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Introduction

This report gives as an overview of the literature study for the research on computation
of thermo-acoustic modes in combustors. Combustors are chambers in which gas is
burned. In this process, pressure release causes acoustic effects in the chamber related
to the boundaries of the chamber. Especially when impedance occurs at the boundary,
this could cause problematic oscillations. To prevent uncontrolled growth of these
oscillations, we must know the eigenfrequencies and eigenmodes of these oscillations.
These can be found using the Helmholtz equation, which yields an eigenvalue problem.
Following this research, we will investigate methods that solve this eigenvalue problem
efficiently. This second part of the research will be performed as a practical study
within the framework of the Master’s thesis. It will be conducted at the Computational
Fluid Dynamics department of CERFACS in Toulouse. CERFACS stands for the french
translation of European Center for Research and Advanced Training in Scientific
Computation. It is “one of the world’s leading research institutes working on efficient
algorithms for solving large scale scientific problems.”

In the first section, an extensive research on the solution of standard eigenvalue
problems through subspace methods is performed. Special attention is paid to the
methods of Arnoldi and Jacobi-Davidson, because these two methods will be compared
in terms of numerical efficiency during the practical study. The second section is
dedicated to describing the extension of those methods to the case of generalized and
quadratic eigenvalue problems.

In the third section, we consider the solution of nonlinear eigenvalue problems. Since
studying the efficiency and possible improvements of the methods that solve such
problems is one of the goals of the practical study, this section is to be regarded as the
most important part of the literature study. Also, in the practical study we will develop
improvements of the existing methods and compare the results. We first describe two
methods to solve small nonlinear eigenproblems. These methods are needed to obtain
the Ritz pairs for subspace methods like Arnoldi and Jacobi-Davidson, described later
in the same section.

Finally, we turn our attention to the application that we will study during the practical
study. A brief overview is given of different possibilities for dealing with the problem
of coupling between acoustics and heat release in a combustor. We focus on the method
using a Helmholtz equation, yielding a nonlinear eigenvalue problem for the oscillation
frequency and pressure fluctuation.

In the last section, we will define the problem definition for the rest of the master’s
thesis project.
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1 Standard Eigenvalue Problems

An eigenvector of an operator is a non-null vector whose absolute direction remains
unchanged when the operator is applied to that vector. The length of the vector may be
changed, even the sign of the direction. The factor with which the vector is multiplied
is called the eigenvalue.

The standard eigenvalue problem is how to find pairs of eigenvalues and eigenvectors
for a given linear transformation. We can write this in matrix notation as follows:

Av = λv

where A is the square matrix associated with the transformation, v is the eigenvector
and λ is the eigenvalue. Another way to describe the eigenvalues is as the roots of the
characteristic polynomial of A: Since (A− λI)v = 0 we must have that det(A− λI) = 0.
From basic algebra we know that a polynomial has n roots, this shows that any n × n
matrix has n eigenvalues. However, these eigenvalues need not be distinct. In some
cases A has less than n distinct eigenvectors. We call such a matrix defective.

Although the mathematical formulation is simple, solving it is hard, especially for large
matrices. But since the problem arises from many practical situations studying it is very
important. That is why several solution methods have been developed. We will briefly
describe three well-known methods, namely the Power method, the Arnoldi method
and the Jacobi-Davidson method.

1.1 Power Method

The Power Method is the most basic method to approximate eigenvectors and
eigenvalues. The information given here about the power method has largely been
taken from [11]. The method creates a sequence of vectors by multiplying by A and
scaling. Or mathematically: vk = 1

αk
Avk−1. It is easily seen that if the sequence

converges, then it must converge to an eigenvector. If we write v = limk→∞ vk then:

Av = A lim
k→∞

vk = lim
k→∞

Avk = lim
k→∞

αkvk+1 = lim
k→∞

αk lim
k→∞

vk+1 = lim
k→∞

αkv.

This means that we immediately have found an eigenvalue, namely the limit of αk. It
can be shown that the sequence only converges under the assumption that there is one
and only one eigenvalue with the largest modulus. Unfortunately, this can’t be checked
beforehand. Another draxback of this method is that when the starting vector has no
component in the direction of the eigenvector associated with the eigenvalue with the
largest modulus then the sequence will not converge to that eigenvector.

Convergence speed is another problem for the power method. To explain this clearly
we will first point out a nice property of eigenpairs. Since we know that Avk = λkvk,
we can combine this for all k in a matrix equation (assuming that A is not defective):

[Av1, . . . , Avk] = [λ1v1, . . . , λkvk] ⇒ AV = V Λ

where Λ is the diagonal matrix containing the eigenvalues. This shows we can write
A = V ΛV −1 so Ak = V ΛkV −1, which implies that multiplying a vector by Ak will be
dominated by the largest eigenvalues. This means that convergence speed depends on
how much larger the largest eigenvalue is than the second-largest one. If the relative
difference is small, convergence will be slow. It also shows that the power method will
only converge to the eigenvalue with the largest modulus.

To make using the Power Method more attractive, a few possible amendments have
been developed. We will introduce the Shift-and-Invert technique and Deflation.
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1.1.1 Shift-and-Invert

The Shift-and-Invert technique is designed to improve performance of the power
method, and to make it possible to find other eigenvalues than the one with the largest
modulus. It uses two properties of matrices: If (λ, x) is an eigenpair of A then (λ + σ, x)
is an eigenpair of (A + σI), and λ−1 is an eigenvalue of A−1. Adding a constant
diagonal is called shifting of a matrix, and σ is the shift. It is clear that when the shift is
close to an eigenvalue λk of A then (λ − σ)−1 is the largest eigenvalue of (A − σI)−1.
So, if we can efficiently use a method on the matrix (A − σI)−1 we can target certain
eigenvalues. The closer the shift is to λ, the better the convergence. However, if the
shift is chosen equal to an eigenvalue, the matrix will be singular. This is no problem,
since we have found the desired eigenvalue.

It sounds like a sensible idea to change the shift during the algorithm. This has a
drawback however. Because we invert the matrix, we will have to solve a system (rather
than calculating the inverse). This is best done with an LU-decomposition. This may
seem strange. Since we want the shift close to a desired eigenvalue, our matrix A − σI
will be nearly singular and the decomposition ill-conditioned. However, since the error
will only be large in the direction of the desired eigenvector, this has no effect on the
convergence speed. Remember that a multiple of an eigenvector is again an eigenvector.

Every time the shift is changed, we will have to re-calculate this decomposition. Note
that decomposing a matrix is more costly than solving a triangular system, so there is
a trade-off in convergence speed between the amount of work needed per iteration and
the number of iterations until convergence. This also depends on the size of A. The
larger the matrix, the more work is needed to decompose it. In case A is very large it
may be better to use an iterative method to solve the system. But then, changing the
shift so that it is closer to an eigenvalue will increase the problems that arise because
of the singularity of the matrix A − λI . The most important problem is that iterative
methods are generally based on multiplying vectors by A, or in this case the shifted
version A − σI . The closer σ is to λ the slower these iterative methods will converge,
even though the two largest eigenvalues of (A − σI)−1 are further apart the closer σ is
to λ. This is a crucial weakness of the shift-and-invert method.

