a white noise process, like in the
application for the background. Furthermore it is assumed that both the temporal

correlation and the model uncertainty are independent of time.

¢ = y/1-alo} (6.6)

where o; corresponds with the model uncertainty for each entry of 7.

Kalman filter form

The dynamical system has to be written in Kalman filter form, for the implementation
of the Kalman filter. There are still 9 series of measurements available, these series
will be compared with the model simulations to get a better estimate of the NO,,
concentration. The dynamical system in Kalman filter form is defined as follows:

Yerr Ay, +wp  wp~ N(0,Qp) 6.7)

m,19=88
In (yk) = H <ln (a’) + [uﬂk"} ’m) +up v~ N(0,R)6.8)

m
S j=1
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6.2.3

6.2.4

In this equations matrix H is the system operator which projects the model state onto
the measurements. Covariance matrix I corresponds with the uncertainty of the log-
arithm of the measurements, the instrumental error combined with the representation
error. Matrix R will be a diagonal matrix, the elements on the diagonal are estimated
in Section 5.3.

To simplify the notations from Equations 6.7 and 6.8, the Kalman filter equations are
written as follows:

V1 = Ay twr wp~ N(0,Qk) (6.9)
g = fflﬁzk v ~ N (0, Ry) (6.10)

where vector ] and matrix H are defined as follows:

j, = In (gk)—Hln(QZ‘) 6.11)

. o 1i=88

0 = H['L%:LJ] 6.12)
G lji=

Forecast step

In the forecast step, a prediction is made for the values of Vit with information
from the time step before. The expected median and variance of 7, g are given by
the next formulas:

~f _ N
Y = A%, (6.13)
Pl = APRAT +Qy (6.14)

Analysis step

In the analysis step the forecasted concentrations are compared with the outcomes of
a series of measurements. Like in the application for the background concentrations,
it is not expected that the values for v will become very large. Also the linearization
is around v = 0 of order O (1 . lj’ thus large values for ~y; will cause stability
problems. For those reasons a screening process as in Section 5.6 is implemented.
In Section 6.3 the screening process for this application is explained.

Vo = U+ et (B, — Brndl,, ) (6.15)

~ ~ T
P, = (1 _ KkHHkH) Pl (I — KkHHkH) + K1 R 1 K6.16)

where K1 18 again the minimal variance gain, the gain that minimizes P, ,defined
as follows:
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6.3

f 7T 7 f T -1
Kit1 = P Hppy (Hk+1pk+1Hk+1 + Rk+1> (6.17)

Screening process

When the difference between the observation y and the model simulation ¢} is large,
the Kalman filter will produce a large correction factor for one or more standard con-
centration fields. This is not wanted, because it is assumable that a large difference
is caused by another inaccuracy in the model or by an incidental occasion. For ex-
ample when a road is blocked, the traffic pattern is different and thus the emissions
are different from the expectations calculated by the model. Like in the application
for the background in Chapter 5, a criterion has to be made whether a measurement
is good enough.

After the forecast step it is possible to make an uncertainty interval of the forecasted
concentration, there is also an uncertainty interval for the observation. When both of
these intervals has a empty intersection, the difference between the simulation and
the observation is too large. If for both intervals the 20 uncertainty interval is taken,
the screening criterion corresponds with the screening criterion in Section 5.6.

88 88
fo_ f f f
> g eI N e Ay — Br fracyk, Yk + BT fracyi] # 0

i=0 i=0
(6.18)

The value for 7 frac is optimized in Section 6.5 and equal to 0.34. The application of
the Kalman filter with this screening process with § = 2, results in a concentration
for the first week of 2006 for locations Schiedam and Overschie as shown in Figure
6.2. Contradicting to Figure 5.6, only 12% of the observations are not executed in
the analysis step of the Kalman filter. This means that the inaccuracies in the model
could be well described by inaccuracies of the several standard concentration fields.
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Figure 6.2: Concentrations for the first week of 2006 after application of the Kalman filter on
all the sources, with a screening process, at locations Schiedam and Overschie
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6.4

6.4.1

Correlation parameters o

In Section 5.4, an estimate value for the parameters «; corresponding with the source
background is calculated. In this section the same procedure will be done to obtain
estimated values for the other parameters a;. The temporal correlation for the source
rest’ is not possible to calculate with a series of measurements, therefore some runs
of the Kalman filter has to be applied to get the optimal values for a; corresponding
with the source ’rest’, this will be done in Section 6.5.

