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Abstract

A number of severe entry-exit combinations is selected, to investigate whether or not all pos-
sible future gas transport situations through the gas transport network of Gasunie Transport
Services can be met. These severe entry-exit combinations are selected, such that if the trans-
port capacity is manageable regarding the pipeline network for these entry-exit combinations,
then it is possible to satisfy all possible entry-exit combinations. In short, these severe entry-
exit combinations represent the most severe transport situations through the gas network
within contractual limits, describing realistic market behavior, and determining the size and
shape of the gas transport network. These are often called shipping variants or stress tests.
If a large set of stress tests is generated, then it takes a relatively large amount of time to
evaluate these stress tests. The aim of this project is, therefore, to reduce this generated set
as much as possible. When reducing this set, we have to make sure that we derive a minimal
set, which is still a complete set. So, our goal is to delete identical stress tests from the
generated set, but also less severe transport situations.
These stress tests are denoted by vectors which components represent the gas capacities at
entry and exit points. In general, we deal with n-dimensional vectors, when we are considering
a network of n entries and exits. We are always dealing with a balanced combination of entry
and exit capacities, and therefore such vectors are called balanced vectors. This means that
the components of such a vector add up to zero. So, when a stress test is represented by an
n-dimensional vector x, then

∑
i xi = 0 holds. The individual components of these vectors

are correlated, because we want to take the mutual distance between the network points
(following the pipelines) into account as well, besides the capacities on the entry and exit
points. Thus, the vector space we are considering is not an Euclidean space.
This report focuses on the quadratic form distance, which can measure similarities between
vectors for which the individual components are correlated. The quadratic form distance is
a distance measure which uses a correlation matrix to determine the distance between two
n-dimensional vectors. It is important that this correlation matrix is symmetric positive
semidefinite, to ensure that the quadratic form distance is a well defined metric. A part of
this thesis is dedicated to experiment with different choices of the correlation matrix, and
to investigate their positive semidefiniteness. Finally, some generated sets of stress tests are
reduced according to reducing criteria.
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Chapter 1

Introduction

1-1 Infrastructure

Gasunie is one of the largest gas infrastructure companies in Europe which provides the
transport of natural and green gas in the Netherlands and the Northern part of Germany.
Gasunie has two subsidiaries which are responsible for the management, the operation and
the development of the gas transmission grid, i.e.

• Gasunie Transport Services in the Netherlands for the national transmission grid. The
Gasunie Transport Services is a wholly owned subsidiary of N.V. Nederlandse Gasunie,
but their activities are performed independently as required by law;

• Gasunie Deutschland in Germany for a long-distance pipeline grid.

The core activity of GTS is the transport of gas in the Netherlands, and of Gasunie Deutsch-
land in North Germany respectively.1 The gas transport network of Gasunie, located in the
Netherlands and in the Northern part of Germany, has a length of approximately 15, 500 kilo-
meters, conveys approximately 125 billion cubic meters of natural gas, and consists of multiple
compressor stations, blending stations, metering and regulating stations, export stations, gas
delivery stations, liquefied natural gas storages, air separation units, and an underground gas
and nitrogen storage.

Firstly, compressor stations supply compression (pressure and capacity) and are necessary
to keep the pressure constant when gas is being transported over long distances. As gas is
transported through the pipeline, the pressure drops which leads to a reduction in capacity,
and therefore, the pressure must be increased approximately every 100 kilometers to make it
possible to transport greater volumes of gas at the correct pressure.

Secondly, blending stations ensure that the gas has the desired quality for Dutch households.
For this reason, the quality of the transported gas is closely monitored. Natural gas can come

1Information is taken from the Gasunie site http://www.gasunie.nl/en/about-gasunie.
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2 Introduction

from different sources and the composition of each source varies and, where necessary, these
different gas types are blended such that the gas is suitable for domestic use. The gas quality
is determined by the Wobbe index, calorific value and density of the gas.
The gas usually comes above ground again near to the place of destination, which often
happens at a metering and regulating station. This is also where high pressure of the gas
that was necessary for national transport, is brought down again. The familiar odor to the
natural gas is added as well at a metering and regulating station, so that everyone can smell
the unwanted presence of natural gas.
Export stations are the end points of this gas transport system at the borders and the function
of such a station is, to measure the volume of natural gas supplied to customers in other
countries.
In addition, gas delivery stations form the connection between this transport system and the
transport system of a regional network operator or an industrial gas pipeline. Their main
functions are to reduce the transport pressure (around 8 bar) and to measure the volume of
natural gas supplied.
Finally, underground storages can be both entry and exit points and can be divided into three
groups:

• season storages;

• short cycle storages;

• storages with a connection to other networks. [1]

A few of these storages are owned by Gasunie, like the one located at theMaasvlakte and Zuid-
wending. However, most of the storages are owned by other companies and these companies
determine how much gas is injected into or removed from these storages.
The transport grid of Gasunie (the Netherlands and Northern part of Germany) is shown in
Figure 1-1.2

In the Netherlands, the transmission networks of GTS are divided, according to pressure
categories, into a high pressure grid and an intermediate pressure grid. The HTL network
is also divided into two networks according to the type of gas flowing through the network,
namely into a network transporting G-gas (the gray lines in the Netherlands in Figure 1-1)
and a network transporting H-gas (the yellow lines in the Netherlands in Figure 1-1). The
RTL network is pretty much used to transport G-gas.3

1-2 Gas transport network

GTS sells the available capacity in a reliable network with competitive conditions. This gas
network consists of a number of entry and exit points. An entry point is a point where gas
can be (physically) injected into the pipeline network of Gasunie and an exit point where

2Information and picture are taken from the Gasunie site http://www.gasunie.nl/en/about-gasunie/
infrastructure.

3Information is taken from http://www.gasunietransportservices.nl/en/transportinformation/
the-transmission-network.

K. Lindenberg Master of Science Thesis

http://www.gasunie.nl/en/about-gasunie/infrastructure
http://www.gasunie.nl/en/about-gasunie/infrastructure
http://www.gasunietransportservices.nl/en/transportinformation/the-transmission-network
http://www.gasunietransportservices.nl/en/transportinformation/the-transmission-network


1-2 Gas transport network 3

Figure 1-1: The gas transport grid of Gasunie.
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4 Introduction

gas can be (physically) removed from this pipeline network. The contractors of Gasunie,
who are called shippers, buy gas capacity in advance at these entry and exit points. Thus,
customers enter into contracts which allow them to book capacity at certain entry or exit
points in the network for a certain period (year, month or day). For example, it is possible
that a shipper injects gas into the network at Oude Statenzijl and removes gas from the
network at Zandvliet. Shippers are free to choose the combinations of entry and exit points,
but must ensure that a certain balance is maintained between the volume of gas injected into
the system and the volume taken off. Gasunie Transport Services works with a balancing
regime, that is the method by which the network can be kept at the right pressure, ensuring
that, on balance, the same amount of gas is removed from the network as is injected into it.
Besides this, customers can trade gas amongst themselves at a virtual market place which is
called Title Transfer Facility. GTS wants a liquid and competitive capacity market, because
it makes the GTS infrastructure more attractive to its customers. [2]

Thus, shippers independently contract the right to use the network on the entry and exit
points and the combination of entries and exits is known only at the time of actual use. The
main goal of GTS is to ensure that all shippers are getting enough gas at the right time and
that enough gas is being injected into the network. A tool in this process can be, for example,
remotely opening or closing valves.4

One of the questions is, whether or not all possible future transport which will be used by
the shippers can be met. Gasunie already has a strategy to handle this problem by selecting
a small number (around 50) of severe entry-exit combinations, which are called shipping
variants or stress tests, such that if the transport capacity is manageable regarding the pipeline
network for these shipping variants (stress tests), then it is possible to satisfy all entry-exit
combinations. So, shipping variants represent severe transport situations through the pipeline
network. If the network can manage the most severe transport situations, then the network
is sufficient and no adjustments have to be made to the network. When determining these
shipping variants, the contracts and realistic market behavior are considered. Summarizing
the above, a shipping variant is a severe transport situation within contractual limits which
describes realistic market behavior and determines the size and shape of the gas network, and
therefore can be called a stress test as well.

1-3 Multi case approach

GTS uses simulation models to determine the transport capacity of the gas transport network.
A commonly used simulation model is the model MCA, which stands for multi case approach
and is an important tool of the network planning process. The transport calculations for
given transport situations through the gas network are conducted in MCA. These transport
calculations indicate how the gas is flowing through the gas transport network and calculate
all relevant variables, like the flow, pressure, temperature and gas quality.[3]

4Information is taken from the GTS site http://www.gasunietransportservices.nl/en/about-gts.
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1-4 Outline of this thesis

The outline of the remainder of this thesis is as follows:

Chapter 2 Description of the stated problem.

The concept ‘stress test’ is illustrated on the basis of a small network and an algorithm to
generate stress tests, used by GTS, is posed as well. Besides, some characterizations of a
stress test are summarized. In addition, the research questions for this project are formulated
at the end of this chapter.

Chapter 3 Mathematical background

The dissimilarity measure, named quadratic form distance, is introduced in this chapter
and some examples are discussed to illustrate this dissimilarity measure. In addition, some
properties of the quadratic form distance are mentioned and dealt with. A great part of this
chapter is dedicated to the performed investigation regarding positive semidefiniteness on a
subspace which is related to the quadratic form distance.

Chapter 4 Definitions correlation matrix

The discussed dissimilarity measure, the quadratic form distance, uses a so-called correlation
matrix and some different choices for this correlation matrix are summarized and tested on
some gas networks of GTS.

Chapter 5 Reducing generated set of stress tests

This chapter explains some suggested ideas to reduce a generated set of stress tests. A few
experiments regarding this reduction are conducted and summarized in the second section.
In addition, its results are analyzed in the third section and some more experiments are
performed and mentioned at the end of this chapter due to these results.

Chapter 6 Conclusions and recommendations

This final chapter gives an overview of the conclusions and recommendations of this thesis.

Master of Science Thesis K. Lindenberg



6 Introduction

K. Lindenberg Master of Science Thesis



Chapter 2

Description of the stated problem

Any balanced combination of entry and exit points defines a transport situation through the
gas transmission network, as described in Chapter 1. We consider the most severe transport
situations that can occur in this network, during this project. These severe transport situa-
tions which describe realistic market behavior and determine the network configuration within
contractual limits, are called shipping variants or stress tests. Whether or not a transport
situation is severe depends, for example, on the allowed pressure at the entry and exit points,
the length and width (diameter) of the pipelines in the network. [4]

It takes a relatively large amount of time to evaluate these stress tests for a large set of stress
tests. The aim of this thesis is therefore, to reduce the generated set of stress tests as much
as possible. When reducing this set, we have to make sure that we derive an exhaustive
or minimal subset such that if the transport capacity is manageable regarding the pipeline
network for this smaller (sub)set, then it is possible to satisfy all entry-exit combinations.

First, let us consider a small gas transmission network in the next section. An algorithm to
generate stress tests, given by Jarig Steringa, is described and applied on the small network
after considering a small network. In addition, some background information about stress
tests is given. Finally, the main research question and sub research questions for this thesis
are formulated.

2-1 A small example

Suppose we have a small gas pipeline network, like the network drawn in Figure 2-1 where
the five pipes all have the same length (L). In this network there exists two entry points
(numbered as 1 and 2) and two exit points (numbered as 3 and 4) and 0 to 100 units of gas
can be injected into the system at both entries but also removed from the system at the exit
points. GTS works with a balancing regime and therefore the volume of injected gas needs
to be equal to the volume of gas removed from the network in a gas transport situation.
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8 Description of the stated problem

Figure 2-1: An example of a simple network.

First, we want to determine the possible severe transport situations (shipping variants or
stress tests) in this case. In general a severe gas transport situation occurs, when a large
volume of gas is transported over a long distance. Three severe transport situations can be
identified for this network, i.e.

1. injecting 100 units of gas into the system at (entry) point 1 and removing 100 units of
gas at (exit) point 4. This stress test is drawn in Figure 2-2.

Figure 2-2: Stress test 1

We see that a maximal gas volume (100 units) is transported over the longest distance
in this gas network (3L), for this stress test.

2. injecting 100 units of gas into the system at (entry) point 2 and removing 100 units of
gas at (exit) point 3. This stress test is shown in Figure 2-3.
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Figure 2-3: Stress test 2

3. injecting 100 units of gas into the system at both (entry) points 1 and 2 and removing
100 units of gas at both (exit) points 3 and 4. This stress test is drawn in Figure 2-4.

Figure 2-4: Stress test 3

We see that for a small example we have a small set (three) of stress tests. We will have a
large set of stress tests for a larger and more complex network. Then it takes a relatively large
amount of time to evaluate this compiled set of stress tests. Therefore, we want to reduce
the set of stress tests as much as possible. A first step in this reducing process is to find a
method which can compare the stress tests. Then it may be possible to eliminate stress tests
based on (almost) similarity.
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10 Description of the stated problem

2-2 Algorithm to generate stress tests

GTS applies several steps to generate stress tests. Firstly, these steps are mentioned and
secondly, the algorithm is applied on a small example to clarify these steps. The algorithm
consists, roughly speaking, of the following steps: [5]

1. Choose any network point as reference (anchor) point (A). This point does not have to
be an entry or exit point.

2. Draw up a distance table of entry and exit points with respect to this point along the
network/graph. The distances between all entry/exit points and the reference point are
listed in such a distance table.

3. Take list of all capacities on these entry (Ni) and exit (Xi) points.

4. We consider the transport moment T in this step, which is defined as the product of the
system throughput Q and the mean transport distance D of the gas flowing through
the system. The system throughput Q is the same as the total flow from entry to exit.
The mean transport distance D is set to be equal to the distance between the center of
gravity of the entry points and the center of gravity of the exit points in this algorithm,
and is illustrated in Figure 2-5.

Figure 2-5: An illustration of the definition of the mean transport distance.

The location of the entry center N with respect to the reference point A is represented
by its distance vector DN pointing from A to N , see Figure 2-6. In the same way, a
distance vector DX is defined for the exit center X. These two distance vectors can be
formulated in terms of the distance vectors of entry and exit points:

DN =
∑
iNi ·DNi∑

iNi
and DX =

∑
iXi ·DXi∑

iXi
.

The mean transport distance vector D can be rewritten as D = DX−DN which follows
from standard vector addition in Figure 2-6.
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Figure 2-6: An illustration of the reference point A and entry and exit centers N and X.

The system throughputQ is, due to the required balance in the system, equal to
∑
iNi =∑

iXi and can be represented by a vector Q as well. This vector Q has the same
direction as the vector D and therefore the transport moment can be denoted as the
inner product of Q and D. This inner product results in the following final form for
the transport moment through the gas network

T =
∑
i

XiDXi −
∑
i

NiDNi

Then, we need to maximize this transport moment for the entry and exit centers subject
to the following balance constraint in the fourth step of the algorithm∑

i

Xi =
∑
i

Ni.

5. Keep the resulting NX-combination, which is a stress test.

6. Repeat these five steps for each reference point.

7. Reduce the resulting set of stress tests, for example by identifying identical stress tests
or based on similarities. However, the milder cases can be deleted as well.

So, we consider again the small network introduced in Section 2-1 which is displayed in
Figure 2-1, in order to illustrate this algorithm. First we choose point 1 as reference point.
The second step is to draw up a distance table of entry and exit points with respect to point
1 and this table can be found in Table 2-1.

Table 2-1: The distance table of entry and exit points with respect to point 1.

Point 1 Point 2 Point 3 Point 4
(entry DN1) (entry DN2) (exit DX1) (exit DX2)

Point 1 0 3 · L 2 · L 3 · L
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12 Description of the stated problem

The capacities on these entry and exit points can be listed: N1 = 0 − 100, N2 = 0 − 100,
X1 = 0 − 100 and X2 = 0 − 100. The transport moment needs to be maximized after
determining the distances and the capacities and is defined in step 4 as∑

i

XiDXi −
∑
i

NiDNi = X1DX1 +X2DX2 −N1DN1 −N2DN2

= X1 · 2L+X2 · 3L−N2 · 3L,
(2-1)

but we have to keep the following balance constraint in mind while maximizing the transport
moment in Equation (2-1),

X1 +X2 = N1 +N2. (2-2)
Note that the transport moment in Equation (2-1) is maximized (subject to the balance
constraint in Equation (2-2)) for

N1 = X2 = 100 and N2 = X1 = 0.

This corresponds with a flow of 100 dam3/h from point 1 to point 4 through the network
which refers to the stress test in Figure 2-2.
We have to apply the same principle for the other points in the network according to step
6 of the algorithm. Before we conduct this step, note that the network displayed in Figure
2-1 actually consists of six points which represent two entry points, two exit points, and two
‘connector’ points (see Figure 2-7).

Figure 2-7: An example of a simple network, consisting of six points.

So, we can choose point 5 as reference point as well. Then Table 2-2 represents the distance
table of entry and exit points with respect to this ‘connector’ point.

Table 2-2: The distance table of entry and exit points with respect to point 5.

Point 1 Point 2 Point 3 Point 4
(entry DN1) (entry DN2) (exit DX1) (exit DX2)

Point 5 L 2 · L L 2 · L

The capacities on the entry and exit points are always the same, i.e. 0 till 100 dam3/h. The
transport moment is in this case equal to

X1 · L+X2 · 2L−N1 · L−N2 · 2L,
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and is maximized (subject to the balance constraint) for

N1 = X2 = 100 and N2 = X1 = 0.

Again, this corresponds with a flow of 100 dam3/h from point 1 to point 4 through the
network which is the same stress test as when point 1 is chosen as reference point.

Choosing point 3 as reference point will also result in the same stress test.

In the same way we can determine the other stress test which can be derived when point 2, 4
or 6 is chosen as reference point. Let us consider point 4 as reference point and apply steps
2 till 5 of the algorithm. The distance table is shown in Table 2-3 and the capacities are still
the same.

Table 2-3: The distance table of entry and exit points with respect to point 4.

Point 1 Point 2 Point 3 Point 4
(entry DN1) (entry DN2) (exit DX1) (exit DX2)

Point 4 3 · L 2 · L 3 · L 0

This results in a flow of 100 dam3/h from point 2 to point 3 (N2 = X1 = 100 andN1 = X2 = 0)
which is the stress test displayed in Figure 2-3.

Finally, we end up with a set of six stress tests. The last step is to reduce this set and we can
reduce the set to two (different) stress tests. It is still the question whether or not we can
reduce the set some more.

