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Chapter 1

Introduction

1.1 Introduction

A future contract is an agreement between two parties to buy or sell an asset at a certain time in the
future for a certain price. Nowadays, traders calibrate the so-called convenience yield (CY), δt, via market
data every two days, using the future contract. Convenience yield is the benefit or premium associated
with holding an underlying product or physical good, rather than the contract or derivative product.
Sometimes, due to irregular market movements such as an inverted market (this is when the short-term
contract prices are higher than the long-term contracts), the holding of an underlying good or security
may become more profitable than owning the contract or derivative instrument, due to its relative scarcity
versus high demand.
An example would be purchasing physical bales of oil rather than future contracts. Should their be a
sudden shock-situation wherein the demand for oil increases, the difference between the first purchase
price of the oil versus the price after the shock would be the convenience yield. The market shows
however that the CY behaves stochastically and has a mean-reverting property, see e.g. [5]. The CY
may therefore be modelled by an Ornstein-Uhlenbeck (OU) process. The disadvantage of this process is
that it allows for negative CY which can result in cost and carry arbitrage possibilities. To prevent this
from happening we assume that the CY follows a Cox-Ingersoll-Ross (CIR) model. For both processes,
the spot price follows a geometrical brownian motion.
For commodities, the spot prices and the CY can not be observered directly from the market. To model
both stochastic processes (OU and CIR), the non-observability of these state variables is difficult. Since
the future prices of commodities are widely observered and traded on the market we use a method that
links these actual observations with the latent state variables. This method is known as the Kalman Filter,
(KF). The main idea of the (KF) is to use observable (futures) variables to reconstitute the value of the
non-obsvervable (spot prices and CY). We use futures of light crude oil ranging for the period from
01-02-2002 until 25-01-2008.
For applying the Kalman Filter, we assume an affine form for the closed form solution of the future prices
for both the OU and the CIR process. By assuming this, solving the stochastic differential equation of
both processes is a lot easier and having the closed form solution of the future prices will make the use
of the KF considerably easier.
The aim of this thesis is to implement the KF for both OU and CIR and compare the results with the
market data. Other commodities are numerically tested and we will try to price options on commodities
using this method. The outline of this report is as follows; in Chapter 2 and 3 analytical results are given
for the OU and CIR processes (resp.). In Chapter 4, the KF is explained in detail and it starts with an
introductory example. Chapter 5 applies the KF to the OU process and discusses the numerical results.
In Chapter 6 the KF is set up for the CIR process, but not yet tested numerically. The report ends with
a conclusion and further research.
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Chapter 2

Stochastic convenience yield model
following an Ornstein-Uhlenbeck
process

In this chapter analytical results are given for the stochastic CY when it follows an Ornstein-Uhlenbeck
process. The assumption is that the spot price St follows a geometrical Brownian motion, i.e.,

dSt = (µ− δt)Stdt + ηStdWt, (2.1)

where µ is the drift term, η is the volatility term, and Wt a standard Brownian motion. The form of the
convenience yield (δt) is a result of the studies of Gibson and Schwartz (see [5]) where they find empirical
evidence that the convenience yield will have a mean-reverting property, i.e.,

dδt = k(α− δt)dt + σdZt. (2.2)

In (2.2), α is the long range mean to which δt tends to revert, k the speed of adjustment, σ the volatility
term and Zt a standard Brownian motion. Here dWtdZt = ρdt. The solution of (2.1) is given by

ST = St exp

{
(µ− 1

2
η2)(T − t) + η

∫ T

t

dWs

}
, (2.3)

and the solution of (2.2) is

δT = θδt + (1− θ)α + σe−kT

∫ T

t

eksdZs, (2.4)

where θ = e−k(T−t).

2.1 Mean and variance of the Ornstein-Uhlenbeck process

Apply Ito’s lemma on f(δT , t) = δT ekt which results in

df(δt, t) = kδte
ktdt + ektdδt

= ektkαdt + σektdZt.

This implies

δte
kt = δ0 + kα

∫ t

0

eksds + σ

∫ t

0

eksdZs.
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Rearranging and taking expectation yields

E[δt] = δ0e
−kt + α(1− e−kt) = δ0θ + α(1− θ),

where θ = e−kt. For the variance we calculate the covariance matrix by applying the Ito Isometry

Cov(δs, δt) = E[(δs − E[δs])(δt − E[δt])]

= E[σ
∫ s

0

e−k(u−s)dZuσ

∫ t

0

e−k(v−t)dZv]

= σ2e−k(s+t)E[
∫ s

0

ekudZu

∫ t

0

ekvdZv]

=
σ2

2k
e−k(s+t)(e2k(min(s,t)) − 1).

For s = t this gives Var[δt] = σ2

2k (1− θ2). We conclude that δt is N
(
θδt + (1− θ)α, σ2

2k (1− θ2)
)
.

2.2 Market price of risk

For the interest rate we do not have to build in a stochastic model so we keep r deterministic (constant)
[4]. Since the CY is non-traded, the convenience yield risk cannot be hedged and it will have a market
price or risk, λδ associated with it. To see how this is inserted in (2.1) and (2.2), consider the standard
geometrical brownian motion

dSt

St
= µdt + ηdWt,

and taking at both sides the expectation and rearranging to get

µ =
1
dt

E[
dSt

St
].

We see that µ is the expected return per unit time of a stock St in an economy where the only source of
risk is the Brownian motion. We can write

µ = r − δt + b,

where r denotes the risk-free rate and b the risk premium. Since we assume that η is non-zero we define

λ =
b

η

to be the risk premium expected by investors per unit of volatility. It is usually refered to as the market
price of equity risk per unit of η. We now have

µ = r − δt + λη and so λ =
µ + δt − r

η
.

Inserting this in (2.1) we get

dSt

St
= µdt + η(dWt − (

µ + δt − r

η
)dt) ⇒ dSt

St
= (r − δt)dt + ηdW̃t, (2.5)

where W̃t is the standard Brownian motion under the risk-neutral measure. For (2.2) it is easily shown
that

dδt = k((α− σλ

k
)− δt)dt + σdZ̃t,

holds. Again, dZ̃t is the standard brownian motion under the risk-neutral measure and dZ̃tdW̃t = ρdt as
before. Now we have the system of two joint stochastic processes

dSt

St
= (r − δt)dt + ηdW̃t,

dδt = k((α− σλ
k )− δt)dt + σdZ̃t.