1.1.2 Deflation

A second technique to change the matrix such that another eigenvalue has the largest
modulus is the so-called deflation technique. It is similar to the shift-and-invert
technique in that it adds a matrix to A to change the eigenvalues, but it does not
invert. The idea is to add a matrix that changes only one eigenvalue. To use it, only
the right eigenvector corresponding to the eigenvalue with largest modulus is needed.
We shift the matrix A by substracting σu1v

H where u1 is the known eigenvector and
vH is the hermitian transpose of a vector v such that vHu1 = 1. σ is the desired shift:
the eigenvalues of A − σu1v

H will be {λ1 − σ, λ2, . . . , λn}. In [11] it has been shown
empirically that, assuming the eigenvectors are normalized when they are found,
choosing v = u1 speeds up convergence in comparison to choosing a random vector
with the property that vHu1 = 1. When already m eigenpairs are known, we can
create an n × m matrix Q containing the eigenvectors as columns, and an m × m
diagonal matrix Σ with the desired shifts as non-zero elements. It can be shown that the
eigenvalues of the shifted matrix A−QΣQH are {λ1 − σ2, . . . , λm − σm, λm+1, . . . , λn}.
We can use this technique to find the eigenvalues of A, starting with the one with
largest modulus and working our way down.
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1.2 Search spaces and Ritz Values

Although the techniques described above make the Power method more powerful, it
still has a weakness. The Power method only uses the last approximation to compute a
new one. This means that all information from previous approximation is not used. An
obvious improvement would be to work with subspaces. Important methods that use
subspaces are Arnoldi and Jacobi-Davidson. As a supporting technique, we introduce
the concept of Ritz values: θk is Ritz value of A with respect to the subspace Vk with
Ritz vector uk if

uk ∈ Vk, uk 6= 0, Auk − θkuk⊥Vk.

This means that if we solve the projected eigenvalue problem on the subspace Vk, we
find Ritz values of A. A Ritz pair (uk, θk) is a solution of the equation

W ∗
k AVkuk = θkW ∗

k Vkuk

which is found by writing x = Vkuk and multiplying the equation by an appropriate
matrix W ∗

k . Usually, we choose Wk = Vk.

Vk is a matrix of column vectors spanning Vk. Note that we can choose Vk to consist of
the orthonormal basis of Vk, in which case V ∗k Vk = I and the problem above reduces to
an k × k eigenvalue problem: (V ∗k AVk − θI)uk = 0.

6



1.3 Basic Arnoldi

A more sophisticated algorithm than the power method is the Arnoldi method. This
method originally was developed last century by Arnoldi in [1] to transform dense
matrices into Hessenberg form. Arnoldi himself already noted that this method could
be used to approximate certain eigenvalues, even without finishing the transformation
algorithm. Later on, the method was used to find eigenvalues of large sparse matrices.

Arnoldi’s method is a Krylov subspace method. Krylov subspaces are based on the
simple power method. They are formed as followed: first a starting vector is chosen,
say v0. Then the Krylov subspace is defined as:

Kk(A, v) ≡ span{v,Av,A2v, . . . , Ak−1v}.

Notice that Kk is k-dimensional, while A ∈ Rn×n. Of course, k is always chosen (much)
smaller than n.

Arnoldi’s method creates k orthonormal vectors that form a basis for Kk. The vectors
are combined in to an n×m-matrix Vk, while an k× k-Hessenberg matrix Hk is formed
by hij = (Avj , vi). The exterior eigenvalues of Hk can be used as approximations of
eigenvalues of A. Usually, this will be a small fraction of the k eigenvalues of Hk. Note
that by construction, Hk = V ∗k AVk.

The basic algorithm is as follows:

Algorithm 1 Arnoldi
1: Start: Choose an initial vector v1 of length one,
2: for j = 1, 2, . . . ,m do
3: hij = (Avj , vi), i = 1, 2, . . . , j, {1}
4: wj = Avj −

∑j
i=1 hijvi, {2}

5: hj+1,j = ||wj ||2,
6: if hj+1,j = 0 then
7: stop
8: end if
9: vj+1 = wj/hj+1,j .

10: end for

At line 3, we have to do a matrix-vector multiplication. This is a costly operation.
We can store the result to use it again at line 4, where we perform Gram-Schmidt
orthogonalization. In practice, this orthogonalization will be modified Gram-Schmidt.
Keep in mind that this algorithm is only a very simple version, that only shows the
idea of using a Krylov subspace as a search space for eigenvectors. For practical
implementation, a lot of improvements can be made. The method of orthogonalization
could be improved, and shift-and-invert and deflation techniques could be combined
with arnoldi.

1.3.1 Lanczos’ Method

A method quite similar to Arnoldi’s is the Lanczos Method [5]. The difference is that
Lanczos assumed A to be Hermitian, in which case Hk = V ∗k AVk = V ∗k A∗Vk = H∗

k ,
so Hk is also Hermitian. Since Hk is known to be a Hessenberg matrix, of which
the elements hij are zero if j ≥ i + 2, it follows that Hk is in this case tri-diagonal.
Lanczos’ method uses this fact to speed up calculations. Although Lanczos’ method is
an important and interesting method, is is outside the scope of this study and will not
be further investigated
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1.3.2 Restart

When working with a Krylov-subspace algorithm, we build a subspace from
approximations of eigenvectors. When convergence is slow, for instance due to
the starting vector, the subspace will continue to grow. This gives two problems. The
first is that a growing subspace means larger matrices to work with, and this increases
the cost in terms of computation work and time quadratically. The second problem is
that we need a lot of memory to store all the information we have about the subspace.
To solve these problems, a technique called restart has been developed. This is a general
name for techniques that reduce the size of the Krylov subspace when a certain size is
reached. Some methods restart with a one dimensional subspace spanned by the latest
approximation of the eigenvector. Other methods use several approximations as a basis
of the starting subspace. Especially when working with the Jacobi-Davidson method,
that will be introduced in the next section, it is common to restart with a subspace with
dimension larger than 1. For Arnoldi’s method, extensive research has been done to
improve performance with clever restarts. Many of the results are implemented in
the well-known Computational package ARPACK [6], that is used in e.g. MATLAB to
calculate eigenvalues.

1.4 Jacobi-Davidson

Similar to the Arnoldi method, Jacobi-Davidson is a subspace method. It was first
published in [14]. However, it does not use a Krylov subspace as search space for the
eigenvector. In this method, we also construct a matrix Vk and Hk, and use eigenvalues
of Hk as approximations of the eigenvalues of A. The main difference is the way in
which the matrix Vk is constructed. Instead of using the power method to create a
Krylov subspace, we combine ideas of Jacobi and Davidson to look at the orthogonal
projection of A onto the complement of our current approximation uk to create the
search space. Before we go deeper into the Jacobi-Davidson method, we will introduce
the Jacobi and the Davidson method.

1.4.1 Jacobi

Jacobi published in [4] a method to find eigenvalues of a diagonally dominant matrix
A of which the largest diagonal element is a1,1 = α. The idea is to write the eigenvalue
problem as:

A

[
1
z

]
=

[
α cT

b F

] [
1
z

]
= λ

[
1
z

]
.