Note that the stress tests in this example can also be found by searching for the nearest entry
point and furthest exit point with respect to the chosen reference point and maximizing the
flow between these points. For example, if we choose point 1 as reference point, then the
nearest entry point is itself and the furthest exit point is point 4. The capacity (flow) is
maximized in the next step, in this example up to 100 dam3/h. This transport situation is
a stress test and corresponds with the one drawn in Figure 2-2. If we choose point 3 or 5
as reference point, then we end up with the same stress test. Choosing point 2, 4 or 6 as
reference point will result in the stress test drawn in Figure 2-3, because the nearest entry
point is point 2, the furthest exit point is point 3 and the maximum capacity (flow) is 100.

2-2-1 The algorithm applied after clustering

Three stress tests are given in Section 2-1, but applying the algorithm results in only two
(different) stress tests. We divide the network into clusters and then we search for severe
transport situations locally, to derive the third one. Note that points 2 and 4 are the furthest
points with respect to point 1, but also with respect to points 3 and 5. Therefore, points 2
and 4 can be called opposites of points 1, 3 and 5. Or the other way around, points 1 and 3
are also opposites of points 2, 4 and 6. Therefore, we can divide the points into two clusters,
like it is drawn in Figure 2-8.

A second step is to multiply the distances within one cluster with a relative high factor, in
this case for example with 10, which results in the two networks displayed in Figures 2-9 and
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14 Description of the stated problem

Figure 2-8: An example of a simple network divided into clusters (marked with yellow).

2-10. The algorithm can again be applied on the whole network after this multiplication,
but we have to apply steps 1-4 twice (once per cluster) before determining a stress test. In
that way we have the most severe situation. This results in the third stress test mentioned
in Section 2-1.

Figure 2-9: The distances in one cluster of the simple network multiplied with 10.

Figure 2-10: The distances in the other cluster of the simple network multiplied with 10.

It can be said that for the first two stress tests or stress tests the algorithm is globally (whole
network) applied and for the third one locally (per cluster). It can be concluded that it is
also important to apply the algorithm within a cluster in order to generate a complete set of
stress tests.

2-3 Characterization of stress tests

Each stress test represents a specific transport situation through the network, often charac-
terized by the use of a certain amount of transport means, like gas pipelines and compressors.
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The gas pipelines and compressors are the most important transport means in the main
transmission grid (HTL) of GTS, and connected to each other via pressure regulators, valves,
non-return valves and other technical equipment by which different network configurations
can be formed.[1]
It is important that a stress test seriously tests the capabilities or limits of the gas network in a
realistic way, in order to say something about whether or not all possible future gas transport
can be met. When stress tests are chosen severe enough regarding transportation load and
regarding load caused by blending different types of gas, then the limits or capabilities of this
network are really tested.[1]

2-3-1 Transporting gas through the network

During the project, stress tests are taken into account which are supposed to only depend on
the transportation load. The load of the compressor stations and gas pipelines is considered
in order to determine the transportation load of the network.[1]
When determining the load of the compressor stations, the compression power and pressure
head of these stations can, for example, be investigated and for the pipelines, the pressure
drop and gas flow. We are interested in transport situations which heavily load the compressor
stations and pipelines for a stress test. The compression power, pressure drop and gas flow
are mostly high for such a severe transport situation.[1]
Severe gas transport situations often occur, when a large amount of gas is transported over
long distances through the gas network. Then it can happen that high pressure drops arise at
certain transportation routes and these high pressure drops can be overcome by using a lot
of compression. Therefore, the required compression power (in MW ) can be used to measure
the severity of a transport situation through the network.[1]

2-3-2 Blending different types of gas

It is also important to consider the blending of different types of gas in this network besides
the transportation of natural gas through the network of GTS. The different types of gas
transported through the system of GTS are:[1]

• G-gas, with a Wobbe index smaller than or equal to 44.4.
This type of gas refers to Groningen gas and is transported for the public use. The
transported quantity depends strongly on the temperature.

• L-gas, with a Wobbe index between 44.4 and 47.2.
This type of gas is transported as export gas to Hilvarenbeek, Winterswijk and Zevenaar
for, for example, Belgian and German public use. The L-gas demand is smaller in the
summer period than in the winter period.

• H-gas, with a Wobbe index greater than or equal to 49.0.
This type of gas is the least temperature dependent of the three types and is transported
to relatively large industries in the Netherlands which often need a constant gas capacity,
or is exported.
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16 Description of the stated problem

A definition of the Wobbe index is the following one:

“A comparative measure of thermal energy flow through a given size of orifice. A measure of
the interchangeability of gases used for combustion. Gases which have the same Wobbe index
can replace each other without a change in the relative air-fuel ratio at the same fuel metering
settings.” 1

The Wobbe index of a gas is defined as the following quotient:

W = Hs√
d
, (2-3)

with Hs the calorific value and d the density of the gas compared to air. This density d is
formulated as d = ρg

ρl
, where ρg and ρl is the density of the gas and air, respectively.[6]

Different types of gas are blended to make sure that the gas has the desired Wobbe index.
For example, G-gas (with a low Wobbe index) can be enriched with H-gas which has a high
Wobbe index, and H-gas can be impoverished by G-gas in order to get the desired Wobbe
index. These processes take place at the blending stations of GTS. It is also possible to inject
nitrogen into the H-gas (till the desired Wobbe index is achieved) to create G-gas. This is a
different form of blending different types of gas.[1]

The load caused by blending different types of gas can be measured by the use of the blending
stations and nitrogen installations. The H-gas overflow and the amount of injected nitrogen
are considered to determine this load. The H-gas overflow represents the amount of H-gas
injected into the network which does not directly flow to the H-gas market but to the L- and
G-gas market (whether or not blended with nitrogen).

1Cited from http://www.contractorsunlimited.co.uk/cgi-bin/glossitemsrch.pl?header=Term&
method=all&search=Wobbe+index.
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2-4 Research questions

The main research question during this project is:

Which techniques are available to sufficiently reduce the generated set of stress tests, to find
an exhaustive subset of which the elements are mutually exclusive, given a required accuracy?

At the end of this project, we want to have found or developed such a method which also
satisfies the following criteria

1. the physical characteristics of the transport network, like the pressure drop, are taken
into account, when applying the method.

2. the method can distinguish between different stress tests.

3. the threshold value, used to determine which stress tests are almost equal or similar, has
to relate to the uncertainty used during the generating of stress tests (±10 dam3/h).

4. the parameters used in the method can be tuned.

5. the need to use specific transport physics of the gas network has to be as little as pos-
sible, before conducting the method. The motivation for this is the fact that transport
calculations need to be done as well, when the (reduced) set is tested on the network.
Then it has to be calculated twice, which is time consuming.

6. the method concludes, for example, that two stress tests are similar in the case one has
capacities which are all the same (positive) fraction of the capacities of the other one.
In this case, one stress test is less severe than the other and therefore can be removed
from the generated set.

7. the method is applicable to reduce a set of stress tests depending on the load caused by
blending different types of gas as well, because in general, stress tests are determined
based on their transportation load and blending load.

These criteria give rise to (or correspond with) the following sub research questions:

1. Is it possible to take the physical characteristics of the transport network, for example
the pressure drop, into account, when we apply the method?

2. Does the method distinguish between different stress tests or remains the calculated
distance the same?

3. Which threshold value(s) should be used to label two stress tests as equal and can we
relate this threshold value to the uncertainty used during the generating of stress tests
(±10 dam3/h)? This may be dependent on the applied method.

4. Is it possible to tune the parameters which are used in the method?

5. Do we need to know (some of) the transport physics of the gas network for a stress test
or make transport calculation before applying the method?
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18 Description of the stated problem

6. Do we need to filter the set of stress tests before we apply the method? Or will the
method conclude, for example, that two stress tests are similar in the case one has
capacities which are all the same (positive) fraction of the capacities of the other one?

7. Is the examined method applicable to reduce a set of stress tests depending on the load
caused by blending different types of gas or do we need to search for another method?
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Chapter 3

Mathematical background

Multiple methods which can be applied to reduce the generated set of stress tests, are exam-
ined during the literature study. One of the methods is the quadratic form distance and we
have chosen to continue studying this method after conducting the literature study. Therefore,
the quadratic form distance is first recapitulated in this chapter.

3-1 Quadratic form distance

We are searching for a way to measure the similarity between these stress tests, to reduce the
set of stress tests. The stress tests can be represented by vectors and its individual dimensions
are correlated, because we want to take the (mutual) distance between the network points into
account as well, besides the capacities on the entry and exit points. It is possible to measure
similarity between vectors for which the individual dimensions are correlated, according to
the paper of Skopal et al. This similarity measuring is done with the quadratic form distance.
The QFD is applied to search for similarities in a set of color images in the paper of Skopal
et al. Color images can be compared by examining their color histograms. An image can
be represented as a 256-dimensional histogram which describes the proportions of individual
colors. Such a histogram consists of multiple bins (dimensions), in this case 256 bins, in
which the i-th histogram bin represents the number of pixels in the color image having the
i-th color. Because the individual dimensions (bins) are correlated, Skopal et al propose to
apply the QFD to measure similarity of two histograms. Skopal et al state that it would be
inappropriate to use an Lp distance, since it ignores the dimension ordering and it would even
measure an image of a sunset (red tones) as more similar to a tennis ball (yellow tones) than
to an orange fruit (orange tones), which is incorrect.[7]

Color histograms can also be denoted as a vector. We consider an imageM as an illustration.
If the colors of this image are mapped into a discrete color space containing n colors, then the
color histogram of this image, denoted as H(M), is a vector (hc1 , hc2 , . . . , hcn). The elements
hcj of this vector represent the number of pixels of color cj in the image M . It may be
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assumed, without loss of generality, that all images contain N pixels and therefore, that the
following condition holds

n∑
i=1

hci = N. [8]

Several dissimilarity measures can be applied to compare two histograms H and K:

• bin-by-bin dissimilarity measures which only compare contents of corresponding his-
togram bins. Thus, bin-by-bin dissimilarity measures compare hci and kci for all i, but
not hci and kcj for i 6= j.

• cross-bin dissimilarity measures which compare non-corresponding bins as well. There-
fore, cross-bin distances use the ground distance dij which is the distance between
representative features for bin i and j. [9]

The QFD is an example of a cross-bin dissimilarity measure. We have to denote the stress
tests as n-dimensional vectors in order to apply the QFD on the generated set of stress tests,
and then the QFD for two n-dimensional vectors u and v is defined as

QFDA(u, v) =
√

(u− v)TA(u− v), (3-1)

with A an n×n symmetric positive definite matrix. The matrix A for RGB image histograms
is defined in the paper of Skopal et al as

Aij = 1− dij
dmax

, with dmax = max
i,j

dij , i, j = 1, 2, . . . , n, (3-2)

with dij the Euclidean distance between representatives of colors i and j in the RGB color
space.[7]

As mentioned above, the QFD is more preferable than the class of Minkowski (Lp) distances
which is defined as

Lp(u, v) =
(

n∑
i=1
|ui − vi|p

)1/p

, p ≥ 1 (3-3)

for two vectors u and v. The QFD can deal with the correlation between the individual
dimensions, while the Lp distances suppose all the vector space dimensions to be not correlated
(independent).[7]

3-1-1 Symmetric positive definiteness

When applying the QFD defined in Equation (3-1), the matrix A needs to be an n × n
symmetric positive definite matrix. Then the following definitions should be considered for
this n× n matrix A:

• the matrix A is symmetric ⇔ AT = A; [10]

• the matrix A is positive definite ⇔ ∀ w ∈ Rn\{0}: wTAw > 0. [10]
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It is also known that all the eigenvalues of a symmetric positive definite matrix are real and
strictly positive.[10]

Firstly, the matrix A can be defined in almost the same way for a network as for the color
images, i.e.

Aij = 1− dij
dmax

, with dmax = max
i,j

dij , i, j = 1, 2, . . . , n, (3-4)

where dij is the distance measured in the network (length of the pipes) between the points
i and j of the network.[7] The matrix A is indeed symmetric according to this definition,
because dij = dji holds ∀ i, j.

The Gershgorin circle theorem can be used to check whether or not the eigenvalues of the
symmetric matrix A are strictly positive. This theorem can be applied to bound the spectrum
of the matrix A and is stated as follows:

Every eigenvalue λ of A is located in at least one of the n Gershgorin discs in the complex

plane with center Aii and radius ρi =
n∑

j=1,j 6=i
|Aij | for i = 1, 2, . . . , n . [10]

It follows from the definition of the matrix A, Equation (3-4), that the center of each Gersh-
gorin disc equals 1, because dii = 0 ∀ i. The radius of these n Gershgorin discs are determined
by

ρi =
n∑

j=1,j 6=i
|Aij | =

n∑
j=1,j 6=i

{
1− dij

dmax

}
= n− 1− 1

dmax

n∑
j=1,j 6=i

dij .

If ρi < 1 holds, then we know for certain that all the eigenvalues are positive, because the
center Aii equals 1. Then the matrix A is positive definite.

3-1-2 A small example

We consider again the small example discussed in Chapter 2, to illustrate the measuring with
the QFD, described by Skopal et al [7]. We have derived the three stress tests of the example
in Chapter 2:

1. injecting 100 units of gas into the system at (entry) point 1 and removing 100 units of
gas at (exit) point 4 (Figure 2-2);

2. injecting 100 units of gas into the system at (entry) point 2 and removing 100 units of
gas at (exit) point 3 (Figure 2-3);

3. injecting 100 units of gas into the system at both (entry) points 1 and 2 and removing
100 units of gas at both (exit) points 3 and 4 (Figure 2-4).

These three stress tests can be represented as vectors consisting of four elements. Here, the
first element corresponds with the units of gas at point 1, the second at point 2, the third at
point 3 and the fourth at point 4. Then, the three stress tests can be denoted as
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1. u1 = (100, 0, 0,−100);

2. u2 = (0, 100,−100, 0);

3. u3 = (100, 100,−100,−100);

where −100 means that 100 units of gas are leaving the system at that point. The number
of units of gas is also called the gas capacity.

In general, the class of Minkowski (Lp) distances is used to measure similarity of 4-dimensional
vectors, but Lp distances assume that the dimensions of the vector space are independent
(not correlated). In this case, the four points (two entries and two exits) of the network are
correlated, because the distance with respect to each other plays an important role as well.
Therefore, the four gas capacities are correlated and thus the four dimensions are correlated.
Skopal et al suggest to use the QFD which is defined as

QFDA(u, v) =
√

(u− v)TA(u− v),

where A is required to be a 4×4 symmetric positive definite matrix, to measure the similarity
between these vectors.[7] This distance is also known as the A-norm and can therefore be
denoted as QFDA(u, v) = ||u− v||A.
The matrix A might again be defined as

Aij = 1− dij
dmax

, with dmax = max
i,j

dij , i, j = 1, 2, 3, 4,

where dij is the distance measured in the network (length of the pipes) between the points i
and j of the network.[7]

We can determine the elements of the matrix A in our example where dmax = 3 · L:

A11 = 1− d11
dmax

= 1− 0
3L = 1

A22 = A33 = A44 = 1

A21 = A12 = 1− d12
dmax

= 1− 3L
3L = 0

A41 = A14 = 0
A32 = A23 = 0
A43 = A34 = 0

A31 = A13 = 1− d13
dmax

= 1− 2L
3L = 1

3
A42 = A24 = 1

3

Here, Aii = 1 and ρi =
4∑

j=1,j 6=i
|Aij | =

1
3 for i = 1, 2, 3, 4, and Aij = Aji ∀ i, j. Thus, the

matrix A in this example is indeed symmetric positive definite, because every eigenvalue of
A is real and lies within the Gershgorin disc

(
1, 1

3

)
.
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The distances can be calculated after compiling the matrix A:

QFDA(u1, u2) = QFDA(u2, u1) ≈ 230.94

QFDA(u1, u3) = QFDA(u3, u1) ≈ 141.42

QFDA(u2, u3) = QFDA(u3, u2) ≈ 141.42

We see that the distances between the first and third stress test and between the second and
third stress test are the same and smaller than the distance between the first and second
stress test from these results.

3-1-3 A second example

Let us consider a network with three entry and exit points as drawn in Figure 3-1.

Figure 3-1: An example of a simple network, consisting of three entry and exit points.
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Again every pipeline has length L and in this case dmax equals 4 ·L. Then the matrix A can
be determined according to the definition in Equation (3-4):

A =



1 0.5 0.25 0.25 0 0
0.5 1 0.25 0.25 0 0
0.25 0.25 1 0.5 0.25 0.25
0.25 0.25 0.5 1 0.25 0.25

0 0 0.25 0.25 1 0.5
0 0 0.25 0.25 0.5 1


.

Applying the Gershgorin circle theorem results in the following two Gershgorin discs:

• a Gershgorin disc with center Aii = 1 and radius ρi = 1 for i = 1, 2, 5, 6;

• a Gershgorin disc with center Aii = 1 and radius ρi = 1.5 for i = 3, 4.

We see from this example that, it can not be concluded with the Gershgorin circle theorem
that the matrix A is positive definite, because it is possible that an eigenvalue is zero or real
and negative. Therefore, we have to determine the eigenvalues of this matrix:

λ1 = λ2 = λ3 = 0.5, λ4 ≈ 0.7929, λ5 = 1.5 and λ6 ≈ 2.2071.

All the eigenvalues are real and strictly positive and thus the matrix A is SPD.

3-1-4 A third example

An interesting example to examine is the small network displayed in Figure 3-2, because
it shows which condition must hold for the applied distance, in this case the QFD. This
condition is related to the fact that two transport situations through the network can be the
same, while the capacities on the entry and exit points deviate. The following example will
illustrate this principle.

Figure 3-2: A small network to illustrate a needed property of the used distance.

This network consists of one pipeline of length L and two nodes of which the blue node is both
an entry and exit point and the red node is an exit point. Three capacities can be defined for
this network and thus the vectors representing these capacities are vectors from the vector
space R3. Let us consider the two situations displayed in Figure 3-3 where the entry point is
numbered as 1 and the exit point of the blue node as 2.
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Figure 3-3: A small network with capacities on the entry and exit points.

100 dam3/h gas is transported through the pipeline from the blue node to the red node in
both situations. This transport situation is severe and thus a stress test. Both stress tests
can be represented by a vector:

• in the first situation: u = (120,−20,−100);

• in the second situation: v = (100, 0,−100).

These two vectors are not the same in the vector space R3, but these have to be similar with
respect to the volume of transported gas through the network. Therefore, it is wanted that
the distance between these two vectors is zero for a distance function (QFD).

The matrix A can be compiled for this example with dmax = L which results in

A =

 1 1 0
1 1 0
0 0 1

 .
All the eigenvalues of A are greater than or equal to 0 according to Gershgorin circle theorem.
If we determine these eigenvalues which are

λ1 = 0, λ2 = 1, and λ3 = 2,

we see that one eigenvalue equals 0. This means that the matrix A is (symmetric) positive
semidefinite (wTAw ≥ 0 ∀ w ∈ Rn\{0}).

