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Chapter 1

Introduction

Contact mechanics is the theory that deals with the deformation of contacting objects. It
is an import research topic for many different industries, in particular for the rail industry.
Consider a train moving over a track. Multiple forces being exerted on the rails, with gravity
being the most important one. The forces will result in deformation of both the wheels and
the rails. It is important to understand this process, so that the rail industry can estimate
and prevent the possibility of rail deformation, estimate the wear and tear of the rails and
wheels, and even estimate the probability of train derailment. Contact mechanics gives us
the tools to understand this process.

As the name would suggest, the CONTACT software solves contact problems between two
objects. It has originally been developed by Prof.dr.ir Joost Kalker of the Delft University of
Technology. In 2000, VORtech has taken over the software. It is now being further developed
by Dr.ir. Edwin Vollebregt, who has been my supervisor for this Master project.

The software can be used for a variety of (homogeneous) contact problems and can be used
to compute deformations, determine the forces that are being exerted on the surface, and
determine in which areas of the contact surface slip will occur. CONTACT aims to be the
worlds fastest detailed contact model.

In this thesis report, the physics and mathematical theory behind dynamical contact problems,
i.e. time-dependent contact problems, is discussed. An algorithm capable of simulating the
deformation of a bridge and the wheels of a train that is moving over it will be developed.
The main goal is that this algorithm will be much less computationally expensive then the
usual finite element models. To achieve this, CONTACT plays a crucial role.

1
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Chapter 2

The research problem

The main research goal for the project is to understand how CONTACT can be used in
combination with time integration schemes for dynamical contact problems, in particular
those that occur in the rail industry. Specifically, the main research problem we will be
looking at involves a train moving over a bridge. How does the bridge and the train wheels
deform as the result of this and how can this deformation be computed efficiently?

Because of the complexity of problems involving contact dynamics, it is often too hard to solve
them in full detail. For instance, phenomena such as friction, slip, and adhesion can occur in
contact problems. These phenomena are hard to describe in full detail, so assumptions will
be made to simplify the problem. Throughout this thesis, as an example, we will ignore the
effects of friction.

We will start looking at very simple test problems and then solve these. Afterwards, the
complexity of these problem will be gradually increased. These test problems are simple
(often unrealistic) problems and are created solely to gain a better understanding of different
parts of the main problem.

The thesis can roughly be split in four different parts. Each part discusses a separate topic,
each of them being required to solve the main research problem. The research topic and goal
of each part will be outlined here.

2.1 Literature for dynamical contact problems

The first part, which consists of Chapters 3 to 5, contains necessary literature for dynamical
contact problems. In Chapter 3, we will describe the basics of linear elasticity theory. This is
used to derive a differential equation that describes the deformation of a single elastic object.
Chapter 4 is about contact mechanics, which describes the physics and boundary conditions
of two contacting objects. Both Hertz theory as well as CONTACT are used as contact model.
Time integration schemes for dynamical contact problems are discussed in Chapter 5. These
are used to solve multiple differential equations occurring in contact mechanics which will be
derived throughout the thesis.

3
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2.2 Deformation of an elastic half-space

The second part of this thesis is about local deformations and consists of Chapters 6 and
7. Here, we discuss the deformation of objects that can only deform locally as the result of
compression of the material.

A simple problem involving the deformation of an elastic half-space will be discussed. We
are interested in how this local deformation can be computed as function of time if an object
like a sphere is dropped on the surface. We will show in Chapter 6 how Hertz theory can
be used to derive a simple one dimensional differential equation for the rigid height of the
ball. Alternately, CONTACT can be used as replacement for Hertz theory. This is applicable
for more general situations and returns additional information which will be crucial for the
development of the eventual algorithm.

Additionally, in Chapter 6 we will solve the differential equation describing the falling sphere
by using the time integration schemes as discussed in Chapter 5. Since the differential equation
is simple, this test problem can easily be used to validate the numerical time integration
schemes and to get a basic idea of the pros and cons of each scheme. Specifically, we are
interested in the stability, accuracy and energy conservation of each numerical scheme. This
problem will also be used to gain more understanding on how to run CONTACT and how its
output can be used.

The problem becomes more complex when one is interested in the total deformation of the
half space as function of x and y. We will discuss two ways of computing this deformation.
The first one makes use of CONTACT which solves the quasi-static elasticity equations. The
advantage of this approach is that this deformation is easily computed. However, inertia is
completely ignored; hence the result is not completely realistic.

For a more accurate approximation, we will discretise the elasticity equations for the half-plane
and combine this with the correct boundary conditions and a good time integration scheme.
This will be thoroughly discussed in Chapter 7. This approach, however, is computationally
very expensive.

2.3 Global deformation of a bridge

In Chapter 8, the third part of this thesis, we will consider global deformations. Global
deformation represents the deformation of an object (in this case, a bridge) that occurs by
the displacement of the objects on a global scale. The main difference between an elastic
bridge and an elastic half-plane, is that a bridge is unsupported at the bottom. The bridge
will therefore deform globally, while a half-plane can only deform by compression the material.
Both phenomena have different properties and will hence be discussed separately.

The test problem we will discuss in this chapter is a bridge that deforms globally as a result of
a given pressure distribution that is being exerted on the bridge. Local deformation is ignored
for now. First, we will show how to compute the stationary solution. Next, time will be taken
into account; this will be used to solve a simple moving-load problem. The time-dependent
deformation of a bridge as the result of a given pressure distribution (representing a moving
train, for example) will then be solved.

The bridge will be modelled as a long thin beam. Its deformation will be approximated by
solving the 1D Euler-Bernoulli beam equation. We will mainly focus on a modal approach of
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doing so; the solution will be constructed by using so-called mode shapes. We will show how
these functions can be computed or approximated and how they can be used to approximate
the global deformation. A system of independent ordinary differential equations will be
derived and solved.

Figure 2.1: Representation of a bridge that is deformed both globally as well as locally.

2.4 Full train-bridge simulation

The last part of thesis consists of Chapter 9 and 10. Here, we will combine the previously
discussed theory in order to perform a simulation of train-bridge contact.

If a train wheel exerts a force on the bridge, the bridge will deform as a whole (i.e. globally).
In reality, however, the bridge will also behave similarly to the half-plane; a ‘gap’ will appear
around the contact area that contains a part of the wheel. A visual (unrealistic) representation
can be seen in Figure 2.1.

In this last part of thesis we will focus on the interaction between the global and local
deformation. Our goal will be develop an algorithm to solve the main problem for this
project, i.e. how to compute the total deformation of a bridge accurately (without being too
computationally expensive) for a train moving over it. This combines the theory of global
and local deformations and CONTACT plays a central role in this algorithm.

In Chapter 9 we will discuss the interaction between the global and local deformation of
the bridge. The total deformation will be modelled as the sum of the global and the local
deformation. The problem that occurs here is that the global and local deformation are the
result of two separate problems which are not independent of each other. We will propose and
test algorithms for slightly simplified models. For instance, we will first solve the stationary
problem.
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Chapter 10 combines all the previously discussed theory in order to perform a full train-
bridge simulation. This involves the implementation of the integration schemes and the
iterative solver. We will counter several stability problems. To solve this, we will propose an
improvement of the iterative solver which will both increase stability as well as the convergence
rate without a big increase in the total amount of required computational power.



Chapter 3

Introduction to linear elasticity
theory

Contact mechanics is the study that deals with the physics of two contacting bodies. It
involves the computation of the pressure, contact forces, and deformation in either static or
dynamic problems. The bodies might have different elastic properties which can result in a
different distribution for the pressure and a different deformation of the objects.

Before getting into the contact between two different objects, we will consider a single object
being deformed. This deformation is described by elasticity theory. In this chapter, we will
focus on the dynamic deformation of a single general three dimensional elastic object. The
Cartesian coordinate system is used and a vector u can be denoted both as u = (ux, uy, uz)
as well as u = (u1, u2, u3). Einstein convention is used frequently.

3.1 The elasticity components

In elasticity theory, there are three different important elasticity components: the displace-
ments, the strain, as well as the stress. We will first describe each of these components
separately and then get into the relations between each component in order to derive a dif-
ferential equation for the dynamic deformation of an object.

3.1.1 Displacements

The displacement is the variable in elasticity theory we are generally interested in. Often,
one is interested in determining the change of shape of an object such as a bridge or wheel.
The displacement describes the change of shape of an elastic body as function of the time.

Consider an undeformed object in rest and focus one particle in this object. Now consider a
force at the boundary of the object pushing in any direction. This can cause the object to be
stretched or compressed. In particular, the particle we have chosen can move in any direction.
This translation of the particle is called the displacement. If this displacement is zero, that
means there is no deformation at this particle. There are three displacement variables, one
for each direction: ux, uy, and uz.

7



8 CHAPTER 3. INTRODUCTION TO LINEAR ELASTICITY THEORY

3.1.2 Strain

Strain represents the stretching (or compressing) of an object. Once again, focus on one
particle in this object in its undeformed state. Take another particle close to this one. If
the body is deformed, then the distance between the two particles can change. Strain is
dimensionless quantity and represents the relative change of the position of points in the
body.

There are two different kinds of strain, namely the longitudinal strains εxx, εyy, and εzz, as
well as the shearing strains εxy, εxz, εyx, εyz, εzx, and finally εzy. The longitudinal strains
correspond to the relative change of the position of points in the body in the corresponding
direction. If a homogeneous bar of 1m width is uniformly stretched to 1.5m, then the strain
εxx = 3

2 . The shear strains (often notated by γ) represent the change of angle between
two points as their distance tends to zero. These shear strains are always symmetric, so for
example γxy = γyx.

The strain tensor ε is a matrix that contains the nine strain components. Due to the symmetry
of the shear strains, the matrix is symmetric. It is defined by

ε =

εxx γxy γxz
γyx εyy γyz
γzx γzy εzz

 (3.1)

3.1.3 Stress

Stress is the physical quantity that represents the force per unit area that is being exerted on
a particle in a body. The unit of stress is Nm−2. If there is stress, it means that the material
is under tension or compression. Like strain, there are nine stress components, which we
denote by σij for 1 ≤ i, j ≤ 3 (or σxy, etc). The components σxx, σyy, and σzz are the normal
stresses, the others being the shear stresses (often denoted as τ). Similarly for the strain, the
shear stresses are symmetric; this is a result of the conservation of angular momentum. We
can define a stress tensor σ as

σ =

σxx τxy τxz
τyx σyy τyz
τzx τzy σzz

 (3.2)

Using this tensor we also define the so-called traction vector r at the boundary of the domain
by

r = σn (3.3)

where n is the normal vector pointing out of the domain. This traction vector represents the
pressure being exerted at the boundary and will be used for the boundary conditions.
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3.2 Relation between the elasticity components

3.2.1 Strain-displacement relations

By definition of the strains, the longitudinal strains are simply the spatial derivative of the
displacement in the same direction. The strain components are therefore connected to the
displacements by the following equations

εxx =
∂ux
∂x

εyy =
∂uy
∂y

εzz =
∂uz
∂z

γxy =
∂ux
∂y

+
∂uy
∂x

γxz =
∂ux
∂z

+
∂uz
∂x

γyz =
∂uy
∂z

+
∂ux
∂z

(3.4)

We now redefine the strain components in smart way such that system (8.38) can be written
in a more compact way. We define

eij =

{
εii if i = j
1
2γij if i 6= j

(3.5)

So that (8.38) can be rewritten as

eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
for all 1 ≤ i, j ≤ 3 (3.6)

or even shorter

e =
1

2

(
du

dx
+

(
du

dx

)T)
(3.7)

where du
dx is the Jacobian matrix of u.