(2.6)

Note that this derivation is based on the Girsanov theorem.
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2.3 The value of a future delivery

Define YT = Y (T, ST , δT ) to be the payoff at time T . The discounted expected value of YT at time t is
given by

Vt[YT ] := e−r(T−t)E[YT ]. (2.7)

From (2.5) we get ∫ T

t

dWs =
∫ T

t

dW̃s −
µ− r

η
(T − t)− 1

η
(XT −Xt), (2.8)

where Xt =
∫ t

0
δsds.

From (2.2) we get∫ T

t

dδs = δT − δt = kαt− k

∫ T

t

δsds + σ

∫ T

t

dZs = kα(T − t)− k(XT −Xt) + σ

∫ T

t

dZs. (2.9)

Now insert (2.4) to get

XT = Xt + (1− θ)
1
k

(δt − α) + α(T − t) +
σ

k

∫ T

t

dZs −
σ

k
e−kT

∫ T

t

eksdZs. (2.10)

For the future price we consider the case YT ≡ ST and we compute Vt[ST ]. The current value of a claim
on a future delivery of the commodity on the future date t is

Vt[ST ] = St exp
{[
−α +

1
k

(σλ− σηρ) +
1
2
(
1
k

)2σ2

]
(T − t)

− 1
k

[
δt − α +

1
k

(σλ− σηρ) + (
1
k

)2σ2

]
(1− θ)

+
1
2
(
1
k

)2
σ2

2k
(1− θ2)

}
. (2.11)

Proof. From (2.7) and (2.3) we get

e−r(T−t)ST = St exp
{

(µ− r − 1
2
η2)(T − t) + η

∫ T

t

dWs

}
. (2.12)

Multiplying (2.8) with η, it follows together with (2.10)

η

∫ T

t

Ws = −(T − t)(µ− r + α− 1
k

σλ) +
1
k

(α− δt +
1
k

σλ)(1− θ) + η

∫ T

t

dW̃s

− 1
k

σ

∫ T

t

dZs +
1
k

σe−kT

∫ T

t

eksdZs.

(2.13)

Now we can write (2.12) as follows

e−r(T−t)ST = St exp
{
−(

1
2
η2 + α− 1

k
σλ)(T − t) +

1
k

(α− δt)

− 1
k

σλ)(1− θ) + η

∫ T

t

dW̃s −
1
k

σ

∫ T

t

dZ̃s +
1
k

σe−kT

∫ T

t

dZ̃s

}
= Ste

z. (2.14)

From basic stochastic calculus it follows

µ̃ = E[z]

= −(
1
2
η2 + α− 1

k
σλ)(T − t) +

1
k

(α− δt −
1
k

σλ)(1− θ). (2.15)
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For calculating Var[z] we notice that for a general process g ∈ L2[t, T ] it follows

E
[(∫ T

t

g(s)dWs

)2]
=
∫ T

t

E[g(s)2]ds.

Using this we can calculate the following expectations

E
[
η2

(∫ T

t

dW̃s

∫ T

t

dW̃s

)]
= η2

∫ T

t

E[12]dt = η2(T − t) (2.16)

E
[(

1
k

σ

∫ T

t

dZ̃s

)2]
=

σ2

k2

∫ T

t

E[12] =
σ2

k2
(T − t) (2.17)

E
[(

1
k

e−kT

∫ T

t

eksdZ̃s

)2]
=

[
σ2

k2
e−2kT

∫ T

t

E[e2ks]ds

]
=

σ2

k2
e−2kT [

1
2k

e2kT − 1
2k

e2kt]

=
σ2

k2

1
2k

[1− θ2] (2.18)

E
[(

η

∫ T

t

dW̃s

)(
1
k

σ

∫ T

t

dZ̃s

)]
= η

σ

k
ρ(T − t) (2.19)

E
[(

η

∫ T

t

dW̃s

)(
1
k

σe−kT

∫ T

t

eksdZ̃s

)]
= e−kT ησ

k
ρ

∫ T

t

E[eks]ds

= e−kT ησρ

k

1
k

[ekT − ekt]

=
ησρ

k2
(1− θ) (2.20)

E
[(

1
k

σ

∫ T

t

dZ̃s

)(
1
k

σe−kT

∫ T

t

eksdZ̃s

)]
=

1
k2

σ2e−kT ρ

∫ T

t

E[eks]ds

=
1
k2

(σ2e−kT )ρ
1
k

(ekT − ekt)

=
σ2ρ

k3
(1− θ). (2.21)

Finally we get

σ̃2 = E[(z2)]− (E[z])2

= (η2 − 2
1
k

σηρ +
1
k2

σ2)(T − t)

+ 2(
1
k2

σηρ− 1
k3

σ2)(1− θ)

+
1
k2

σ2

2k
(1− θ2), (2.22)

where θ = e−k(T−t) as before. From the standard formula of the expected value of a lognormal random
variable we get

Vt[ST ] = St exp
{

µ̃ +
1
2
σ̃2

}
. (2.23)
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The future price of a contract on a commodity with time to maturity τ = T − t is given by

F (S, δ, τ) := erτVt[ST ]. (2.24)

This follows from the absence of risk-free arbitrage opportunities, i.e. we must have

Vt[ST − F ] = 0. (2.25)

In order to find the PDE to which F (S, δ, τ) satisfies we use the Feynman-kač theorem.

Theorem 2.1. Feynman-Kač
Suppose the underlying processes y1(t), y2(t), .., yn(t) follow the stochastic differential equation

dyi = µi(y1, y2, ..yn, t)dt + σi(y1, y2, .., yn, t)dWi.

Then the function

g(y1, y2, .., yn, t) = Ey1,y2,..,yn,t[f(y1(T ), .., yn(T ))]

is given by the solution of the partial differential equation

∂g

∂t
+

n∑
i=1

µi
∂g

∂yi
+

1
2

n∑
i,j=1

ρijσiσj
∂2g

∂yi∂yj
= 0,

subject to

g(y1, y2, .., yn, T ) = f(y1, y2, .., yn),

where ρij = Cov(dWi, dWj)/dt.