Let us determine the QFD:

QFD(u, v) = QFD(v, u) =

√√√√√√(−20, 20, 0)

 1 1 0
1 1 0
0 0 1


 −20

20
0

 = 0,

which is the desired result.

So, you could say that the matrix A needs to be symmetric positive semidefinite and not
SPD, considering this example. Otherwise the QFD cannot be equal to zero.
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3-1-5 Semi-norm

We have seen that the matrix A needs to be an n × n symmetric positive definite matrix
according to the literature. In addition, the correlation matrix A needs to be even symmetric
positive semidefinite, when we are applying the QFD on a gas transport network according
to the last example. Why is it necessary that the used correlation matrix A is positive
semidefinite? We consider the definition of a semi-norm to answer this question:
A semi-norm ||.|| : Rn → R, is a function which satisfies the two properties:

1. ||cu|| = |c| · ||u|| for all scalars c ∈ R, u ∈ Rn

2. ||u+ v|| ≤ ||u||+ ||v|| for all vectors u, v ∈ Rn .[11]

The matrix A needs to be positive semidefinite for the QFD to be real valued, because the
QFD is defined as a square root (of a vector-matrix-vector multiplication).

3-2 Positive semidefinite on a subspace

Sometimes we encounter the problem that our defined matrices are not positive semidefinite
and have relatively small negative eigenvalues. This motivates us to examine if the defined
matrices are positive semidefinite on a subspace. Therefore, we want to consider the quadratic
form xTAx on the subspace

∑
i xi = 0. This subspace represents all the balanced gas trans-

port situations through the network. If the quadratic form xTAx is positive semidefinite on
this subspace, then we can still use the defined matrices for the QFD. We only consider the
balanced transport situations and then the QFD is a metric (restricted to this subset).

3-2-1 Subspace of balanced vectors

The following is stated in the article Efficient Color Histogram Indexing for Quadratic Form
Distance Functions regarding this subject:
Consider a quadratic form zTHz, H = [hij ], on the subspace

∑
i zi = 0. Then this quadratic

form is negative semidefinite (zTHz ≤ 0) on the defined subspace, if each hij represents the
distance between some points Pi and Pj in some finite dimensional L1 or L2 normed space. In
particular, this quadratic form is negative semidefinite on the defined subspace, if the matrix
H satisfies the following conditions:

1. hii = 0

2. hij = hji

3. hij ≤ hik + hkj .

So, if the distance matrix D = [dij ] satisfies the requirements stated above, then we get the
following results for the matrix A defined as Aij = 1− dij

dmax
on the subspace

∑
i xi = 0:

xTAx =
∑
i

∑
j

xixj

(
1− dij

dmax

)
=
∑
i

∑
j

xixj −
∑
i

∑
j

xixj
dij
dmax

,
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which is equivalent with
xTAx = −

∑
i

∑
j

xixj
dij
dmax

,

because
∑
i

∑
j xixj =

∑
i xi

(∑
j xj

)
=
∑
i xi · 0 = 0. We can write the last expression as

xTAx = − 1
dmax

· xTDx.

Then it holds that xTAx ≥ 0, because xTDx ≤ 0 on the subspace
∑
i xi = 0. Thus,

the matrix A is positive semidefinite on this subspace, when D satisfies the three stated
requirements.[12]

The first question which arises, is: does the distance matrix D = [dij ] satisfy the three
required conditions? The first two conditions have been satisfied, because of the definition of
dij . It represents the length of the pipeline between two network points i and j and therefore,
dii = 0 and dij = dji (matrix is symmetric). In addition, the total length of the pipelines
between network points i and j is the sum of the two shortest pipelines between points i
and k and between k and j, when the shortest length between i and j is represented by the
‘path’ (of pipes) from i to j along k. In this case, it holds that dij = dik + dkj . However,
it is possible that more ‘paths’ exist between i and j which do not pass point k. The value
dij represents the shortest distance (‘path’) between points i and j. Therefore, the third
condition dij ≤ dik + dkj holds as well.
The second question which needs to be answered, is whether or not the statement presented
in the article is true or the three requirements for H = [hij ] are sufficient. We try to answer
this question in the next subsubsection.

Quadratic forms and definite matrices

We are interested in the quadratic form Q(z) = zTHz, where H = [hij ] satisfies the conditions
hii = 0 ∀ i, hij = hji ∀ i, j, and hij ≤ hik + hkj ∀ i, j and k.
First, we examine whether or not the matrix H is negative semidefinite. If the matrix H is
not negative semidefinite in general, then we investigate the quadratic form zTHz under the
constraint

∑
i zi = 0. We expect that the matrix H is not negative semidefinite in general.

We want to apply the following theorem from Simon and Blume to determine whether or not
the matrix H is negative semidefinite:
Theorem An n×n symmetric matrix H is negative semidefinite if and only if every principal
minor of odd order is ≤ 0 and every principal minor of even order is ≥ 0.[13]
Hereby is a kth order principal minor of H the determinant of a kth order principal submatrix
of H which is a k × k submatrix of H formed by deleting n− k columns and the same n− k
rows from H. We consider the following 4× 4 matrix to illustrate what a kth order principal
minor is:

H =


h11 h12 h13 h14
h21 h22 h23 h24
h31 h32 h33 h34
h41 h42 h43 h44

 .
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Then there exists one fourth order principal minor which is det(H). We have four third order
principal minors:

•

∣∣∣∣∣∣∣
h11 h12 h13
h21 h22 h23
h31 h32 h33

∣∣∣∣∣∣∣, formed by deleting column 4 and row 4;

•

∣∣∣∣∣∣∣
h11 h12 h14
h21 h22 h24
h41 h42 h44

∣∣∣∣∣∣∣, formed by deleting column 3 and row 3;

•

∣∣∣∣∣∣∣
h11 h13 h14
h31 h33 h34
h41 h43 h44

∣∣∣∣∣∣∣, formed by deleting column 2 and row 2;

•

∣∣∣∣∣∣∣
h22 h23 h24
h32 h33 h34
h42 h43 h44

∣∣∣∣∣∣∣, formed by deleting column 1 and row 1.

There exists six second order principal minors as well:

•
∣∣∣∣∣ h11 h12
h21 h22

∣∣∣∣∣, formed by deleting the last two columns and rows;

•
∣∣∣∣∣ h22 h23
h32 h33

∣∣∣∣∣, formed by deleting columns 1 and 4 and rows 1 and 4;

•
∣∣∣∣∣ h11 h13
h31 h33

∣∣∣∣∣, formed by deleting columns 2 and 4 and rows 2 and 4;

•
∣∣∣∣∣ h22 h24
h42 h44

∣∣∣∣∣, formed by deleting columns 1 and 3 and rows 1 3;

•
∣∣∣∣∣ h11 h14
h41 h44

∣∣∣∣∣, formed by deleting columns 2 and 3 and rows 2 and 3;

•
∣∣∣∣∣ h33 h34
h43 h44

∣∣∣∣∣, formed by deleting the first two columns and rows.

Finally, we have four first order principal minors, namely |h11|, |h22|, |h33| and |h44|. So, we
have

(n
k

)
=
(4
k

)
kth order principal minors for a 4×4 matrix and the total number of principal

minors is equal to
∑n
k=1

(n
k

)
= 2n − 1 = 24 − 1 = 15.[13]

We first determine the first order principal minors of the n×n matrix H: |h11| = |h22| = . . . =

|hnn| = 0. In addition, a second order principal minor of H is
∣∣∣∣∣ h11 h12
h21 h22

∣∣∣∣∣ =
∣∣∣∣∣ 0 h12
h12 0

∣∣∣∣∣ =

−h2
12 ≤ 0, while it is a principal minor of even order. So, we cannot conclude with the

theorem described above that the matrix H is negative semidefinite. Therefore, we take the
linear constraint

∑
i zi = 0 into account as well.
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One linear constraint

Note that the linear constraint
∑
i zi = 0 can be written as

AT z =
(

1 1 · · · 1
)

z1
z2
...
zn

 = 0.

The next step is to check negative semidefiniteness of H with the following theorem from an
article of Debreu:

Theorem If H is symmetric and |Am| 6= 0, then zTHz ≤ 0 for every z such that AT z = 0 if

and only if (−1)r
∣∣∣∣∣ Hπ

r Aπ
r,m

Aπ T
r,m 0

∣∣∣∣∣ ≥ 0 for r = m+ 1, . . . , n, and for any π.[14]

This theorem is, for example, also formulated (in other words) in the article of Ikramov and
Savel’eva.[15]

Here, π denotes a permutation of the first n integers, Hπ represents the matrix obtained from
H by performing the permutation π on its columns and rows, and Aπ denotes the matrix
obtained from A by conducting the permutation π on its rows.[14] A is an n×1 matrix in our
case and thus m equals 1. Besides, a permutation conducted on the A does not result in a
different matrix, because all elements are 1. Thus Aπ = A. Note that the matrix Hπ remains
symmetric and has a diagonal consisting of zeros, because when two columns are switched,
the same two rows are switched as well.

The matrix H is symmetric, because hij = hji, and |Am| = |A1| = 1 6= 0. So, we have to

prove that (−1)r
∣∣∣∣∣ Hπ

r Ar,1
AT
r,1 0

∣∣∣∣∣ ≥ 0 for r = 2, . . . , n, and for any π.

We get for r = 2

(−1)2 ·

∣∣∣∣∣∣∣
hii hij 1
hji hjj 1
1 1 0

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
0 hij 1
hij 0 1
1 1 0

∣∣∣∣∣∣∣ =

(−1)3+1
∣∣∣∣∣ hij 1

0 1

∣∣∣∣∣+ (−1)3+2
∣∣∣∣∣ 0 1
hij 1

∣∣∣∣∣ = 2hij ≥ 0 ∀i, j.

It is greater than or equal to zero, because hij represents a distance between two points Pi
and Pj and therefore is non-negative. So, the condition described in the theorem has been
satisfied for r = 2.

We have for r = 3

(−1)3 ·

∣∣∣∣∣∣∣∣∣
hii hij hik 1
hji hjj hjk 1
hki hkj hkk 1
1 1 1 0

∣∣∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣∣∣
0 hij hik 1
hij 0 hjk 1
hik hjk 0 1
1 1 1 0

∣∣∣∣∣∣∣∣∣ =

−h2
ij − h2

ik − h2
jk + 2hijhik + 2hijhjk + 2hikhjk.

Master of Science Thesis K. Lindenberg



30 Mathematical background

Now, we want to use the triangle inequality hik + hkj ≥ hij . Therefore, we write the part
2hijhik + 2hijhjk + 2hikhjk as hij(hik + hjk) + hik(hij + hjk) + hjk(hij + hik) and apply the
triangle inequality three times. Then 2hijhik + 2hijhjk + 2hikhjk ≥ h2

ij + h2
ik + h2

jk holds and
we get the following result

(−1)3 ·

∣∣∣∣∣∣∣∣∣
hii hij hik 1
hji hjj hjk 1
hki hkj hkk 1
1 1 1 0

∣∣∣∣∣∣∣∣∣ ≥ 0 ∀i, j, k.

We have to calculate the following 5× 5 determinant for r = 4

(−1)4 ·

∣∣∣∣∣∣∣∣∣∣∣

hii hij hik hil 1
hji hjj hjk hjl 1
hki hkj hkk hkl 1
hli hlj hlk hll 1
1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

0 hij hik hil 1
hij 0 hjk hjl 1
hik hjk 0 hkl 1
hil hjl hkl 0 1
1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣
,

which equals
−2h2

ijhkl − 2hijh2
kl − 2h2

ikhjl − 2hikh2
jl − 2h2

ilhjk − 2hilh2
jk

−2hijhikhjk − 2hijhilhjl − 2hikhilhkl − 2hjkhjlhkl

+2hijhikhjl + 2hijhikhkl + 2hijhilhjk + 2hijhilhkl + 2hijhjkhkl + 2hijhjlhkl

+2hikhilhjk + 2hikhilhjl + 2hikhjkhjl + 2hikhjlhkl + 2hilhjkhjl + 2hilhjkhkl.

We can apply the triangle inequality on the first six terms:

• −2h2
ijhkl ≥ −hij(hik + hjk)hkl − hij(hil + hjl)hkl

= −hijhikhkl − hijhjkhkl − hijhilhkl − hijhjlhkl

• −2hijh2
kl ≥ −hij(hik + hil)hkl − hij(hjk + hjl)hkl

= −hijhikhkl − hijhilhkl − hijhjkhkl − hijhjlhkl

• −2h2
ikhjl ≥ −hik(hij + hjk)hjl − hik(hil + hkl)hjl

= −hijhikhjl − hikhjkhjl − hikhilhjl − hikhjlhkl

• −2hikh2
jl ≥ −hik(hij + hil)hjl − hik(hjk + hkl)hjl

= −hijhikhjl − hikhilhjl − hikhjkhjl − hikhjlhkl

• −2h2
ilhjk ≥ −hil(hij + hjl)hjk − hil(hik + hkl)hjk

= −hijhilhjk − hilhjkhjl − hikhilhjk − hilhjkhkl

• −2hilh2
jk ≥ −hil(hij + hik)hjk − hil(hjl + hkl)hjk

= −hijhilhjk − hikhjkhjl − hilhjlhjk − hilhjkhkl
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The sum of these six terms gives then −2h2
ijhkl−2hijh2

kl−2h2
ikhjl−2hikh2

jl−2h2
ilhjk−2hilh2

jk ≥
2hijhikhjl+2hijhikhkl+2hijhilhjk+2hijhilhkl+2hijhjkhkl+2hijhjlhkl+2hikhilhjk+2hikhilhjl+
2hikhjkhjl + 2hikhjlhkl + 2hilhjkhjl + 2hilhjkhkl. Thus, we get

(−1)4·

∣∣∣∣∣∣∣∣∣∣∣

hii hij hik hil 1
hji hjj hjk hjl 1
hki hkj hkk hkl 1
hli hlj hlk hll 1
1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣
≥ −2hijhikhjk−2hijhilhjl−2hikhilhkl−2hjkhjlhkl ∀i, j, k.

If we choose to apply the triangle inequality on different terms, we still end up with an
expression unequal to zero or possible negative terms. This motivates us to look for a coun-
terexample.

An example

Consider the matrix

H =


0 222 396 220 493

222 0 246 442 286
396 246 0 335 532
220 442 335 0 273
493 286 532 273 0

 .
This matrix satisfies the three conditions, hii = 0, hij = hji and hij ≤ hik + hkj , but
is not negative semidefinite on the subspace

∑
i zi = 0. We found a vector z for which

z1 + z2 + z3 + z4 + z5 = 0 and zTHz > 0. This vector is the following one

z =


−0.427284376156840

0.565869316486029
−0.284218864707640

0.523280609740979
−0.377646685362528

 .

However, does this answer the question, whether or not the statement presented in the article
is true? It seems that the three requirements for the matrix H are not sufficient, but we need
to take a closer look to the statement from the article. It is mentioned just above the three
requirements for H that hij needs to represent the distance between some point Pi and Pj in
some finite dimensional L1 or L2 normed space.
First, let us draw a network or graph corresponding with the given matrix H, see for example
Figure 3-4.
We see that a shorter geographical/Euclidean distance exists between three pair of points,
between points 1 and 5, 2 and 4, and 3 and 5. A next step is, to measure these three distances
and adjust the matrix H. Then the matrix equals

Heucl =


0 222 396 220 380

222 0 246 320 286
396 246 0 335 90
220 320 335 0 273
380 286 90 273 0

 ,
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and calculating zTHeuclz results in a negative number. This result could indicate that an
Euclidean ground distance should be used instead of the length of pipelines for the statement
to hold.

Figure 3-4: A network based on the distance matrix H.

We see that the three conditions hii = 0, hij = hji and hij ≤ hik + hkj for the matrix
H = [hij ] are not sufficient to ensure that zTHz ≤ 0 subject to

∑
i zi holds. However, we

think that when hij represents the Euclidean (geographical) distance between points i and
j, then zTHz ≤ 0 will hold on the defined subspace. Then, we cannot use the statement
from the article Efficient Color Histogram Indexing for Quadratic Form Distance Functions,
because our ground distance dij is not an geographical/Euclidean distance, but a distance
measured along the network (following the pipelines).

The example displayed above is a counterexample for our case in which hij would represent
the total length of the pipelines between points i and j. This counterexample motivates us to
investigate whether or not we can define a different subspace on which the distance matrix D
is negative semidefinite. So, an option is to examine the properties of a capacity vector. We
know, for example, that a capacity vector is a balanced vector (x :

∑
i xi = 0). In addition,

we know which vector components correspond to entry points and which to exit points for a
specific network (and specific numbering of the network points). Then all ‘entry components’
should have the same sign (all positive or negative) and all ‘exit components’ an opposite sign
with respect to the ‘entry components’. It is possible that some components are zero as well.
Sometimes, a storage is linked to a network point and it can be an entry or exit. Thus the
sign (positive, negative or zero) may vary for a storage. However, a difference of two capacity
vectors does not have to satisfy these properties, only being balanced. Therefore, we conduct
some experiments regarding the distance matrix D of a simplified gas transport network of
GTS and a more detailed network in the next subsection.
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3-2-2 The distance matrix for the networks of GTS

The distance matrix D is compiled and saved by MCA. Therefore, we can calculate the
eigenvalues of this 40 × 40 matrix with Matlab and then we see that almost all eigenvalues
are smaller than or equal to zero. There is one eigenvalue which is positive and equals
approximately 8.8891 · 103. However, if we determine the correlation matrix A according to
Equation (3-4), then we see that all eigenvalues are greater than or equal to zero. Thus, the
matrix A is for the network displayed in Figure 3-5 positive semi-definite, while the distance
matrix is not negative semi-definite.

So, if we determine a right eigenvector x corresponding to the eigenvalue 8.8891 ·103, then we
notice that the sum of its vector components is not equal to zero (approximately 6.2738). It
holds that xTDx > 0 for this eigenvector, which means that x should represent a difference
of two capacity vectors in our case. We know that a difference of two capacity vectors, which
are balanced vectors, must be a balanced vector as well (

∑
i xi = 0). The fact that it is not

a well defined ‘difference vector’ and that there is only one positive eigenvalue could be an
indication of why the correlation matrix A is PSD, while there exists a vector x such that
xTDx > 0.

We can also examine the eigenvalues and eigenvectors of the distance matrix D for a larger
network, for example a simplified network of GTS which is displayed in Figure 3-6. We see
from this figure that a part is added to the previous network and this part represents the
simplified G-gas network of GTS. If we isolate the balanced eigenvectors, then we see that the
corresponding eigenvalues are all approximately zero, which means that for these eigenvectors
v it holds that vTDv = 0. However, the matrix D has three positive eigenvalues. If we
determine the eigenvalues of the correlation matrix A (according to Equation (3-4)), then
this matrix has three negative eigenvalues. So, this matrix is no longer positive semi-definite
for an expanded network displayed in Figure 3-6.

