Gasurne
 transport services

Comparing severe transport situations

Similarity or reduction methods

Kimberley Lindenberg 26 August 2015

TUD Ifft

Gasunie Transport Services

Responsible for the management, the operation and the development of the national transmission grid

- Sufficient transport capacity
- Security of supply
- Quality conversion
- Balancing the grid

TUDelft

Aim of my project

TUDelft

Stress tests

Stress test

- vector
- n-dimensional
- balanced
- correlated dimensions \downarrow mutual distances \& capacities

No Euclidean space

Quadratic form distance

Quadratic form distance

$$
Q F D_{\mathbf{A}}(u, v)=\sqrt{(u-v)^{T} \mathbf{A}(u-v)}
$$

Conjecture definition A

$$
\mathbf{A}_{i j}=1-\frac{d_{i j}}{d_{\max }}
$$

T̛ODelft

Quadratic form distance - Example matrix

$$
v=\left(\begin{array}{c}
100 \\
0 \\
-100
\end{array}\right)
$$

TUDelft

Quadratic form distance - Example matrix

$$
\begin{aligned}
& { }^{2} \uparrow \quad d_{\text {max }}=100 \\
& \rightarrow \mathrm{O} \text { - } 100 \rightarrow \\
& {\left[d_{i j}\right]=\begin{array}{l}
1 \\
2 \\
3
\end{array}\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & 0 & 100 \\
0 & 0 & 100 \\
100 & 100 & 0
\end{array}\right)} \\
& u=(120,-20,-100)^{T} \\
& v=(100,0,-100)^{T} \\
& u-v=(20,-20,0)^{T} \\
& \mathbf{A}=\begin{array}{l}
1 \\
2 \\
3
\end{array}\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& Q F D=0
\end{aligned}
$$

TUDelft

Quadratic form distance - Example matrix

$$
\begin{aligned}
& { }_{1} \uparrow \quad{ }_{99} \quad d_{\text {max }}=100 \\
& {\left[d_{i j}\right]=\begin{array}{l}
1 \\
2 \\
3
\end{array}\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & 100 \\
1 & 0 & 99 \\
100 & 99 & 0
\end{array}\right)} \\
& u=(120,-20,-100)^{T} \\
& v=(100,0,-100)^{T} \\
& u-v=(20,-20,0)^{T} \\
& \mathbf{A}=\begin{array}{l}
1 \\
2 \\
3
\end{array}\left(\begin{array}{ccc}
1 & 2 & 3 \\
1 & 0.99 & 0 \\
0.99 & 1 & 0.01 \\
0 & 0.01 & 1
\end{array}\right) \\
& Q F D=\sqrt{8} \approx 2.83 \\
& \|u\|_{\mathbf{A}} \approx 141.73 \\
& \|V\|_{A} \approx 141.42
\end{aligned}
$$

Quadratic form distance - Definitions matrix

Definitions $\mathbf{A}_{i j}$

$\Rightarrow \sqrt{1-\frac{d_{i j}}{d_{\max }}}$
$\Rightarrow 1-\sqrt{\frac{d_{i j}}{d_{\max }}}$
$\Rightarrow \exp \left(-\frac{d_{i j}}{d_{\max }}\right)$
$>\frac{1}{1+\frac{d_{i j}}{d_{\text {max }}}}$

䛜UDelft

Quadratic form distance - Metric

Is the QFD indeed a distance/metric?

A semi-norm $\|\|:. \mathbb{R}^{n} \rightarrow \mathbb{R}$, is a function satisfying:
(1) $\|c u\|=|c| \cdot\|u\|$ for all scalars $c \in \mathbb{R}, u \in \mathbb{R}^{n}$
(2) $\|u+v\| \leq\|u\|+\|v\|$ for all vectors $u, v \in \mathbb{R}^{n}$

$$
\downarrow\|u-v\|=\sqrt{(u-v)^{\top} \mathbf{A}(u-v)}
$$

The matrix A needs to be positive semidefinite

- Stress tests are balanced gas transport situations
- Difference of two stress tests is balanced as well
- So, for a difference vector \mathbf{x} the following holds

$$
\sum_{i} x_{i}=0
$$

- Consider the correlation matrix A or distance matrix D on this subspace

TUDelft

Positive semidefinite on a subspace

- Not for the 'original' definition

$$
\mathbf{A}_{i j}=1-\frac{d_{i j}}{d_{\max }}
$$

- Probably for the definition, which is based on the diameter as well

THDelft

Reducing steps

THDelft

Reducing steps

1. Start with the vector with the greatest length, say x.
2. Calculate the angle φ between this vector x and the boundary of its cone.
3. Determine the angle θ between this vector x and the other vectors in the set.

TひUDelft

Reducing steps

4. Apply the condition $\theta \leq \varphi$, to determine which vectors lie within the cone of x. These vectors are called almost similar to x.
5. Delete these vectors, which are almost similar to this longest vector x, from the set.
6. Consider the next longest vector $y(y \neq x)$ of the remaining set, and apply steps 2 - 6 till the remaining set is empty.

Concluding remarks

Table 1: An overview of the conclusions regarding the QFD.

©UU

1. Physical characteristics of Probably

 the gas transport network2. Distinction between differ-

Yes ent stress tests
3. Threshold value relates to Yes the 'generating inaccuracy' of $10 \mathrm{dam}^{3} / \mathrm{h}$
4. Tuning the parameters

Yes \rightarrow matrix A

Concluding remarks

Table 2: An overview of the conclusions regarding the QFD.

	5. The need to use specific transport physics of the gas	Low		
network			\quad	6. Similarity, when a stress
:---	Yes, considering the \quad	angle φ		
:---				
test is less severe than the				
other				
7. Applicable for stress tests depending on blending load				

TUD

Concluding remarks

Future research

- Test reducing steps on the detailed network of GTS
- Reconsider the posed reducing algorithm: does this algorithm results in a minimal set?
- Involve the blending load with respect to stress tests

䛜UDelft

Thank you all

Questions?

TUDelft