Traffic sources

The temporal correlation for the traffic sources will be obtained by looking at the
measurements on locations Overschie and Ridderkerk. Location Overschie is close
to main road A20 and Ridderkerk is close to main roads A15 and A16, both stations
will give a good approximation of the emission from traffic sources.

In Figure 6.3, the temporal correlation is given for both stations, this is done with
the same method as for the background sources, describes in Section 5.4. The best
fitting exponential function has de-correlation parameter 7 = 5, thus an estimated
value for each o corresponding with a traffic source is equal to e~ 1/°.

The high peaks at 24 and 48 can be explained by the fixed traffic pattern. Each day
the amount of traffic is roughly the same, thus there is a high mathematical temporal
correlation for periods of one day.

12

— Ridderkerk
—— Overschie

—Al/5
e Atfs

Correlation

-0.2
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Figure 6.3: The temporal correlation for traffic stations Overschie and Ridderkerk. The
black line corresponds with the de-correlation parameter Ty = 5
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6.4.2

6.4.3

Industry source

The temporal correlation for the source industry is not very easy to determine. There
is no location with a dominating industry emission. The location Vlaardingen is the
best location to calculate the correlation. This only results in an estimated corre-
lation which is not very accurate. In Figure 6.4, the temporal correlation on loca-
tion Vlaardingen is given. The best fitting exponential has de-correlation parameter
7 = 10, thus an estimated value for «; corresponding with the source ’industry’ is

equal to e~ 1/10,
1.0 . :
— Vlaardingen
E—AF,-"M)
0.8
06
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©
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Figure 6.4: The temporal correlation for station Vlaardingen, the station which matches best
with the source industry. The black line has de-correlation parameter 7;, = 10.

Shipping sources

Also for the temporal correlation of the shipping sources, it is not easy to determine
an estimate value for «;. Location Maassluis is the best location to calculate the
correlation, the temporal correlation at Maassluis is given in Figure 6.5. In here
the same holds as for the industry, the de-correlation parameter 7 = 8 is only an
inaccurate estimate. This leads to an estimated value for a; corresponding with the

shipping sources which is equal to e /8.
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6.4.4

6.5

12

— Maassluis

—Al/
e AL/S

10

Coarrelation
o o
[=)] 2]

o
S

0.2

0.0

0 10 20 30 40 50 60
At [hours]

Figure 6.5: The temporal correlation for station Maassluis, the station which corresponds
best with the emission from shipping. The black line corresponds with de-
correlation parameter T, = 8.

Rest source

It is clear that the temporal correlation for the source ‘rest’ is not easy to declare. The
only idea of this temporal correlation is that the de-correlation parameter 7, will be
around the values for the de-correlation parameters 74, 7¢7, Tin and 7s,. The de-
correlation parameter 7, is estimated equal to 9, thus «; corresponding with source
rest’ is estimated equal to e /9

Sensitivity runs

In Sections 5.4 and 6.4, all the parameters c; ; for the matrix A are not declared
exactly. Also the parameter o for the uncertainty of the model and the uncertainty
of the model r ;4. are not known exactly. Therefore the Kalman filter is applied for
different values of 744, T4, Tsp, Tin and different values of o and 7 .4.. In Section
5.4, it was shown that an estimated value for 7,4 is equal to 12. In Section 6.4 the
estimated values for 7., s, Tin, and 7. were found. The uncertainty of the model is
assumed between 25 and 35%. The instrumental error in the observations calculated
in Section 5.3 is equal to 8%, but the representation error may be larger, due to a
grid with a low resolution. A trial and error process leads to the conclusion that
the Kalman filter gives an optimal result with total uncertainty of the measurements
between 25% and 35%. This will lead to applications of the Kalman filter with the
following values:



| 2010-0000 51/72

6.5.1

6.5.2

6.5.3

Ty ~ 12
Ttr =
Tsh ~ 8
Tin ~ 10
Tre ~ 9
o € [0.25,0.35]
Tfrac € [0.25,0.35] (6.19)

To obtain which combination of values for 7, T4, Tsh, Tin, o and 7.4 is the best,
there are three criteria which have to be optimized: The Root Mean Squared Er-
ror (RMSE), the mean of the differences between the Kalman filter results and the
observations and finally the standard deviation of these differences.