We could determine the corresponding eigenvectors with Matlab in order to say something
about these negative eigenvalues. If we do this, we see that the sum of the components of the
three corresponding eigenvectors is not equal to zero. This means that such an eigenvector
cannot represent a difference of capacity vectors. However, we can combine these three
eigenvectors (linear combination) into a new vector y such that yTAy < 0 holds for this new
vector y. This vector y is a well defined ‘difference vector’ and therefore it can be concluded
that the ‘original’ correlation matrix is not PSD for this expanded network.

We are wondering if we can explain this transition from being PSD to not being PSD, when
a G-gas network is added to the H-gas network. Maybe this transition is caused by the fact
that some of the pipelines are intersecting/crossing each other in two dimensions (in space).
Therefore, we want to see what happens if we combine two small network with each other
such that we cannot draw the new network in two dimensions without crossing lines. We
examine the H-shape network as example in the next subsubsection.
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Figure 3-5: The H-gas network of GTS.
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Figure 3-6: A simplification of the network of GTS.
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Expanding a small network

We consider a small network, a H-shaped network, and expand this network with a second H-
shaped network. We combine the two H-shape networks with a blending station and assume
that H-gas is flowing through one of these networks and G-gas through the other one. This
network is drawn in Figure 3-7. Every pipeline has length L and the horizontal pipelines of
length L are divided in two parts by the blending station, aH · L and (1 − aH) · L (for the
H-gas network) or aG · L and (1− aG) · L (for the G-gas network).

Figure 3-7: An expanded example network, in which G-gas is added.

We want to determine the distance matrix D for this network. Notice that this distance
matrix can be compiled as follows

D =
(

DH Dblend

DT
blend DG

)
,

with DH and DG the distance matrix of the decoupled H-gas network and G-gas network,
respectively. Both networks have the same shape: the same number of network points and
pipelines and all the pipelines have the same length. So, DH = DG holds. The matrix Dblend

represents the added part as a result of the coupling of the two H-shaped networks. Thus,

K. Lindenberg Master of Science Thesis



3-2 Positive semidefinite on a subspace 37

we have

DH =


0 3L 2L 3L

3L 0 3L 2L
2L 3L 0 3L
3L 2L 3L 0


and

Dblend = L ·


2 + aH + aG 3 + aH − aG 2 + aH + aG 3 + aH − aG
3− aH + aG 4− aH − aG 3− aH + aG 4− aH − aG
2 + aH + aG 3 + aH − aG 2 + aH + aG 3 + aH − aG
3− aH + aG 4− aH − aG 3− aH + aG 4− aH − aG

 .
Then we can vary the values of aH and aG, and calculate the eigenvalues of the correlation
matrix A defined as Aij = 1− dij

dmax
. A few results are summarized in Table 3-1.

Table 3-1: An overview of some choices for aH and aG and the resulting minimum and maximum
eigenvalues of the distance matrix.

Choices lengths Eigenvalues A
aH aG Minimum Maximum
1/2 1/2 0.6667 1.3333
2/3 1/2 0.6316 1.7362
3/4 1/2 0.6154 1.9221
4/5 1/2 0.6061 2.0292
1 1/2 0.5714 2.4268
0 0 0.5000 3.1180
0 1 0.5000 3.1180
1 0 0.5000 3.1180
1 1 0.5000 3.1180

The eigenvalues of the correlation matrix A of one H-shaped network (consisting of four
network points and pipes with the same length) are

λ1 = 2
3 , λ2 = 2

3 , λ3 = 11
3 and λ4 = 11

3 .

We have determined all eigenvalues with the program Matlab and we have seen that the
correlation matrix A also has these eigenvalues (four times 2

3 and four times 11
3), when we

choose aH = aG = 1/2 (‘overlapping’). In addition we see that there is a difference in
eigenvalues between a ‘distinction’ (aH = 0 & aG = 0, aH = 1 & aG = 1, aH = 0 & aG = 1
and aH = 1 & aG = 0) of the networks and ‘overlapping’ (aH = 1/2 & aG = 1/2). Then,
the maximum eigenvalue becomes greater and the smallest eigenvalue becomes a little bit
smaller.
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A next step is, to examine what happens with the eigenvalues if we add another blending
station. When the discussed network consists of two blending stations, then the configuration
of this network is fixed, because we assume that a blending station does not have a length. An
example of this network with two blending stations is drawn in Figure 3-8. Only the locations
of the blending stations can vary and we use the parameters a and b for the different blending
stations as can be seen in Figure 3-8.

Figure 3-8: An expanded example network, in which G-gas is added, with two blending stations.

The distance matrix can be compiled in the same way as in the previous case. The distance
submatrix DH remains the same, but the distance submatrix Dblend changes, when a second
blending station is added. Then we end up with the following Dblend matrix

Dblend =


2(1 + a)L 3L 2(1 + a)L 3L

3L 2bL 3L 2L
2(1 + a)L 3L 2(1 + a)L 3L

3L 2L 3L min{2(2− b)L, 2(2− a)L}

 .
Again, we can vary the values of the parameters a and b and calculate the eigenvalues of the
correlation matrix A defined as Aij = 1− dij

dmax
. A few results are summarized in Table 3-2.
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Table 3-2: An overview of some choices for a and b and the resulting eigenvalues of the distance
matrix.

Choices lengths Eigenvalues A
a b λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

1/2 1/2 0.3333 0.5880 0.6667 0.6667 1.0000 1.3333 1.3333 2.0787
2/3 1/2 0.3000 0.6000 0.6000 0.6066 0.8000 1.2544 1.4000 2.4389
3/4 1/2 0.2857 0.5714 0.5714 0.6088 0.7143 1.1719 1.4286 2.6479
4/5 1/2 0.2778 0.5556 0.5556 0.6092 0.6667 1.1210 1.4444 2.7698
1 1/2 0.2500 0.5000 0.5000 0.5000 0.6076 0.9281 1.5000 3.2143
0 0 0 0.3515 0.5000 0.5000 0.5000 1.0000 1.6066 3.5419
0 1 0.6667 0.6667 0.6667 0.6667 0.6667 0.6667 2.0000 2.0000
1 0 0 0.5000 0.5000 0.5000 0.6771 1.0000 1.5000 3.3229
1 1 0.5000 0.5000 0.5000 0.5000 0.5000 0.8820 1.5000 3.1180

1/2 2/3 0.4444 0.6306 0.6667 0.6667 0.8889 1.3333 1.3333 2.0361
1/2 3/4 0.5000 0.6461 0.6667 0.6667 0.8333 1.3333 1.3333 2.0205
1/2 4/5 0.5333 0.6535 0.6667 0.6667 0.8000 1.3333 1.3333 2.0132
1/2 1 0.6667 0.6667 0.6667 0.6667 0.6667 1.3333 1.3333 2.0000
1/2 0 0 0.6667 0.6667 0.6667 1 1.3333 1.3333 2.3333

We see that the smallest determined eigenvalue equals 0 which occurs three times: when
a = 0 & b = 0, a = 1 & b = 0 and a = 1/2 & b = 0. In addition, the first two combinations
give the greatest determined eigenvalues, 3.5419 and 3.3229, respectively. We see that these
combinations have something in common: b = 0 holds in all cases. This means that the added
blending station is positioned between two entry/exit points.

Therefore, we are curious about what happens with respect to the smallest and greatest
eigenvalues, when we have two blending stations positioned between entry/exit points as
drawn in Figure 3-9.

We determine again the submatrix Dblend which gives in this case

Dblend =


0 3L 2L 3L

3L 0 3L 2L
2L 3L 4L 5L
3L 2L 5L 4L

 .
Calculating the eigenvalues with Matlab results in the following eight eigenvalues

λ1 = 0, λ2 = 0, λ3 ≈ 0.1119, λ4 ≈ 0.4000,

λ5 ≈ 0.5528, λ6 ≈ 1.2000, λ7 ≈ 1.4472 and λ8 ≈ 4.2881.

We see that there exists now two zero eigenvalues and the greatest eigenvalue equals 4.2881.

If we delete one of the blending stations, for example the right one (between points 2 and 6),
then we end up with the following eight eigenvalues

λ1 = 0, λ2 = 0.2505, λ3 ≈ 0.3333, λ4 ≈ 0.3333,

λ5 ≈ 0.4795, λ6 ≈ 0.5655, λ7 ≈ 1.8539 and λ8 ≈ 4.1841.
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Figure 3-9: An expanded example network, in which G-gas is added, with two blending stations
between entry/exit points.

What will happen, if the blending station is only connected to one entry/exit point? We
consider the situation drawn in Figure 3-10 in order to answer this question. We determine
the distance submatrix Dblend as well:

Dblend = L ·


a 3− a 2− a 3− a

3 + a 6− a 5− a 6− a
2 + a 5− a 4− a 5− a
3 + a 6− a 5− a 6− a

 .
This submatrix is only symmetric for a = 0, because 3 + a = 3− a and 2 + a = 2− a should
hold. Therefore, it is not possible that a blending station is only connected to one entry/exit
point for this H-shaped network.

The conducted experiments regarding the H-shaped network indicate that the smallest eigen-
value decreases the most, when one of more blending stations are positioned between en-
try/exit points.
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Figure 3-10: An expanded example network, in which G-gas is added, with one blending stations
connected to one entry/exit point.

If we consider the network displayed in Figure 3-6, then we see that all blending stations
are positioned between entry/exit points. So, this positioning could explain why we end up
with three positive eigenvalues for the distance matrix D, while the distance matrix D of the
network displayed in Figure 3-5 only has one positive eigenvalue.

So, it could be wise to conduct some experiments with the network displayed in Figure 3-6 in
which the open blending stations are not positioned between entry/exit points, but between
the pipelines. However, it is important that the distance matrix D remains symmetric. It is
shown in Figure 3-11 which blending stations are closed in the discussed network.

We have to move the open blending stations parallel to the pipelines such that the distance
between the two pipelines equals zero, because it is assumed that a blending station has length
zero. We start by moving one blending station, numbered as 1 in Figure 3-11. This blending
station is for example moved down between two overlapping pipelines, one of length 24 km
and one of 28 km. A next step is, to determine the eigenvalues of the new distance matrix
D. Still, we end up with three positive eigenvalues and thus three negative eigenvalues for
the correlation matrix A (checked with Matlab). We can move this blending station up as
well, but that does not change the sign of the three positive eigenvalues of D (or the three
negative eigenvalues of A).
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Figure 3-11: A simplification of the network of GTS, consisting of H-gas and G- and L-gas, with
an indication of closed blending stations.
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In addition, we move blending stations 3 and 4 down as well. These blending stations are
moved down parallel to a pipeline of length 70 km and one of 113 km. Again, a new distance
matrix D is compiled. However, the signs of the considered eigenvalues do not change. Then,
we move blending station 5 parallel to two overlapping pipelines, one of length 55 km and one
of length 65 km. Unfortunately, there is no improvement in the behavior of the considered
eigenvalues.

The other open blending stations, numbered as 2 and 6 in Figure 3-11, cannot be moved
parallel to two pipelines, because the G-gas and H-gas pipelines are not overlapping each
other in the neighborhood of these blending stations.

So, it seems that moving the open blending stations does not give the desired result that the
correlation matrix A ‘becomes’ PSD on the subspace of balanced vectors (

∑
i xi = 0).

We also wanted to investigate what happens with respect to the eigenvalues, if we delete some
of the pipelines of the G-gas network which are intersecting/crossing a pipeline of the H-gas
network. A part of the G-gas network is overlapping the H-gas network and we keep these
overlapping pipelines. If we delete the G-gas pipelines which are crossing H-gas pipelines,
then we need to delete four points as well. These four points are circled in red in Figure 3-12.
It seems that more G-gas pipelines are crossing H-gas pipelines, but these G-gas pipelines
can be repositioned such that they are overlapping H-gas pipelines or are not crossing H-gas
pipelines.

We delete these four exit points by deleting the corresponding columns and rows in the dis-
tance matrix D. Then we determine the 59×59 correlation matrix A defined as Aij = 1− dij

dmax

and calculate its eigenvalues. In this case, the correlation matrix A has one negative eigen-
value, λ1 ≈ −0.0533, instead of three negative eigenvalues. We are interested in the right
eigenvector corresponding to this negative eigenvalue and especially in the sum of the compo-
nents of this corresponding eigenvector. We have determined this corresponding eigenvector
with Matlab and added its components. The resulting sum is not equal to zero. So, this right
eigenvector is not a balanced vector and therefore, we can say that it is not a well defined ‘dif-
ference vector’. We can conclude that the new correlation matrix A is PSD on the subspace
of balanced vectors.

Thus, deleting some G-gas pipelines which are crossing H-gas pipelines does give the desired
result.
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Figure 3-12: A simplification of the network of GTS, consisting of H-gas and G- and L-gas, in
which some G-gas pipelines are deleted.
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Chapter 4

Definitions correlation matrix

This chapter deals with different choices for the correlation matrix A and tries to motivate
these choices. When choosing a definition for the correlation matrix, we want to take some
of the transport physics into account, like the pressure drop. Therefore, the first section
describes the pressure drop through a pipeline and offers some choices for the correlation
matrix. Some of these choices are tested on the simplified and detailed transport networks of
GTS in the next section.

4-1 Relation to the pressure drop

The pressure drop ∆P in a pipeline is defined as Pin−Pout with Pin the pressure at the begin
of the pipeline and Pout the pressure at the end of the pipeline. The pressure at the beginning
and at the end of a pipeline are related according to the equation

P 2
in − P 2

out = c · L
D5 ·Q

2. (4-1)

It is known that gas flows through a pipeline from high to low pressure. Therefore, we can
assume that the pressure at the beginning of a pipeline (Pin) is higher than the pressure at
the end (Pout). Otherwise, gas cannot be flowing through this pipeline. However, if we want
to take the direction of the flow into account, we can substitute Q2 in Equation (4-1) by Q|Q|
[4, 16]:

P 2
in − P 2

out = c · L
D5 ·Q · |Q|. (4-2)

In general, the pipelines of the HTL have a diameter of 1.187 m. If we assume the constant c
to be a fixed constant and choose a fixed flow Q and pressure Pin at the begin of the pipe as
well, then the pressure Pout at the end of the pipe depends only at the length L of the pipe
(or transportation distance). In that case, the pressure drop ∆P only depends on the the
distance as well. We vary the length of a pipe (transportation distance) in the program MCA1

1MCA is a simulation model of GTS which generates, for example, a set of shipping variants.
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and let MCA determine the pressure at the end of this pipe in order to sketch the relation
between the pressure drop and distance. Then this relation is plotted in Figures A-4, A-5,
A-6, A-7 and A-8 for different choices of Pin, D and Q. We see the same relation between
the pressure drop and the transportation distance in each plot.

The definition of the matrix A according to the paper of Skopal et al defines a linear relation
between the entries of this matrix (Aij) and the distance (dij) as can also be seen in Figure
A-1. We have seen from the previous plots that the relation between the pressure drop and
the transportation distance is not linear.

Therefore, we want to try some different definitions of the QFD matrix as a next step, for
example

Aij = exp
{(

dij
dmax

)2
− 1

}
. (4-3)

The relation between the entry of the matrix A and the distance is plotted in Figure A-2 for
this choice. Another choice is the following one

Aij = 1−
√

1− dij
dmax

, (4-4)

and the relation between Aij and dij (for dmax = 250) is shown in Figure A-3.

We have to investigate whether or not the new defined matrices A are SPSD as well. Both
matrices are symmetric, because dij = dji holds for all i and j. First we want to test
both matrix definitions on the small network introduced in Subsection 3-1-4. Therefore, we
consider again the two shipping variants from Subsection 3-1-4 represented by the two vectors
u = (120,−20,−100) and v = (100, 0,−100).

The matrix according to Equation (4-3) can be compiled with dmax = L:

A =

 e−1 e−1 1
e−1 e−1 1
1 1 e−1

 .
Calculating the QFD with the matrix A defined as in Equation (4-3) gives the required result
for this very small network: QFD(u, v) = QFD(v, u) = 0. A next step can be to determine
the eigenvalues with, for example, the program Matlab. The eigenvalues of this matrix A are

λ1 ≈ −0.8743, λ2 ≈ 0 and λ3 ≈ 1.9779.

We can conclude that the matrix A defined as in Equation (4-3) is not PSD, considering these
eigenvalues.

Secondly, we determine the matrix A according to the definition in Equation (4-4) with again
dmax = L:

A =

 0 0 1
0 0 1
1 1 0

 .
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Again, we get that QFD(u, v) = QFD(v, u) = 0 for this choice of matrix A, but we also
want this matrix to be PSD. Thus, we calculate the eigenvalues:

λ1 ≈ −1.4142, λ2 = 0 and λ3 ≈ 1.4142,

and conclude that the matrix defined in Equation (4-4) is also not PSD.

It is still a question how we have to take into account the pressure drop. Do we have to use a
similar relation between the entries of matrix A and the distance as the relation between the
pressure drop and the distance? The form of the curves drawn in Figures A-4 till A-8 have
the same shape as the curve drawn in Figure A-3, but the corresponding matrix (defined in
Equation (4-4)) does not satisfy all the wanted properties (being PSD).

We have also examined the following definitions for the matrix A

Aij = 1−
√

dij
dmax

or Aij = 1−
(
dij
dmax

)2
, (4-5)

which give the following matrix

A =

 1 1 0
1 1 0
0 0 1

 ,
for the small network mentioned in Subsection 3-1-4. Then using this matrix in the distance
function QFD results again in QFD(u, v) = QFD(v, u) = 0 and the eigenvalues are already
calculated in Subsection 3-1-4. The matrix for this very small network is indeed SPSD. We
still have to investigate this matrix, because the matrix needs to be SPSD in general.

Another idea is to consider the relation between the pressure at the end of a pipeline Pout and
the length of the pipeline L instead of the relation between the pressure drop and this length.
We have plotted these relations as well, see Figures A-9 till A-13. The relations plotted are
the same and correspond with the formula in Equation (4-2), because we can rewrite the
pressure Pout as function of L:

Pout =

√
P 2
in −

c · L
D5 ·Q · |Q|.