This can be written as a system of two equations, writing θ as the approximation of λ:

α + cT z = θ
(F − θI)z = −b

If we start with a vector z we can compute θ from the first equation, and insert this
value in the second equation and solve for z, thus iteratively approximating λ by θ. To
use Jacobi for an arbitrary matrix A, one needs to diagonalize the matrix first (or at least
do a few steps in order to make it a diagonally dominant matrix) and exchange some
rows and columns to get the largest diagonal-value on the right place.

1.4.2 Davidson

Davidson’s method [2] creates a subspace that is build from subsequent approximations
of the desired eigenvector. Suppose that we have a subspace K of dimension k, with
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basis v1, . . . , vk. We can compute the Ritz-value θk and the Ritz vector uk of the matrix
A over this subspace. The residual is rk = Auk − θkuk. The method of expanding
the search space is first to compute t = (DA − θkI)−1rk. Here, DA is the diagonal of
A, which is chosen because the cost of inverting (DA − θkI) is drastically lower than
for (A− θkI). Notice that in this way, we are actually approximating a shift-and-invert
step. But because we use a diagonal approximation of (A−θkI), we don’t have to worry
about decomposing, avoinding shift-changes or iteratively solving for t. The vector t is
made orthogonal to v1, . . . , vk, and the resulting vector will be vk+1, expanding K. uk

will approximate an eigenvector of A, and θk again approximates the corresponding
eigenvalue.

1.4.3 Jacobi-Davidson

The Jacobi-Davidson method finds inspiration in ideas from both methods described
above. Starting with an initial guess, we search for a correction for the approximate
eigenvector in the directions orthogonal to the current approximation, that is, in the
subspace u⊥k . We will do so by first finding an approximation for the eigenvalue
using the current approximation of the eigenvector. Then we use the approximated
eigenvalue to find an approximation of the eigenvector. Clearly, this idea is similar to
Jacobi’s.

The approximation θk for the eigenvalue λ is found as follows:

Ax = λx ⇒ x∗Ax = x∗λx

Inserting uk as approximation for x we will define θk = u∗kAuk, where we assume that
uk has been normalized.

To approximate the eigenvector, we use the idea from Davidson to look in the subspace
u⊥k . We want to find a correction v ∈ u⊥k such that:

A(uk + v) = λ(uk + v)

⇒ (A− λI)v = −(A− λI)uk = −rk + (λ− θk)uk (1)
where rk = (A − θkI)uk is the residual from the latest approximation. We project this
equation on the subspace u⊥k by multiplying on the left side by I − uku∗k. We use the
following observations:

(I − uku∗k)v = v,
(I − uku∗k)rk = (I − uku∗k)(A− θkI)uk

= rk − uk(u∗kAuk − θk)
= rk,

(I − uku∗k)uk = 0

.

If we now multiply (1) with I − uku∗k and replace the unknown λ by the known
approximation θk, we find the so called Jacobi-Davidson correction equation::

(I − uku∗k)(A− θkI)(I − uku∗k)v = −rk (2)

Since the (A− θkI) is transformed to be in u⊥k the rank is less than n and the equation is
in fact ill-posed. But we are only interested in the part of the solution that is in the same
direction as v, so we will use this equation to iteratively approximate the correction v
by v̂, and the next approximation for the eigenvector will be uk + v̂. A popular method
to use when solving iteratively is GMRES [12].

It is clear that the correction equation is similar to a shift-and-invert step. Remember
that a shift-and-invert step is to find an update by multiplying the current
approximation by the shifted and inverted matrix: (A − θkI)−1vk = vk+1. The
difference between Jacobi-Davidson and Shift-and-invert is that Jacobi-Davidson
restricts itself to a particular search direction, avoiding the problem of singularity when
the shift is close to an eigenvalue.
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1.4.4 Search spaces and Harmonic Ritz values

An obvious adaption of the Jacobi-Davidson method is to use the correction v not to
correct the current approximation uk directly, but to store the k-th correction as vk. We
can then build a subspace Vk = span{v1, . . . , vk} of dimension k and use it to compute
Ritz pairs of A. In this way, we obtain approximations of several eigenpairs at once. We
can choose to focus on one value, or we can try to let more than one value converge.
A problem with this technique is that it will only converge to exterior eigenvalues.
However, this can easily be solved by shifting the matrix A. To keep convergence speed
high, we can use so-called harmonic Ritz values. Harmonic Ritz values were introduced
in [10]. µk is a harmonic Ritz value of A with respect to some linear subspace Wk if µ−1

k

is a Ritz value of A−1 with respect to Wk. If we choose Wk = span{Av1, . . . , Avk},
Wk = AVk, x = AVky and µ = λ−1 then we can write, starting from the original
eigenvalue problem:

Ax = λx
⇒ µx = A−1x
⇒ µAVky = Vky
⇒ µW ∗

k Wky = W ∗
k Vky

We now have a generalized eigenvalue problem, which we will treat later in this paper.
Solving this problem for µ will give us an approximation of the smallest eigenvalues of
the original problem. By combining harmonic Ritz values with a shift of the matrix (see
section 1.1.1) we can efficiently obtain interior values.
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1.4.5 The Jacobi-Davidson Algorithm

The basic algorithm for calculation of a single eigenvalue of the standard eigenproblem
using Jacobi-Davidson is provided by Gerard L.G. Sleijpen et al in [15]. The algorithm
is:

Algorithm 2 Jacobi-Davidson Method for λmax of A

1: Start with t = v0, starting guess
2: for i=1,. . . ,k-1 do
3: t = t− (t∗vi)vi

4: end for
5: vk = t/||t||2
6: vA

k = Avk

7: for i=1,. . . ,m-1 do
8: Mi,k = v∗i vA

k

9: Mk,i = v∗kvA
i

10: end for
11: Mk,k = v∗kvA

k

12: Compute the largest eigenpair of the eigenproblem Ms = θs of the k × k matrix M ,
(||s||2 = 1)

13: u = V s
14: uA = V As
15: r = uA − θu
16: if ||r||2 ≤ ε then
17: λ̃ = θ, x̃ = u
18: STOP
19: end if
20: Solve t⊥u (approximately) from (I − uu∗)(A− θI)(I − uu∗)t = −r

There are three important points in the algorithm that need some explaining. First,
the latest expansion to the basis of the search space is orthogonalised using Gram-
Schmidt. The basis vectors vk together form the matrix V . Then, at lines 7-11, we
construct the matrix V ∗AV , which we use to calculate the Ritz values of A in the next
step of the algorithm. At line 20 we solve the correction equation, the fundamental
equation of the Jacobi-Davidson theory. Also note (again) that the correction equation
is in fact a transformed shift-and-invert step with shift θ. The shift was obtained as a
Ritz value at line 11. We can actually target any eigenvalue by choosing another Ritz
value. Of course, this means that we need a good method to find the Ritz values. A
commonly used method is the QR algorithm for eigenvalues, see [3]. We can solve for
the eigenvalues directly in this case because it is typically a small problem (size k).