3.2.2 Stress-strain relations

The stress is easily computed, but it is usually the strain we are interested in. We will
therefore look at the relation between the stress and the strain. We assume throughout the
whole article that all materials are isotropic, that is, the material has no preferred direction;
regardless of the direction in which the force is applied, a force will always give the same
displacements relative to its direction.
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Figure 3.1: The relation between strain and stress. Source: [3].

For many ductile materials, the relation between stress and strain starts out to be linear
until a certain strain ε0 (also called the limit of proportionality) is reached, see also Figure
3.1. If the strain is larger than this value, the object can start to deform plastically (i.e. the
deformation will become permanent) or even break down. Throughout this paper, we assume
that the strains do not surpass the limit of proportionality. This assumption that the ratio
between the stress and the strain is linear, is the principle of linear elasticity theory.

According to Hooke’s law, we have the relation [2]

σxx = λ(exx + eyy + ezz) + 2Gexx

σyy = λ(exx + eyy + ezz) + 2Geyy

σzz = λ(exx + eyy + ezz) + 2Gezz

σxy = Gexy

σxz = Gexz

σyz = Geyz

(3.8)

where λ is Lamé’s first parameter, and G the shear modulus. This system of equations can
also be written as

σij = λekkδij + 2Geij for 1 ≤ i, j ≤ 3 (3.9)

where Einstein’s convention is used (to sum over k, in this case), and δ being Kronecker’s
delta function. Equivalently, this is the same as

σ = λTr(e)I + 2Ge (3.10)
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3.3 Other elastic properties

Other elastic moduli are the bulk modulus, Young’s modulus, Poisson’s ratio, and the P-wave
modulus. For homogeneous isotropic materials, these variables are dependent of each other.
Each variable can be computed if any two of the moduli is known. Usually, we use the Young’s
modulus, also known as the modulus of elasticity, which is denoted by E. Furthermore, we
use the Poisson’s ratio ν.

A material like steel requires more stress to be exerted to deform a certain distance compared
with rubber. The modulus of elasticity of steel (2 · 108Pa) is much larger than for rubber
(approximately 5 · 104Pa). It is defined as

E =
G(3λ+ 2G)

λ+G
(3.11)

When a material is compressed in one direction, it usually not only deforms in this direction
but also expands in the other two directions perpendicular to the direction of compression.
This is called the Poisson effect. This effect depends on the so called Poisson ratio of the
material. This dimensionless quantity is denoted by ν and is equal to

ν =
λ

2(λ+G)
(3.12)

3.4 The linear elasticity equations

Using the relations between stress and displacement as well as the relations between stress
and strain, the linear elasticity equations can be derived. This set of equations is based on
the equations of motion. According to Newton’s equation of motion, the force in a particular
direction at each particle is equal to the mass (or in this case, the density ρ of the material
around the particle) multiplied by the acceleration of the particle in the same direction. It
can be shown that the corresponding equations of motions are [2]

∂σxx
∂x

+
∂σxy
∂y

+
∂σxz
∂z

+ Fx = ρ
∂2ux
∂t2

∂σyx
∂x

+
∂σyy
∂y

+
∂σyz
∂z

+ Fy = ρ
∂2uy
∂t2

∂σzx
∂x

+
∂σzy
∂y

+
∂σzz
∂z

+ Fz = ρ
∂2uz
∂t2

(3.13)

Here, Fx, Fy, and Fz are body forces. Gravity is an example of a body force in the z direction.

The partial derivatives
∂σij

∂xj
in (3.13) can be seen as the internal forces caused by the stresses

in the object.

Equation (3.13) can be simplified to

∂σij
∂xj

+ Fi = ρ
∂2ui
∂t2

(3.14)

or by using tensor notation
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∇ · σ + F = ρ
∂2u

∂t2
(3.15)

where (∇ · σ)i =
∂σij

∂xj
(as a regular matrix product, but with the derivatives in front).

It is possible to eliminate σ from (3.13) and derive a differential equation using only the
displacement variables. To do so, substitute (8.38) in (3.8). Next, substitute the resulting
expressions for σ in (3.13). This results in the alternative equations of motion

G∆u+ (λ+G)
∂

∂x

(
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

)
+ Fx = ρ

∂2ux
∂t2

G∆v + (λ+G)
∂

∂y

(
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

)
+ Fy = ρ

∂2uy
∂t2

G∆w + (λ+G)
∂

∂z

(
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

)
+ Fz = ρ

∂2uz
∂t2

(3.16)

or alternatively

G
∂2ui
∂x2

j

+ (λ+G)
∂2uj
∂xixj

+ Fi = ρ
∂2ui
∂t2

for 1 ≤ i ≤ 3 (3.17)

or in vector notation as

G∆u + (λ+G)∇(∇ · u) + F = ρ
∂2u

∂t2
(3.18)

3.5 The boundary value problem

Although (3.16) seems easier to use than (3.13) since we eliminated the use of the stress
variable, it is less practical. In contact mechanics, boundary conditions for the elasticity
equations are crucial. There are two main boundary conditions, conditions for the traction
and conditions for the displacement at the surface. Both can be used at the same time for
different boundaries.

Traction boundary conditions should be applied on a boundary if a known force is acting on
the surface. For example, if a constant pressure p0 is being exerted on a boundary Γ1, then
the corresponding boundary condition should be −p0 = r = σ · n on Γ1.

It is also possible to specify the displacement at a boundary. If a boundary Γ2, for example, is
attached to a solid wall, the displacement should be zero. This corresponds to the boundary
condition u = 0 on Γ2.

Finally, the initial values should be specified. Since equation (3.16) is of second order with
respect to the time variable, both initial displacements u as well as the velocity for the
displacements u̇ should be specified. Usually, we suppose that the object is in rest at t = 0,
which corresponds to u = u̇ = 0 as the initial conditions.

In Chapter 7, we will create a finite difference discretisation of the elasticity equations. For-
mulation (3.13) is used, since we will describe boundary conditions for the traction.



Chapter 4

The basics of contact mechanics
and Hertz theory

In the previous chapter, the deformation of a single object has been discussed. The elasticity
equations (3.13) describe the change of shape of the object under stress. For systems with
multiple bodies, however, the situation is more complex. Two bodies can interact with each
other and cause deformation. Although the elasticity equations (3.13) are still relevant for
all bodies, the boundary conditions are not typically known in advance. Contact mechanics
involves the computation of the pressure distribution at the boundary of two touching objects.
It can also involve friction and similar phenomenons, but we will usually neglect this.

The Hertz model, developed in 1880, is the first contact model which describes contact me-
chanics accurately. This theory describes the contact between two elastic spheres or between a
sphere and a half-space. The pressure at the boundary as well as the contact force is described
in these situations. In this model creep is neglected, i.e. there is no friction between the two
objects. If two objects have different elastic properties, then friction occurs which makes this
assumption less realistic. Using the Hertz equations the displacements of the materials can
be computed. Although the Hertz model does not describe reality perfectly, is still being used
as of today.

It took a long time (until the 1960s) till research showed that the Hertz model wasn’t com-
pletely accurate. This resulted in the development of new contact models. In 1970 the JKR
model (named by its inventors Johnson, Kendall, and Roberts) was developed. This new
model is an improvement of the Hertz model and also takes adhesion into account; materials
that are close to each other experience van der Waals forces to each other. This attrac-
tion property is being used in the JKR model. The MD (Maugis-Dugdale) model is another
improvement of the contact model and also includes the effect of plastic deformation.

The CONTACT software is capable of computing the pressure distributions and elastic dis-
placements between two objects with general smooth geometries. It is also capable of taking
rolling or sliding into account. The contact area and regions with adhesion or slip can be
identified for many different problems.

Throughout the paper, we only consider the results of CONTACT and Hertz theory when
applicable. In this chapter, we will focus on stationary contact problems, i.e. we will look
at the equilibrium situation when two objects are being pressed upon each other using Hertz
theory. For this equilibrium situation, the contact force and pressure distribution at the

13
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contact area will be derived as function of the penetration. If friction is neglected, the same
contact force and pressure distribution can be used for time-dependent contact problems.

4.1 Deformation of an elastic half space under stress

First, we look at the situation where there is only one body. We assume that this body is an
elastic half space (i.e it can be represented by {(x, y, z) : z ≤ 0} in the static situation without
external forces). Now imagine a force Fz pushing downwards at the origin. The equilibrium
solution satisfies the stationary elasticity equations with no external forces

∂σij
∂xj

= 0 for i = 1, 2, 3 (4.1)

The force Fz is described by a boundary condition for the traction at the top of the half space.
Furthermore, since the half plane is infinity large, we have u(x, y, z)→ 0 as x2 +y2 +z2 →∞
for our other boundary conditions. Then, according to [1], the displacement caused by this
force is:

ux =
1 + ν

2πE

[
xz

r3
− (1− 2ν)x

r(r + z)

]
Fz (4.2)

uy =
1 + ν

2πE

[
yz

r3
− (1− 2ν)y

r(r + z)

]
Fz (4.3)

uz =
1 + ν

2πE

[
2(1− ν)

r
− z2

r3

]
Fz (4.4)

where r2 = x2 + y2 + z2.

So for the surface elements, i.e. points (x, y, z) ∈ R3 such that z = 0, we in particular have

ux = − (1 + ν)(1− 2ν)x

2πEr2
Fz (4.5)

uy = − (1 + ν)(1− 2ν)y

2πEr2
Fz (4.6)

uz =
(1− ν2)

πEr
Fz (4.7)

Note that since z = 0 we also have r2 = x2 + y2. Equation (4.5) and (4.6) are the similar,
as we would expect from the symmetry of the problem. From these equations, it appears
that the larger the distance from the origin, the smaller the displacement. We assumed that
no friction occurs in the problem, so that only the z-component of the displacement (i.e.
equation (4.7) is of importance.