F (S, δ, τ) satisfies the PDE
1
2
η2S2FSS + ρησSFSδ +

1
2
σ2Fδδ + (r − δ)SFS + (k(α− δ)− λ)Fδ − Fτ = 0,

F (S, δ, 0) = S0.

(2.26)

A similar result exists for V (S, δ, t) := Vt[YT ]. The V (S, δ, t) satisfies the PDE
1
2
η2S2VSS + ρησSVSδ +

1
2
σ2Vδδ + (r − δ)SVS + (k(α− δ)− λ)Vδ − rVτ = 0,

V (S, δ, T ) = Y (S, δ).
(2.27)

2.4 Price valuation of a European call option

The value of a European call option at time t is given by

Vt[(ST −K)+] = Vt[ST ]N [d1]− e−r(T−t)KN [d2], (2.28)

where N [·] is the standard cumulative distribution function and we define

d1 =
ln(Vt[ST ]/K) + r(T − t) + 1

2 σ̃2

σ̃
,

d2 =
ln(Vt[ST ]/K) + r(T − t)− 1

2 σ̃2

σ̃
,

where σ̃ is given by (2.22).
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Proof. Apply (2.7) to (2.28) to obtain

Vt[(ST −K)+] = e−r(T−t)Et[(ST −K)+]

and by using (2.14) we get

Vt[(ST −K)+] = E[(ST ez − e−r(T−t)K)+].

Since z is N (µ̃, σ̃) we get

Vt[(ST −K)+] = exp
{

µ̃ +
1
2
σ̃

}
StN

[
ln(ST /K) + r(Tt) + µ̃ + σ̃2

σ̃

]
− exp {−r(T − t)}N

[
ln(ST /K) + r(Tt) + µ̃

σ̃

]
.

Together with (2.23) the result immediately follows.



Chapter 3

Stochastic convenience yield model
following a Cox-Ingersoll-Ross
process

In this chapter, instead of (2.2) we assume that the convenience yield follows a Cox-Ingersoll-Ross (CIR)
process and where the spot price follows a geometrical brownian motion with a time-varying volatility,
which is proportional to the square root of the instantaneous convenience yield level, i.e.,

dSt

St
= (µ(·)− δt)dt + η

√
δtdWt,

dδt = k(α− δt)dt + σ
√

δtdZt,

(3.1)

In (3.1), S is the price of the underlying, δ is the CY, µ is the drift term, η is the volatility term of dSt

St
,

Wt a standard Brownian motion, α is the long range mean to which δt tends to revert, k the speed of
adjustment, σ the volatility term of dδt, and Zt a standard Brownian motion. Here dWtdZt = ρdt. The
reason why we assume that the CY follows a CIR process is the nonnegativity. A negative CY would
make the forward prices go up at more than the interest rate and provide some kind of cash and carry
arbitrage through buying the spot commodity and selling a forward. The CIR process excludes negative
CY.

3.1 Mean and variance of the CIR process

The integral equation for δt is given by

δt = δ0 + k

∫ t

0

(α− δu)du + σ

∫ t

0

√
δudZu.

Taking expectations on both sides and differentiating yields

d

dt
E[δt] = k(α− E[δt]) ⇒ d

dt
ektE[δt] = ekt[kE[δt] +

d

dt
E[δt]] = ektkα.

This leads to

ektE[δt]− δ0 = kα

∫ t

0

ekudu = α(ekt − 1) ⇒ E[δt] = α + e−kt(δ0 − α) = e−ktδ0 + (1− e−kt)α.

Remark. We see that if δ0 = α then E[δt] = α ∀t. If δ0 6= α, then δt exhibits mean reversion, i.e.

limt→∞E[δt] = α.
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For the variance we calculate first dδ2
t via Ito. Define f(x) = x2. We have

dδ2
t = df(δt)

= f ′(δt)dδt +
1
2
f ′′(δt)dδtdδt

= 2δt[k(α− δt)dt + σ
√

δtdZt] + [k(α− δt)dt + σ
√

δtdZt]2

= 2αkδtdt− 2kδ2
t dt + 2σδ

3/2
t dZt + σ2δtdt

= (2kα + σ2)δtdt− 2kδ2
t dt + 2σδ

3/2
t dZt.

This leads to

δ2
t = δ2

0 + (2kα + σ2)
∫ t

0

δudu− 2k

∫ t

0

δ2
udu + 2σ

∫ t

0

δ3/2
u dZu.

Taking expectation on both sides and differentiating with respect to t yields

d

dr
E[δ2

t ] = (2kα + σ2)E[δt]− 2kE[δ2
t ].

From this we get

d

dt
e2ktE[δ2

t ] = e2kt[2kE[δ2
t ] +

d

dt
E[δ2

t ]]

= e2kt(2kα + σ2)E[δt].

It follows that

E[δ2
t ] =

ασ2

2k
+ α2 + (δ0 − α)(

σ2

k
+ 2α)e−kt + (δ0 − α)2

σ2

k
e−2kt +

σ2

k
(
α

2
δ0)e−2kt.

We finally have

Var[δt] = E[δ2
t ]− (E[δt])2

= α
σ2

2k
(1− e−kt)2 + δ0

σ2

k
(e−kt − e−2kt). (3.2)

3.2 The logprice and inserting the market price of risk

By defining x = ln St and via Ito, the log price can be derived.

dx =
(

(µ(·)− δt)St
1
St

+ 0 +
1
2
η2δtS

2
t (− 1

S2
t

)
)

dt + η
√

δtSt
1
St

dWt

=
(

(µ(·)− δt)−
1
2
η2δt

)
dt + η

√
δtdWt. (3.3)

Again via the same explanation given in chapter 1 we insert the market price of risk into (3.3). This
leads to the two joint stochastic process

dSt

St
= (r − δt)dt + η

√
δtdW̃t,

dδt = (k(α− δt)− λδt)dt + σ
√

δtdZ̃t,

(3.4)

The log price process is given by

dx =
(

r −
(

1 +
1
2
η2

)
δt

)
dt + η

√
δtdW̃t. (3.5)
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3.3 Partial differential equation for the future prices

Following the approach as discussed in Section 2.5, we have the following PDE for the future price
F (S, δ, τ)

1
2
η2δS2FSS + ρησδSFSδ +

1
2
σ2δFδδ + (r − δ)SFS + (k(α− δ)− λ)Fδ − Fτ = 0,

F (S, δ, 0) = S0.