Root Mean Squared Error (RMSE)

The first criterion is to minimize the value for RMSE

n

RMSE

- L < . Kf) ?

- Yik C;
where cZ.K kf is the concentration after applying the Kalman filter. The number of time
steps cofresponds with the value of n, which is equal to 8760 for a whole year. The
summation over ¢ is up to 9, the number of measurement locations. The value for the
RMSE is a measure for the absolute difference between the results after application
of the Kalman filter and the observations. When this is minimized the Kalman filter
results have the best comparison with the observations

Mean

Another criterion is the mean of the differences between the Kalman filter results and
the observations:

n

9
1 Kf
Mean = 50325 (e - i)

k=11
The value for this mean is in the optimal situation equal to 0, in that case the Kalman
filter results have the same mean as the observations.

Standard deviation

The final criterion is the standard deviation of the differences between the Kalman
filter results and the observations:
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6.5.4

1 n 9

2
Std = —— ((ylk — cf(kf) — Mecm)
Von \ i = i3 ’

In the optimal situation the value for this standard deviation is equal to 1.
Optimal results for RMSE, mean and standard deviation

To obtain the optimal combination of parameters, the values for RM SE, Mean and
Std are plotted with respect to the 7 parameters Tyg, Tir, Tsh, Tin, Tre, 0 and 7 frqc.
This is shown in Figure 6.6, for each of the parameters the values for the RM SE,
Mean and Std are plotted with respect to the possible values for the parameters.
The plots with respect to parameters 7y, 74, and 7, are not shown in Figure because
the values for RM SE, Mean and Std are nearly constant for every value of 7, 7ip,
and 7,.. In the optimal application of the Kalman filter these values will be taken
equal to the estimated values from Section 6.4, thus 7,5, = 8, 74, = 10 and 7. = 9.

For the optimal values of the other parameters the plots in Figure 6.6 have to be
analyzed. For the parameter 7,4, the standard deviation decreases if 73, increases.
The mean is equal to zero when 7,4 ~ 7, the RM SE will decrease slowly for large
Thg- Therefore a good option will be 7,4, = 10. The same analysis could be done for
Ty and leads to the option 74, = 3.

The parameter o has a larger influence on all three criteria, to optimize the standard
deviation the value for o must be around 0.36. For an optimal value of the mean,
the value of o must be around 0.32, the RM SE is decreasing when ¢ is increasing.
This results in a value for o stated equal to 0.35. The analysis of the parameter r ¢4
states that the standard deviation will be optimal for r ... ~ 0.38, the mean is close
to zero when 7.4 ~ 0.34. The value for RM SE is minimal when 7., =~ 0.28,
with this analysis, the value for 7, is stated equal to 0.34.
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Connection with population

After the application of the Kalman filter, it is possible to calculate an uncertainty
interval for the concentration NO,, for each grid cell in the area of interest. The next
objective is to connect the interval on a certain grid cell with the number of people
living in that grid cell.

Population density

A map of the population of the area is given in Figure 6.7. This figure represents the
density of postal zip codes per grid cell instead of the number of people per grid cell.
The total number of zip codes in this area is equal to 595.396. According data from
CBS !, the total number of residents in this region is equal to 1.186.306 on the first
of January of 2006. Thus the average number of people per zip code is equal to 1.99.
Further in this report it is assumed that the number of people per zip code is equal,
thus the number of residents in a grid cell is 1.99 x the number of zip codes.

pop; = 1.99 x # of zip codes; (6.20)

ICBS: Centraal Bureau voor de Statistiek. www.cbs.nl
Dutch organization for statistics
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6.6.2
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Figure 6.7: Density of postal zip codes in the DCMR area

Mean width of the uncertainty intervals connected with population density

For every grid cell, on every hour an uncertainty interval is calculated by the Kalman
filter application. The width of these intervals is a measure for the uncertainty of
the concentration NO,, when the width of the interval is small, the estimate of the
concentration NO,, is ’good’. The idea is now to have small intervals on locations
where the population density is high, in that case there is a good estimate of the
exposure of the population on the concentration NO,. The width of an uncertainty
interval in grid cell j on time k is the upperband of the 1o interval minus the lower
band of the 1o interval:

88 88
_ E ik tsdi g E ik —Sd;,
wj7k = /Li7kmi7j6’y ok ko ;1,2-7km,;’j67 k ok (6.21)
i=1 =1

where m; ; is de standard concentration of emission source ¢ in grid cell j.