Then it could be wise to use the following definition of the matrix A for the distance function
QFD:

Aij =
√

1− dij
dmax

. (4-6)

Note that we end up with the same matrix for the small network introduced in Subsection
3-1-4 as for the definitions in Equation (4-5). So, this definition satisfies the desired properties
for the small network of Subsection 3-1-4.
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4-1-1 Applying the new defined matrices on a small network

The distance function QFD with the new matrices defined in Equation (4-5) and (4-6) can be
applied on the small network introduced in Section 2-1. The distance matrix for this small
network equals

D = [dij ] =


0 3L 2L 3L

3L 0 3L 2L
2L 3L 0 3L
3L 2L 3L 0

 ,
and dmax is equal to 3L. The first matrix, Aij = 1−

√
dij

dmax
, can be compiled:

A =


1 0 1−

√
2
3 0

0 1 0 1−
√

2
3

1−
√

2
3 0 1 0

0 1−
√

2
3 0 1

 ,

and then the distance between the three shipping variants can be calculated with the distance
function QFD which results in

QFDA(u1, u2) = QFDA(u2, u1) ≈ 217.58

QFDA(u1, u3) = QFDA(u3, u1) ≈ 141.42

QFDA(u2, u3) = QFDA(u3, u2) ≈ 141.42.

The second matrix, Aij = 1−
(

dij

dmax

)2
, can also be determined:

A =


1 0 5

9 0
0 1 0 5

9
5
9 0 1 0
0 5

9 0 1

 ,
and then applying the distance function QFD gives

QFDA(u1, u2) = QFDA(u2, u1) ≈ 249.44

QFDA(u1, u3) = QFDA(u3, u1) ≈ 141.42

QFDA(u2, u3) = QFDA(u3, u2) ≈ 141.42.

Finally, the matrix according to the third definition, Aij =
√

1− dij

dmax
, is equal to

A =


1 0

√
1− 2

3 0
0 1 0

√
1− 2

3√
1− 2

3 0 1 0
0

√
1− 2

3 0 1

 ,
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and the distance between the three shipping variants are as follows (with the QFD)

QFDA(u1, u2) = QFDA(u2, u1) ≈ 251.19

QFDA(u1, u3) = QFDA(u3, u1) ≈ 141.42

QFDA(u2, u3) = QFDA(u3, u2) ≈ 141.42.

We can check whether or not the eigenvalues of these three matrices are all greater than or
equal to zero, besides calculating the distance with the help of the distance function QFD.
This can be done with, for example, Matlab and indeed all the eigenvalues are positive. Thus,
all three matrices are PD for this small network.

We see from these results that the distance between the first and third stress test and between
the second and third stress test remains the same, and the distance between the first and
second stress tests varies a little bit. However, the distance between the first and second
stress test is still the greatest distance between the stress tests.

4-2 The quadratic form distance in MCA

The distance function QFD is already implemented in the program MCA. Thus, the QFD
is calculated by MCA for each pair of stress tests after generating a set of stress tests for a
network. Let us consider, for example, the network drawn in Figure 3-5.

A cluster level represents how much opposites the network points have in common within
a cluster. When we set the cluster level on 7, we end up with eight different stress tests
which Wobbe distribution can be found in the Appendix (Figures A-14 till A-21). So, if the
cluster level is set on 7, then the network points with the same 7 opposites form a cluster.
An opposite of a network point p is the furthest point in the network with respect to this
network point p as stated in Subsection 2-2-1.

When these stress tests are determined, we see that the distance between the fourth and sixth
stress test is the smallest one (QFD ≈ 698.07) and between the first and seventh stress test
the greatest one (QFD ≈ 9483.74). Note that, if we take a look at the Wobbe distributions
of the fourth and sixth stress test (Figures A-17 and A-19), then we see that the Wobbe
distributions are pretty similar. It is still important to determine a threshold value to mark
two stress tests as (almost) equal.

We can also set the cluster level equal to the number of network points, here 22. When we
do this, then we end up with a set of 22 stress tests which consists of 9 different stress tests.

The distance matrix D is compiled and saved as well, besides calculating the distance be-
tween the stress tests with the distance function QFD. Therefore, the matrix A according
to Equation (3-4) can be determined. Then we can calculate the eigenvalues of this 40 × 40
matrix with Matlab and we see that all eigenvalues are greater than or equal to zero. Thus,
the matrix A is for the network displayed in Figure 3-5 positive semi-definite.

The sparsity pattern of this matrix can be visualized besides calculating the eigenvalues with
Matlab. This visualization can be found in Figure A-22.

Master of Science Thesis K. Lindenberg



50 Definitions correlation matrix

The matrix A defined in Equation (4-6) can also be applied on the network drawn in Figure 3-
5 and again, the eigenvalues can be determined with Matlab. Then there exists three negative
eigenvalues, λ1 ≈ −0.6483, λ2 ≈ −0.1099 and λ3 ≈ −0.0456. So, the matrix A defined in
Equation (4-6) is not PSD for this network.

A next step is to consider a larger network and choose different definitions for the QFD matrix
A and determine their eigenvalues. First, we choose to consider a simplified version of the
GTS network which is already mentioned in Subsection 3-2-2 and displayed in Figure 3-6.
One of the outputs of MCA is the distance matrix D for this network. Then we can compile
the correlation matrix A defined as in Equation (3-4). Thus, we can determine the eigenvalues
of this 63× 63 matrix with Matlab and see that the matrix has three negative eigenvalues

λ1 ≈ −0.1304, λ2 ≈ −0.0446 and λ3 ≈ −0.0364.

We see that the original matrix is no longer positive semi-definite for an expanded network
displayed in Figure 3-6, while the original matrix A was SPSD for the network drawn in
Figure 3-5.
We can determine the radius of the Gershgorin discs for this matrix as well (the center is always
equal to one), besides determining the corresponding eigenvectors. Then, the maximum radius
equals approximately 38.68 and the minimum radius approximately 17.46.

The eigenvalues of the matrix A according to Equation (4-6) are determined as well, and
there exists four negative eigenvalues in this case which are

λ1 ≈ −0.3531, λ2 ≈ −0.3217, λ3 ≈ −0.1404 and λ4 ≈ −0.0261.

The maximum radius of the Gershgorin discs for this matrix equals approximately 48.45 and
the minimum radius is approximately 30.40. The sparsity pattern of these two matrices is
visualized in Figure A-23 and we see that the two matrices only have two entries which are
zero.
The maximum radius of 38.68 for the first matrix and of 48.45 for the second matrix are
caused by rows 1, 14, 27, 42, 49 and 59 of the matrices. In other words,

ρ1 = ρ14 = ρ27 = ρ42 = ρ49 = ρ59 =


38.68 Aij = 1− dij

dmax

48.45 Aij =
√

1− dij

dmax

The rows 1, 14, 27, 42, 49 and 59 are identical rows and thus, the corresponding rows of
the distance matrix D = [dij ] are identical as well. If we examine these rows of the distance
matrix D, then we see that the row consists of six elements which are zero (columns 1, 14,
27, 42, 49 and 59). So, there exists five elements in these rows which are equal to zero besides
the diagonal element. Then these six rows in the matrix A defined as Aij = 1 − dij

dmax
or

Aij =
√

1− dij

dmax
have five off-diagonal elements which are equal to its diagonal element

(center Aii). This means that it is not possible to have only Gershgorin discs with a radius
smaller than or equal to Aii (all elements of A are non-negative) for these two definitions of
the matrix A in this network.
Thus, we cannot adjust the two definitions for the matrix A by using the Gershgorin circle
theorem as a tool to ensure symmetric positive semi-definiteness.
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If we take a closer look at the eigenvalues of both matrices A, we see that

• the smallest eigenvalue of A defined as Aij = 1 − dij

dmax
equals approximately −0.1304

and the greatest eigenvalue approximately 34.8986;

• the smallest eigenvalue of A defined as Aij =
√

1− dij

dmax
equals approximately −0.3531

and the greatest eigenvalue approximately 45.5706.

So, we see that the negative eigenvalues are relatively small compared to the greatest eigen-
values.

It could be an alternative to consider the nearest correlation matrix which is the nearest SPSD
matrix with ones on the diagonal. [17] Another possibility is to compute a nearest symmetric
positive semidefinite matrix of these two matrices A. [18]

If we choose one of these two matrices as QFD matrix for the network drawn in Figure 3-6,
then the QFD is no longer a well defined distance function. This results in the fact that we
cannot draw a conclusion about the comparison of two stress tests, when one of these matrices
is used. This motivates us to take a look at different definitions of the matrix A, for example
the earlier mentioned definitions stated in Equation (4-5):

Aij = 1−
√

dij
dmax

or Aij = 1−
(
dij
dmax

)2
.

Determining the eigenvalues of both matrices gives the following results:

• the matrix defined as 1−
√

dij

dmax
is SPSD, because it has no negative eigenvalues;

• the matrix defined as 1−
(

dij

dmax

)2
is not SPSD, because it has (ten) negative eigenvalues

with λ1 ≈ −1.4835 the smallest one.

One matrix from the four examined matrices is SPSD and is defined as Aij = 1 −
√

dij

dmax
.

However, it is uncertain whether or not the relation between the pressure at the end of a
pipeline Pout and the length of the pipeline L is taken into account. Initially, we want to
approximate this relation by defining a matrix such that the same relation (curve) is visible
between the entries of the matrix Aij and the distance dij , like the matrix defined in Equation
(4-6). In that case, this matrix defined as Aij = 1−

√
dij

dmax
is not a very good/logical choice.

Therefore, some more possible definitions should be considered, for example

Aij = exp
{
− dij
dmax

}
, (4-7)

or
Aij = 1

1 + dij

dmax

. (4-8)

The relation between the entries of the matrix and the distance of these two new matrices
are plotted in Figure 4-1 together with entries Aij =

√
1− dij

dmax
and Aij = 1−

√
dij

dmax
.
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Figure 4-1: The relation between entry Aij and transportation distance dij with dmax = 250.

We investigate whether or not these two new matrices are SPSD for the network shown in
Figure 3-6, before we examine more possible matrices. All eigenvalues of both matrices are
non-negative according to Matlab and thus, these matrices are SPSD. The sparsity pattern
of these two matrices can be plotted as well. They have the same sparsity pattern and this
pattern is visualized in Figure A-24.

The following three definitions for a QFD matrix can be used for the detailed network of GTS
which can be found in Figure 4-2,

Aij = 1−
√

dij
dmax

, Aij = exp
{
− dij
dmax

}
and Aij = 1

1 + dij

dmax

.

If we determine the eigenvalues of these matrices for the detailed network of GTS, then we
get some negative eigenvalues for the second and third definition:

for Aij = exp
{
− dij

dmax

}
:

λ1 ≈ −0.0612, λ2 ≈ −0.0329, λ3 ≈ −0.0254, λ4 ≈ −0.0096 and λ5 ≈ −0.0037.

for Aij = 1
1+

dij
dmax

:

λ1 ≈ −0.0354, λ2 ≈ −0.0056, λ3 ≈ −0.0033 and λ4 ≈ −2.5206 · 10−4.

So, the first defined matrix is positive semi-definite, but the last two defined matrices not.
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Figure 4-2: The network of GTS.
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4-3 Some analyzes

When we are considering the network displayed in Figure 3-6, then some eigenvalues of the
matrix defined as Aij = 1− dij

dmax
become negative. Therefore, some experiments are conducted

regarding this matrix A for the network displayed in Figure 3-6.
First, we remove the identical rows and columns in the matrix A and then determine again the
eigenvalues to see whether or not the smallest eigenvalues are still negative. This procedure
corresponds to viewing the entry and exit points with mutual distance equal to zero as one
point. In other words, only the network points are considered and not the entries and exits
(entries and exits are linked to network points). Secondly, the length of the pipelines are
rounded off. This rounding is repeated for different rounding numbers till the matrix A
has no longer negative eigenvalues. Finally, a different ordering of the rows and columns is
considered which is called the Reverse Cuthill McKee ordering.

4-3-1 Deleting identical rows and columns

When we delete the identical rows and columns of the matrix D = [dij ] with the following
commands in Matlab
% Locating all zero elements of the distance matrix D_mat
[row, col] = find(∼D_mat);
% Save the indices of all zero elements of the distance matrix Dmat_cl
D_zeros = zeros(length(row),2);
for i = 1 : length(row)

D_zeros(i,1) = col(i);
D_zeros(i,2) = row(i);

end
% The rows and columns, which have to be deleted, are numbered by hand
RowsColsToDelete = [63; 61; 59; 58; 57; 52; 51; 50; 49; 48; 47; 46; 44; 43; ...

42; 41; 39; 38; 37; 36; 34; 32; 31; 30; 29; 27; 23; 22; 17; 14];
% The relevant rows and columns are deleted
for j = 1 : length(RowsColsToDelete)

D_mat(RowsColsToDelete(j),:) = [];
D_mat(:,RowsColsToDelete(j)) = [];

end
% The new matrix A1 is defined and the eigenvalues are calculated
A1 = 1 - D_mat/d_max;
Eig1 = eig(A1);,
then the smallest eigenvalue equals approximately −0.0797. We see that we still have negative
eigenvalues and therefore we want to experiment with the lengths of the pipelines by rounding
them off to the nearest defined multiple.
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4-3-2 Rounding off lengths of pipelines

We want to examine what happens with the eigenvalues, when we are rounding off the length
of the pipes. The results of this investigation are summarized in this section. We want to see
whether or not the eigenvalues become non-negative during this experiment. Some pipeline
lengths become zero, because of the rounding off and thus are removed from the network.
Perhaps, a different network configuration results in a QFD matrix A which is SPSD.

We start with the rounding of the length of the pipelines to nearest multiple of 10, then to
the nearest multiple of 20, 25, 50 and 100. Then again the identical rows and columns of the
matrix D = [dij ] are deleted, the matrix A is computed with the new distance matrix D and
the eigenvalues are calculated. We still have some negative eigenvalues in these five cases.
Therefore, we round the lengths off to the nearest multiple of 110 and 115 as well. Then, there
exists some negative eigenvalues in the first case (multiple of 110), but no negative eigenvalues
in the second case (multiple of 115). So, the turning point (from negative eigenvalues to non-
negative eigenvalues) is between 110 and 115. We examine the rounded lengths in the case
of 110 and 115 and we see that two pipelines deviate in length. The original length of these
pipelines are 55 and 56 km, respectively. These lengths are both rounded off to 110 in the
case of 110 and to 0 in the case of 115. We are interested in the case in which one of the
lengths is rounded off to zero and the other one to a number greater than zero. Therefore,
we consider multiples of 112. Then a length of 55 is rounded of to zero and a length of 56 to
112. Then the smallest eigenvalue is approximately −2.1351 · 10−16 ≈ 0. The following steps
are computed in Matlab to determine which rows and columns need to be deleted. Then they
are deleted, the matrix A is computed and the eigenvalues are determined.

% Locating all zero elements of the distance matrix Dmat_cl

[row_cl, col_cl] = find(∼Dmat_cl);

% Save the indices of all zero elements of the distance matrix Dmat_cl

Dcl_zeros = zeros(length(row_cl),2);

for i = 1 : length(row_cl)

Dcl_zeros(i,1) = col_cl(i);

Dcl_zeros(i,2) = row_cl(i);

end

% The rows and columns, which have to be deleted, are numbered by an algorithm

Indices_cl = sparse(n,n);

for j = 0 : n-1

Ind_cl = find(col_cl == n-j);

if length(Ind_cl) > 1

if row_cl(Ind_cl(1)) >= n-j

for k = 1 : length(Ind_cl)-1

Indices_cl(n-j,k) = row_cl(Ind_cl(1) + (length(Ind_cl) - k));
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end

else

Indices_cl(n-j,:) = zeros(n,1);

end

end

end

% Want to delete the rows and columns in descending order, otherwise the numbering of the rows
and columns changes

VectorIndices_cl = Indices_cl(:);

Sorting_cl = sort(VectorIndices_cl, ’descend’);

Size_sortCl = find(Sorting_cl, 1, ’last’);

IndDescCl = Sorting_cl(1:Size_sortCl);

% The relevant rows and columns are deleted

for j = 1 : Size_sortCl

Dmat_cl(IndDescCl(j),:) = [];

Dmat_cl(:,IndDescCl(j)) = [];

end

% The new matrix A1_cl is defined and the eigenvalues are calculated

A1_cl = 1 - Dmat_cl/d_maxcl;

Eig1_cl = eig(A1_cl);

So, we ended up with a network for which the QFD matrix A is SPSD, but we need to figure
out whether or not this experiment gives an indication for the matrix being SPSD. Does this
remaining network give some information about when the defined QFD matrix A is SPSD
and when not?

4-3-3 Reverse Cuthill-McKee ordering

Another tool to investigate the ‘behavior’ of the eigenvalues was to change the ordering of
the rows and columns of the QFD matrix A and then determining again the eigenvalues. A
different ordering should not have any effect on the eigenvalues (without any rounding errors),
but it will probably reduce the influence of rounding errors.

An example of getting a different ordering is to apply the reverse Cuthill-McKee ordering.
We can use the command r = symrcm(A) in Matlab which returns the symmetric reverse
Cuthill-McKee ordering of A. Here, r is a permutation such that A(r,r) tends to have its
nonzero elements closer to the diagonal. [19] We have noticed that the eigenvalues do not
change very much, when we apply this ordering for the matrix A. We only see a change in the
15th decimal (or greater, or sometimes in the 14th decimal). So, this slight change indicates
the influence of the used rounding errors.
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Therefore, the slight change in eigenvalues is a cause of the working precision of Matlab. This
statement can be proved, because the following relation holds

σ(A) = σ(PTAP)

for P a permutation matrix and with σ(A) the spectrum of the matrix A. In general,
permutation matrices are orthogonal, which means that PTP = PPT = I holds for the
permutation matrix P. Therefore, it holds that PT = P−1 and thus we can write PTAP
as P−1AP. If we call this matrix B (= P−1AP), then we can say that the matrices A and
B are similar, because P is square and nonsingular. So, it indeed holds that σ(A) = σ(B),
because of this similarity (between A and B).[20]

We have also applied this ordering on the distance matrix D = [dij ] before determining the
matrix A. Again, there is a slightly change in eigenvalues (14th decimal or greater). We have
noted that some identical rows and columns of the matrix A are placed together due to this
ordering, if the identical rows and columns are not deleted.

In addition, a contour plot is made for the original matrix and for the matrix which ordering
is changed according to the reverse Cuthill-McKee ordering and can be found in the Appendix
(Figures A-25 and A-26).

4-3-4 Dependence on the diameter of the pipelines as well

We can adjust the QFD matrix A defined as Aij = 1 − dij

dmax
by taking another property of

the network into account, for example the diameter of the pipelines besides clustering some
entries and exits or changing the ordering of the used matrices. We start with the diameter,
because both the diameter and length of the pipelines are constants and do not change during
a (or per) gas transport situation. The pressure at the beginning and at the end of a pipeline
are related as followed

P 2
in − P 2

out = c · L
D5 ·Q

2,

as mentioned in Section 4-1 (see Equation (4-1)). We have derived the relation between the
pressure Pout and length of the pipeline L from this equation:

Pout =

√
P 2
in −

c · L
D5 ·Q

2,

which can be rewritten as follows

Pout = Pin ·
√

1− c ·Q2

P 2
in

· L
D5 .