(3.6)

Assuming (see e.g. [2]) this PDE has an affine form solution F (S, δ, τ) = SeA(τ)−B(τ)δ,

A(0) = 0, B(0) = 0.
(3.7)

To find B(τ) and A(τ) we notice that (by substituting (3.7) into (3.6))

1
2
σ2B2 + (k − ρησ)B − 1 + Bτ = 0,

r + (λ− kα)B −Aτ = 0.

For simplicity first write a1 = 1
2σ2 and a2 = k − ρησ which leads to f(B) = Bτ = −a1B

2 − a2B + 1.
Now we want to factorize the function f(B).

f(B)
−a1

= B2 +
a2

a1
B − 1

a1
= (B + ε)(B − γ).

From this we get that (ε−γ) = a2
a1

and εγ = 1
a1

. From these two relations it follows that we have to solve

a1γ
2 + a2γ − 1 = 0.

This gives

γ1,2 = − a2

2a1
±
√

a2
2 + 4a1

2a1

=
−k2 ± k1

2a1
, (3.8)

where k1 and k2 are given by (3.15). From this point it is assumable that both γ’s should work. For
convenience of the reader we check this below. We have

Bτ = −a1(B + ε)(B − γ) = 0
1

(B + ε)(B − γ)
dB + a1dτ = 0

1
γ + ε

[
−1

B + ε
+

1
B − γ

]
dB + a1dτ = 0

1
γ + ε

[−ln|B + ε|+ ln|B − γ|] +
1
a1

τ = c

ln
(
|B − γ|
|B + ε|

)
= −γ + ε

a1
τ + (γ + ε)c

B(τ) =
(c̃εe−

γ+ε
a1

τ + γ)

1− c̃e−
γ+ε
a1

τ
,
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with initial condition B(0) = 0 we get that c̃ = −γ
ε . Substituting c̃ and calculating for γ1 (which refers

to the plus sign) gives

B(τ) =
γ(1− e−

γ+ε
a1

τ )

1 + γ
ε e−

γ+ε
a1

τ

=
1− e−

γ+ε
a1

τ

ε+γe
− γ+ε

a1
τ

εγ

=
1− e−

γ+ε
a1

τ

k2 + a1(1 + e−
γ+ε
a1

τ )γ

=
1− e−

γ+ε
a1

τ

k2 + a1(−k2+k1
2a1

(1 + e−
γ+ε
a1

τ ))

=
2(1− e−

γ+ε
a1

τ )

2k2 − k2 + k1 − k2e
− γ+ε

a1
τ + k1e

− γ+ε
a1

τ

=
2(1− e−

γ+ε
a1

τ )

k2 + k1 + (k1 − k2)e
− γ+ε

a1
τ
. (3.9)

Now calculate

e−
γ+ε
a1

τ = e−
(
−k2+k1

2a1
+

k2
a1

+
−k2+k1

2a1
)τ

a1

= e−k1τ . (3.10)

Substituting (3.10) into (3.9) results in

B(τ) =
2(1− e−k1τ )

k1 + k2 + (k1 − k2)e−k1τ
(3.11)

Now substituting c̃ and calculating for γ2 (which refers to the plus sign) gives

B(τ) =
γ(1− e−

γ+ε
a1

τ )

1 + γ
ε e−

γ+ε
a1

τ

=
1− e−

γ+ε
a1

τ

ε+γe
− γ+ε

a1
τ

εγ

=
1− e−

γ+ε
a1

τ

k2 + a1(1 + e−
γ+ε
a1

τ )γ

=
1− e−

γ+ε
a1

τ

k2 + a1(−k2−k1
2a1

(1 + e−
γ+ε
a1

τ ))

=
2(1− e−

γ+ε
a1

τ )

2k2 − k2 − k1 − k2e
− γ+ε

a1
τ − k1e

− γ+ε
a1

τ

=
2(1− e−

γ+ε
a1

τ )

k2 − k1 + (−k1 − k2)e
− γ+ε

a1
τ
.

Now calculate

e−
γ+ε
a1

τ = e−
(
−k2−k1

2a1
+

k2
a1

+
−k2−k1

2a1
)τ

a1

= ek1τ . (3.12)
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Substituting (3.12) into (3.9) results in

B(τ) =
2(1− ek1τ )

−k1 + k2 + (−k1 − k2)e−k1τ

−e−k1τ

−e−k1τ

=
2(1− e−k1τ )

k1 + k2 + (k1 − k2)e−k1τ
, (3.13)

where it is shown that both γ’s satisfy. Accordingly

A(τ) = rτ + (λ− kα)
∫ T

t

Bqdq, (3.14)

where ∫ T

t

Bqdq =
2

k1(k1 + k2)
ln
[
(k1 + k2)ek1τ + k1 − k2

2k1

]
(3.15)

+
2

k1(k1 − k2)
ln
[
k1 + k2 + (k1 − k2)e−k1τ

2k1

]
, (3.16)

where

k1 =
√

k2
2 + 2σ2,

k2 = (k − ρησ).
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Chapter 4

Kalman Filter

4.1 Introduction

In 1960 R.E. Kalman published the Kalman Filter (KF). This algorithm makes optimal use of imprecise
data on a (quasi-) linear system with Gaussian errors (white noise) to continuously update the best
estimate of the systems current state. The power of KF is; to compute these updates it is only necessary
to consider the estimates from the previous time step and the new measurement and not all the previous
data. The main idea is that we want to estimate the current state and its uncertainty, but we can not
directly observe these states. Instead we observe noisy measurements.

4.2 Kalman Algorithm

In general the Kalman Filter tries to estimate a state x ∈ <n where xt is given by the stochastic differential
equation

xt = Atxt−1 + Btut−1 + wt−1, (4.1)

with a measurement z ∈ <n given by

zt = Htxt + vt, (4.2)

where

� At is a n× n matrix,

� Bt is a n× l matrix,

� Ht is a m× n matrix,

� wt and vt are the process and measurement noise (resp.) with mean zero and covariance matrices
Q and R (resp.).