In Figure 6.8, the annual mean w; of {wj’k}sz is plotted for each grid cell:

8760

1
b= - 6.22
7= 3760 ; Wik 6.22)

These annual means for each grid cell can be compared with the population density
on each grid cell, this comparison is shown in Figure 6.9. On the z-axis are the
values of w;, on the y-axis are the number of people living in a grid cell with that
annual mean. For w; € [w;, w;41], the number of people for that width range of w;
is equal to:
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Nge

Z POD; L, efws wisr]} (6.23)
j=1

where ny. is the number of grid cells and 7 is the indicator function.

In Figure 6.8, it is shown that relatively many grid cells have an annual mean above
40. This large uncertainty mostly occurs on main roads and industrial regions, there-
fore there are not that many people living in grid cells with a large annual mean of
uncertainty.

0 5 10 15 20 25 30 35 40 45
Annual mean of the widths of the certainty intervals for the concentration NOX [jg/m” ]

Figure 6.8: The values for w; over the whole area of interest



| 2010-0000 56/72

6.6.3

350000

300000 - —

250000 -

200000 -

150000

Number of residents

100000 |-

50000 - H |
| 1.

. . . . . .
0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50 =50.0
Annual mean of the width of the certainty intervals [pg/m® ]

o

Figure 6.9: Histogram of the number of people per grid cell against the annual mean w;. On
the x-axis are ranges of W;, on the y-axis are the number of people living in a
grid cell with w; in that range.

Large widths of the uncertainty intervals connected with population density

When the width of an uncertainty interval is large, it is difficult to give a good esti-
mation of the real concentration NO,, also the estimate for the exposure will not be
accurate. For that reason it is interesting to look for each grid cell at the number of
times that the uncertainty interval has a large width.

Therefore a definition of ’large’ has to be made. The mean of all the widths of all
uncertainty intervals over a whole year is equal to 26.0, the standard deviation of all
those means is 14.2. Therefore an uncertainty interval has a ’large’ width if the width
is above the mean plus two times the standard deviation, thus 26.0 + 2x14.2 =54 4.
Now it is possible to count for every grid cell the number of times that the width of
the uncertainty interval is above 54.4.

8760

# large uncertainties; = E Liw,  >54.4) (6.24)
k=1

In Figure 6.10, the number of large widths of the uncertainty intervals are shown for
each grid cell in the whole region. This number of large uncertainties can also be
compared with the population density, Figure 6.11 shows this comparison. On the
x-axis are the amount of large uncertainties, on the y-axis are the number of people
living is a grid cell with that amount of large uncertainties.

For # large uncertainties € [t;,t;y+1] with ¢; the number of times that a large
uncertainty exists, the number of people is equal to:
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Nge

Z poij{# large uncertainties; €[t;,ti11]} (6.25)
j=1

In Figure 6.10, it is shown that for relatively many grid cells there are many num-
ber of times with large uncertainty. Most of the grid cells with a large number of
times with high uncertainty are on main roads or industrial regions, thus again not
many people have relatively many large uncertainties. This is shown in Figure 6.11.
The last two peaks in the histogram shows the people with a large amount of large
uncertainties, this corresponds with the people living near main roads and nearby
industrial regions.

250 50 750 1000 1250
Amount of large certainty intervals for the concentration NO,

Figure 6.10: Amount of large values for w; i, over the year 2006 for the whole domain
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Figure 6.11: Histogram of number of people per grid cell against the amount of
large uncertainties for each grid cell. On the x-axis are the ranges of
# of large uncertainties, on the y-axis are the number of people living in
a grid cell with # of large uncertainties in that range.
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7 Conclusion and discussion

In Chapter 3, it is shown that the inaccuracies of the Real Time URBIS model are
dependent of the wind direction, the wind speed and the hour of the day. For that
reason a Kalman filter is applied on the standard concentration field from the UR-
BIS model to eliminate these inaccuracies and to connect the model with a series of
measurements.

In Chapter 5, the Kalman filter was only applied on the background concentrations,
this was not sufficient to eliminate all the inaccuracies. Therefore in Chapter 6, the
Kalman filter is applied on all emission sources. This application is good enough
to connect the model to almost all measurements, nearly 90% of the measurements
are taken into account. The application of the Kalman filter results in an uncertainty
interval for the concentration NO,, for the whole domain covered by DCMR. The
uncertainty interval has a large width on the main roads and on the industry region
around Pernis. On this locations the concentration is relatively large, thus also the
absolute uncertainty will be large.