If there are multiple forces of varying magnitude and position, then the resulting displacement
is the sum of the individual solutions. Usually, a force is not exerted on a single point but
on a certain area A. In this case we are interested in the pressure p, i.e. the force per square
unit, that is being exerted on the surface. We assume that the pressure is continuous. Then,
using equation (4.7), the z-displacement at a point (x, y) on the surface is given by
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uz =

∫∫
A

1− ν2

πE
· p
r

dudv =
1

πE∗

∫∫
A

p(u, v)√
(u− x)2 + (v − y)2

dudv (4.8)

where

E∗ =
E

1− ν2
(4.9)

A crucial part of Hertz theory tells how the pressure is distributed around the contact area.
Let a be the radius of the contact area. Then p is assumed to be of the form

p(r) =

p0

(
1− r2

a2

)1/2

for |r| ≤ a

0 for |r| > a

(4.10)

The pressure is maximal at the center of the sphere and is 0 outside the contact area. The
total force is by definition equal to

F =

∫ a

0

p(r)2πrdr = 2πp0

[
1

3
a2

(
1− r2

a2

)3/2
]a

0

=
2

3
πp0a

2 (4.11)

As derived in [4], if we substitute (4.10) into (4.8), we arrive at the displacement

uz =
πp0

4E∗a
(2a2 − r2) (4.12)

4.2 Contact between a rigid sphere and an elastic surface

Imagine the contact between a rigid sphere of radius R and an elastic half space. The height
of the sphere surface is

z(x, y) = R−
√
R2 − x2 − y2 ≈ x2 + y2

2R
(4.13)

or similarly z(r) ≈ r2

2R . Let δ be the approach between the sphere and the surface. The
approach is a scalar and is defined as the minimum vertical distance between the undeformed
bodies. If the approach is positive, there is no contact yet between the two bodies. The
approach is negative if and only if penetration between the two bodies occurs.

The vertical displacement at some point (x, y) is approximately

uz = δ − (R−
√
R2 − r2) ≈ δ − r2

2R
(4.14)

where r2 = x2 + y2. Equation (4.14) needs to be of the form (4.12). For this to be true, we
must have

δ =
πp0a

2E∗
(4.15)
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and furthermore

1

2R
=

πp0

4E∗a
=⇒ a =

πp0R

2E∗
(4.16)

A direct consequence is that the contact radius satisfies

a2 = Rδ (4.17)

and we also can retrieve an explicit formula for p0:

p0 =
2E∗a

πR
=

2E∗

πR

√
Rδ =

2E∗

π

√
δ

R
(4.18)

And finally by substituting equations (4.17) and (4.18) into (4.11) we arrive at the relation
between the contact force F and the approach δ.

F =
2

3
πp0a

2 =
2

3
π

2E∗

π

√
δ

R
Rd =

4

3
E∗R1/2δ3/2 (4.19)

Similarly, by substituting (4.18) into (4.10) we arrive at the explicit pressure distribution

p(r) =
2E∗

π

√
δ

R

(
1− r2

a2

)1/2

(4.20)

4.3 Contact between two curved surfaces

Hertz theory can also be applied in the more general problem with two bodies with curved
surfaces.

Suppose the curvature of both surfaces is R1 and R2, respectively. It appears that (see [4])
equations (4.17) - (4.19) remain true, as long as the radius R is chosen such that

1

R
=

1

R1
+

1

R2
(4.21)

4.4 Contact between elastic bodies

A simple adjustment can be made to apply the previous theory to the case with two curved
surfaces where both bodies are elastic. Suppose the bodies have an elasticity modulus E1 and
E2, and Poisson’s modulus ν1 and ν2, respectively. Then if we define

1

E∗
=

1− ν2
1

E1
+

1− ν2
2

E2
(4.22)

instead of equation (4.9), then the same formulas remain correct. Note that the approach δ
here is distance between the two bodies if the deformation of both bodies is neglected.
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4.5 Using CONTACT to compute p and F

According to Hertz theory, the pressure p and contact force F are described by equations
(4.19) and (4.20). However, these equations are only valid for spherical objects.

CONTACT, however, is capable of working with bodies with more complex geometries. Using
an input file, this geometry can be described which is then used by CONTACT for the internal
computations. The user can either supply the penetration, or the so called undeformed
distance as well as the contact force. The choice of the approach depends on the contact
problem.

CONTACT can be used to solve many kinds of contact problems. It is able to identify the
size and shape of the contact area and compute pressure distributions in this contact area as
well as elastic displacements of the bodies. For the problems researched in this report, we
generally assume that no friction occurs. CONTACT, however, can take friction into account
and is able to compute tangential shear stresses. Furthermore, the regions with adhesion and
with slip can be identified using CONTACT.

Additionally, CONTACT also computes the elastic displacement of the elements at the bound-
ary. These displacements correspond to the stationary situation, i.e. they are the result of
solving the stationary elasticity equations (4.1).

4.5.1 The penetration and undeformed distance

The penetration is defined as the distance between two undeformed objects. It can be mea-
sured at any point (x, y) and is denoted by δ(x, y). It can be written as

δ(x, y) = z1(x, y)− z2(x, y) (4.23)

where z1 and z2 are the height of the bottom and upper object, respectively.

In some situations, the rigid height of an object is not yet known. For these problems. we
define the undeformed distance h(x, y) as the geometric distance between the two bodies in
its undeformed state. In this definition, however, it doesn’t matter from which height the
objects are measured. Unlike the penetration, the undeformed distance is hence defined up
to a constant. Usually, this constant is chosen such that

0 = min(x,y)∈Ωh(x, y) (4.24)

If this definition is used, the difference between the penetration and the undeformed distance
is equal to a constant, which is the approach.

δ(x, y) = h(x, y)− δ (4.25)

The undeformed distance is useful in situations where the approach is not known. It represents
the geometry of two objects which is in particular of importance for determining the contact
area and the distribution of the pressure.

A 1-D example can be shown in Figure 4.1. This figure shows the shape of two arbitrary
objects in their undeformed state at a certain point in time. Here, the approach is approx-
imately δ ≈ 0.2mm. The red line represents the penetration. The undeformed distance can
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also be represented by the red line. Even after translating this in the y-direction, the red line
remains a valid representation for the undeformed distance.

Figure 4.1: The penetration between two objects

4.5.2 Using CONTACT

CONTACT is capable of computing the pressure distribution in the contact area, the normal
force as well as the elastic displacements at the surface near the contact area in two different
ways. In both situations, the undeformed distance should be supplied to CONTACT. CON-
TACT can use this to determine the shape of the interacting bodies. Furthermore, either the
normal force or the approach should be supplied. The two options are possible in different
situations.

Consider the stationary problem of a sphere resting on an elastic half space. The contact
force is simply equal to the force the gravity exerts on the sphere, i.e. Fn = mg, where m is
the mass of the sphere.

In this situation, one is interested in computing the approach. This is not known beforehand.
The contact force, however, is known, since we are looking at a stationary problem. If this
contact force is supplied, then CONTACT is capable of computing the initial contact point,
the pressure distribution around it as well as well as the static displacement of the surface
elements near the contact area.
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CONTACT requires the undeformed distance to be specified for a rectangular grid. This grid
is divided by mx × my elements. The horizontal distance between the elements is ∆x and
the vertical distance is ∆y. These variables can be chosen by the user. A smaller ∆x or ∆y
will result in an improved accuracy, but this is more resource expensive for CONTACT. It
is important that the user makes sure that this rectangular grid contains the whole contact
area. CONTACT returns the pressure and static displacements in the same grid points as
the user supplies.

This approach is useful for stationary problems where the contact force is known beforehand.
This is not the case for time-dependent problems, since the normal force does not have to
be equal to the gravitational force. For time-dependent problems, however, the approach
is known at each time step. If the approach is supplied, then CONTACT is capable of
determining the contact force, the pressure as well as the static displacements of the boundary
elements.

For these kind of problems, the approach and the undeformed distance, and thus the penetra-
tion, are both known at each time step. The contact force Fn, however, is not. CONTACT
can therefore be used to compute the normal force Fn and the pressure as a function of the
approach δ.

4.5.3 Example input file

To run CONTACT, an input file needs to be created. This input file contains information
such as the elasticity parameters, size and mesh width of the grid, lots of CONTACT param-
eters representing the type of contact problem, as well as the undeformed distance combined
with the contact force or the penetration. After running CONTACT using this input file as
parameter, several output files are created. Most importantly, these output file contain the
contact force, as well as the elastic translation and pressure at each grid point.

As an example, suppose that we are interested in the usual Hertz problem. Consider a rigid
sphere of radius R = 0.10m. The sphere penetrates an elastic half space with Young’s modulus
E = 1.5 · 108, and Poisson’s ratio ν = 0.5 for a total of 5mm. The following input file can be
used.

1 3 module % result element 1, Contact patch 1
2 % Next case 1
3 200020 P−B−T−N−F−S PVTIME, BOUND , TANG , NORM , FORCE , STRESS
4 022020 L−D−C−M−Z−E FRCLAW, DISCNS, INFLCF, MATER , RZNORM, EXRHS
5 002111 G−I−A−O−W−R GAUSEI, IESTIM, MATFIL, OUTPUT, FLOW , RETURN
6 200 30 30 1 1.0E−04 MAXGS , MAXIN , MAXNR , MAXOUT, EPS
7 0.000 0.000 0.000 0.000 FUN, FUX, FUY, CPHI
8 % Note: N=1 means FUN == FN, F=0 means FUX == CKSI, FUY == CETA
9 0.3000 0.3000 FSTAT, FKIN

10 0.5000 0.5000 5.0000E+07 1.0000E+20 SIGMA 1,2, GG 1,2
11 1 IPOTCN
12 11 11 −0.028 −0.03 0.0050 0.0050 MX,MY,XL,YL,DX,DY
13 9 1 IBASE, IPLAN
14 % PENETRATION, (1)−(2): SPECIFIED PER ELEMENT
15

16 1.4586E−03 2.6352E−04 −6.5563E−04 −1.3068E−03 −1.6954E−03
17 −1.8246E−03 −1.6954E−03 −1.3068E−03 −6.5563E−04 2.6352E−04
18 1.4586E−03
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19

20 2.6352E−04 −9.1663E−04 −1.8246E−03 −2.4679E−03 −2.8519E−03
21 −2.9796E−03 −2.8519E−03 −2.4679E−03 −1.8246E−03 −9.1663E−04
22 2.6352E−04
23