Now define

E[xt] = x̂t, (4.3)
E[(xt − x̂t)(xt − x̂t)′] = Pt. (4.4)

The KF algorithm is a predictor-corrector algorithm and uses the time updates for the prediction and
the measurement updates as the corrector. The KF algorithm is given by
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Predictor (Time updates)

x̂−t = Atx̂t−1 + Btut−1

P−
t = AtPt−1A

′
t + Qt

Table 4.1:
6

?

In

Corrector (Measurement updates)

Kt = P−
k H ′

t(HtP
−
t H ′

t + Rt)−1

x̂t = x̂−t + Kt(zt −Htx̂
−
t )

Pt = (I −KtHt)P−
t

Table 4.2:

In Chapter 5 we discuss the Kalman filter for the CIR process. But first we introduce a simple example
following [6].

4.3 Introductory example

In [6] they use the KF to estimate a random constant. We assume all matrices in Table 4.1 and 4.2 to
be constant. By setting A = 1, B = 0 we obtain x̂−k = x̂k−1, i.e., we skip the updating step. By setting
H = 1, we get zk = xk +vk, i.e., the measurements comes directly from the state xk. We set Q = 1E−05.
Now we have to choose an intial state to begin with. Since a random variable is normally distributed
with mean zero, we take x0 = 0 to be the intial state. Accordingly we must start with an intial state for
Pk, P0. It turns out that we can arbitraly choose P0 6= 0 and the filter will eventually converge. Take
P0 = 1, by taking P0 large enough, the choice of x0 does not influence the kalman filter [7]. The crosses
in the following figures are generated by the matlab function

y=-0.37727+normrnd2(0,0.025^2,samples,1);
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4.3.1 Simulation results

By randomly choosing R = 0.0238 we get,
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Figure 4.1: Simulation of a random constant, with R = 0.0238. The true value of x = −0.37727 is given
by the green line, the Kalman Filter by the red line and the crosses are the noisy measurements.

Changing the choice of R is made clear by figure 4.2 and 4.3. In figure 4.2 we take R = 1, this will cause
a much slower converging behaviour than in figure 4.1. This is because the filter responds slower to the
noisy measurements. However the filter will eventually converge to the true value of x. In figure 4.3 we
take R = 0.0001, as we can see the filter quickly responds to the measurements and tries to fit it. With
the choice of this R we can expect that it will take very long for the filter to converge to the green line.
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Iteration

Figure 4.2: Simulation of a random constant, with R = 1. The true value of x = −0.37727 is given by
the green line, the Kalman Filter by the red line and the crosses are the noisy measurements.



22 Kalman Filter

0 10 20 30 40 50 60 70 80 90 100
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

Figure 4.3: Simulation of a random constant, with R = 0.0001. The true value of x = −0.37727 is given
by the green line, the Kalman Filter by the red line and the crosses are the noisy measurements.

4.3.2 How to choose R

Consider for simplicity Q = 0, so (6.2) can be written as zt = Htxt or It = zt −Htxt, where It is usually
refered to as the innovations. If we plot It in figure 4.4 we see that the crosses are distributed around
zero. This is expected because RIt

is statistically equal to the variance of the error term of vt, R. We
assumed vt is N (0, R). But from the literature [7] it is also known that RIk

= HtP
−
t H ′

t + R. We first
choose R randomnly, say R = 0.10. If we plot both the statistically innovations and the theoretical ones
we should have that 68 per cent of the crosses lie inside the theoretical boundary. In figure 4.4 we can
see that only 54 per cent of the crosses lie inside the boundary.
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Figure 4.4: Comparison between the theoretical innovations (blue lines) and the statistical innovations
(red crosses). The number of red crosses between the blue lines is 54 per cent. R = 0.10.

It is therefore necessary to change the value of R, say R = 0.16. We see that 71 per cent of the red
crosses lie between the blue lines. If we now plot the Kalman Filter using this R we see that this is one
of the best choices for R, what we expected.



4.3 Introductory example 23

0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 4.5: Comparison between the theoretical innovations (blue lines) and the statistical innovations
(red crosses). The number of red crosses between the blue lines is 71 per cent. R = 0.16.
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Figure 4.6: Simulation of a random constant, with R = 0.16. The true value of x = −0.37727 is given by
the green line, the Kalman Filter by the red line and the crosses are the noisy measurements.
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Chapter 5

The Kalman Filter for the
Ornstein-Uhlenbeck process

To fit the state-space model, the state variables (which in this case are the spot prices and the convenience
yield) are contained inside a state vector. The measurement equation, consisting of this vector and
uncorrelated disturbances to account for possible errors in the data, links actual observations (in this
case the future prices on several different maturities) with latent variables. These latent variables are
assumed to be first-order Markovian processes and are related to systems (2.1) and (2.2). The Kalman
filter will give an optimal prediction for the unobserved data by only considering the previously estimated
value.
Consider again

F (S, δ, τ) = SeA(τ)−B(τ)δ, (5.1)

where

A(τ) =
[(

r − α̃ +
σ2

2k2
− ησρ

k

)
τ

]
+
[
σ2

4
1− e−2kτ

k3

]
+
[(

α̃k + σηρ− σ2

k

)(
1− e−kτ

k2

)]
,

and

B(τ) =
1− e−kτ

k
, α̃ = α− (

λ

k
).

In state variable terms, (5.1) can be rewritten in

Ft(τ) = lnSt + A(τ)−B(τ)δt, (5.2)

The measurement equation then reads

Yt = dt + Zt[xt, δt]′ + εt, t = 1, .., NOBS, (5.3)

where1

� Yt = [lnFt(τi)], for i = 1, ..., n is a n × 1 vector for n maturities. τi are the maturity dates. Ft(τ)
are observed from market data.

� dt = [A(τi)] for i = 1, .., n is a n× 1 vector.

� Zt = [1,−B(τi)], for i = 1, ..., n is a n× 2 matrix.

� εt is a n× 1 vector of uncorrelated disturbances and is assumed to be normal with zero mean and
variance matrix Ht. Ht is a n × n diagonal matrix with hi on its diagonal.