In the same paper, Gerard L.G. Sleijpen et al proposed a more advanced algorithm
based on harmonic Ritz values en vectors, inluding restart and deflation techniques.
The algorithm is given on the next page.
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Algorithm 3 Jacobi-Davidson Method for kmax eigenvalues of A close to τ

1: Start with t = v0, k = 0, m = 0, Q = [ ], R = [ ].
2: while k < kmax do
3: for i = 1, . . . ,m do
4: t = t− (v∗i t)vi

5: end for
6: m = m + 1, vm = t/||t||2, vA

m = Avm − τvm, w = vA
m

7: for i = 1, . . . , k do
8: w = w − (q∗i w)qi

9: end for
10: for i = 1, . . . ,m− 1 do
11: MA

i,m = w∗i w, w = w −MA
i,mwi

12: end for
13: MA

m,m = ||w||2, wm = w/MA
m,m

14: for i = 1, . . . ,m− 1 do
15: Mi,m = w∗i vm, Mm,i = w∗mvi

16: end for
17: Mm,m = w∗mvm

18: Make a QZ decomposition MASR = SLTA, MSR = SLT , SR, SL unitary and
TA, T upper triangular, such that: |TA

i,i/Ti,i| ≤ |TA
i+1,i+1/Ti+1,i+1|

19: u = V sR
1 , uA = V AsR

1 , ϑ = ¯T1,1 · TA
1,1,

20: r = uA − ϑu, ã = Q∗r, r̃ = r −Qã
21: while ||r̃||2 ≤ ε do

22: R =
(

R ã
0 ϑ + τ

)
, Q = [Q, u], k = k + 1

23: if k = kmax then
24: STOP
25: end if
26: m = m− 1
27: for i = 1, . . . ,m do
28: vi = V sR

i+1, vA
i = V AsR

i+1, wi = WsL
i+1, sR

i = sL
i = ei

29: end for
30: MA, M are the lower m×m-blocks of TA, T respectively
31: u = v1, u

A = vA
1 , ϑ = M̄1,1 ·MA

1,1

32: r = uA − ϑu, ã = Q∗r, r̃ = r −Qã
33: end while
34: if m ≥ mmax then
35: for i = 2, . . . ,mmin do
36: vi = V sR

i , vA
i = vAsR

i , wiWsL
i

37: end for
38: MA, M are the leading mmin ×mmin-blocks of TA, T respectively
39: v1 = u, vA

1 = uA, w1 = WsL
1 ,m = mmin

40: end if
41: θ = ϑ + τ , Q̃ = [Q, u]
42: Solve t⊥Q (approximately) from (I − Q̃Q̃∗)(A− θkI)(I − Q̃Q̃∗)t = −r̃
43: end while
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We’ll briefly explain some parts. The first part is used to orthogonalize the latest
correction t against the current searchspace, and to expand the matrices and vectors
accordingly. Then we use a QZ decomposition for both MA and M using the same
matrices SR and SL: MASR = SLTA and MSR = SLT . See the next section for more
information about the QZ algorithm

After this we compute new approximations for the eigenpair and the residual at line
21, and if we find that norm of the residual has fallen below a given threshold, we are
satisfied with the approximation ϑ + τ for the eigenvalue. We store this value in the
matrix R, together with the vector ã such that R is an upper triangle matrix. Another
matrix Q is formed such that AQ = QR.

From line 23 to line 39 the algorithm checks whether a restart is needed, and if a restart
is necessary the variables are changed appropriately. This is the case if either the
residual is below a certain threshold ε, meaning that we are satisfied with the current
approximation, or when the dimension of the search space gets too large. In the first
case we restart by removing the converged eigenvector from the basis, so that the
dimension of the search space decreases by one. We also need to make appropriate
choices for the other variables, see lines 27-32 . If we don’t reach the threshold before
m ≤ mmax we restart with m = mmin, where, mmin is the pre-determined minimal
number of vectors that forms the new basis. Also here, we need to restrict the other
variables, see lines 35-39 . If neither condition is met, then we simply continue by
updating θ, Q̃ and t.

1.5 The QZ decomposition

In the algorithm for Jacobi-Davidson, we used the so called QZ decomposition. This
decomposition is a more general form of the Schur decomposition. In fact, it is also
referred to as the generalized Schur decomposition. The Schur decomposition aims
to write a square matrix A = Q∗UQ where Q is a unitary matrix containing the
orthogonalized eigenvectors of A and U upper triangular with the eigenvalues of A on
the main diagonal. The QZ decomposition decomposes two matrices using the same
unitary matrices for both matrices. We will give this statement as a theorem:

Theorem 1.1 If A and B are in Cn×n, then there exist unitary Q and Z such that Q∗AZ = T
and Q∗BZ = S are upper triangular. If for some k, tkk and skk are both zero, then λ(A,B) = C.
Otherwise λ(A,B) = tii/sii : sii 6= 0.

λ(A,B) is the spectrum (subset of C containing the eigenval ues) of the generalized
eigenproblem Ax = λBx described in the next section. This theorem and it’s proof
can be found as theorem 7.7.1 in [3], as well as more information about these and other
decompositions.
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2 Generalized and Quadratic Eigenvalue Problems

The standard eigenvalue problem is to find a vector and a value for a certain
transformation such that the transformed vector is the same as the value multiplied
with the vector. An obvious generalization of this problem is to transform the right
hand side as well, so for a given pair of matrices A, B (representing transformations)
we want to find a vector x and value λ such that:

Ax = λBx.

If B is I then we get our original eigenvalue problem back. This more general problem
is called the generalized eigenvalue problem. It is usually preferred to define λ = α/β and
writing:

(βA− αB)x = 0,

since these numbers are even valid when β is zero, while λ will go to infinity in this
case. We will call (α, β) an eigenvalue of the problem (βA− αB)x = 0.

Generalized eigenproblems arise frequently from applications. If we expand the
generalized eigenproblem by a quadratic term, we can deal with even more practical
problems. This gives us the quadratic eigenvalue problem:

λ2Cx + λBx + Ax = 0

We will discuss both types of problems, restricting ourselves to what we need to
understand how to apply search space methods to these problems. The theory
presented in this section is for a large part taken from [11].

2.1 Generalized Eigenproblems

When dealing with Generalized Eigenproblems, a few problems may occur. For
instance, there are infinitely many eigenvalues (α, β), because we can simply multiply
with a constant to find another eigenvalue of the same eigenvector. There are several
ways to deal with this: we could just define β to be 1, which could be established for
any eigenvalue with β 6= 0 by scaling. Even though the case that β = 0 is rare, it is not
needed to discard the option. A better solution is to scale the found eigenvalues such
that |α|2 + |β|2 = 1.

Another problem is that the matrix pair (A,B) may be singular, that is det(βA − αB)
might be zero for all (α, β). In that case, any pair of numbers is an eigenvalue. This is not
very interesting of course. It is important to realize that it is well possible for a matrix
pair to be regular (non-singular) even when one or both of the matrices involved are
singular. In fact, if either A or B is regular, we can write the Generalized eigenproblem
as a standard eigenproblem by multiplying with the inverted regular matrix. In case A
is singular, we also need to multiply by 1/λ to get a standard eigenvalue problem.

2.1.1 Properties of the Generalized Eigenvalue Problem

Before we discuss methods of solving generalized eigenproblems, we will look at two
properties of these problems. We will see how certain transformations influence the
eigenvectors and eigenvalues of the problem. When we multiply both A and B from
the left with the same non-singular matrix Y , the right eigenvectors are preserved, while
the left eigenvectors are multiplied by Y −∗. The first statement is trivial. The second
statement follows from:
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v∗(βA− αB) = 0
⇔ v∗Y −1Y (βA− αB) = 0
⇔ (Y −∗v)∗(βY A− αY B) = 0.