24 −6.5563E−04 −1.8246E−03 −2.7241E−03 −3.3616E−03 −3.7421E−03
25 −3.8686E−03 −3.7421E−03 −3.3616E−03 −2.7241E−03 −1.8246E−03
26 −6.5563E−04
27

28 −1.3068E−03 −2.4679E−03 −3.3616E−03 −3.9949E−03 −4.3730E−03
29 −4.4987E−03 −4.3730E−03 −3.9949E−03 −3.3616E−03 −2.4679E−03
30 −1.3068E−03
31

32 −1.6954E−03 −2.8519E−03 −3.7421E−03 −4.3730E−03 −4.7497E−03
33 −4.8749E−03 −4.7497E−03 −4.3730E−03 −3.7421E−03 −2.8519E−03
34 −1.6954E−03
35

36 −1.8246E−03 −2.9796E−03 −3.8686E−03 −4.4987E−03 −4.8749E−03
37 −5.0000E−03 −4.8749E−03 −4.4987E−03 −3.8686E−03 −2.9796E−03
38 −1.8246E−03
39

40 −1.6954E−03 −2.8519E−03 −3.7421E−03 −4.3730E−03 −4.7497E−03
41 −4.8749E−03 −4.7497E−03 −4.3730E−03 −3.7421E−03 −2.8519E−03
42 −1.6954E−03
43

44 −1.3068E−03 −2.4679E−03 −3.3616E−03 −3.9949E−03 −4.3730E−03
45 −4.4987E−03 −4.3730E−03 −3.9949E−03 −3.3616E−03 −2.4679E−03
46 −1.3068E−03
47

48 −6.5563E−04 −1.8246E−03 −2.7241E−03 −3.3616E−03 −3.7421E−03
49 −3.8686E−03 −3.7421E−03 −3.3616E−03 −2.7241E−03 −1.8246E−03
50 −6.5563E−04
51

52 2.6352E−04 −9.1663E−04 −1.8246E−03 −2.4679E−03 −2.8519E−03
53 −2.9796E−03 −2.8519E−03 −2.4679E−03 −1.8246E−03 −9.1663E−04
54 2.6352E−04
55

56 1.4586E−03 2.6352E−04 −6.5563E−04 −1.3068E−03 −1.6954E−03
57 −1.8246E−03 −1.6954E−03 −1.3068E−03 −6.5563E−04 2.6352E−04
58 1.4586E−03
59 % UNRESTRICTED PLANFORM
60 0 module

For more information about all the input parameters, one could consult the CONTACT user
guide [5]. In our case, we used N = 0. This parameter specifies whether the normal force or
the approach is prescribed. We used N = 0 and prescribed the approach δ = 0.005m.

It is worth noting that CONTACT requires both objects to be non-rigid. To circumvent this,
we model the rigid sphere as an elastic sphere with a very large Young’s modulus E > 1020.
In this way, the sphere behaves like a rigid object.
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4.6 Comparison between Hertz theory and CONTACT

Given the approach for the Hertz problem, the contact force can be computed using Hertz
theory and is given by equation (6.1). The pressure distribution around the contact area is
given by (4.10). Alternatively, the same can be computed by using CONTACT. Given the
maximum approach δ measured from the lowest point of the sphere, the penetration between
the surface and the sphere at any given point (x, y) is

δ(x, y) =
√
R2 − x2 − y2 − δ for x2 + y2 ≤ R2 (4.26)

This penetration can then be supplied to CONTACT, similarly to the example input file as
given before. The contact force can then be compared with the result of the Hertz problem,
see Figure 4.2. Clearly, the contact force computed using CONTACT corresponds to the
Hertz solution. As the penetration increases, however, the results become slightly off. This
is because the penetration supplied to CONTACT was computed for a mesh. CONTACT
interpolates this penetration for internal points. As the mesh becomes finer, this interpolation
becomes better, and the result becomes more accurate.
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Figure 4.2: Comparison of the contact force computed using Hertz theory and CONTACT.



Chapter 5

Numerical methods for
dynamical contact problems

5.1 Newton’s equations of motion for contact problems

For contact dynamics, Newton’s equations of motion play an important role. Consider the
following example (which will be more thoroughly discussed in Chapter 6). Consider a small
object with mass m that penetrates an elastic surface. The height of the object can be
represented by z(t). One is interested in determining this height.

If the object penetrates the surface, the surface will indent slightly. A contact force Fn
upwards will then be exerted by the surface as discussed in Chapter 4. This force, however,
becomes larger as more penetration occurs and is hence a function of the height of the object.
The resulting force therefore is F (z) = Fn(z)− Fg. By Newton’s second law of motion, this
resulting force is proportional to the acceleration of the object, i.e.

F (z) = m
d2z

dt2
(5.1)

Newton’s equations of motion are crucial for dynamic contact problems. In general, the corre-
sponding equations of motion for linear structural dynamic problems in multiple dimensions
have the form

M ẍ + Cẋ +Kx = F(t) (5.2)

where M represents the mass matrix, C the stiffness, and K the damping matrix. F is the
vector of external forces which depends on the time variable.

In many contact problems, however, the equation of motion is non-linear. The contact force
itself is generally non-linear, as we have discussed in Chapter 4. For spherical contact on an
elastic-half plane, we have seen that contact force Fn is proportional to δ3/2 as long as δ ≥ 0.

The most general form of the Newton’s equation of motion is

M(x)ẍ + P (x, ẋ) = F(t) (5.3)

23
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with M and P being any function.

5.2 Forward / Backward Euler

To solve differential equation (5.3), integration schemes are required. For simplicity and
completeness, we will start with the well known Forward and Backward Euler integration
schemes. These schemes allow to integrate first order ordinary differential equations with
respect to time. To apply this, we first transform equation (5.3) to a (twice as large) system
of first order differential equations. We introduce y = ẋ so that

ẋ = y

ẏ = M−1(x)(F(t)− P (x,y))
(5.4)

or shortened as ż = g(t, z) for z = (x,y)T .

The Forward Euler scheme is the simplest explicit time integration scheme. It is of order
O(∆t) accurate and is described by

zk+1 = zk + ∆tg(tk, zk) (5.5)

The Backward Euler scheme is the simplest implicit time integration scheme, also of order
O(∆t) accurate, and is described by

zk+1 = zk + ∆tg(tk+1, zk+1) (5.6)

Often, because g can be a complex non-linear function, it is not possible to write zk+1 as a
simple function if tk+1 and zk. Instead, one needs to apply an iterative scheme to approximate
this solution. Picard iteration is the easiest one to apply. One can set z0

k+1 = zk as a good
initial guess and repeatedly compute

zj+1
k+1 = zk + ∆tg(tk+1, z

j
k+1) (5.7)

iteratively until ‖zj+1
k+1 − zjk+1‖ < ε for a certain error margin. Alternatively, one can apply a

faster converging iterative method like Newton-Raphson or the secant method.

5.3 Runge Kutta / Radau methods

The Runge-Kutta methods are generalizations of the Forward/Backward Euler methods.
These methods are used to integrate the same first order ordinary differential equation with
respect to time, but with a higher order accuracy.

All Runge-Kutta methods have the form

zk+1 = zk + ∆t

n∑
i=1

biki (5.8)
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where

ki = g(tk + ci∆t, zk + ∆t

n∑
j=1

aijkj) (5.9)

The components of the matrix A (with components aij) and vectors c and b are often com-
pactly written by using a Butcher tableau. Each Runge-Kutta/Radau scheme can be de-
scribed by one.

The Butcher tableau corresponding to Runge-Kutta methods are strictly lower triangular
matrix. As a result, computing ki does not require the use of kj for j ≥ i. Hence the method
is explicit. As an example, for the widely used RK4 method, for example, we have the tableau

c1 a11 a12 . . . a1n

c2 a21 a22 . . . a2n

...
...

...
...

cb an1 an2 . . . ann
b1 b2 . . . bn

=

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0

1 0 0 1 0
1/6 1/3 1/3 1/6

(5.10)

Using (5.8) and (5.9), this corresponds to the fully explicit scheme of order O(∆t4):

k1 = ∆tg(tk, zk)

k2 = ∆tg(tk +
1

2
∆t, zk +

1

2
k1)

k3 = ∆tg(tk +
1

2
∆t, zk +

1

2
k2)

k4 = ∆tg(tk + ∆t, zk + k3)

zk+1 = zk +
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4

The Runge-Kutta methods can be used to achieve a high order accuracy at the cost of more
function evaluations. Using a Runge-Kutta method of n stages (i.e. the Butcher tableau has
size n×n), an accuracy of O(∆tn) can be achieved. The disadvantage of these schemes is that
the corresponding region of stability is small; this is especially a problem for stiff differential
equations which we will often consider.

The matrix A, representing the Butcher tableau of the integration scheme, does not have to
be a strictly lower triangular matrix. If this is not the case, then the corresponding integration
scheme is implicit. The Radau methods are fully implicit Runge-Kutta schemes and can be
seen as generalisations of Backward Euler. As described in [6], the default Radau5 method
is given by the Butcher tableau

0
1

9

−1−
√

6

18

−1 +
√

6

18
3

5
−
√

6

10

1

9

11

45
+

7
√

6

360

11

45
− 43

√
6

360
3

5
+

√
6

10

1

9

11

45
+

43
√

6

360

11

45
− 7
√

6

360
1

9

4

9
+

√
6

36

4

9
−
√

6

36

(5.11)
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Since the Radau methods are implicit, an iterative scheme should be used to determine
the solutions zk+1. Additionally, each iteration requires the evaluation of multiple function
evaluations, which can therefore be very costly. The main advantage is that all Radau methods
are A-stable, and can hence be used for stiff problems. Additionally, the accuracy of the Radau
methods is O(∆t2n−1), where n is the number of stages.

5.4 The Verlet method

The Verlet method [7] is an explicit integration scheme can be used to integrate the second
order differential equation of the form ẍ = g(x). The method is of order O(∆t) accurate and
is given by

x1 = x0 + v0∆t+
(∆t)2

2
g(x0), and

xk+1 = 2xk − xk−1 + (∆t)2g(xk) for k ≥ 1

(5.12)

where x0 and v0 are the position and speed at time t = t0. An interesting property of the
Verlet method is that it is much more energy conserving compared with other explicit methods
with a similar order of convergence such as Forward Euler. Although the method is explicit
and we do not keep track of the velocity components, the Verlet scheme keeps track of the
total amount of energy. This is explained in [8] and is in particular due to the symplecticity
and time-reversibility of the Verlet scheme. We will also show this behaviour numerically in
Chapter 6. The method, however, it is not always applicable for the most general case (5.3),
for example when there is air resistance, so that g is also a function of ẋ.