1NOBS is the number of observations.
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The εt in (5.3) term is included to account for possible errors in the measurement. These errors especially
occur when the state variables are unobservable. To get a feeling of the size of the error suppose that the
OU model generates the prices and yields perfectly, and that the state variables can be observed from the
market directly. The included error term in the measurement equation can be seen as the possibilities of
bid-ask spreads, errors in the data etc. The error is assumed to be small in comparison to the variation
of the yield. The matrix Ht is assumed to be diagonal for convenience in order to reduce the number of
parameters to be estimated. The diagonal elements hi are then estimated via the log-likelihood function.

In combination with the relationship xt = lnSt we have dxt = (µ− δt −
1
2
η2)dt + ηdWt,

dδt = k(α− δt)dt + σdZt,

(5.4)

From (5.4) the transition equation follows immediately,[
xt

δt

]
=

[
(µ− 1

2η2)∆t

kα∆t

]
+

[
1 −∆t

0 1− k∆t

][
xt−∆t

δt−∆t

]
+

[
1 0

0 1

][
ξ1
t

ξ2
t

]
(5.5)

which for simplicity will be written as

αt = ct + Qtαt−∆t + Rξt. (5.6)

where ξt is the transition error. Like εt, ξt is also assumed normal with mean zero and has a covariance-
variance matrix given by

Vt =

[
σ2∆t ρση∆t

ρση∆t η2∆t

]
(5.7)

The matrices, H, Z, Q, c, d given above are parametrized by of the unknown parameter set ϕ =
{k, αλ, η, σ, ρ, µ, hi}. We dropped the time subscript for each matrix because they are time-independent.
Note that Vt does not depend on the state variables {xt, δt}.

5.1 Iterative procedure

The iterative procedure consists of two main parts. Part one is the Kalman Filter which is used to update
the systems matrices. Part two is estimating the parameter set ϕ = {k, αλ, η, σ, ρ, µ, hi}. The algorithm
of the Kalman Filter is given in pseudo code. Define at = E[αt] and Pt = E[(at−αt)(at−αt)′]. The tilde
indicates predicted values.

while ( number of iterations has not been reached , optimal ϕ has not been found ) do
(Kalman Filter)
for i = 1 : NOBS do

(Prediction Equations)
ãti

= Q ∗ ati−1 + c;
P̃ti

= Q ∗ Pti−1 ∗Q′ + R ∗ V ∗R′;
ỹti

= Z ∗ ãti
+ D;

(Innovations)
vti = yti − ỹti ;
(Updating equations)
Fti

= Z ∗ P̃ti
∗ Z ′ + H;

ati
= ãti

+ P̃ti
∗ Z ′ ∗ F−1

ti
∗ vti

;
Pti = P̃ti − P̃ti ∗ Z ′ ∗ F−1

ti
∗ Z ∗ P̃ti ;

dFti = det Fti ;
if dFti 6 0 then
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dFt = 10−10;
end if
(Log-likelihood function per iteration)
logl(i) = −(n/2) ∗ ln(2 ∗ π)− 0.5 ∗ ln(dFti)− 0.5 ∗ v′ti

∗ F−1
ti

∗ vti ;
end for
LogL =

∑
i logl(i);

(Adjustment for ϕ via a Matlab optimization routine)
end while

Via an optimalisation routine, the vector ϕ is chosen such that the total sum of the log-likelihood function
is maximized and the innovations minimized. After this is done, the matrices in the measurement and
transition equation are updated and the Kalman Filter algorithm will then be repeated. This iterative
procedure is repeated untill the optimized ϕ is found. With this optimized set of parameters the matrices
will be updated once more and are used for the last time to generate the paths of the non-observable
variables via the Kalman Filter. The total sum of the log-likelihood function is calculated as follows

lnL(Y ;ϕ) = −1
2
nln2π − 1

2

∑
t

ln|Ft| −
1
2

∑
t

v′tF
−1
t vt, (5.8)

where Yt is the information vector at time t and it is assumed that Yt conditional on Yt−dt is normal with
mean E[Yt|Yt−dt] and covariance matrix Ft.2

5.2 Numerical results for the Ornstein-Uhlenbeck process

We use weekly observation (on every friday to account for possible weekend effects) of light crude oil
data from 01-02-2002 until 25-01-2008 (313 observations). At each observation seven monthly contracts
(F1,F2,F3,F4,F5,F6,F7) (n = 7) are observed. Each diagonal element of the error matrix H corresponds
to each maturity, i.e. h1 corresponds to F1, h2 corresponds to F2 and so on. The used marketdata is
such that the time to maturities (τi) are constant for each forward contract i and for each observation
data, i.e. for each observation date of contract i there exists a future price with maturity Ti.

5.2.1 Setting up the calibration

In order to start the iterative process, some difficulties must be overwon. Namely, the initial choice of
the parameterset ϕ and the non-observable variables at time zero, i.e. x0 and δ0.

We start with ϕ = {k, µ, α, λ, η, σ, ρ, h1, h2, h3, h4, h5, h6, h7} =
{

0.3, 0.2, 0.06, 0.01, 0.4, 0.4, 0.8, Var[(lnF1)]2,

Var[(lnF2)]2, Var[(lnF3)]2, Var[(lnF4)]2, Var[(lnF5)]2, Var[(lnF6)]2, Var[(lnF7)]2
}

. The first seven param-

eters are chosen arbitrarily. However, for the diagonal elements hi of the error variance matrix H we
choose the squares of the measurement variance. Therefore we expect the error to be small in comparison
to the variance of the measurements. For the non-observable parameters (cf. [8]), the nearest future price
is retained as the spot price S and

δimplied
t = r − ln(Ft(τ1))− ln(Ft(τ2))

τ1 − τ2
. (5.9)

with δ0 = δimplied
0 .

5.2.2 Results

The optimized parameter set is estimated for different initial sets and given in Table 5.1. To test the
robustness of the calibration, we first choose randomly an initial parameter set. This gaves us the
optimized set, which we then inserted as the initial one. Within a few interation steps the parameters
converges to the same values.
Remark: In the following sections we use the second column of Table 5.1 to be the initial parameter set.