Here, we have assumed that v is a left eigenvector of the original problem, and 0
denotes the zero row vector of appropriate length. In the same way, we can show that
when we multiply both matrices from the right with a non-singular matrix X the left
eigenvectors are preserved, while the right eigenvectors are multiplied by X−1. In both
cases, the eigenvalues remain the same. We say that for non-singular X and Y the pair
(Y AX, Y BX) is equivalent to (A,B).

The second interesting property is found as a theorem in [11]. The theorem states:

Theorem 2.1 Let (A,B) be any matrix pair and consider the transformed matrix pair (A1, B1)
defined by:

A1 = τ1A− σ1B, B1 = τ2B − σ2A

for any four scalars τ1, τ2, σ1, σ2 such that the 2× 2 matrix

Ω =
(

τ2 σ1

σ2 τ1

)
is non-singular. Then the pair (A1, B1) has the same eigenvectors as the pair (A,B). An
associated eigenvalue < α(1), β(1) > of the transformed matrix pair is related to the eigenvalue
< α, β > of the original pair by: (

α
β

)
= Ω

(
α(1)

β(1)

)
.

2.1.2 Projection Methods

Previously, we discussed projection (or search space) methods like Arnoldi and Jacobi-
Davidson. We would like to find a way to solve generalized eigenproblems using
these methods. In general, projection methods search for an eigenvalue (α, β) with an
eigenvector u in a subspace K such that:

(βA− αB)u⊥L

for given subspaces K and L. If we know two bases V = {v1, . . . , vm} and W =
{w1, . . . , wm} of K and L respectively, we can rewrite the search space problem as an
ordinary generalized eigenproblem of dimension m:

(βWHAV − αWHBV )y = 0

were we have written u by V y. The way in which the subspaces K and L are formed
depends on the choice of method. Unfortunately, for the Arnoldi method this is
not possible, because, as we will show, we cannot construct an appropriate Krylov
subspace, so we have no K. To make this more clear, remember that Arnoldi uses
a Krylov subspace as a search space. To construct the Krylov subspace, the current
approximation is multiplied by A and orthogonalized. In the case of a generalized
eigenproblem, multiplying by A would not help because we also have a matrix B. The
appropriate Krylov subspace would be (v,B−1Av, . . . , (B−1A)kv), which is the Krylov
subspace associated with the matrix B−1A. In other words, to use Arnoldi we will have
to write the problem as a standard eigenvalue problem B−1Ax = λx, except when we
can find X and Y such that Y BX = I (or Y AX = I), in which case we write Y AX = λx
where the eigenvectors are transformed as described before. With Jacobi-Davidson,
we can easily extend the method to work for generalized or even quadratic problems,
as will be shown in the following section. Finally, an outline for an algorithm will be
given in the section about nonlinear eigenproblems. This algorith can be easily adapted
to fit generalized or polynomial eigenproblems.
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2.2 Quadratic Eigenvalue Problems

Quadratic eigenvalue problems are of the form λ2Cx + λBx + Ax = 0. These problems
often arise from practical applications, like a spring system. For Arnoldi, it is impossible
to solve these problems directly. Usually, one will rewrite the problem to generalized
form (linearization). We will present the most common way of linearization, and then
turn our attention to directly solving a polynomial problem with Jacobi-Davidson.

2.2.1 Rewriting into a Generalized Eigenvalue Problem

When dealing with a quadratic eigenproblem it is always possible to rewrite the
problem to a generalized eigenproblem. We can rewrite the problem as:

λ

(
B C
I 0

) (
x
λx

)
=

(
−A 0
0 I

) (
x
λx

)
.

Notice that the Identity Matrix can be replaced by any matrix. This will affect
performance of the method that is used to solve the generalized eigenproblem.
The most popular alternative is to use C instead of I . This will usually give better
performance, especially when all matrices involveld are Hermitian (which happens
often when the matrices arise from numerically discretized equations), since then the
blockmatrices will also be Hermitian. If C is a symmetric positive definite matrix
(which is the case for certain classes of physical problems) it may be better to rewrite
the quadratic problem as follows:

λ

(
C 0
0 I

) (
λx
x

)
=

(
−B −A
I 0

) (
λx
x

)
= 0.

This gives us a symmetric positive definite matrix on the left-hand side which can be
inverted cheaply or, by using the right pre- and postmultiplications, be transformed
to I . Notice that the size of the problem has increased to 2n. For general polynomial
eigenproblems of degree k the number of eigenvalues is kn.

2.2.2 Direct Solving of the Quadratic Eigenproblem

In one of G.L.G. Sleijpens articles [13] he indicates how to solve a quadratic
eigenproblem (or more general: a polynomial eigenproblem) with a Jacobi-Davidson
method. The general polynomial eigenproblem is to find a non-trivial eigenvector x
and it’s associated eigenvalue λ ∈ C such that:

A0x + λA1x + · · ·+ λnAnx = 0 (3)

For ease of notation, we write this in terms of a matrix-valued polynomial:

Ψ(λ)x = 0 where Ψ(ϑ) = A0 + ϑA1 + · · ·+ ϑnAn

We proceed much like we did for the standard eigenproblem. We suppose we have a
m-dimensional search subspace Vm and a m-dimensional projection subspace Wm. We
can then compute an approximation u of x with associated approximation ϑ of λ, by
solving the following projected problem:

u ∈ Vm, ϑ ∈ C such that Ψ(ϑ)u⊥Wm. (4)

The residual r is defined by r ≡ Ψ(θ)u, and for some arbitrary ũ we correct the
approximation u by z1, where z1 is an approximate solution of the correction equation:
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z⊥u and
(

I − w̃w∗

w∗w̃

)
Ψ(ϑ)

(
I − uũ∗

w̃∗u

)
z = −r

for relevant choices of w and w̃. The speed of convergence depends heavily on the
choice of these vectors. In their article, G.L.G. Sleijpen et al have suggested a couple
of possibilities. We will present their two most straightforward choices: w̃ = w =
ũ = u giving linear convergence, and w = ũ = u and w̃ = T ′(ϑ) giving quadratic
convergence [13].
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3 Nonlinear Eigenvalue Problems

The most difficult challenge in the context of eigenvalue problems is solving the most
general form: the nonlinear eigenvalue problem. We write the problem as:

T (λ)x = 0, T : R → Rn×n, (5)

where T is a matrix function of λ. This is obviously a generalization of the
eigenproblems we have discussed so far. For example, if T (λ) := λ2C + λB + A
then (5) reduces to a quadratic eigenproblem. Various physical problems are known to
reduce to nonlinear eigenvalue problems, for example in acoustic modelling.

3.1 Numerical Methods for Nonlinear Eigenproblems

We will investigate how the two methods we have been studying so far, Arnoldi and
Jacobi-Davidson, can be extended to the nonlinear case. These methods were originally
designed for dealing with sparse matrices. For dense nonlinear eigenproblems, several
other methods have been developed, some of which are discussed by Mehrmann and
Voss in [16] and in [7]. The same articles research the iterative projection methods we
are interested in: an Arnoldi-type method for nonlinear eigenproblems, as well as an
extension of the Jacobi-Davidson method to the nonlinear case. A third projection is
also proposed, namely the Rational Krylov method. We will give a summary of this
research, with the exclusion of the Rational Krylov method as this falls outside the scope
of our own research.

