

Comparing severe transport situations Similarity or reduction methods

Kimberley Lindenberg 26 August 2015

Responsible for the management, the operation and the development of the national transmission grid

- Sufficient transport capacity
- Security of supply
- Quality conversion
- Balancing the grid

Aim of my project

Stress tests

Stress test

- vector
- ▶ *n*-dimensional
- balanced
- correlated dimensions

 mutual distances & capacities

No Euclidean space

Quadratic form distance

Quadratic form distance

$$QFD_{\mathbf{A}}(u, v) = \sqrt{(u - v)^{T}\mathbf{A}(u - v)}$$

Quadratic form distance - Example matrix

Quadratic form distance - Example matrix

elft

Quadratic form distance - Example matrix

elft

Quadratic form distance - Definitions matrix

Definitions A_{ii}

Quadratic form distance - Metric

Positive semidefinite on a subspace

- Stress tests are balanced gas transport situations
- Difference of two stress tests is balanced as well
- ► So, for a difference vector **x** the following holds

$$\sum_{i} x_i = 0$$

 Consider the correlation matrix A or distance matrix D on this subspace

Positive semidefinite on a subspace

Not for the 'original' definition

$$\mathbf{A}_{ij} = 1 - rac{d_{ij}}{d_{max}}$$

 Probably for the definition, which is based on the diameter as well

Reducing steps

Reducing steps

- 1. Start with the vector with the greatest length, say *x*.
- 2. Calculate the angle φ between this vector x and the boundary of its cone.
- 3. Determine the angle θ between this vector *x* and the other vectors in the set.

Reducing steps

- Apply the condition θ ≤ φ, to determine which vectors lie within the cone of x. These vectors are called almost similar to x.
- 5. Delete these vectors, which are almost similar to this longest vector *x*, from the set.
- Consider the next longest vector y (y ≠ x) of the remaining set, and apply steps 2 - 6 till the remaining set is empty.

Concluding remarks

Table 1: An overview of the conclusions regarding the QFD.

	1. Physical characteristics of the gas transport network	Probably
ä	2. Distinction between differ-	Yes
Criteria	ent stress tests	Maa
Ö	3. Threshold value relates to	Yes
	the 'generating inaccuracy' of 10 <i>dam³/h</i>	
	4. Tuning the parameters	$\text{Yes} \to \text{matrix} \; \textbf{A}$

Concluding remarks

Table 2: An overview of the conclusions regarding the QFD.

	5. The need to use specific	Low
	transport physics of the gas	
~	network	
eria	6. Similarity, when a stress	Yes, considering the
Criteria	test is less severe than the	angle φ
O	other	
	7. Applicable for stress tests	Not examined
	depending on blending load	

Concluding remarks

Future research

Test reducing steps on the detailed network of GTS

Reconsider the posed reducing algorithm: does this algorithm results in a minimal set?

Involve the blending load with respect to stress tests

Thank you all

Questions ?