So, we first want to consider

Aij = 1− rij
rmax

with rij =
j−1∑
k=i

rk,k+1 =
j−1∑
k=i

Lk,k+1
D5
k,k+1

, rmax = max
i,j

rij , (4-9)

with Lk,k+1 the length and Dk,k+1 the diameter of the pipeline between network point k and
k + 1 as the new definition of the matrix A.
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First, the new matrix according to Equation (4-9) is computed for the network displayed in
Figure 3-5. The length and diameter of the pipelines can be extracted from the program
MCA. The length of all pipelines is given and almost every diameter, except for two pipelines
which transport L-gas from Beekse Bergen to Hilvarenbeek and from Ommen to Winterwijk-
s/Zevenaar. These two diameters are set equal to 1.5 m in order to compute the matrix A for
this network. MCA also gives an overview of the pipelines and between which two network
points (names) it is placed. So, we only have to transform the names of these network points
to numbers to generate a graph in Matlab with L

D5 as weights on the edges. This graph is
drawn in Figure 4-3. We see from this figure that a few network points are not connected
to the rest of the network points. This is caused by the fact that there are no pipelines
between P-OMML and P-OMMH and between P-BBRL and P-BBRH, but a checkvalve is
placed between these two (pair of) points. In other words, the distance between network
points P-OMML and P-OMMH is zero and between network points P-BBRL and P-BBRH
as well. Fixing these network points results in the graph drawn in Figure 4-4.

The next step is, to calculate all shortest paths between every pair of network points. This is
done in Matlab with the function graphallshortestpaths(G) in which matrix G represents
the graph. An element of the matrix G, Gij , equals the weight of the edge between i and j.
When an element of this matrix equals zero, then there exists no edge between these points.
This function gives a symmetric matrix as output and element (i, j) of this matrix represents
the shortest path from point i to j. The maximum shortest path is the path from P-ZANDH
(Zandvliet) to P-ZELZ (Zelzate).

We have to delete the rows and columns corresponding to the points P-WIJN and P-RAVH
in order to create a ‘distance’ matrix R = [rij ] for the entries and exits, because both points
have no entries or exits. Then some rows and columns need to be duplicated to get the full
‘distance’ matrix R, because some network points consist of more than one entry and/or exit.
The new matrix A according to Equation (4-9) can be determined after doing this duplications
and the eigenvalues can be computed. Then we see that the eigenvalues are complex, but with
a very small imaginary part (approximately zero). Therefore, we assume that all eigenvalues
are real and the smallest eigenvalue is then approximately equal to −1.3802 · 10−29 which can
be rounded off to zero because of the working precision of Matlab.

We can also determine the eigenvalues of the square root of this matrix (Aij =
√

1− rij

rmax
)

and then the smallest eigenvalue is approximately equal to −0.1841. Unfortunately, there
exists still some negative eigenvalues in this case.

Secondly, the new matrix A is computed for the network showed in Figure 3-6 as well. Again,
the length and diameter of the pipelines can be extracted from the program MCA, but more
diameters are unknown (L-gas and G-gas pipelines). The diameter of these pipelines are also
set to 1.5m in order to conduct the experiment for this network. The same principles as for the
previous network are applied here. However, this network, consisting of pipelines transporting
G-gas, H-gas and L-gas, is more complicated than the previous one. This network consists
of blending stations and storages as well. A storage can be seen as both an entry and exit
point and does not give any problems, but we need to mind the blending stations. When a
blending station is placed between two network points, then the distance between these two
network points is not equal to zero. However, when a blending station and a check valve is
placed between two network points, then this distance does equal zero. If we take all the ‘zero
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distances’ between a pair of network points into account, then the graph displayed in Figure
4-5 represents the connection in the network.

We need to delete some of the network points in this graph, because there are no storages,
entries or exits linked to these network points and the ‘distance’ matrix R = [rij ] represents
the ‘distance’ between the available storages, entries or/and exits. Again, some points need
to be duplicated, because more storages, entries or exits are linked to such a network point.
This means that some of the rows and columns of the generated ‘shortest path’ matrix (of
the graph) needs to be duplicated. Then the matrix A defined as in Equation (4-9) can
be calculated and the corresponding eigenvalues can be determined. We see that also these
eigenvalues have a very small imaginary part (approximately zero), and therefore we can
assume that the computed eigenvalues are real (working precision of Matlab). The smallest
eigenvalue is approximately equal to −1.1511 · 10−22 which can be assumed to be zero due to
the precision of Matlab.

The smallest eigenvalue of the matrix defined as the square root (Aij =
√

1− rij

rmax
) equals

approximately −0.0853.

We have also based the diameter of the pipelines of G-gas and L-gas at a later stage on the
diameter of the pipelines in another simulation network. This simulation network can be
found in the Appendix (Figure A-27). A few of the pipelines are closed (for example the
vertical pipelines at the right outside) and is thus similar to the network displayed in Figure
3-6. So, the pipelines with no known diameter get the same diameter as the pipelines in this
new network instead of setting them equal to 1.5 m. Most pipelines have the same length as
the pipelines in this new network, except for one pipeline. This pipeline is a pipe of length
40 km in the network displayed in Figure 3-6, but is a combination of two pipelines, one of
length 15 km with a diameter of 1.85 m and one of length 25 km with a diameter of 1.57
m in the network displayed in Figure A-27. Then the mean diameter is determined for this
pipeline as follows: (15 · 1.85 + 25 · 1.57)/40 = 1.675.

The eigenvalues are determined in the same way as the previous case. Then we see that the
smallest eigenvalue of the ‘original’ correlation matrix (Aij = 1− rij

rmax
) approximately equals

−2.2584·10−16 which is approximately zero, and of the square root matrix (Aij =
√

1− rij

rmax
)

approximately equals −0.0916.

We can conclude that the new definition of the QFD matrix A introduced in this subsection
(Equation (4-9)) leads to an improvement of the eigenvalues of the matrix, especially for the
second network. The eigenvalues of the matrix representing the first network were all non-
negative in an early experiment summarized in Section 4-2, but not for the second network.
So, when only the length of the pipelines was considered, the matrix was no longer SPSD for
the second network. However, when the diameter of the pipelines are taken into account as
well, then we see that the matrix ‘remains’ SPSD.
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When we take the diameter into account as well, then the ratios between the matrix compo-
nents change because of the new definition depending on rij =

∑j−1
k=i rk,k+1 =

∑j−1
k=i

Lk,k+1
D5

k,k+1
.

This could explain why the correlation matrix is SPSD with diameters, but not SPSD without
diameters.

This motivates us to consider the original definition of the correlation matrix defined as
Aij = 1 − dij

dmax
again and experiment with the value of the denominator, here dmax. We

want to investigate whether or not the sign of the negative eigenvalues of the correlation
matrix changes, when we increase the denominator. The denominator is originally defined as
maxi,j dij which equals 485 in this case.

We start with three negative eigenvalues. When we increases dmax, then we see that the
sign of one negative eigenvalue changes for dmax = 609. This means that the new defined
correlation matrix with dmax has two negative eigenvalues instead of three negative eigenvalues
(for dmax ≤ 608).

If we experiment some more with this denominator, then we notice that the remaining two
eigenvalues does not easily change sign. If we choose the denominator, for example, equal to
100000, then these two eigenvalues are still negative.

These experiments strengthens our assumption that the negative eigenvalues become non-
negative due to the ratio change between the matrix components Aij .
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Figure 4-3: A graph of the network points in the considered network.

Master of Science Thesis K. Lindenberg



62 Definitions correlation matrix

P
−

A
P

P

P
−

B
B

R

P
−

B
E

V
H

P
−

B
G

S

P
−

B
O

C
H

P
−

B
O

T
P

−
E

M
D

P
−

G
R

A
V

P
−

G
R

K

P
−

H
IL

V

P
−

JU
L

P
−

M
A

A
S

P
−

O
M

M

P
−

O
S

S
P

−
O

S
Z

H
P

−
R

A
V

H

P
−

S
C

H
H

P
−

S
D

A
P

−
S

P
K

P
−

W
IE

H

P
−

W
IJ

N

P
−

W
W

Z
P

−
Z

A
N

D
H

P
−

Z
E

LZ

Figure 4-4: A graph of the network points in the considered network, such that there exists a
path between every pair of points.
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Figure 4-5: A graph of the network points in the considered network, such that there exists a
path between every pair of points.
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4-4 Emphasizing the H-gas transport network

In general, the differences in stress tests regarding G-gas and L-gas are not that important with
respect to the differences regarding H-gas. Therefore, we want to emphasize the differences
in the H-gas transport network and to minimize the influence of the differences in the G- and
L-gas transport network.
The vectors representing the stress tests of the gas transport network can be ordered as follows

(x1, x2, . . . , xn︸ ︷︷ ︸
H-gas

, xn+1, . . . , xm︸ ︷︷ ︸
G−&L−gas

) m ≥ n.

A next step is to create a new vector representing the same stress test by adding the capacities
of the entries and exits in the G- and L-gas transport network, xGL =

∑m
i=n+1 xi. The new

vector is then denoted as
(x1, x2, . . . , xn, xGL).

In addition, we need to reformulate the corresponding QFD matrix A. This matrix is also
rearranged, just like the vectors representing the stress tests. We want to decouple the H-gas
transport network and the G- and L-gas transport network besides rearranging the matrix.
Then, the new matrix equals 

a11 a12 · · · a1n 0
a21 a22 · · · a2n 0
...

... . . . ...
...

an1 an2 · · · ann 0
0 0 · · · 0 1

 ,

and the zeros in the (n + 1)th column and row represent the decoupling of the two gas
transport networks.
We could also choose to not create a new vector, but only adjusting the matrix as follows

a11 · · · a1n 0 · · · 0
... . . . ...

... . . . ...
an1 · · · ann 0 · · · 0
0 · · · 0 an+1,n+1 · · · an+1,m
... . . . ...

... . . . ...
0 · · · 0 am,n+1 · · · amm


=
(

AH O
O AGL

)
,

with AH the matrix representing the QFD matrix of the H-gas transport network and AGL

of the G- and L-gas transport network.

The question is now: does this new representation give the desired result (a distinction
between the H-gas transport network and G- and L-gas transport network with more emphasis
on the differences in the H-gas transport network)?
We apply both approaches on the network displayed in Figure 3-6 which consists of H-gas
and G- and L-gas, in order to answer the question stated above. First, we have generated a
set of 66 stress tests for this network with the help of MCA in which the cluster level is set
equal to 37. Secondly, we adjust the vectors representing the stress tests such that
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4-4 Emphasizing the H-gas transport network 65

• the vectors have the form (x1, x2, . . . , xn, xGL) for approach 1;

• the vectors are ordered as (x1, x2, . . . , xn, xn+1, . . . , xm) with xi, i = 1, . . . n the capa-
cities in the H-gas network and xj , j = n + 1, . . .m in the G- and L-gas network for
approach 2.

In addition, the distance matrix D = [dij ] is adjusted for

• approach 1 as


d11 d12 · · · d1n dmax
d21 d22 · · · d2n dmax
...

... . . . ...
...

dn1 dn2 · · · dnn dmax
dmax dmax · · · dmax 0

;

• approach 2 as
(

DH Dmax

Dmax DGL

)
with Dmax an n × (m − n − 1) matrix with dmax as

elements.

Then, the QFD matrix A is determined according to Aij = 1 − dij

dmax
for each case and

the quadratic form distance between every pair of vectors (stress tests) is calculated. A few
results are summarized in Table 4-1. The corresponding difference vectors can be found in
Table 4-2. Not all vector elements are written down in this table, because the vectors consist
of 63 elements (second and original approach) or of 39 elements (first approach). However,
the network points which are not mentioned in this table all have capacity zero. The names
of the network points which are denoted in Table 4-2 are also displayed in the considered
transport network, see Figure 4-6.

Table 4-1: The QFD, with different approaches, applied on some of the stress tests.

Quadratic form distance
Applied on Approach 1 Approach 2 Originalstress tests

2 & 9 0.0100 282.3010 282.3010
2 & 35 0.0447 267.9711 267.9859
9 & 35 0.0500 205.3619 205.3858
8 & 53 0.0424 197.9043 197.9124
16 & 19 946.2644 946.2644 612.1948
12 & 45 504.7075 455.6138 295.5835
14 & 47 509.7577 457.7133 291.0260

We see that there is a difference between the two introduced approaches from the first four
results showed in Table 4-1: the quadratic form distance is very small when the first approach
is applied, but for the second approach the distances are almost equal to the QFD with original
matrix. If we consider the difference of the second and ninth stress test, then we see that
there are no differences in the H-gas network. However, there are some differences in the
G-gas network for the exit 04-GGAS and storage B-NORG. If we really want to emphasize
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the difference occurring in the H-gas transport network and neglecting the differences in the
G- and L-gas transport network, then we would prefer approach 1.

We see that the (quadratic form) distance between stress test 2 and 35 and 9 and 35 are
very small for approach 1 and QFD(9, 35) > QFD(2, 35), while QFD(9, 35) < QFD(2, 35)
when approach 2 or the original one is used. We see that both differences (2-35 and 9-35)
result in a difference of approximately 0.04 on the exit 18-HGAS in the H-gas network, but
there are some differences in the G-gas network for 04-GGAS (42.17 with respect to −198.02)
and B-NORG (−358.57 with respect to −118.39). So, can we conclude which condition must
hold, QFD(9, 35) > QFD(2, 35) or QFD(9, 35) < QFD(2, 35)? Therefore, we take a look
at the differences for xGL. The xGL of stress test 2 minus the xGL of stress test 35 equals
approximately −0.02 and for 9-35 approximately −0.03. So, the overall difference in the G-
and L-gas network is smaller for 2-35 than for 9-35. Thus, we observe that the condition
QFD(9, 35) > QFD(2, 35) must hold and that approach 1 is again preferable. In addition,
it seems right that the QFD between 8 and 53 is smaller than the QFD between 2 and 35,
seeing that the difference in the H-gas network is smaller.

The distances according to the second approach are in the last three results closer to the
distances for the first approach than to the distances for the original approach. It seems
right that QFD(16, 19) > QFD(14, 47) > QFD(12, 45) considering the difference vectors in
Table 4-2. So, in this case both approaches (1 and 2) can be chosen, but approach 1 is more
favorable in general.

We can conclude from what is described above that approach 1 gives a distinction between
the H-gas network and G- and L-gas network with more emphasis on the differences in the
H-gas network.
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Table 4-2: Some difference vectors of two different stress tests.
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Figure 4-6: A simplification of the network of GTS, consisting of H-gas and G- and L-gas, with
some of the names.
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Chapter 5

Reducing generated set of stress tests

A next step is, to reduce the set of stress tests which are generated with MCA. This chapter
describes some ideas for a threshold value for the quadratic form distance in the first section.
In addition, some of these ideas are selected to experiment with in the second section and
some generated sets are reduced.

5-1 Threshold value for the quadratic form distance

It is important to consider the so called capacity space to determine a threshold value to
label two vectors as almost similar. This space is a QFD space and consists of the vectors
representing the stress tests in Rn. Several capacity vectors are drawn in Figure 5-1.

Figure 5-1: Some capacity vectors in Rn, also called the capacity space.
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70 Reducing generated set of stress tests

5-1-1 The distance between the capacity vectors

It can be seen from this figure that a (QFD) sphere with radius d can be drawn around a
capacity vector x. If another capacity vector y lies within this sphere, then we can call the two
stress tests corresponding with these two capacity vectors almost equal and we can remove
vector y from the set. A stress test corresponding with a vector with the same direction as
the vectors within the sphere, but with a smaller length (see for example the blue vector in
Figure 5-1), can also be called almost similar besides stress tests corresponding with these
vectors. Thus, a region can be drawn to indicate which stress tests can be marked the same
which is a region consisting of a cone and sphere both with radius d. So, it is important to
determine this radius d which can be called a threshold value.

A possibility to determine the threshold value d is, to consider the two vectors in the capacity
space and to take the inaccuracy of the generated stress tests into account. In general at
GTS, these stress tests are compiled with an inaccuracy of 10 dam3/h per network point. In
this case, we have a fixed inaccuracy and we wish the following condition to hold for each
network point

|ui| ≤ |vi ± δi| for i = 1, 2, . . . , n,

such that the difference between the capacities is at most δi. Here, ui is the capacity on point
i for the stress test defined by the vector u, vi the capacity on point i for the vector v and
δi the permitted fixed inaccuracy (δi = 10 dam3/h). If this condition holds, then the stress
tests represented by the vectors u and v are similar enough to remove one of the stress tests
from the generated set.

This condition results into the condition

||u− v||A = ||v − u||A ≤
√
δTA δ =

√√√√ n∑
i=1

n∑
j=1

δ Aijδ = δ

√√√√ n∑
i=1

n∑
j=1

Aij .

for the distance function QFD. Thus, in this case d equals δ
√∑n

i=1
∑n
j=1 Aij .

Figure 5-2: Some capacity vectors in Rn, also called the capacity space.

However, the threshold value based on the radius d is not sufficient, because when a capacity
vector has a much smaller length than another capacity vector but more or less the same

K. Lindenberg Master of Science Thesis



5-1 Threshold value for the quadratic form distance 71

direction (see for example Figure 5-2), then the distance (QFD) between these vectors will be
greater than the threshold d. If we consider the corresponding stress tests in this case, then
we would conclude that the stress test represented by the vector with smaller length can be
removed from the set, because the stress test is less severe than the other.

Therefore, it could be wise to consider the length of the vectors in combination with the QFD
instead of the angle between the vectors. In that case, we have to adjust the length of the
vectors such that every vector has the same length (for example, by multiplying each vector
element with the same factor or normalizing each vector) and then apply the QFD.

However, another alternative is to consider the angle between two capacity vectors.