5.5 Leapfrog integration

Leapfrog integration is similar to the Verlet method. It is an explicit scheme usable for differ-
ential equations of the form ẍ = g(x). Similarly to the Verlet method, Leapfrog integration
is very energy conserving since the method is symplectic and time-reversible. It is, however,
of O(∆t2) accurate, yet the number of function evaluations per time step remains the same
as for Verlet or Forward Euler.

The leapfrog method keeps track of both the displacement and velocity components. A unique
property of the Leapfrog method is that the displacement and velocity components ’leapfrog’
over each other. That is, the velocity components are described exactly half way between two
consecutive displacement components. It is defined by

xk+1 = xk + ∆tvk+1/2

vk+3/2 = vk+1/2 + ∆tg(xk+1)
(5.13)

for k ≥ 1. Here, v represent the velocity components. Note that (5.13) is not self-starting,
since the component v1/2 is not known. This term can, however, be approximated using a
self-starting scheme such as Forward Euler.

A disadvantage of the Leapfrog method is that the time step ∆t must remain constant. This
is required [9] to maintain stability.



5.6. NEWMARK’S METHOD 27

5.6 Newmark’s method

The advantage of the Verlet and Leapfrog method is that the methods are energy conserving.
However, both schemes are explicit. This is a problem since explicit methods are unstable
for very stiff problems.

Newmark’s method [10] (also known as the Newmark-beta method) is a popular integration
scheme for problems in structural dynamics. The method is useful because it not only does
it preserve energy, it is also implicit; hence the method has better stability properties than
Verlet or Leapfrog.

xk+1 = xk + ∆tvk +
(∆t)2

2
((1− 2β)ak + 2βak+1)

vk+1 = vk + ∆t((1− γ)ak + γak+1)

(5.14)

Here vk+1 and ak+1 are approximations of the velocity ẋ and acceleration ẍ at time tk+1,
respectively. The acceleration ak+1 is derived from the equations of motion (5.3) by

M(xk+1)ak+1 + P (xk+1,vk+1) = F(tk+1) (5.15)

Both parameters γ and β are required to be in [0, 1]. The method is implicit, unless both
γ and β are zero. If γ = 1/2, then the method is of second order accuracy and there is no
numerical damping. If, however, γ 6= 1/2, then the method is only of order O(∆t). The
parameter β defines how the acceleration is interpolated. Usually one takes β = 1/4, so
that the acceleration is averaged between timestep tk and tk+1. Another possibility is setting
β = 1/6, which assumes that the acceleration is linear in [tk, tk+1].

5.7 The HHT method

The disadvantage of the Newmark-beta method is that numerical damping can only be in-
troduced by lowering the order of accuracy. With this in mind, the HHT method (named
after its inventors Hilber, Hughes, and Taylor), also known as the α-method, was constructed.
The HHT method [11] is an extension of the Newmark method. An extra parameter α is
introduced. The equations (5.14) remain the same, however, instead of the discrete Newton’s
equation of motion (5.15) the HHT method is slightly different:

M(xk+1)ak+1 + (1− α)P (xk+1,vk+1) + αP (xk,vk) = F ((1− α)tk+1 + αtk) (5.16)

If α = 0, then the term αP (xk,vk) drops out of (5.17) and the right-hand side will be equal
to F (tk+1), so that we are left with Newmark’s method. The parameters can be modified
so that numerical damping can occur. If γ and β are chosen such that γ = (1 + 2α)/2 and
β = (1 + α)2/4, then the method is second order accurate.
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5.8 The generalized-α method

The generalized-α method [12] is again a generalisation of the HHT method. Once again the
equations (5.14) remain the same, but now instead of the parameter α we have two parameters
αM and αF . The corresponding equation of motion is:

(1− αM )M(xk+1)ak+1 + αMM(xk)ak+

(1− αF )P (xk+1,vk+1) + αFP (xk,vk) = F ((1− αF )tk+1 + αF tk) (5.17)

If αM = 0, then this is the HHT method with parameter α = αF . This method gives an
extra degree of freedom. Parameters γ and β are usually chosen as γ = 1/2− αM + αF and
β = (1− αM + αF )2/4.

5.9 Adams methods

Most schemes in the previous sections are similar in the fact that each is a single-step scheme;
that is, to compute a component at time step k+1 we only need to know the components at the
previous time step k. Multi-step schemes make use of earlier components that have already
been computed at iteration k − 1 and before. This information can be used to have a better
approximation of the acceleration. This is especially useful for stiff differential equations
where energy conservation is of importance.

Adams methods [13] are multistep integration schemes. They are capable of solving the
differential equation ẋ = f(x, t); hence a transformation as in Section 5.2 should be made to
transform to a system of first order differential equations. The solution at the next time step
is approximated by using a polynomial of order n.

A general multi-step scheme of n steps has the form

n∑
i=0

aixk+i = ∆t

n∑
i=0

bif(xk+i, tk+i) (5.18)

Usually, we assume that an = 1 by simply scaling this equation. Hence, after time step
k + n− 1 we can set

xk+n = ∆t

n∑
i=0

bif(xk+i, tk+i)−
n−1∑
i=0

aixk+i (5.19)

There are different families of Adams methods. The Adams-Bashforth methods are explicit
methods; they require that an−1 = −1 and ai = 0 for i 6= n − 1. The coefficients bi define
the integration scheme. For Adams-Bashforth methods it is required that bn = 0 since the
methods are explicit. The Adams-Moulton methods are implicit Adams method and do not
have a restriction on bn.
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5.10 Backward differentiation formulas

The Backward differentiation formulas [14] are another family of implicit multistep integration
schemes. They can also be described as in (5.19). Compared with the Adams-Moulton
methods, however, the coefficients bi for i = 0 to n − 1 are required to be zero. Hence, the
expression contains only a single function evaluation. On the other hand, the coefficients ai
for i = 0 to n − 1 are not required to be zero; these are chosen to achieve the highest order
of accuracy.

Figure 5.1: The stability region for different backward differentiation formulas. Note that
stability is achieved outside these circles, similarly to the stability of the Backward Euler
(BDF1) method.

As an example, for n = 1 we have the usual Backward Euler scheme. For n = 2, we have the
components a0 = 1

3 , a1 = − 4
3 and β = 2

3 .

When using Backward differentiation formulas, a very important thing to realise is the sta-
bility of the method. See Figure 5.1 for the stability region of the first 6 Backward difference
formulas. The first two methods are A-stable, but as the order of the Backward differen-
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tial formula increases, the method becomes more and more unstable. The order of the used
Backward differentiation formulas should therefore be chosen carefully in order to preserve
stability while keeping the numerical scheme accurate. Backward difference formula of order
O(∆tn) for n ≥ 7 are of no use, since the contour of the stability region crosses the negative
real axis.



Chapter 6

Rigid body motion

The goal of this chapter is to get a feeling of how dynamical contact problems can be derived
and solved using a time integration scheme such as the ones we have discussed in Chapter 5.
We will consider a simple contact problem involving a sphere falling on an elastic surface, as
we have already shortly mentioned in the beginning of Chapter 5. This problem will result in
a one-dimensional differential equation for the height of the sphere. Solving this differential
equation requires the use of a time-integration scheme. Multiple time integration schemes as
described in Chapter 5 will be used to solve the problem. This will allow us to determine
basic properties of the numerical schemes that occur for dynamical contact problems such
stability and energy conservation.

Consider a solid sphere of radius R which is dropped from height z0 above an elastic half-
space having Young’s modulus E and Poisson’s ratio ν. Before dropping this sphere, it has
no vertical speed, i.e. v0 = 0. The mass of the ball is simply m = 4

3πR
3ρ, where ρ is the

density of the material of the sphere.

The sphere is supposed to be either rigid or elastic, but in the latter case we assume that
the modulus of elasticity of the ball is the same as for the half-plane. This is required, since
otherwise friction would occur during contact. In this case, the theory would not be realistic
any more and we wouldn’t be able to compute the elastic deformation for each body.

For now, we are only interested in the rigid height of the sphere as a function of the time.
The height is measured from the lowest point of the sphere and is allowed to be negative.
The height z(t) is therefore equal to z(t) = −δ(t), with δ(t) being the approach.

Since Hertz theory describes the normal force between two spheres or between a sphere and
an elastic half space, the rigid height of the sphere can easily be solved. If one is interested
in the deformation of the surface as function of the time, one could apply the quasi-static
approach as will be described in Section 6.4. This approach, however, is not very accurate
since the inertia of particles at the boundary elements of the half-space is ignored. In Chapter
7 we will describe a different method to solve this problem. This method takes inertia into
account but is computationally expensive.

31
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6.1 Derivation of the differential equation

Equation (4.19) gives a relation between the approach of the rigid sphere in the elastic half
space and the normal contact force. With this in mind, we can easily retrieve the differential
equation describing this test problem.

At all times, gravity exerts a force on the sphere pointing downwards. This force is constant
and is given by Fg = −mg. The minus sign is important since the positive z direction points
upwards. There can also be a contact force pointing upwards. If the height of the ball with
respect to the z = 0 plane at a certain point in time is z(t) (which is negative if and only if
there is penetration), then the approach is δ(t) = −z(t). Equation (4.19) is valid only if the
approach is positive; if the approach would be negative, there would be no contact between
the sphere and the half-plane and therefore the half-plane would not exert any force upwards.
Equation (4.19) can hence be formulated as

Fn =
4

3
E∗R1/2max(0,−z)3/2 (6.1)

So that the resulting force is

F (z) = Fn + Fg =
4

3
E∗R1/2max(0,−z)3/2 −mg (6.2)

By Newton’s second law, F (z) = mz̈. Dividing by m gives

z̈ =
4

3m
E∗R1/2max(0,−z)3/2 − g (6.3)

This is a non-linear ordinary differential equation of form (5.3), where M ≡ 1, F ≡ −g and
P (z) = − 4

3mE
∗R1/2max(0,−z)3/2.

6.2 Properties of the solution

It is very hard (or even impossible) to solve differential equation (6.3) analytically. However,
it is easy to derive some basic properties of the solution. Let t0 be the first moment the ball
touches the surface. Before this point, equation (6.3) can be simplified to

z̈ = −g (6.4)

The exact solution of this is of course z(t) = − 1
2gt

2 + c1t+ c0. Furthermore, since z′(0) = 0
and z(0) = z0, we find c1 = 0 and c0 = z0, so that

z(t) = z0 −
1

2
gt2 (6.5)

for 0 ≤ t ≤ t0. Equation (6.5) describes the height of the sphere during its free fall. It follows
that t0 =

√
2z0. However, after touching the surface, the differential equation becomes

non-linear and very hard to solve analytically. By substituting w := −z and defining a :=

− 4E∗R1/2

3m we can retrieve the following by using separation of variables:
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d2w

dt2
= aw3/2 + g

=⇒ w−3/2 d2w

dt2
= a+ gw−3/2

=⇒ w−3/2d2w = (a+ gw−3/2)dt2

=⇒ w−3/2

a+ gw−3/2
d2w = dt2 (6.6)

We can now try to integrate equation (6.6) twice. Maple can do this analytically. The left side
turns out to be a very large function h made of logarithms and an inverse tangent function.
The right side is simply 1

2 t
2 + c1t+ c0. Since the left-hand side is so complex, calculating the

inverse of this function is extremely hard if not impossible. Therefore, we won’t be able to
express w in an explicit way as function of t.