With this Kalman filter it is now possible to correct the Real Time URBIS model on
every hour with the series of measurements. This correction will be different for each
location, because of the differences in the sources compositions in each grid cell.

Another application of this method is that, it is possible to connect the uncertainty
intervals with the population in the area. The idea is that on crowded locations the
uncertaintyinterval should be as small as possible. Therefore a further investigation
could be, adding some monitoring locations such that the width of the uncertainty
interval will change. With this method it is possible to create an optimal setting of
measurement locations.
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Standard concentration fields

Standard concentration fields for the 11 different sources in the URBIS model, each
source has 8 standard concentration field valid for 4 different wind directions (N, E,
S, W) and 2 different wind speeds (1.5 m/s and 5.5 m/s).

Figure A.1: Emission source:
Figure A.2: Emission source:
Figure A.3: Emission source:
Figure A.4: Emission source:
Figure A.5: Emission source:
Figure A.6: Emission source:
Figure A.7: Emission source:
Figure A.8: Emission source:

Figure A.9: Emission source:
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Figure A.10: Emission source: Ships sea

Figure A.11: Emission source: Zonecards
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Figure A.1: Emission Source: Abroad
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Figure A.2: Emission Source: Car
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Source: domestic Wind speed: 1.5 Wind direction: N Source: domestic Wind speed: 1.5 Wind direction: E
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Figure A.3: Emission Source: Domestic Rijnmond
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Source: industry Wind speed: 1.5 Wind direction: N Source: industry Wind speed: 1.5 Wind direction: E
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Figure A.4: Emission Source: Industry
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0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
Concentration NO, [yg/m" ] Concentration NO, [yg/m’ ]
Source: rest Wind speed: 1.5 Wind direction: S Source: rest Wind speed: 1.5 Wind direction: W

9 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
Concentration NO, [g/m’ ] Concentration NO, [g/m’ ]
Source: rest Wind speed: 5.5 Wind direction: N Source: rest Wind speed: 5.5 Wind direction: E

9 4 8 12 16 20 24 28 32 36 40 0 ) 8 12 16 20 24 28 32 36 40
Concentration NO, [jug/m" ] Concentration NO, [jg/m* ]
Source: rest Wind speed: 5.5 Wind direction: S Source: rest Wind speed: 5.5 Wind direction: W

9 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
Concentration NO, [yg/m" ] Concentration NO, [jig/m* ]

Figure A.5: Emission Source: Rest
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Figure A.6: Emission Source: Rest of the Netherlands
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Source: road_far Wind speed: 1.5 Wind direction: N Source: road_far Wind speed: 1.5 Wind direction: E
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Figure A.7: Emission Source: Road far



| 2010-0000 69 /72
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Figure A.8: Emission Source: Road nearby
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Figure A.9: Emission Source: Ships inland
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Source: ship_sea Wind speed: 1.5 Wind direction: N Source: ship_sea Wind speed: 1.5 Wind direction: E

0 6 12 18 24 30 36 42 48 54 60 0 6 12 18 24 30 36 42 48 54 60
Concentration NO, [yg/m" ] Concentration NO, [yg/m’ ]
Source: ship_sea Wind speed: 1.5 Wind direction: S Source: ship_sea Wind speed: 1.5 Wind direction: W

9 6 12 18 24 30 36 42 48 54 60 0 6 12 18 24 30 36 42 48 54 60
Concentration NO, [g/m’ ] Concentration NO, [g/m’ ]
Source: ship_sea Wind speed: 5.5 Wind direction: N Source: ship_sea Wind speed: 5.5 Wind direction: E

0 6 12 18 24 30 36 42 48 54 60 0 6 12 18 24 30 36 42 48 54 60
Concentration NO, [jg/m’ ] Concentration NO, [jig/m’ ]
Source: ship_sea Wind speed: 5.5 Wind direction: S Source: ship_sea Wind speed: 5.5 Wind direction: W

9 6 12 18 24 30 36 42 48 54 60 0 6 12 18 24 30 36 42 48 54 60
Concentration NO, [yg/m" ] Concentration NO, [jig/m* ]

Figure A.10: Emission Source: Ships sea
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Figure A.11: Emission Source: Zone Cards