3.2 Newton Type Methods for Small Dense Problems

Before we turn our attention to subspace methods, we will describe some of the methods
presented in [16] and in [7]. We will need knowledge of these methods since we will
need to solve a small dense problem to obtain Ritz values for the large sparse problems
we solve iteratively.

3.2.1 Inverse Iteration

It is noted in [7] for the linear case where T (λ) = A − λI that the so-called inverse
iteration method can be found by applying Newton’s method to the nonlinear system:[

T (λ)x
v∗x− 1

]
= 0.

If we let T (λ) be nonlinear and apply one step of Newton’s method to the same system
we find: [

T (λk) T ′(λk)xk

v∗ 0

] [
xk+1 − xk

λk+1 − λk

]
=

[
T (λk)xk

v∗xk − 1

]
.

We can rewrite this in terms of xk+1:

xk+1 = −(λk+1 − λk)T (λk)−1T ′(λk)xk (6)
v∗xk+1 = 1. (7)

The first expression gives us a direction uk+1 for the new approximation of the
eigenvector:

uk+1 := T (λk)−1T ′(λk)xk.
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Multiplying the first equation with v∗ and combining with the second gives
1 = −(λk+1 − λk)v∗uk+1 or:

λk+1 = λk −
1

v∗uk+1
.

So we obtain an approximation for both the eigenvalue and (after normalization) the
eigenvector.

3.2.2 Residual Inverse Iteration

A drawback of the inverse iteration is that in every iteration we need a LU-
decomposition of T (λ) in order to find an update direction uk+1. This can be
solved by using T (σ) instead of T (λ), where σ is a fixed shift close to the desired
eigenvalue λ. However, Mehrmann and Voss argue that simply substituting this in in
the inverse iteration will lead to misconvergence in the nonlinear case. The residual
inverse iteration proposed in [8] fixes this in the following way: according to the inverse
iteration method we have:

xk − xk+1 = xk + (λk+1 − λk)T (λk)−1T ′(λk)xk

= T (λk)−1(T (λk) + (λk+1 − λk)T ′(λk))xk

= T (λk)−1T (λk+1)xk +O(|λk+1 − λk|2)

⇒ xk+1 ≈ xk − T (λk)−1T (λk+1)xk (8)

where we can replace λk with the shift σ. Notice that in the third step we used a Taylor
expansion of T (λk+1) around T (λk).

The three important steps in the residual inverse iteration method are the following:
first we solve λk+1 from v∗T (σ)−1T (λk+1)xk = 0, then we compute the residual rk =
T (λk+1)xk and finally we solve T (σ)dk = rk for dk which we can use to find our next
approximation xk+1. Note that in this case we have to solve two systems per iteration
instead of one as in the inverse iteration algorithm. However, since the system involves
T (σ) both times we only have to compute a decomposition once, before we start the
algorithm.

3.3 Iterative Projection Methods

When discussing Arnoldi and Jacobi-Davidson type methods, we will follow the same
path we did before: assuming that we have a search space of dimension m and an
orthonormal basis V , we try to find a new approximation of the desired eigenvector and
-value. To find the update, we use the basis of the search space to reduce the dimension
of the original problem to m, that is we solve the nonlinear eigenproblem

V H
k T (ϑk)Vkyk = 0.

If we have found a solution (θk, ỹk) of this problem, and we write xk = Vkỹk then (θk, xk)
is a Ritz pair of T . We can use this Ritz pair to find an update for the approximated
eigenpair. Also, we need these values to expand the search space. The way in which
this is done makes the difference between Arnoldi and Jacobi-Davidson.
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3.3.1 A General Algorithm for Nonlinear Eigenproblems

A general algorithm for projective methods is outlined as follows:

Algorithm 4 General projection method for nonlinear eigenproblems
start with an initial shift σ and an orthonormal basis V
while m ≤ mmax do

compute appropriate eigenvalue θ and corresponding eigenvector y of the
projected problem V HT (λ)V y = 0
determine Ritz vector u = V y and residual r = T (θ)u
if ||r||/||u|| < ε then

accept approximate eigenpair λm = θ, xm = u
m = m + 1
choose new shift σ
restart if necessary
determine approximations θ and u of next wanted eigenvalue and vector
compute residual r = T (θ)u

end if
determine expansion of search space

end while

This algorithm is of course only a rough outline of an actual implementation. The main
difficulty will be to determine a vector that expands the current search space, and this
also the part where Arnoldi-type methods differ from Jacobi-Davidson.

3.3.2 Arnoldi type methods

It is not possible to extend the original Arnoldi method for standard eigenvalue
problems to the nonlinear case because we can’t construct a Krylov subspace to use
as a search space. However, the method that is proposed by Voss in [17] and [18]
is named after Arnoldi because the new search direction is orthonormalized against
the previous vectors. The expansion of the current basis Vk can be chosen as
v̂k+1 = xk − T (σ)−1T (θk)xk or equivalently as vk+1 = T (σ)−1T (θ)xk since xk is the
Ritz vector and therefore contained in Vk. This choice is based on the residual inverse
iteration method, see expression 8. A drawback of this method is that we need to solve
a large system because of the presence of T (σ)−1 in the equation. When the problem
under consideration is large (which is often the case) then solving will be too expensive.
In this case the Arnoldi type method is only efficient if a reasonable preconditioner
M ≈ T (σ)−1 is available.

3.3.3 Jacobi-Davidson type methods

A good alternative for Arnoldi is Jacobi-Davidson, especially when there is no
preconditioner available. Again we assume to have a Ritz pair (θk, xk). We can simply
use the correction equation 2 to find an expansion of our basis:(

I − pkx∗k
x∗kpk

)
T (θk)

(
I − xkx∗k

x∗kxk

)
zk+1 = −rk, zk+1⊥xk

where we choose pk := T ′(θk)xk and rk := T (θk)xk. If we solve this equation
approximately for zk+1 we can use this vector to expand Vk. Writing out the correction
equation, and using that x∗kzk+1 = 0 we find that:

T (θk)zk+1 − αkpk = −rk, with αk :=
x∗kT (θk)zk+1

x∗kpk
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Solving for zk+1 gives that zk+1 = −xk + αkT (θk)−1T ′(θk)xk, and shows that z̃k+1 :=
T (θk)−1T ′(θk)xk ∈ span[Vk, zk+1]. In [17] this vector z̃k+1 is shown to be the direction
in which the inverse iteration method with shift θ searches after one step. This means
that just as in the linear case, Jacobi-Davidson is a subspace method based on shift-and-
inverse iteration, giving quadratic convergence. Convergence may be even faster if the
correction equation is preconditioned. See Sleijpen et al [13], section 7.1 for a discussion
on preconditioning the correction equation.
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4 Combustion

An important class of problems that often yields an eigenvalue problems is the
class of acoustic problems. We are especially interested in thermo-acoustic modes in
combustors. Much about this subject has been researched by Nicoud, Benoit, Sensiau
and Poinsot in [9]. These modes are the main source of combustion oscillations.
Because the acoustics in a gas chamber are coupled to the heat produced that comes
with combustion, fluctuations in combustion may start to resonate according to their
modes and grow over time. This will cause the combustor to become unstable. Until
now, this behaviour was hard, if not impossible to predict by simulation during the
design stage, because of a lack of sufficient computational power and the complex
geometrical details of modern gas chambers. However, it is important to be able to
predict and control these oscillations as early as possible.