We do know, however, that at some point t1 > t0, the ball reaches the lowest point. At
this moment, the kinetic energy of the ball is zero. Since there is no damping in the system
and therefore no energy is lost, the solution is symmetric with respect to t = t1. So at
t = t1 + (t1 − t0) the ball will be at height 0 again, and at time t = 2t1 the ball reaches its
original height z0. This cycle repeats indefinitely.

6.3 Solving the problem numerically

Next, we will discuss the numerical methods as described in Chapter 5 applied for this test
problem. All of the methods have been applied for this problem, but we only discuss some
findings since many of the results are similar.

First of all, it is important to realise that differential equation (6.3) is non-linear. This has no
negative impact on the use of explicit time integration schemes. For implicit time integration
schemes such as Backward Euler, however, it usually becomes impossible to express the height
zk+1 at the next iteration explicitly. If the differential equation would have been linear in z,
we could have moved this term to the left side so that the only task at each iteration is to
solve a 2× 2 linear system.

Therefore, we have implemented a Picard iteration in order to solve the implicit expression.
For example, Backward Euler integration for our problem is defined by

zk+1 = zk + ∆tvk+1

vk+1 = vk + ∆t

[
4

3m
E∗R1/2max(0,−zk+1)3/2 − g

]
(6.7)

The linear term ∆tvk+1 can be moved to the left side to get (in matrix-vector notation)

(
1 −∆t
0 1

)(
z
v

)k+1

=

(
z
v

)k
+ ∆t

(
0

4

3m
E∗R1/2max(0,−zk+1)3/2 − g

)
(6.8)

Picard iteration can therefore be applied in the following way. We set
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Figure 6.1: The height of the ball as a function of the time, using a stable method such as
Radau5.

(
z
v

)k+1

j+1

=

(
1 −∆t
0 1

)−1
[(

z
v

)k
+ ∆t

(
0

4

3m
E∗R1/2max(0,−zk+1

j )3/2 − g

)]
(6.9)

iteratively for each j until convergence is reached; e.g. when ‖[z; v]k+1
j+1 − [z; v]k+1

j ‖ < ε for
some small ε > 0. In our test problem, this iterative process always seemed to converge as
long as ∆t remains reasonable (not larger than 1, for example).

The Radau5 method yields the result as we would expect, as can be seen in Figure 6.1. It
is also interesting to look at the total amount of energy in the system. At t = 0, the kinetic
and elastic potential energy are both zero and the potential gravitational energy is maximal.
For t ∈ [0, t0], the potential gravitational energy is slowly transformed to kinetic energy.
Between t = t0 and t = t1, both kinetic and gravitational potential energy are transformed to
potential elastic energy. At t = t1, the kinetic energy is 0, the potential gravitational energy
is minimal (negative since there is penetration), and the elastic energy potential is maximal.
Since there is no damping in the system, the total amount of energy (i.e. the sum of the
kinetic, gravitational, and elastic energy) is constant. This can be see in Figure 6.2. The
cyan line represents the total amount of energy, which is the sum of the kinetic, gravitational,
and elastic energy. As one can see, the total amount of energy does indeed remain constant.

Energy conservation is an important property that is often important to maintain. As we
have seen, this can be achieved by applying Radau5 for a small time step. Radau5, however,
is a relatively expensive method compared with other integration schemes. We will therefore
have a closer look and compare the energy conservation properties of different schemes.

To do so, we will solve (6.3) using multiple integration schemes. In each of the experiments,
we consider a solid ball of radius R = 0.1m and a mass of 10kg that is being dropped from 1m.
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Figure 6.2: The energy of the ball as a function of the time, using a stable method such as
Radau5.

For each method, a constant time step ∆t = 0.001 is used. We vary the coefficient E. Then,
the relative difference of the total amount of energy in the system compared with the total
energy at the beginning is computed for different integration schemes. If this factor is larger
than one, it means that amplification occurs for this integration scheme. A value smaller
than one corresponds to to energy dissipation. Table 6.1 shows the maximum amplification
(or dissipation) factor during the first 10 seconds of the integration. Note that in this table,
we have subtracted one from the amplification factor.

Integrator Accuracy E
2 · 107 2 · 109 2 · 1011

Forward Euler O(∆t) 3, 925 71, 96 268, 7
Backward Euler O(∆t) −0, 764 −0, 9998 −0, 9999

Verlet O(∆t) 1, 091 · 10−3 9, 432 · 10−4 −0, 186
Leapfrog O(∆t2) 2, 127 · 10−5 6, 197 · 10−4 −0, 207

Newmark O(∆t2) −1, 733 · 10−5 −2, 011 · 10−3 −0, 0332
BDF3 O(∆t3) −5, 557 · 10−4 0, 1186 2, 401

Radau3 O(∆t3) −2, 676 · 10−5 5, 603 · 10−3 −0, 745
RK4 O(∆t4) 8, 160 · 10−4 0, 212 1010

Radau5 O(∆t5) 1, 581 · 10−6 4, 333 · 10−4 −0, 116

Table 6.1: The maximum energy amplification / dissipation factor after 10 seconds for differ-
ent integration schemes.

Clearly, the explicit Runge-Kutta methods are unstable and are of no use for stiff problems.
The result of Forward Euler can be seen in Figure 6.3. Note that the height z of the ball
is proportional to the total amount of gravitational energy. After each bounce, the total
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amount of energy is increased. Interestingly, the Verlet and Leapfrog scheme are also explicit
methods but have a lot of energy conservation. However, if E = 2 · 1011 (i.e. we consider a
steel half-space), then the disadvantage of the explicitness of both methods becomes visible.

Figure 6.3: The energy of the ball as a function of the time, using the instable Forward Euler
method.

For implicit methods such as the Radau methods, numerical damping will generally occur.
This effect, however, is small if a method of high order is combined with a small time step.
However, this is computationally expensive because many function evaluations will be needed.

The overall best integrator seems to be the Newmark-beta method. It is energy conserving
similarly to the Verlet and Leapfrog method, but is also very stable, even for very stiff
differential equations; this is because unlike the Verlet or Leapfrog method, the Newmark-
beta method is implicit. Even if the half-space is made out of steel, only a small amount of
numerical damping (or amplification) is created for the Newmark-beta method.

6.4 Using CONTACT to solve the problem

It is interesting to see if this problem can also be solved by using CONTACT. Instead of
using equation (4.19) to determine the contact force, we could also compute the normal force
by using CONTACT. Using this we can compare the solution with the exact solution for the
Hertz problem, and also see if the properties of each numerical method still hold.

For CONTACT one of the two options should be specified, either the contact force or the
penetration. For our problem we are interested in the second option. The surface of the ball
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is discretised on a grid [X,Y ]. The height Zij of the sphere at surface element (Xij , Yij) can
easily be computed

Zij = R−
√
R2 − (X2

ij + Y 2
ij) + z (6.10)

As before, z denotes the rigid height of the ball, measured from its lowest point at x = y = 0.
Note that equation (6.10) is only valid if Zij is real. If it is not real, then the line (Xij , Yij , z)
does not intersect with the surface of the ball.

If a value Zij is negative, then this can be seen as the penetration of the ball in the surface.
The penetration Z can be supplied to CONTACT, together with other required variables
such as the elasticity coefficients of the materials and the size of the domain. Using this,
CONTACT is able to compute the contact force as well as the deformation of the elastic
surface outside of the contact area. It is very important to realise that this deformation is
the stationary solution of the elasticity equations. Here, the inertia term ρü of the elastic
half-space is neglected. Hence, the resulting deformation as function of space and time is the
solution of the quasi-static elasticity equations.

Figure 6.4: Comparison of the exact Hertz solution and the CONTACT solution using the
Verlet, Forward Euler, and the Radau5 numerical integration scheme.

We denote the contact force as function of the height z by Fn(z). Note that for z ≥ 0 the



38 CHAPTER 6. RIGID BODY MOTION

surface is still in its undeformed state, hence Fn(z) = 0. Similarly to the derivation of the
differential equation (6.3), we arrive the differential equation

z̈ =
Fn(z)

m
− g (6.11)

The same numerical methods can be applied as before. Note that the computation of Fn(z)
is relatively expensive (unless of course z ≥ 0, so that there is no penetration and thus
Fn(z) = 0). For implicit methods we apply the Picard approach as shown before. This
usually requires roughly 5 to 10 iterations before it converges. Hence the total integration
will generally take much longer.

An advantage, however, is that by using CONTACT arbitrary shapes can be used instead of
just a ball. Furthermore, the static displacement of the surface outside of the contact area
can be computed with CONTACT.

We programmed the explicit Verlet, the Forward Euler method, as well as the implicit Radau5
method in Matlab. To compute the normal force, both Hertz theory as well as the CONTACT
approach have been implemented. See also Appendix A.2 as well as Appendix A.1 for the
Matlab code.

See Figure 6.4 for a comparison between the CONTACT method and the Hertz solution. As
one can see, applying Hertz theory will roughly yield the same result as using CONTACT
to compute the contact force. A very small difference between the Hertz and CONTACT
solution using the Verlet method can be seen, this is most due to to observation we have
made in Section 4.6; the normal force computed using CONTACT will be slightly different
than the normal force according to Hertz theory, especially if the approach is large. What is
interesting is that the Verlet integration scheme behaves much better than the Forward Euler
scheme; even though both schemes are of order O(∆t) accurate and require a single function
evaluation per time step, the total amount of energy seems to remain nearly constant for the
Verlet scheme. We have discussed this phenomenon in Chapter 5. The Radau5 method is of
O(∆t5) accurate so it is not surprising that the this scheme yields the best results.

By using CONTACT to compute the normal force, the deformation of the half-space is also
computed at each time step. This deformation is quasi-static; the half-space instantaneously
gains speed at the moment of impact. This deformation just after the impact can be seen in
Figure 6.5.

