Master of Science Project

Jan-Willem van Leeuwen

Computation of Thermo-acoustic Modes in Combustors

through

Non-Linear Eigenvalue Problems

using

Arnoldi's method and Jacobi Davidson

Combustion Oscillations

Non-Linear Eigenvalue Problems

- Equation:
 - $T(\lambda)x=0$
- Methods
 - Arnoldi
 - Jacobi-Davidson

Approaches for the solution of combustion problems

- Method A: Large Eddy Simulation
 - > Too complex
- Method B: Simplified Geometry
 - > Too simple
- Method C: Helmholtz equation
 - Nonlinear Eigenvalue problems

The Helmholtz Equation

- Wave equation
- Helmholtz equation + B.C.'s
- Discretization (Galerkin Method)
- Matrix form: $(A + wB(w) + w^2C) P = 0$

With flame response effect:

$$(A + D(w) + wB(w) + w^2C) P = 0$$

Solving Eigenvalue Problems

- Standard eigenvalue problem: $Ax = \lambda x$
- Power method: $Ax_k = x_{k+1}/c_k$
- Subspace methods: W*AVy = θW*Vy
- Arnoldi: Krylov subspace: span(x, Ax, A²x, ..., A^kx)
- Jacobi-Davidson:

$$-\theta_{k+1} = x_k^* A x_k$$

- Solve for t: $(I-u_k u_k^*)(A - \theta_{k+1}I)(I-u_k u_k^*)t = -r_k$

Non-Linear Eigenvalue Problems

Linearization:

 Fixed point method creates quadratic problem, linearization increases problem size

Arnoldi-type:

 Original Arnoldi can't be extended, different subspace expansion needed

Jacobi-Davidson

 Easily extended: Same correction equation based on Shift-and-Invert with preconditioning

Performance

Test problem provided by CERFACS

- Linearized Arnoldi
 - 135 s
 - Finds 5 eigenvalues out of 10

- Jacobi Davidson
 - 21 s
 - Finds the same 5 eigenvalues

Current solution method for Combustion Problem

- Linearization:
 - Impedance is modeled
 - Fixed point: $(A + D(w_{k-1}) + w_k B + w_k^2 C) P = 0$
 - Quadratic problem written as:

Next Phase: Goals

- Improve current iterative solution method (Arnoldi-type) for Combustion problem
- Implement Jacobi-Davidson for test problems
- Compare results with Arnoldi
- Improve Jacobi-Davidson for Nonlinear eigenvalue problems

Summary

- Combustion Modes
- Nonlinear Eigenvalue problems
- Methods
 - Arnoldi
 - Jacobi-Davidson
- Next phase
 - Comparison of methods
 - Improvement of methods