5-1-2 The angle between the capacity vectors

Note that the angle between the capacity vectors can be used as a threshold value besides this
radius d or distance between the capacity vectors. If we consider, for example, two capacity
vectors x and y, then the angle θ between these two vectors is calculated as

cos θ = < x,Ay >
||x||A||y||A

⇒ θ = arccos
(

xTAy√
xTAx

√
yTAy

)
. (5-1)

If this angle θ equals zero, then the two capacity vectors are exactly the same or one capacity
vector has a smaller length than the other but the same direction. If the angle θ is almost
zero, then the two capacity vectors are almost similar. Consider the capacity vector x and its
cone. Then the capacity vector y can be marked as almost the same (similar) as the vector x,
when the vector y is lying within this cone. Therefore, it is important to determine the angle
ϕ between the vector x and the boundary of its cone. Then it should hold that the angle θ
between x and y according to Equation 5-1 is smaller than or equal to ϕ. Let us assume that
an inaccuracy (fixed or variable) δi per vector component (for all components i) is permitted,
which means that xi − δi ≤ xi ≤ xi + δi holds. We can store these inaccuracies in a vector δ.
Then we want to find a vector x + δ with the greatest angle between this vector and x and
this angle is then our wanted angle ϕ. This results in the following condition for the angle θ
between x, an arbitrary vector y and δ = (δ1, δ2, . . . , δn)T

θ ≤ ϕ = max
δ

arccos

 xTA(x+ δ)
√
xTAx

√
(x+ δ)TA(x+ δ)

 . (5-2)

We consider a three dimensional example in the Euclidean space to illustrate how the angle
between a capacity vector and the boundary of its cone can be determined:

x =

 2
−1
−1

 with a fixed inaccuracy δi = 1
2 .

Then we can consider a few vectors y which satisfy the condition xi − δi ≤ yi ≤ xi + δi and
calculate the angle between these vectors y and the vector x:
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• y =

 21
2
−1

2
−1

2

 with θ = arccos
(
< x, y >

||x|| · ||y||

)
≈ 19.47 ◦;

• y =

 11
2

−11
2

−11
2

 with θ = arccos
(
< x, y >

||x|| · ||y||

)
≈ 19.47 ◦;

• y =

 21
4

−11
2

−11
2

 with θ = arccos
(
< x, y >

||x|| · ||y||

)
≈ 8.05 ◦;

• y =

 21
2

−11
2

−11
2

 with θ = arccos
(
< x, y >

||x|| · ||y||

)
≈ 5.05 ◦;

• y =

 21
2

−11
4

−11
4

 with θ = arccos
(
< x, y >

||x|| · ||y||

)
= 0 ◦;

• y =

 21
2

−11
8

−13
8

 with θ = arccos
(
< x, y >

||x|| · ||y||

)
≈ 3.30 ◦;

• y =

 2
−11

2
−1

2

 with θ = arccos
(
< x, y >

||x|| · ||y||

)
≈ 16.10 ◦;

• y =

 21
2

−11
2
−1

 with θ = arccos
(
< x, y >

||x|| · ||y||

)
≈ 6.59 ◦;

• y =

 11
2
−1

2
−1

 with θ = arccos
(
< x, y >

||x|| · ||y||

)
≈ 10.89 ◦;

• y =

 11
2

−11
2
−1

2

 with θ = arccos
(
< x, y >

||x|| · ||y||

)
≈ 20.51 ◦.

We suspect that ϕ equals approximately 20.51 ◦ judging the results above. We can generate
a lot of random vectors y which satisfy xi− 1

2 ≤ yi ≤ xi+
1
2 with Matlab in the following way:

% Inaccuracy random components delta

nr = 1e5; % number of random del
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del_comp = 0.5*ones(3,1); % fixed
% First component del
a1 = -del_comp(1);
b1 = del_comp(1);
r1 = a1 + (b1 - a1) .* rand(nr,1);
% Second component del
a2 = -del_comp(2);
b2 = del_comp(2);
r2 = a2 + (b2 - a2) .* rand(nr,1);
% Third component del
a3 = -del_comp(3);
b3 = del_comp(3);
r3 = a3 + (b3 - a3) .* rand(nr,1);
% Combine three components in a matrix
del_random = horzcat(horzcat(r1,r2),r3);
% Determine the angles between x and y = x+del (real part)
for i = 1 : nr

Theta_xy(i) = real(Theta_eucl(x,(x+del_random(i,:)’)));
end
% Determine the maximum angle
with
function [ Theta_eucl ] = Theta_eucl( x, y )

Theta_eucl = acosd(dot(x,y)/(norm(x)*norm(y)));
end
Running this code a few times always results in a maximum angle around the 20 ◦. So, ϕ is
set equal to 20.51 ◦.
Another option is to determine the angle ϕ between a stress test (represented by a vector x)
and the boundary of its cone with respect to a radius d

sinϕ = d

||x||A
=
√
δTAδ√
xTAx

.

This results in the following condition for the angle θ between two stress tests

θ = arccos
(
< x,Ay >
||x||A||y||A

)
≤ ϕ = max

d

{
arcsin

(
d

||x||A

)}
. (5-3)

If this condition holds, then the vectors x and y can be called almost similar. Again, we have
to determine the greatest possible cone and thus, we have to maximize ϕ.
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5-2 Conducted experiments

We apply the methods mentioned above on the network displayed in Figure 3-6 for which we
generated a set of 66 stress tests. This set of generated stress tests consists of two subsets: a
subset containing 33 stress tests in the case the temperature is −16 degree Celsius and a subset
containing 33 stress tests with a temperature of −17 degree Celsius. Thus, we consider one
of these subsets, for example the set of stress tests with a temperature of −17 degree Celsius
which consists of 16 different stress tests. Thus, the reduced set must consist of maximum 16
stress tests. We want to reduce this set of 33 stress tests as follows:

1. Start with the vector with the greatest length, say x.

2. Calculate the angle ϕ between this vector and the boundary of its cone.

3. Apply the condition given in (5-3) and determine which other vectors lie within this cone.

4. Delete these vectors which are almost similar to this longest vector from the set.

5. Consider the next longest vector y (y 6= x) of the remaining set and apply steps 2 - 5 till
the remaining set is empty.

First we conduct the experiment with the QFD matrix A only depending on the length of the
pipelines (Aij = 1 − dij

dmax
). Then the reduced set equals {1, 5, 7, 10, 12, 14, 16, 17, 18, 25, 33},

whereby vectors 5, 10, 17 and 33 have no vectors in their cones, if we let Matlab generate
10 vectors δ besides (10, 10, . . . , 10)T and (−10,−10, . . . ,−10)T or a few sets of 100 or 1000
vectors δ. The reducing step is done with the help of Matlab in the following way:

% Deleting based on colCone

% Start with the vectors inside the cone of the longest vector

for k = 1 : nIVs

Length_IVs(k) = QFD(IVs(k,:)’, 0, A1);

end

[IVsL, IVsI] = sort(Length_IVs, ’descend’);

for j = 1 : nIVs

Ind = find(colCone == IVsI(j));

Ind = sort(Ind, ’descend’);

if length(Ind) > 1

for k = 1 : length(Ind)

colToDel = find(colCone == rowCone(Ind(k)));

colToDel = sort(colToDel, ’descend’);

if rowCone(Ind(k)) > IVsI(j)

colCone(colToDel) = [];

rowCone(colToDel) = [];

elseif rowCone(Ind(k)) == IVsI(j)
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rowCone = rowCone;

colCone = colCone;

else

colCone(colToDel) = [];

rowCone(colToDel) = [];

Ind = Ind - length(colToDel);

end

end

end

end

When the matrix depends on the diameter as well (Aij = 1− rij

rmax
, Equation (4-9)), then we

have {1, 5, 7, 10, 12, 14, 16, 17, 26, 33} as a reduced set with no vectors in the cones of vector
5, 17 and 33 for a different set of 10 extra vectors δ or a few sets of 100 or 1000. These two
sets are visualized in Figure 5-3.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
0

1
Angle − Length

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
0

1
Angle − Length & diameter

Figure 5-3: Two reduced sets, when the angle between two vectors is considered.
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Another possibility is, to reduce the generated set of stress tests with the condition stated
in Equation (5-2) and see if we end up with a different reduced set or not. Again, we start
with the vector with the greatest length, calculate the angle ϕ between this vector and the
boundary of its cone and then determine which other vectors lie within this cone by applying
the other condition. This approach results indeed in the same two reduced sets.

In addition, an experiment in which a percentage of the capacity as inaccuracy is used is
conducted with Matlab. If we implement this with, for example δi = 1% in Matlab, then
we end up with the set {1, 4, 5, 7, 10, 12, 14, 16, 17, 18, 19, 25, 33} for the matrix only depend-
ing on the length of the pipelines with 10, 000 generated vectors δ. When we apply the
same experiment for the matrix depending on the diameter of the pipelines as well, then
the set equals {1, 5, 7, 8, 10, 12, 14, 16, 17, 19, 26, 33} for a set 10, 000 generated vectors δ and
{1, 5, 7, 8, 10, 12, 14, 16, 17, 26, 33} in which vector 19 lies within the cone of vector 16 for a
different set of 10, 000 generated vectors δ. This last reduced set and the reduced set for the
matrix depending only on the length are again visualized, see Figure 5-4.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
0

1
Angle − Length

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
0

1
Angle − Length & diameter

Figure 5-4: Two reduced sets, when the angle between two vectors is considered with variable
inaccuracy δi.

At a later stage, we have adjusted the correlation matrix defined as Aij = 1 − rij

rmax
as is

mentioned in Subsection 4-3-4. The unknown diameters of some pipelines in the network
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displayed in Figure 3-6 were approximated by the diameters of corresponding pipelines in
the network displayed in Figure A-27. If we apply our reducing algorithms, one with an
inaccuracy of 10 dam3/h and one with an inaccuracy of 1% per network point capacity, then
we end up with slightly different reduced sets:

• we get {1, 5, 7, 8, 12, 14, 16, 17, 33}, whereby vectors 10 and 26 are now lying in the cone
of vector 8, for δi = 10 dam3/h. This set is visualized in Figure 5-5.

• we get {1, 5, 7, 8, 10, 12, 14, 16, 17, 18, 33}, whereby vector 26 is now shorter than vector
18 and is lying in the cone of this vector, for δi = 1%. This set is visualized in Figure
5-6.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
0

1
Angle − Length & diameter

Figure 5-5: The reduced sets for the new diameters, when the angle between two vectors is
considered with a ‘constant’ inaccuracy δi.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
0

1
Angle − Length & diameter

Figure 5-6: The reduced sets for the new diameters, when the angle between two vectors is
considered with variable inaccuracy δi.
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5-3 Analyzing the conducted experiments

When we are considering the two different reduced sets for which both the length and diameter
are taken into account, then we see that the vector 26 is replaced by vector 18 for an inaccuracy
of maximal 1% of its capacity per network point. This is due to the fact that the length of
vector 18 is greater than the length of 26 with the adjusted correlation matrix, while first
it was the other way around. So, we could say that these two reduced sets are much alike.
When we apply an inaccuracy of 10 dam3/h per network point, then the new reduced set
with respect to the adjusted correlation matrix regarding the diameter consists of nine vectors,
while the previous reduced set consisted of ten vectors. If we take a closer look at these two
reduced sets, then we see that vector 8 is added to the set and vectors 10 and 26 are deleted,
because vectors 10 and 26 are now lying within the cone of vector 8.

A next step is to compare the reduced set for which the correlation matrix only depends on
the length to the reduced set for which the correlation matrix also depends on the diameter.
We will use the latest compiled reduced sets regarding the length and diameter for this
comparison.

We have for δi = 10 dam3/h

• the following similarities:

– vectors 4 and 6 are lying in the cone of vector 1;
– no vectors are lying in the cone of vector 5;
– vectors 2, 3, 9, 13, 24, 29, 30 and 32 are lying in the cone of vector 7;
– vector 23 is lying in the cone of vector 12;
– vectors 15 and 27 are lying in the cone of vector 14;
– vectors 19, 22 and 31 are lying in the cone of vector 16;
– no vectors are lying in the cone of vector 17;
– no vectors are lying in the cone of vector 33.

• the following differences:
first, vector 10 was not lying in a cone of a vector, while it is lying in the cone of vector
8 for the second reduced set. In addition, vectors 26 and 28 were lying in the cone
of vector 18, but these three vectors are lying in the cone of vector 8 for the second
set. Vectors 11, 20, 21 and 25 are also lying in the cone of vector 8, while first vectors
8, 11, 20 and 21 were lying in the cone of vector 25. However, the length of vector 25
became smaller than the length of 8 with a new correlation matrix (diameter added as
well) which explains the switch from 25 to 8.
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We have for δi = 1%

• the following similarities:

– no vectors are lying in the cone of vector 5;
– vectors 2, 3, 9, 13, 24, 29, 30 and 32 are lying in the cone of vector 7;
– no vectors are lying in the cone of vector 10;
– vector 23 is lying in the cone of vector 12;
– vectors 15 and 27 are lying in the cone of vector 14;
– vector 22 is lying in the cone of vector 16;
– no vectors are lying in the cone of vector 17;
– vectors 26 and 28 are lying in the cone of vector 18;
– no vectors are lying in the cone of vector 33.

• the following differences:
vectors 4 and 6 are no longer lying in the cone of vector 1. Again, vector 8 has now
a greater length than vector 25 and therefore, vectors 11, 20, 21 and 25 are lying in its
cone instead of 8, 11, 20 and 21 in the cone of 25. Vectors 19 and 31 are now lying in
the cone of 16 as well.

It needs to be investigated, whether or not one of the used inaccuracies, δi = 10 dam3/h and
δi = 1%, is a ‘good’ threshold value to reduce the generated sets of stress tests and which
correlation matrix needs to be applied, only depending on the length or also on the diameter.

An idea about how to judge if the difference of two capacity vectors is small enough to call
the two vectors almost similar, is to consider the capacities of this difference vector and the
allowed maximum flow through the pipelines according to MCA. If the difference vector has,
for example a capacity of 1 at point A and a capacity of −1 at point B, then one volume
of gas has to flow through the network from A to B and if the maximum flow through the
pipeline between A and B is, for example 100, then we expect that we can call the two vectors
corresponding with this difference vector almost similar.

First of all, let us list which capacity are exactly the same:

• vectors 2, 3, 13, 29, 30 and 32;

• vectors 4 and 6;

• vectors 7, 9 and 24;

• vectors 8, 11, 20 and 21;

• vectors 12 and 23;

• vectors 14, 15 and 27;

• vectors 16 and 22;
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• vectors 19 and 31;

• vectors 26 and 28.

Therefore, it is important to investigate the difference between the following vectors

• 1 and 4;

• 2 and 7;

• 8 and 10;

• 8 and 18;

• 8 and 25;

• 8 and 26;

• 16 and 19;

• 18 and 26;

in order to say something about (almost) similarity. These differences are listed in Table
5-1. The gas transport network and the network points which are mentioned in Table 5-1
are displayed in Figure 5-7. In addition, the maximum flow according to MCA through the
relevant pipelines is denoted in this figure as well.

If we look at the difference between stress tests 1 and 4, then this difference can be represented
as a flow of 410.62 from N-OSZH to 23-HGAS. There are two different ways to end at
23-HGAS: through a pipeline with maximum flow 400 and one with maximum flow 2200.
Following the route consisting of the last named pipeline (2200) does not give any problems.
However, if we have to follow a route consisting of the pipe with maximum flow 400, then we
do have a problem, because then it is not possible.

If we consider the difference between stress tests 2 and 7, then we do not encounter any
problem. It is possible to let 240.15 volumes of gas flow through the system from B-NORG
to 04-GGAS. We do not encounter any problems for the differences 8 - 18, 8 - 25, 8 - 26, 16 -
19 and 18 - 26 as well.

The difference between stress tests 8 and 10 represents a more complicated situation. First
of all, let us cluster the exit, entry and storage points 01-GGAS, 15-HGAS, V-OMMEN and
B-EPE to one point. Note that we can transport 56.93 volumes of gas from X-WWZ to
this cluster point without any problems. Then the situation is reduced to: transport 1936.43
volumes of gas from the cluster point to B-BERGEN and 151.06 gas volumes from 09-GGAS
to 11-GGAS from which 44.61 volumes of gas needs to be transported further from 09-GGAS
to B-BERGEN. It is possible that the route of the cluster point to B-BERGEN consists of
a pipeline with maximum flow 2000. Then a transport of 1936.43 gas volumes can be severe
with respect to this pipeline.

So, we could say that we can likely call the vector pairs 2 - 7, 8 - 18, 8 - 25, 8 - 26, 16 - 19
and 18 - 26 almost similar based on the above idea.
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Table 5-1: The eight mentioned difference vectors.
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Figure 5-7: A simplification of the network of GTS, consisting of H-gas and G- and L-gas, with
some of the names and maximum flow through some pipelines.
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5-4 Some more experiments

Firstly, we adjusted the variable inaccuracy from 1% to 2% and conducted our reducing steps.
Then we ended up with the reduced sets {1, 5, 7, 10, 12, 14, 16, 17, 19, 25, 33} and {1, 5, 7, 8, 12, 14, 16, 17, 33}.
We get the first set as result, when we are only considering the length of the pipelines and we
get the second set as result, when we are also considering the diameter. A good result in the
first set is the fact that vector 10 is not in the cone of another vector. However, it would be
nice if vectors 16 and 19 were lying within each others cones. This is the case for the second
set, but vector 10 is then lying within the cone of vector 8. In addition, vector 4 is in the
cone of vector 1 in both sets.

Secondly, we used a variable inaccuracy of 1.5%, 1.25% or 1.2% during the reducing process
which all result in the following two sets

• {1, 4, 5, 7, 8, 10, 12, 14, 16, 17, 18, 19, 33}, taking into account the length of the pipelines.
It is nice that vector 4 is not lying within the cone of vector 1, but still vectors 16 and
19 are not in each others cone. Besides, vectors 18 and 25 are no longer lying within
each others cones.

• {1, 5, 7, 8, 10, 12, 14, 16, 17, 33}, taking into account the length and diameter of the pipelines.
An improvement is that vector 10 is now not lying within in a cone of another vector.

Thirdly, we tried an inaccuracy of 1.15% or 1.1% to reduce the generated set of stress tests.
Then we get the set {1, 4, 5, 7, 8, 10, 12, 14, 16, 17, 18, 19, 33}, when we considering the length of
the pipelines which is the same set as for an inaccuracy of 1.5%, 1.25% or 1.2%. In addition,
we get the set {1, 5, 7, 8, 10, 12, 14, 16, 17, 26, 33}, when we are considering the diameter as
well. Unfortunately, it does not give the desired sets according to our analysis in the previous
section.

Finally, we have used some information from the detailed network of GTS which is displayed
in Figure 4-2 to determine an inaccuracy. The stress tests are generated for this detailed
network, which means that all capacities are determined. In general, these capacities are
fixed capacities, except for 13 entry/exit points in the detailed network. It is possible that a
somewhat higher capacity on these 13 specific entry/exit point is offered to the market. So,
these 13 capacities can be considered as variables.

Therefore, we have determined which entry/exit points in the network drawn in Figure 3-6
are corresponding with these 13 entry/exit points in the detailed network:

• 20-HGAS which is the 19th component of a vector representing a stress test.