6.5 Conclusion

We shave shown how a very basic one-dimensional second order ordinary differential equation
for the rigid height of a falling sphere can be derived using Hertz theory. Multiple time inte-
gration schemes have been applied to solve this differential equation. Explicit time integration
schemes such as Forward Euler tend to become unstable. The amplification of Forward Euler
is of course well known and understood, but we have seen that especially during contact the
total amount of energy increases significantly. An exception is the Verlet method, which is
very energy conserving. The disadvantage, however, is that it is only of order O(∆t) ac-
curate. Implicit methods turned out to be most stable integration schemes. In particular,
we favour higher order implicit schemes such as the Radau5 method, due to their stability,
energy conservation, and convergence rate.
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The same problem has also been solved using the results of CONTACT instead of Hertz
theory. By specifying the penetration (which is equal to δ(x, y, t) = h(x, y)+z(t)) CONTACT
is capable of computing the normal force Fn. Additionally, this approach resulted in the
quasi-static deformation of the elastic half-plane.

Figure 6.5: The quasi-static deformation of the surface at a certain point in time, computed
using CONTACT.
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Chapter 7

Finite difference discretisation of
the elasticity equations

The previous chapter illustrated the basics of dynamical contact problems involving the com-
putation of the approach as function of time. In most contact problems, one is not only
interested in the approach of the two contact problems, but also on the dynamic change of
shape of both objects.

In Section 6.4 we have seen that using CONTACT combined with a time integration scheme
to solve (6.3) also results in the deformation of both objects as function of time and space.
However, this deformation is computed by solving the quasi-static elasticity equations, i.e.
the inertia term ρü is ignored. Hence, deformation occurs instantaneously in that model.

In reality, deformation does not occur instantaneously. Consider a moment t right after
the moment the sphere touches the elastic half-plane. At an arbitrary point (x, y) in the
contact area, a pressure p(x, y, t) pointing downwards will be exerted at the top surface of
the half-plane. Because of the boundary condition for the traction r = σ ·n, we in particular
have σzz(x, y, 0, t) = −p(x, y, t). This pressure that has arisen at the boundary, however,
propagates at a finite speed because of the wave-like nature of the elasticity equation. Hence
for each δ > 0 we have σzz(x, y,−ε, t + δ) = 0 for some small ε > 0. Hence, the partial
derivative ∂σzz

∂z is a very large negative number near the boundary, and 0 everywhere else. As
a result,

∂2uz
∂t2

=
1

ρ

[
∂σzx
∂x

+
∂σzy
∂y

+
∂σzz
∂x

+ Fi

]
(7.1)

is a very large negative number for boundary elements at the contact area.

The result of this observation is that the surface of the half-space almost instantly gains speed
at the moment of impact between the sphere and half-space. This phenomenon happens at
a very small time scale. Computing the deformation using the quasi-static approach we have
discussed in Section 6.4 therefore seems reasonable. The quasi-static approach does ignore
the waves that occur, though.

In this chapter, we will not ignore the inertia and try to solve a very similar problem accurately
by using a finite difference discretisation for the system of equations (3.13). A cylindrical

41
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rigid object will be dropped upon an elastic half-space and we are interested in computing
the deformation that occurs, especially the behaviour near the contacting boundaries.

Note that in this chapter, we only consider the deformation of a half-plane which happens
solely around the contact area. Deformation that happens on a global scale will be discussed
in Chapter 8. The finite element method can also be applied to solve (3.13) instead of
the finite difference method. This would be a good alternative if the contacting bodies in
undeformed state have more complex shapes, i.e. we do not consider a perfect sphere/cylinder
or a half-space.

7.1 Formulation of the continuous problem

7.1.1 The problem

Consider a solid cylindrical object of length L and radius R that drops on an elastic cubical
body. The body is very large in all directions so that it represents a half-space but remains
finite. At all times, the y-axis is parallel to the axis of the cylinder. The cylinder can only
move in the z-direction, which is parallel to the direction of gravity. A positive value of z
corresponds to a positive height, a negative z means that there is penetration at the surface.

Note that for this 3-dimensional problem, the height of the surface of the cylinder is only a
function of x and time t. The y direction is not of importance for the problem at all. The
deformation as function of y (with x and z fixed) will be constant. Hence, we consider the
problem to be only two dimensional, ignoring the y direction from now on.

We suppose that the elastic body in its undeformed state is a rectangle of width hx and height
hz. The cylinder (or now circle in 2 dimensions) is centered at x = 0. We define our domain
Ω to be equal to

Ω = {(x, z) : −hx/2 < x < hx/2,−hz < z < 0} (7.2)

In this domain, which represents the object in its undeformed state, the elasticity equations
hold. The deformation ux(x, z, t) and uz(x, z, t) represent the translation of the particle at
position (x, z) in the undeformed object after time t.

Furthermore, we define the four boundaries of the domain:

Γ1 = {(x, 0)| − hx/2 ≤ x ≤ hx/2} (the top boundary)

Γ2 = {(−hx/2, z)| − hz ≤ z ≤ 0} (the left boundary)

Γ3 = {(hx/2, z)| − hz ≤ z ≤ 0} (the right boundary), and

Γ4 = {(x,−hz)| − hx/2 ≤ x ≤ hx/2} (the bottom boundary)

(7.3)

See Figure 7.1 for an illustration.

For each boundary, different boundary conditions can be described. We assume that the
object is fixed at the left, right and bottom boundaries, i.e. the particles at these boundaries
stay in their position. This corresponds to the boundary condition ux(x, t) = uz(x, t) = 0 for
all x = (x, z) ∈ Γ2 ∪ Γ3 ∪ Γ4. The cylinder will touch the surface at the top boundary Γ1,
hence we will describe boundary conditions for the stress at this boundary. The pressure at
Γ1 will be computed using Hertz theory or can be computed using CONTACT.
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(0, 0)

Ω

Figure 7.1: The domain Ω and its boundaries.

7.1.2 Computation of the top boundary condition using Hertz the-
ory

Let zc(t) be the height of the cylinder, measured from its lowest point at x = 0 (so the axis of
the cylinder has height zc(t) + R). The approach is therefore δ(t) = −zc(t). Then, by Hertz
theory, the maximum pressure is equal to

p0 =
2

π
E∗
√
δ(t)

R
(7.4)

assuming that δ(t) ≥ 0, i.e. there is penetration. Here, E∗ = E
1−ν2 with E and ν being the

elastic and shear modulus of the surface, respectively. Next, the contact radius a is computed.
This is simply equal to a =

√
R2 − (R− δ(t))2 by the Pythagoras theorem.

Hertz theory now describes the pressure distribution p:

p(x) =

p0

(
1− |x|

a2

)1/2

for |x| ≤ a

0 for |x| > a

(7.5)

This pressure distribution is then set as our boundary condition σn = [0;−p], which corre-
sponds in the 2D case to the boundary conditions σ13 = 0 and σ33 = −p.

As shown before, the contact force per unit width is given by

Fc =
4

3
E∗R1/2max{δ, 0}3/2 (7.6)

And therefore, by Newtons second law, the height z of the cylinder must satisfy the following
differential equation:

z̈c =
Fc
m
− g (7.7)

where m is the mass of the cylinder per unit width, which is equal to m = πR2ρ, where ρ is
the density of the cylinder.
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7.1.3 Formulation of the differential algebraic equation

Using the pressure distribution p for our boundary condition at Γ1, we can describe the
mathematical formulation of the problem. As described in Chapter 3, the linear elasticity
equations can we written as

G
∂2uq
∂x2

r

+ (λ+G)
∂2ur
∂xqxr

+ Fq = ρ
∂2uq
∂t2

for q, r = 1, 3 (7.8)

where u1 = ux is the deformation in the x-direction and uz = u3 the deformation in the z
direction. In this formula, both the stress and the strain components are eliminated. This
formulation, however, is not recommended since the boundary condition at Γ1 is described
using σ13 and σ33, which were eliminated from the differential equation.

Therefore, we will instead take a look at the elasticity equations in their usual form. Combined
with the boundary and initial conditions, we get

ρ
∂2uq
∂t2

=
∂σqn
∂xn

+ Fq for (x, z) ∈ Ω, t > 0, q = 1, 3

eqr =
1

2

(
∂uq
∂xr

+
∂ur
∂xq

)
for (x, z) ∈ Ω, t ≥ 0, q, r = 1, 3

σqr = λennδqr + 2Geqr for (x, z) ∈ Ω, t ≥ 0, q, r = 1, 3

ux = uy = 0 for (x, z) ∈ Γ2 ∪ Γ4 ∪ Γ4, t ≥ 0

σ13 = 0 for (x, z) ∈ Γ1, t ≥ 0

σ33 = −p(x, zc) for (x, z) ∈ Γ1, t ≥ 0

ux(x, z, 0) = uz(x, z, 0) = 0 for (x, y) ∈ Ω

(7.9)

where Ω = Ω ∪ (Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4) = {(x, z) : −hx/2 ≤ x ≤ hx/2,−hz ≤ z ≤ 0}. Einstein
convention is used for the n parameter. This system is called a differential algebraic equation,
because some parts are differential equations while others are algebraic equalities. In this
case, the first equation contains a time-derivative, the second and third do not. The last two
equations are instantaneous and must be satisfied at all times.

Furthermore, we also have the ordinary differential equation for the height of the ball. At
t = 0, the ball has a height z0 and has no vertical speed.

z̈c =
4

3m
E∗R1/2max{0,−zc}3/2 − g for t > 0

zc(0) = z0

dzc
dt

(0) = 0

(7.10)

Note that differential algebraic equation (7.9) and differential equation (7.10) are connected,
since the boundary condition at Γ1 depends on the height of the ball.
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7.2 Discretisation

If the geometry of the object in its undeformed state is not too complicated, the problem can
be discretised by using the finite difference method. When used together with a good time
integration scheme, this will result in a good simulation of the deformation of the object.

•
(1,1)

•
(1,2)

•
(1,3)

•
(2,1)

•
(2,2)

•
(2,3)

•
(3,1)

•
(3,2)

•
(3,3)

•
(4,1)

•
(4,2)

•
(4,3)

Figure 7.2: The discretisation of Ω.

For our problem, the domain of computation is a rectangle. There are many ways to discretise
this domain. We will consider a straightforward discretisation; a uniform grid where all
components (ux, uz, σ11, σ13, σ33, e11, e13, and e33) are defined on the same grid elements. The
disadvantage of this approach is that the accuracy might be lower at the boundary. Another
option is to use a staggered approach, where the grid elements of different components can
be defined at different positions in the domain.