4.1 Solution methods

Several very different methods have been proposed. Unfortunately, most methods are
either too demanding in terms of computational work, or they are based on a greatly
simplified model. An example of the first kind is to perform Large Eddy Simulations
(LES), that are based on the full three-dimensional unsteady Navier Stokes equations.
Another popular method is to model the geometry of the combustor, leaving out details,
and to suppose the flame to be infinitely thin. In some cases, this method works good
enough, but in general these assumptions are too restricting.

An intuitive method is to linearize the Navier-Stokes equations. The combustion
oscillations have to be taken into account in the energy equation. If the heat release
caused by the combustion oscillations can be modeled, the system of equations is
closed. We can then proceed in two ways: we can solve the discretized PDE’s in the
time domain, or in the frequency domain using the Helmholtz equation instead of
the wave equation. An important downside of the first option is that it only offers
information about the most unstable modes. The second method yields an eigenvalue
problem which will become non-linear when combustion occurs or when there is a
boundary condition with impedance. In this study, we will follow the research from [9]
of the second method, that is: to find a way of solving the Helmholtz equation arising
from the thermo-acoustic problem numerically by writing it as a nonlinear eigenvalue
problem. This is also the method used at CERFACS, where the second part of our study
will be conducted.

4.2 Derivation of the equation

In this section, the acoustic problem will be described by the wave equation. Then,
the equation will be transformed into a Helmholtz equation. The numerical solution
methods in the following section will be aiming to approximate the solution of this
equation.

4.2.1 Basic equations

Under certain assumptions, further specified in [9], we can describe the physical model
by the following equations for mass density, momentum and entropy, together with the
state equation and entropy expression:
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Dρ

Dt
= −ρ∇ · u (9)

ρ
Du

Dt
= −∇p (10)

Ds

Dt
=

rq

p
(11)

p

ρ
= rT (12)

s− sst =
∫ T

Tst

Cp(T ′)
T ′

dT ′ − rln

(
p

pst

)
(13)

The variables that we introduced are: ρ is the density, u is the flow speed, p stands for
the pressure, q is the heat release, s is the entropy and T is the temperature.

We linearize this by writing p = p0 + p1, ρ = ρ0 + ρ1 and s = s0 + s1. The second
(fluctuating) term in these definitions is of order ε compared to the first (steady)
term, where ε � 1. In the linearization of u we assume that u0/c0, the Mach number,
is practically zero. We write u = u1 where

√
u1 · u1/c0 is also of order ε, where

c0 =
√

γp0/ρ0 is the mean speed of sound, where γ is the heat capacity per unit mass
at fixed pressure divided by the heat capacity per unit mass at fixed volume. With
the assumptions of the zero Mach number and the neglection of the heat capacity
fluctuations the following set of linear equations for the fluctuating quantities ρ1, u1, s1

and p1 is obtained:

∂ρ1

∂t
+ u1 · ∇ρ0 + ρ0∇ · u1 = 0 (14)

ρ0
∂u1

∂t
+∇p1 = 0 (15)

∂s1

∂t
+ u1 · ∇s0 =

rq1

p0
(16)

p1

p0
− ρ1

ρ0
− T1

T0
= 0 (17)

Cp
T1

T0
− rp1p0 = s1 (18)

In these equations, also the fluctating unknowns q1 and T1 play a role. To close the set
of equations for the fluctuating quantities we need an equation that expresses q1 in the
other variables.

4.2.2 Flame response

Finding a suitable equation for q1 is, from a physical point of view, the most difficult
part of the modeling phase. A choice has to be made between working with global heat
release from the whole flame zone or using a local flame model. For modern efficient
combustors, the first model does not suffice since the flame is not acoustically compact,
that is, the flame region is not small enough compared to the characteristic acoustic
wavelength. The second model relates the local unsteady heat release to a reference
acoustic velocity in the injector mouth. In equation form, we find that:

q1(x, t)
qtot

= nu(x)
u1(xref , t− τu(x)) · nref

Ubulk
(19)

where nu(x) and τu(x) are fields of interaction index and time lag and nref is a fixed
unitary vector defining the direction of the reference velocity. nu(x) has been made
dimensionless by scaling u1 and q1 by Ubulk and qtot respectively. The difficulty with
this equation is that the fields of parameters τu(x) and nu(x) are hard to approximate
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empirically. The alternative to find reasonable values is to use compressible reacting
LES.

By substituting q1 in equation (16) using equation (19) we find the following equation:

∂s1

∂t
+ u1 · ∇s0 =

r

p0
nu(x)

qtot

Ubulk
u1(xref , t− τu(x)) · nref (20)

4.2.3 Helmholtz equation

Combining equations (14), (15), (17), (18) and (20) we arrive at the wave equation for p1:

∇ ·
(

1
ρ0
∇p1

)
− 1

γp0

∂2p1

∂t2
= −γ − 1

γp0

∂q1

∂t
. (21)

Since this equation is linear in p1, we can safely assume that all fluctuating variables
will oscillate according to the same frequency f = ω/(2π). Therefore, we can introduce
harmonic variations for pressure, velocity and local heat release perturbations:

p1 = Re(p̂(x)e−iωt) (22)
u1 = Re(û(x)e−iωt) (23)
q1 = Re(q̂(x)e−iωt). (24)

If we translate equations (19) and ??ComEq8) into the frequency domain we have all the
tools necessary to describe the transformed pressure field p̂ by the following Helmholtz
equation:

∇ ·
(

1
ρ0
∇p̂

)
− ω2

γp0
p̂ =

γ − 1
γp0

qtot

ρ0(xref )Ubulk
nu(x)eiωτu(x)∇p̂(xref ) · nref (25)

4.2.4 Boundary conditions

An important part in modeling the thermo-acoustic behaviour in a gas chamber is the
effect of the boundary conditions. Three different types of conditions are possible on
the boundary ∂Ω:

Zero pressure: This corresponds to boundaries that are fully reflective, and where the
pressure should be equal to the outer pressure. This means that there can be no
fluctuations, or in mathematical terms: p̂ = 0 on ∂ΩD

Zero normal velocity: This corresponds to boundaries where there can be no
fluctuation in the velocity of the flow through the boundary. This happens
at walls (where there is no flow at all) or at inlets where the velocity is supposed
to be constant. Consequently, û ·nBC = 0. Combined with equation (15) this gives
for the pressure: ∇p̂ · nBC = 0 on ∂ΩN

Imposed reduced complex impedance: On boundaries where neither the pressure
fluctuation nor the normal velocity fluctuation is zero, there will be a combination
of both boundary conditions: c0Z∇p̂ · nBC − iωp̂ = 0 on ∂ΩZ where Z is the
imposed reduced complex impedance, that may depend on the frequency ω.