• N-EMDEN which is the 35th component.

• N-ZELZ which is the 43rd component.
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• X-BBLDE and X-BBLGA which are the 51st and 52nd components, respectively. These
two exit points have a ‘shared’ inaccuracy. In other words, if the inaccuracy equals 10
dam3/h per point, then the total inaccuracy for these two exit points together equals
10. Then it is possible that the inaccuracy of one of the exit points is equal to 6 and
then the other has an inaccuracy of 4.

• X-GRAV which is the 54th component.

• X-HILV which is the 55th component.

• X-OSZG which is the 56th component.

• X-OSZH which is the 57th component.

• X-TEGEL which is the 58th component.

• X-WWZ which is the 60th component.

• X-ZANDH which is the 62nd component.

• X-ZELZ which is the 63rd component.

First, we conducted a reducing with an inaccuracy of 10 dam3/h per point (based on the used
step size in MCA), whereby we take the ‘shared’ inaccuracy of X-BBLDE and X-BBLGA into
account. Secondly, we try a percentage as inaccuracy as well, 1% or 1.2%, which gave the
same results. Besides, this fixed inaccuracy of 10 dam3/h and the variable inaccuracy 1% or
1.2% give the same reduced sets. We first take the length into account, then the diameter as
well and then we get the following two sets:

• {1, 2, 4, 5, 7, 10, 12, 14, 16, 17, 18, 19, 25, 33};

• {1, 4, 5, 7, 8, 10, 12, 14, 16, 17, 18, 19, 33}.

If we compare these two sets, then the second set is more preferable, because it is plausible
that vectors 2 and 7 are lying within each others cone.

Considering all conducted experiments, we have to reconsider the differences 16 - 19 and 8 -
18, because if we are trying to reduce the set such that 16 and 19 are in each others cone,
then vectors 1 and 4 ‘end up’ in each others cone as well, which is most likely not desired.
These two differences, 16 - 19 and 8 - 18, are pretty similar, but the difference 16 - 19 is
smaller (669.11 volumes of gas with respect to 848.65 on the same route). So, it is expected
that first vectors 16 and 19 are ‘ending up’ in each others cone and then vectors 8 and 18,
when we adjust the inaccuracy such that the sets become more reduced.

One of the possible routes consists of pipelines with a maximum gas flow of 1300. Therefore,
it could be wise to call stress tests 16 and 19 not almost similar considering 669.11 in relation
to 1300 and thus, to be content with the reduced set {1, 4, 5, 7, 8, 10, 12, 14, 16, 17, 18, 19, 33}.
Then, the vectors 1 and 4 are not almost similar nor vectors 8 and 10, which is desirable.

In this way, our choice is based on realistic inaccuracies, namely the step size of MCA on
specific entry/exit points and on both the length and diameter.
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Chapter 6

Conclusions and recommendations

We have seen that stress tests can be denoted by vectors which elements represent the gas
capacities at entry and exit points. In general, we deal with n-dimensional vectors, when we
are considering a network of n entries and exits. In addition, we are always dealing with a
balanced combination of entry and exit capacities and therefore we call these vectors balanced
vectors. This means that the elements of such a vector sum up to zero. So, when a stress test
is represented by an n-dimensional vector x, then

∑
i xi = 0 holds. The individual dimensions

of these vectors are correlated, because we want to take the mutual distance between the
network points (following the pipelines) into account as well, besides the capacities on the
entry and exit points. Thus, the vector space we are considering is not an Euclidean space.

Therefore, we have chosen to consider a cross-bin dissimilarity measure, called the quadratic
form distance, in order to compare the stress tests which are already generated by Gasunie
Transport Services. The quadratic form distance is a promising measure, because it can deal
with correlation between the individual dimensions. It uses a correlation matrix in order to
measure (dis)similarity between two stress tests represented as vectors. When we want to
apply the QFD, then we have to make sure that this correlation matrix is symmetric positive
semidefinite. Otherwise, the chosen (dis)similarity measure is not a well defined metric. We
namely would like the QFD to be real valued and to have the possibility that the QFD is
equal to zero (see the example of Subsection 3-1-4). We try to answer some of the sub research
questions regarding the QFD in the next section.

6-1 Answers to the sub research questions

We have listed some sub research questions in Section 2-4 in order to test a proposed
(dis)similarity measure. Thus, we have a compiled list of criteria that the chosen measure,
the QFD, needs to satisfy. We have also partly examined the QFD during the literature study
and our findings regarding these criteria are summarized in Table 6-1.
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Table 6-1: An overview of the findings of the QFD regarding the criteria.
C
ri
te
ri
a

1. Physical characteristics of the gas
transport network

Probably

2. Distinction between different stress
tests

Yes

3. Threshold value relates to the ‘gene-
rating inaccuracy’ of 10 dam3/h

Yes

4. Tuning the parameters Yes → matrix A
5. The need to use specific transport
physics of the gas network

Low

6. Similarity, when a stress test is less
severe than the other

Not considering the threshold value d,
but ‘yes’ for the threshold value ϕ

7. Applicable for stress tests depending
on blending load

Not examined

We expect that the QFD can take the physical characteristics of the transport network into
account, because we can adjust the correlation matrix A in the QFD. Thus, it is possible
to modify this matrix such that the physical characteristics of the gas transport network are
included. We have tried for example to include the pressure drop in Section 4-1 by adjusting
the relation between the components of the correlation matrix, Aij , and the distance between
the network points, dij . This resulted in a different definition for the correlation matrix:
Aij =

√
1− dij

dmax
besides the original definition Aij = 1− dij

dmax
. A next step was to test both

definitions on a few networks provided by Jarig Steringa which are the networks displayed
in Figures 3-5 and 3-6, but the detailed network of GTS (Figure 4-2) as well. These tests
indicate that the matrix defined as Aij =

√
1− dij

dmax
is not SPSD for one of these three

networks. However the ‘original’ matrix (Aij = 1− dij

dmax
) is SPSD for the first network drawn

in Figure 3-5, but it is no longer SPSD for the other two networks.

These results motivated us to search for a different definition for the correlation matrix such
that this correlation matrix is SPSD for all three networks. A correlation matrix which
satisfies this property is defined as Aij = 1 −

√
dij

dmax
, but does not represent the desired

relation (regarding the pressure drop) between its components Aij and the transportation
distance dij .

So, a second option was to adjust the variables on which the components Aij depend, instead
of changing its formula. In other words, we wanted to add a variable to the formula besides
the variable dij based on the pressure drop equation. The length and the diameter of the
pipelines do not change in this pressure drop equation during a or per gas transport situation
and thus can both variables be seen as constants. Thus, we added the diameter to the formula
as well. The components Aij are then defined as

Aij = 1− rij
rmax

with rij =
j−1∑
k=i

rk,k+1 =
j−1∑
k=i

Lk,k+1
D5
k,k+1

, rmax = max
i,j

rij ,

with Lk,k+1 now representing the length and Dk,k+1 the diameter of the pipeline between
network point k and k + 1. We have seen that this correlation matrix is SPSD for the two
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networks drawn in Figures 3-5 and 3-6, which is a very positive result. However, we could not
test this new definition on the detailed network of GTS displayed in the Figure 4-2, because
it is a lot harder to take the diameter into account as well for this detailed network. In this
detailed network there are a lot more network points which do not have an entry, exit point
or storage linked to it and it is not possible to delete these points by hand, like is done for
the second network (Figure 3-6).

We always have to keep in mind that the QFD must be a metric and therefore the correlation
matrix A needs to be symmetric positive semidefinite. So, we have to prove that the chosen
matrix is indeed SPSD before we apply the QFD for a specific network. Because we have
some freedom to define a correlation matrix A, the QFD satisfies the fourth criterion as well.

We have also seen that the QFD can distinguish between different stress tests, for example in
Subsection 3-1-2. It can also be concluded that there is a low need of using specific transport
physics of the gas network, because we only need the capacities on the network points, the
mutual distance between these points and in some cases the diameter of the pipelines as well.
So, no transport calculations need to be done before conducting the QFD.

The threshold values d (radius) and ϕ (angle) defined in Section 5-1 relate to the ‘generating
inaccuracy’ δ = 10 dam3/h. This ‘generating inaccuracy’ is based on the used step size of
10 dam3/h in the program MCA. The threshold value ϕ especially depends on this step size,
when we choose the inaccuracy vector δ as at the end of Section 5-4.

When we are applying the threshold value d, then the QFD does not satisfy criterion 6. The
threshold value based on only the radius is not sufficient, because when a capacity vector has
a much smaller length than another capacity vector but more or less the same direction, then
the distance (QFD) between these vectors will be greater than the threshold d. Therefore,
we have considered the angle between the stress tests as well.

This principle can be illustrated with the H-shaped network of Section 2-1. Suppose we
also have a less severe transport situation than the first stress test u1, for example v1 =
(50, 0, 0,−50). The distance between these two stress tests is then

QFDA(u1, v1) =

√√√√√√√√√
(

50 0 0 −50
)


1 0 1
3 0

0 1 0 1
3

1
3 0 1 0
0 1

3 0 1




50
0
0
−50



=

√√√√√√√√
(

50 −50
3

50
3 −50

)
50
0
0
−50

 =
√

5000 ≈ 70.71 > 4
3
√

3.

However, if we determine the angle between the two vectors, like is defined in Equation (5-1),
then the angle between these vectors is zero. Thus, if we apply threshold value ϕ, then the
QFD satisfies criterion 6.
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So, the quadratic form distance is indeed a suitable (dis)similarity measure considering the
above criteria. Unfortunately, we could not prove in general that the ‘original’ correlation
matrix, Aij = 1 − dij

dmax
, is positive semidefinite on the subspace of balanced vectors, like is

stated for color histograms in the article Efficient Color Histogram Indexing for Quadratic
Form Distance Functions. In addition, the writers of this article claim that a proof is given
in an unpublished internal note and thus, that the ‘original’ correlation matrix is positive
semidefinite on the subspace of balanced vectors, when an Euclidean ground distance is ap-
plied. We could not take a look at this proof and therefore, we have tried to come up with
our own proof in which we chose the applied ground distance dij as the length of the pipes
between two network points i and j. During this process, we discovered a counterexample
with the help of Jacob van der Woude instead of a proof.

Therefore, we restricted our experiments regarding proper correlation matrices on the sub-
space of balanced vectors to a few GTS networks. The correlation matrix depending on the
length and diameter of the pipelines seems very suitable for the two smaller GTS networks
and the ‘original’ correlation matrix seems only to be suitable when the network does not
consists of crossing pipelines according to our experiments. Thus, the quadratic form distance
with the correlation matrix depending on the length and diameter of the pipelines seems to
be a proper method to use during the reducing process in practice.

When considering the experiments performed during this project, the best way to reduce a
generated set of stress tests is to apply the following steps:

1. Start with the vector with the greatest length, say x.

2. Calculate the angle ϕ between this vector and the boundary of its cone defined by

ϕ = max
δ

arccos

 xTA(x+ δ)
√
xTAx

√
(x+ δ)TA(x+ δ)

 ,
with δ = (δ1, δ2, . . . , δn), whereby δi = 0 for all components, except the ones mentioned
at the end of Section 5-4: |δj | ≤ 10 for j = 19, 35, 43, 54, 55, 56, 57, 58, 60, 62, 63 and
|δ51 + δ52| ≤ 10. Hereby the correlation matrix A depends on the length and diameter
of the pipelines.

3. Determine the angle θ between this vector x and the other vectors in the set.

4. Apply the condition θ ≤ ϕ to determine which vectors lie within the cone of x. These
vectors are called almost similar to x.

5. Delete these vectors which are almost similar to this longest vector x from the set.

6. Consider the next longest vector y (y 6= x) of the remaining set and apply steps 2 - 6
till the remaining set is empty.

K. Lindenberg Master of Science Thesis



6-2 Future research 89

6-2 Future research

The recommendations for future research aim at further development of the used method,
the QFD, in particular its correlation matrix or the posed reducing algorithm.

I would recommend to apply these steps of reducing on the detailed network of GTS in order
to test this reducing process some more. This means that an algorithm or a method needs to
be found such that the diameter can be taken into account as well. This is not done during
this project, because the network points with no entry, exit points or storages linked to it
pose a problem. We will call these network points ‘dummy points’ for simplicity. We cannot
derive the needed information, the diameter of the pipelines between entry, exit points and
storages, directly from MCA, but we have to adjust the network such that these dummy
points are no longer part of the network. Another option is to put ‘dummy entries/exits’,
which are entry/exit points with capacity zero, at these dummy points and then extract the
information regarding the diameter of the pipelines. Then a new problem arises, because the
distance between these dummy entries/exits and the other entry, exit points and storages
need to be determined.

In addition, I recommend to investigate whether or not the first step of the posed reducing
algorithm is the right one. It is possible that a different or smaller set can be found if we
start with a different vector which has not the greatest length. So, the question is: does this
posed reducing algorithm results in a minimal set, or can a different algorithm be found such
that we end up with a smaller set?

I would also recommend to examine the threshold value ϕ. During this project, it is assumed
that we can drawn a region consisting of a cone and sphere both with radius d to indicate
which stress tests can be marked the same, and that the angle between a capacity vector
and its cone equals ϕ defined as in the posed reducing algorithm. A conjecture is that this
definition results in a n-dimensional cube and not in a sphere (in n dimensions). Therefore,
it seems a good idea to examine the definition of ϕ and its fit with respect to this region. It
could also be wise to reconsider the shape of this region.

We have experimented with the network drawn in Figure 3-6 by deleting the G-gas pipelines
which are crossing a pipeline of the H-gas network. The part of the G-gas network that is
overlapping the H-gas network is kept. Then we have determined the ‘original’ correlation
matrix defined as Aij = 1 − dij

dmax
, calculated its eigenvalues and concluded that the new

matrix is PSD. This result motivates me to recommend to extend this experiment to see
the effect of adjusting the considered network (by deleting some of the pipelines) such that
is can be drawn (topological) in two dimensions. The same experiment can for example be
conducted on the detailed network of GTS displayed in Figure 4-2.

A next step can be to translate this network property (no crossing pipelines of to draw in
two dimensions) into an additional condition besides the three conditions from Section 3-2,
hii = 0, hij = hji and hij ≤ hik + hkj , for the matrix H = [hij ] to ensure that zTHz ≤ 0
subject to

∑
i zi holds. If this is possible, then it is wise to examine if the counterexample

displayed in Figure 3-4 is still a counterexample with the new condition(s) added.
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During this project, we have only considered stress tests based on the transportation load.
So, it could be good to involve the blending load as well. It could be wise to consider first
only the blending load and then find a way to combine both methods in order to come up
with a method for stress tests depending on both the transportation and blending load.
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Figure A-1: The relation between entry Aij and transportation distance with dmax = 250.
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Figure A-2: The relation between entry Aij and transportation distance with dmax = 250.
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Figure A-3: The relation between entry Aij and transportation distance with dmax = 250.
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Figure A-4: The relation between pressure drop and transportation distance for Q = 1000
dam3/h.
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Figure A-5: The relation between pressure drop and transportation distance for Q = 2000
dam3/h.
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Figure A-6: The relation between pressure drop and transportation distance for Q = 3000
dam3/h.
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Figure A-7: The relation between pressure drop and transportation distance for Q = 4000
dam3/h.
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Figure A-8: The relation between pressure drop and transportation distance for Q = 5000
dam3/h.
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Figure A-9: The relation between pressure at the end of a pipe and transportation distance for
Q = 1000 dam3/h.
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Figure A-10: The relation between pressure at the end of a pipe and transportation distance for
Q = 2000 dam3/h.
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Figure A-11: The relation between pressure at the end of a pipe and transportation distance for
Q = 3000 dam3/h.
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Figure A-12: The relation between pressure at the end of a pipe and transportation distance for
Q = 4000 dam3/h.
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Figure A-13: The relation between pressure at the end of a pipe and transportation distance for
Q = 5000 dam3/h.
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Figure A-14: The Wobbe distribution of the first shipping variant of the H-gas network of GTS.

Master of Science Thesis K. Lindenberg



104 Figures

Wobbe  [MJ/m3]
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Figure A-15: The Wobbe distribution of the second shipping variant of the H-gas network of
GTS.
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Figure A-16: The Wobbe distribution of the third shipping variant of the H-gas network of GTS.
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Figure A-17: The Wobbe distribution of the fourth shipping variant of the H-gas network of
GTS.
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Figure A-18: The Wobbe distribution of the fifth shipping variant of the H-gas network of GTS.
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Figure A-19: The Wobbe distribution of the sixth shipping variant of the H-gas network of GTS.
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Figure A-20: The Wobbe distribution of the seventh shipping variant of the H-gas network of
GTS.
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Figure A-21: The Wobbe distribution of the eighth shipping variant of the H-gas network of
GTS.
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Figure A-22: The visualization of the sparsity pattern of the matrix A, applied on the H-gas
network of GTS.
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Figure A-23: The visualization of the sparsity pattern of the matrix A, applied on a simplified
network of GTS.

Figure A-24: The visualization of the sparsity pattern of the two new defined matrices, applied
on a simplified network of GTS.
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Figure A-25: The contour plot of the original matrix and of the matrix on which the reverse
Cuthill-McKee ordering is applied.
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Contour plot of the levels between 0.8 and 1 of A
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Figure A-26: The contour plot of the levels between 0.8 and 1 of the original matrix and of the
matrix on which the reverse Cuthill-McKee ordering is applied.
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Figure A-27: Another simplification of the network of GTS.
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Glossary

List of Acronyms

G-gas Groningen gas (Wobbe index smaller than or equal to 44.4)

GTS Gasunie Transport Services

H-gas Gas with a Wobbe index greater than or equal to 49.0

HTL High pressure grid (Dutch: Hoofdtransportleidingnet)

L-gas Gas with a Wobbe index between 44.4 and 47.2

MCA Multiple Case Analysis (or Approach)

PSD Positive Semidefinite

QFD Quadratic Form Distance

RTL Intermediate pressure grid (Dutch: Regionale transportleidingnet )

SPD Symmetric Positive Definite

SPSD Symmetric Positive Semidefinite
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120 Glossary

List of Symbols

Qi flow in pipeline i

Li length of pipeline i

W Wobbe index

Hs higher calorific value

d density of gas relative to air

ρg density of gas

ρl density of air

dij distance between i and j

dmax maximum distance

λ eigenvalue

λi eigenvalue i

ρi radius of i-th Gershgorin disc

δi permitted (fixed) inaccuracy for network point i

θ angle between two vectors representing stress tests

P pressure

Pin pressure at the begin of the pipeline

Pout pressure at the end of the pipeline

∆P pressure drop (in the pipeline)

c a constant

L length

D diameter

Q flow
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Symbols used in MCA
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