2This Ft is not the same as the future price
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Parameters Ini parset Opti parset Ini parset Opti parset Ini parset Opti parset
k 0.3 1.4221 (0.0372) 0.3 1.4221 (0.0380) 2 1.4221 (0.0382)
µ 0.2 0.3733 (0.1471) 0.2 0.3733 (0.1376) 0.2 0.3733 (0.1382)
α 0.06 0.0699 (0.1128) 0.2 0.0699 (0.1025) 0.06 0.0699 (0.1082)
λ 0.01 -0.0183(0.1602) 0.1 -0.0183(0.1459) 0.01 -0.0183(0.1543)
η 0.4 0.3630 (0.0137) 0.4 0.3630 (0.0139) 0.5 0.3630 (0.0153)
σ 0.4 0.4028 (0.0165) 0.4 0.4028 (0.0172) 0.4 0.4028 (0.0181)
ρ 0.8 0.8378 (0.0162) 0.5 0.8378 (0.0164) 0.5 0.8378 (0.0177)
|h1| 0.0246 0.0188 (0.0008) 0.0246 0.0188 (0.0007) 0.01 0.0188 (0.0007)
|h2| 0.0268 0.0072 (0.0003) 0.0268 0.0072 (0.0003) 0.01 0.0072 (0.0003)
|h3| 0.0291 0.0022 (0.0001) 0.0291 0.0022 (0.0001) 0.01 0.0022 (0.0001)
|h4| 0.0313 0.0000 (0.0001) 0.0313 0.0000 (0.0001) 0.01 0.0000 (0.0001)
|h5| 0.0336 0.0006 (0.0000) 0.0336 0.0006 (0.0000) 0.01 0.0006 (0.0000)
|h6| 0.0357 0.0000 (0.0001) 0.0357 0.0000 (0.0001) 0.01 0.0000 (0.0001)
|h7| 0.0377 0.0014 (0.0001) 0.0377 0.0014 (0.0001) 0.01 0.0014 (0.0001)
Log-Likelihood 8744.6479 8744.6479 8744.6479

Table 5.1: Optimized parameterset (Opti parset) for different initial parametersets (Ini parset). Standard
errors in parentheses.

5.2.3 Results for different number of contracts

In this section we test the method for different number of contracts. We see that the standard error
increases if only two contracts are used. This is expected because the Kalman Filter now has to estimate
two unobservable values using by only two datasets.

Contracts F1,F2,F3,F4,F5,F6,F7 F1,F3,F5,F7 F1,F7
k 1.4221 (0.0372) 1.4591 (0.0602) 1.7628 (0.4897)
µ 0.3733 (0.1471) 0.3654 (0.1354) 0.8134 (0.5488)
α 0.0699 (0.1128) 0.0653 (0.1004) 0.5169 (0.5381)
λ -0.0183(0.1602) -0.0331(0.1475) 1.8517 (2.2353)
η 0.3630 (0.0137) 0.3610 (0.0139) 0.3501 (0.0153)
σ 0.4028 (0.0165) 0.3995 (0.0183) 0.4108 (0.0705)
ρ 0.8378 (0.0162) 0.8418 (0.0174) 0.8172 (0.0234)
|h1| 0.0188 (0.0008) 0.0161 (0.0007) 0.0188 (0.0012)
|h2| 0.0072 (0.0003) 0.0000 (0.0003) 0.0081 (0.0031)
|h3| 0.0022 (0.0001) 0.0021 (0.0001)
|h4| 0.0000 (0.0001) 0.0010 (0.0012)
|h5| 0.0006 (0.0000)
|h6| 0.0000 (0.0001)
|h7| 0.0014 (0.0001)
Log-Likelihood 8744.6479 4001.8997 1440.5857

Table 5.2: Optimized parameterset (Opti parset) for different initial parametersets (Ini parset). Standard
errors in parentheses.

5.2.4 Estimated future prices versus observered future prices

We plot the state variable xt (the log of the spot price) versus the one-month maturity of the log of the
future prices, i.e. ln(Ft(τi)). The two curves are following each other quite good but are not identical to
each other.
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Figure 5.1: Blue line: State variable xt, Red line:ln(Ft(τ1)).

5.2.5 Filtered convenience yield versus implied convenience yield

Nowadays traders imply the convenience yield via the future prices like in (5.9). The estimated conve-
nience yield is plotted versus the implied convenience yield.
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Figure 5.2: Blue line:Filtered δt, Red line:δimplied
t .
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5.2.6 Innovations vt

For each future contract we plot the innovation, i.e. vti
= yti

− ỹti
. We assumed the measurement errors,

εt in equation (5.3) to be normal with mean zero and variance H. Considering the figures, this assumption
is acceptable. Note that there are some transcend points. This could be caused by data errors.
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Figure 5.3: Innovation corresponding to F1.
Mean = -8.1734e-004, Variance = 0.0022.
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Figure 5.4: Innovation corresponding to F2.
Mean = 8.6078e-004, Variance = 0.0019.

0 50 100 150 200 250 300 350
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Figure 5.5: Innovation corresponding to F3.
Mean = 6.4612e-004, Variance = 0.0017.
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Figure 5.6: Innovation corresponding to F4.
Mean = -1.0181e-004, Variance = 0.0015.
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Figure 5.7: Innovation corresponding to F5.
Mean = -5.5711e-004, Variance = 0.0014.
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Figure 5.8: Innovation corresponding to F6.
Mean = -3.4456e-004, Variance = 0.0013.
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Figure 5.9: Innovation corresponding to F7. Mean = 6.1501e-004, Variance = 0.0012.

5.2.7 Parameter explanation

If we look at Table 5.1, we see an mean-reverting term, α of 0.0699. In figure 5.2 we can see that the
convenience yield indeed reverts to this mean. The correlation between the two state variables is 0.8378.
To find graphical evidence for this high number we made a scatterplot of the increments of both the
state-variables, i.e. ∆xt := xt − xt−∆t versus ∆δt := δt − δt−∆t.
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Figure 5.10: Scatterplot of (∆xt,∆δt) for 313 observations.

Since the pattern of dots slopes from lower left to upper right, it suggests a positive correlation between
the variables being studied, which is exactly what we expected.