With this last boundary condition equation (25) will lead to a nonlinear eigenvalue
problem. This will be further elaborated in the next section.
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4.3 The numerical method

In this section, we will see how the Helmholtz equation (25) translates into a nonlinear
eigenproblem. The ways to solve these problems have been described in Section 3. As
discretizing the equation is not a simple task, we will first consider a simplified version
of equation (25) where we don’t take the flame response into account. That is, we will
discretize the equation

∇ ·
(

1
ρ0
∇p̂

)
− ω2

γp0
p̂ = 0

combined with the boundary conditions defined before.

4.3.1 Discretization of the equation

To discretize the above problem, we use the finite element method. We divide the
domain Ω into tetrahedra and define a piecewise linear function φj for every vertex
vj . The testfunction φj equals 1 on it’s respective vertex vj and 0 on the other nodes,
with linear interpolation. So, for every tetrahedron there are only four test functions
that are not zero on the entire area. We can then approximate p̂ by p̂(x) ≈

∑
j p̂jφj(x),

where pj = p(vj). Because we already know that p̂ = 0 on ∂ΩD from the boundary
condition on ∂ΩD we we can restrict ourself to the set of vertices Sv of the mesh which
do not belong to ∂ΩD:

p̂(x) ≈
∑

j:vj∈Sv

p̂jφj(x).

There are now N unknowns, where N is the number of vertices belonging to Ω \ ∂ΩD.
Now the continuous function p̂ is discretized: all that is left is to determine the complex
coefficients pj . This can be done by using the Galerkin method. Starting from the
Helmholtz equation:

∇ ·
(

1
ρ0
∇p̂

)
− ω2

γp0
p̂ = 0

we replace p̂ by it’s approximation, multiply with the test function and integrate over
Ω, and obtain ∀k ∈ Sv :∫

Ω

φk∇

 1
ρ0
∇ ·

∑
j:vj∈Sv

p̂jφj(x)

 dx + ω2

∫
Ω

φk

γp0

∑
j:vj∈Sv

p̂jφj(x)dx = 0.

Interchanging the summation and integration operands, and taking out the constants
pj gives ∀k ∈ Sv :∑

j:vj∈Sv

∫
Ω

1
ρ0

φk∇ · (∇φj)dxp̂j + ω
∑

j:vj∈Sv

∫
Ω

1
γp0

φkφjdxp̂j = 0.

The first integral is integrated by parts:∫
φk∇ · ∇φjdx = −

∫
∇φk∇φjdx +

∮
φk∇φj · ndξ

So the equation becomes ∀k ∈ Sv :∑
j:vj∈Sv

(
−

∫
Ω

1
ρ0
∇φk∇φjdx +

∫
∂Ω

1
ρ0

φk∇φj · ndξ + ω

∫
Ω

1
γp0

φkφjdx

)
p̂j = 0.

Note that φk(x) = 0 ∀k : vk ∈ Sv, x ∈ ∂ΩD so ∂ΩD does not contribute to the boundary
integral. On ∂ΩN we can rewrite the boundary integral by using the boundary condition
∇p̂ · n = 0:
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∑
j:vj∈Sv

∫
∂Ω

1
ρ0

φk∇φj · ndxp̂j =
∫

∂Ω
1
ρ0

φk∇(
∑

j:vj∈Sv
φj p̂j) · ndξ

=
∫

∂Ω
1
ρ0

φk∇p̂ · ndξ

= 0
.

Showing that only ∂ΩZ contributes to the boundary integral. Rewriting the integral
over ∂ΩZ in the same way as for ∂ΩN and substituting ∇p̂ · n = iω/c0Z

∑
φj p̂ gives us

our final equation ∀k ∈ Sv :∑
j:vj∈Sv

(
−

∫
Ω

1
ρ0
∇φk∇φjdx +

∫
∂ΩZ

1
ρ0c0Z

φkφjdξ + ω

∫
Ω

1
γp0

φkφjdx

)
p̂j = 0.

Combining all N equations for all N unknowns pj into a matrix equation gives:

AP + ωB(ω)P + ω2CP = 0 (26)

where P is the vector containing the unknowns pj and A,B and C are symmetric
matrices with generic element

Akj = −
∫

Ω

1
ρ0
∇φk∇φjdx

Bkj =
∫

∂ΩZ

1
ρ0c0Z

φkφjdξ

Ckj =
∫

Ω

1
γp0

φkφjdx.

To get rid of the nonlinearity that is caused by the fact that B depends on Z and therefore
on ω Nicoud et al. suggest to model the impedance by 1/Z = 1/Z0 + Z1ω + Z2/ω
so because of the multiplication by ω it will be possible to rewrite the problem as a
quadratic problem. This makes it easier to solve with traditional methods, but is not
necessary since efficient solution methods have been developed, as stressed in section 3.

4.3.2 Incorporating the flame response

In the context of the finite elements method described above it is not at all hard to
incorporate flame response. Equation (25) needs to be discretized completely, whereas
we only did two terms in the section before. So all that is left is to discretize is
γ−1
γp0

qtot

ρ0(xref )Ubulk
nu(x)eiωτu(x)∇p̂(xref ) · nref in terms of p̂j . Following the same strategy

as before, this term gives us another term DP in the matrix equation (26) with generic
element

Dkj =
∫

Ω

γ − 1
γ

qtot

ρ0(xref )
Ubulknu(x) expiωτu(x) φk∇φj(xref ) · nrefdx.

As is noted in [9], this term is nonlinear in ω and cannot be as easily be rewritten in such
a way that we are provided with a quadratic eigenvalue problem, as can be done for the
nonlinearity of the impedance. So, we must find a way to solve the following nonlinear
eigenvalue problem:

(A−D(ω))P + ωB(ω)P + ω2CP = 0.

Nicoud et al suggest to use a simple Picard iteration:

(A−D(ωk − 1))P + ωkB(ωk−1)P + ω2
kCP = 0,

or with the assumption about the impedance that 1/Z = 1/Z0 + Z1ω + Z2/ω

(A−D(ωk − 1))P + ωkBP + ω2
kCP = 0

whereA, B and C are altered versions of A, B and C to take the modelled impedance in
account. However, with the modern techniques described in 3 this is not necessary, we
can solve the nonlinear eigenproblems without rewriting them as linear problems.
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5 Research Questions

We have studied solution methods of various types of eigenvalue problems,
culminating in a general subspace method for nonlinear eigenproblems. This
general method can be implemented to resemble Arnoldi, or we can use the correction
equation suggested by the Jacobi-Davidson method. A third possibility is to linearize
the nonlinear eigenproblem, for example by a Picard iteration where a known
approximation for the eigenvalue is inserted in the nonlinear term to obtain a quadratic
eigenvalue problem, which can be rewritten as a standard eigenvalue problem and
solved with the original Arnoldi method.

Our goal is to implement Jacobi-Davidson for nonlinear eigenvalue problems, to
compare it with the Arnoldi-type Picard-iteration. This will be done through a couple
of testproblems with known eigenvalues. Also, we will try to find improvements for
the Jacobi-Davidson method in the form of preconditioning, choice of solution method
for the small eigenvalue problem, choice of iterative method for approximation of the
solution of the correction equation and other features.

We will also use the results of our theoretical study to improve the current methods
used at CERFACS to solve the application to realistic combustion problems. We will do
this in first instance by using the same Picard-iteration as is currently done, and then
improving the method that is used to solve the remaining quadratic problem. Finally
we will try to use Jacobi-Davidson for the full non-linear problem.
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