5.2.8 Implementation issues

There are a few important implementation details worth mentioning. The log-likelihood function esti-
mates the optimal parameterset. For that, it has control of a parameter set bound. We use the following
bounds

%[ mu sigmaS alpha k sigmaC rho lambda h1 h2 h3 h4 h5 h6 h7]:
lowerbound=[ -10 0.001 -10 0.001 0.001 0 -10 -1 -1 -1 -1 -1 -1 -1];
upperbound=[ 10 10 10 10 10 1 10 1 1 1 1 1 1 1];

If this is not done, the iterative procedure may break down. In case of matrix H, consisting of the
variances of the error terms, can become negative. But being negative, this can cause problems in the
KF. In (??) Ft could converge to a negative diagonal matrix, becoming impossible to inverse. So we
square each element of H before calculating Ft. If the parameters hi come out negative, it is ok, because
they effectively enter Ft as the variance, i.e. they will be squared. This is why hi in Table 5.1 and in
Table 5.2 are in absolute value.
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5.2.9 Kalman Forecasting

We test a Kalman forecasting method on half of the observations. The first half, from observation i=1
until i=156 we perform the KF algorithm with the optimized parameter set given in the third column of
Table 5.1. From i=157 until i=313 we forecast the state variables, xt and δt by the following recursive
equations

at = Qtat + ct,

Pt = QtPtQ
′
t + RtVtR

′
t,

yt = Ztat + Dt. (5.10)

Forecasting for the state variable δt is not a succes. This can be explained by the sudden drop at 160.
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Figure 5.11: Forecast over half a sample of the log of the future prices (F1-F7).
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Figure 5.12: Forecast over half a sample of the state variables. Blue line: xt, green line: δt, red lines:
forecasting

The Kalman forecasting can not absorb this sudden drop in the convenience yield. For that, it follows
the previous estimations. However, as noted earlier, the mean-reverting term is equal to 0.0699, which
is approximately equal to the forecasting. Also for xt, the sudden drop at 250 can not be absorbed by
this forecasting method. This is a real disadvantage of this method. A way to get the method to absorb
these drops, jumps can be inserted in the stochastic processes of both the state variables.



Chapter 6

The Kalman Filter model for the
Cox-Ingersoll-Ross process.

In state variable terms, (3.7) can be written in

Ft(τ) = lnSt + A(τ)−B(τ)δt, (6.1)

where A(τ) and B(τ) are given in (3.14) and (3.13). The measurement equation then reads

Yt = dt + Zt[xt, δt]′ + εt, t = 1, .., NOBS, (6.2)

where

� Yt = [lnF (τi)], for i = 1, ..., n is a n× 1 vector for n maturities. τi are the maturity dates.

� dt = [A(τi)] for i = 1, .., n is a n× 1 vector.

� Zt = [1,−B(ti)], for i = 1, ..., n is a n× 2 matrix.

� εt is a n× 1 vector of uncorrelated disturbances and is assumed to be normal with zero mean and
variance matrix Ht.

Another motivation for including the error term is that perhaps the dynamics of the stochastic convenience
yield does not include a square-root. If so, the yields implied by the CIR model will differ from the
observed yields. Furthermore, since the CIR model forbids negativity of the convenience yield there are
two solutions; firstly we can replace any negative element of the estimate δt with zero. Secondly, we
could just skip the updating step, i.e. we set δt = δt−1 whenever δt is negative. The reason why this is
done is just a matter of convenience and it seems rather difficult to impose the positivity constraint in
the estimation procedure and thus a solution like these is needed.
Again, the vector [xt, δt]′ is the data which we want to estimate. From (3.1) and (3.5) the transition
equation immediately follows[

xt

δt

]
=
[

µ∆t
kα∆t

]
+
[

1 −(1 + 1
2η2)∆t

0 1− k∆t

] [
xt−∆t

δt−∆t

]
+
[

1 0
0 1

] [
ξ1
t

ξ2
t

]
.

For notational simplicity we write

αt = ct + Qtαt−1 + Rtξt, t = 1, ..NOBS, (6.3)

where E[ξi
t] = 0 for i = 1, 2 and where the covariance matrix of ξi

t, Vt, is given by

Vt =
[

E[(xt − E[xt])2|xt−∆t] E[(xt − E[xt])(δt − E[δt])|xt−∆t, δt−∆t]
E[(xt − E[xt])(δt − E[δt])|xt−∆t, δt−∆t] E[(δt − E[δt])2|δt−∆t]

]

=
[

Var[xt|xt−∆t]
√

Var[xt|xt−∆t]
√

Var[δt|δt−∆t]√
Var[xt|xt−∆t]

√
Var[δt|δt−∆t] Var[δt|δt−∆t]

]
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=
[

η2∆tδt−∆t ρη
√

∆t
√

δt−∆t

√
Var[δt|δt−∆t]

ρη
√

∆t
√

δt−∆t

√
Var[δt|δt−∆t] Var[δt|δt−∆t]

]
.

The difference between Vt for the OU process and the CIR process is the time dependency. Implementing
the Kalman Filter for the CIR process includes feedback from the kalman filter to update Vt with δt|t−1.
As mentioned earlier, since the square root is taking of the convenience yield, we replace any negative
element of the estimate δt|t−1 with zero.
General remark: it would be better to use δt + γ, γ a constant parameter.



Chapter 7

Conclusion

We implemented the KF for the OU process. Both the CY as well as the state-variable x (log of the
spot prices) seems to follow the implied yield and the market prices (resp.) quite good. Also, different
initial values for the parameterset will eventually converge to the optimized set with the same value of
the log-likelihood. This is a good result and tests the robustness of the method.
The main difference bewteen the systmes matrices of both processes is the transition error covariance-
variance matrix Vt. For the CIR process, we simply replaced any negative element of the CY by zero,
but since it is negative for a large number of observations, this will probably give rise to large standard
errors in the optimized parameterset ϕ.

7.1 Further research

Finish the implementation of the Kalman Filter for the CIR process and compare the results with the
OU process. If the CY in the CIR gives problems because it can not be negative we could insert a jump-
constant in the CY. Perhaps it is possible to extend the two factor stochastic process by a third factor,
e.g. stochastic volatility. The problem with this is that the solution of the future prices is assumed to have
an affine form solution. This makes the Kalman Filter considerable easier. Including stochastic volatility
could mess this up. Another idea is to price options on commodities using the optimized parameterset.
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