The uniform grid has mx and mz elements in the x and z direction. At each row and column,
we start numbering at 1, which is the element at the left or bottom boundary. The mth

x

and mth
z element is located at the right and top boundary, respectively. Therefore, we have

grid width ∆x = hx

mx−1 and height ∆z = hz

mz−1 . The position p of each grid point (i, j) has
coordinates

(p(i, j))x = i∆x− hx
2

(p(i, j))z = j∆z − hz
(7.11)

As an example, suppose that hx = 6, hz = 3,mx = 4, and mz = 3. Then ∆x = 6
4−1 = 2 and

∆z = 3
3−1 = 3

2 . See figure 7.2 for an illustration.

Note that the usual global ordering is used to map a grid point (i, j) to point I, where
1 ≤ I ≤ m = mxmz, so that the example in Figure 7.3 can be represented using global
coordinates by

Suppose the Forward (or Backward) Euler method is chosen as our integration scheme. The
first step is to rewrite (7.9) as a system of first order derivatives. Define v = ∂u

∂t , then we
have differential equations
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Figure 7.3: The discretisation of Ω using a global index.

∂uq
∂t

= vq for (x, z) ∈ Ω, t > 0, q = 1, 3

eqr =
1

2

(
∂uq
∂xr

+
∂ur
∂xq

)
for (x, z) ∈ Ω, t > 0, q, r = 1, 3

σqr = λennδqr + 2Geqr for (x, z) ∈ Ω, t ≥ 0, q, r = 1, 3

∂vq
∂t

=
1

ρ

(
∂σqn
∂xn

+ Fq

)
for (x, z) ∈ Ω, t > 0, q = 1, 3

(7.12)

The equality

eqr =
1

2

(
∂uq
∂xr

+
∂ur
∂xq

)
(7.13)

can be discretised using standard central differences. For the (i, j)th component of the grid,
we have

(e11)i,j ≈
(u1)i+1,j − (u1)i−1,j

2∆x

(e13)i,j = (e31)i,j ≈
1

2

(
(u1)i,j+1 − (u1)i,j−1

2∆z
+

(u3)i+1,j − (u3)i−1,j

2∆x

)
(e33)i,j ≈

(u3)i,j+1 − (u3)i,j−1

2∆z

(7.14)

These approximations are valid and of second order accuracy for interior points (i, j). For
the boundaries, the formulation is no longer valid. A possible fix for this is to use one-sided
differences instead. For example, at the left boundary we can use

(e11)1,j ≈
(u1)2,j − (u1)1,j

∆x
(7.15)

However, this is only of first order accuracy. Usually, this is not a problem if the discretisation
at internal grid points has a higher order of accuracy. However, for better accuracy, a higher
order one-sided difference scheme can be used instead. As an example, for the left boundary
we can use the numerical approximation

(e11)1,j ≈
−3(u1)1,j + 4(u1)2,j − (u1)3,j

∆x
(7.16)
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which is an approximation of (e11)1,j = (∂u1

∂x1
)1,j of second order accuracy. Using this scheme

for the boundary points and central differences for the internal points, the total discretisation
will therefore be of second order accuracy.

The general disadvantage of using one-sided difference schemes is that the corresponding
discretisation matrix will no longer be symmetric. Hence, Cholesky decomposition and other
tricks that rely on the symmetry of the matrix can no longer be used to solve the linear
system. However, the matrix corresponding to equation (7.9) is not symmetric as we will see
shortly, regardless of the symmetry of A. A one-sided difference scheme at the boundary can
therefore easily be implemented without causing more problems.

These equations for (e11)i,j , (e13)i,j , and (e33)i,j for 1 ≤ i ≤ mx, 1 ≤ j ≤ mz form a system.
This system is linear and can therefore be written as e = Bu. In this expression, B is the
matrix that contains the central (and one-sided at the boundary) differences coefficients, and
e = [e11; e13; e33] is the vector that contains all the strain components.

The part

σqr = λennδqr + 2Geqr (7.17)

can directly be written in vector notation as σ = Ce. σ is the vector that contains all the
stress components: σ = [σ11;σ13;σ33].

Importantly, the equation

∂uq
∂t

= (vq)t, q = 1, 3 (7.18)

is only valid for internal grid points (i, j) since the elasticity equations and therefore also the
discretised equations (7.14) are only valid in Ω. Let

Ωin = {(i, j), 1 ≤ i ≤ mx, 1 ≤ j ≤ mz, (i, j) is an internal grid point} (7.19)

be the set of internal grid points. We let min denote the amount of internal grid points. Then
equation (7.18) corresponds to d

dt (uq)i,j = (vq)i,j for (i, j) ∈ Ωin. Define ů1 and ů3 be the
vectors of length min that contain the internal components of u1 and u3, respectively. We do
the same to define v̊1 and v̊3. Then (7.18) can simply be written as

d

dt
ů = v̊ (7.20)

where ů = [̊u1; ů3] and v̊ = [̊v1; v̊3].

Lastly, the part
∂vq
∂t

=
1

ρ

(
∂σqn
∂xn

+ Fq

)
(7.21)

is also only valid for internal grid points. Using central differences as before, one can approx-
imate this term:

∂

∂t
(v1)i,j ≈

1

ρ

[
(σ11)i+1,j − (σ11)i−1,j

2∆x
+

(σ13)i,j+1 − (σ13)i,j−1

2∆z
+ F1(i, j)

]
∂

∂t
(v3)i,j ≈

1

ρ

[
(σ31)i+1,j − (σ31)i−1,j

2∆x
+

(σ33)i,j+1 − (σ33)i,j−1

2∆z
+ F3(i, j)

] (7.22)
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Let v̊ = [̊v1; v̊3] and F = [F1;F3]. Then this can be written as d
dt v̊ = Tσ + F.

Hence, the discretised differential algebraic equation can be written as



d

dt
ůk = v̊k

ek = Buk

σk = Cek

d

dt
v̊k = Tσk + Fk

+boundary conditions

(7.23)

For each grid point at the boundary, two boundary conditions should be given for a total of
2(m−min) conditions.

7.2.1 Implementation with the Forward Euler approach

The Forward Euler method is applied by setting

ůk+1 = ůk + ∆t̊vk

v̊k+1 = v̊k + ∆t(Tσk + Fk)
(7.24)

By combining everything, we arrive at the following linear system:


I 0 0 0
−B I 0 0
0 −C I 0
0 0 0 I



u
e
σ
v̊


k+1

=


uk + ∆tvk

0
0

v̊k + ∆t(Tσk + Fk)

 (7.25)

which we will notate as Axk+1 = fk.

Note that the identity matrix at the first block row is only described for internal grid points
(i, j). For boundary points, the diagonal element at the corresponding row is 0 by default.
Boundary conditions should be added at this row.

To illustrate this, consider a similar 1D situation where mz = 4. Then Ωin = {2, 3}. Suppose
that the stress at the boundaries is given and equal to 1 at the left boundary and −1 at the
right boundary. Then the first four rows of the equation are


0 0 0 0 . . . 1 0 0 0 . . .
0 1 0 0 . . . 0 0 0 0 . . .
0 0 1 0 . . . 0 0 0 0 . . .
0 0 0 0 . . . 0 0 0 1 . . .

xk+1 =


1

uk2 + ∆tvk2
uk3 + ∆tvk3
−1

 (7.26)

The first row here simply sets the stress (σk+1
33 )1 equal to 1. The second and third row

represents the time integration for elements uk2 and uk3 . Lastly, the fourth row makes sure
that (σk+1

33 )4 is equal to −1.
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7.2.2 Implementation with the Backward Euler approach

The Backward Euler method is very similar:

ůk+1 = ůk + ∆t̊vk+1

v̊k+1 = v̊k + ∆t(Tσk+1 + Fk+1)
(7.27)

By moving the v̊k+1 and σk+1 to the left side, the following linear system can be derived:


I 0 0 −∆tI
−B I 0 0
0 −C I 0
0 0 −∆tT I



u
e
σ
v̊


k+1

=


u
e
σ
v̊


k

+ ∆t


0
0
0

v̊k + ∆tFk+1

 (7.28)

or Axk+1 = xk + ∆tfk+1. If, furthermore, the body force F is constant (zero in many cases),
the right hand side does not depend on time step k + 1. In that case, the solution of the
linear system can be computed directly and is equal to xk+1 = A−1(xk + ∆tfk).

7.3 Dynamic boundary conditions

Since the boundary condition at Γ1 depends on the height of the cylinder, (7.9) and (7.10)
should be solved at the same time.

As an example, for Backward Euler we have

zk+1
c = zkc + ∆tvk+1

c

vk+1
c = vkc + ∆t

(
4

3m
E∗R1/2max{0,−zk+1

c }3/2 − g
)

(7.29)

This can be written as


I 0 0 −∆tI 0 0
−B I 0 0 0 0
0 −C I 0 0 0
0 0 −∆tT I 0 0
0 0 0 0 1 −∆t
0 0 0 0 0 1




u
e
σ
v̊
zc
vc



k+1

=


u
e
σ
v̊
zc
vc



k

+∆t


0
0
0
0
0

4
3mE

∗R1/2max{0,−zk+1
c }3/2 − g


(7.30)

or Axk+1 = xk + fk+1. The only non-linear term is contained in the last equation. We know
that if zk+1 ≥ 0, i.e. the ball will not touch the surface at time tk+1, then the linearity of
(7.30) drops out of the system. In that case,
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u
e
σ
v̊
zc
vc



k+1

=


I 0 0 −∆tI 0 0
−B I 0 0 0 0
0 −C I 0 0 0
0 0 −∆tT I 0 0
0 0 0 0 1 −∆t
0 0 0 0 0 1



−1
uk

0
0
v̊k

zkc
vkc −∆tg

 (7.31)

Difficulties occur when zk+1 < 0, i.e. there is penetration. xk+1 can then no longer be
explicitly stated as function of xk. It is possible to use the height zkc instead of zk+1

c for (7.30).
However, this changes the time integration scheme and causes stability issues. Therefore, one
should use a implicit solver for this system. This deals with both the non-linearity of (7.29)
and the not yet known right hand vector fk+1.

The following algorithm is an example on how to apply Picard iteration for this problem. Let
xk = [uk; ek;σk;vk; zkc ; vkc ].

Algorithm 7.1 Applying the Backward Euler method using Picard iteration

1: Compute initial condition x0.
2: for k = 1 to n do . Loop over each of n time steps
3: Set x = xk−1 . Initial guess at each time step
4: repeat
5: Compute vector f(x) as in (7.30).
6: Solve Ax∗ = f(x) for x∗.
7: Set error = ‖x∗ − x‖ for x∗.
8: Set x = x∗

9: until error ≤ ε
10: Set xk = x.
11: end for

Here, n is the number of iterations. If this method converges, then Axk+1 = f ≈ fk+1 so that
we have approximated the solution of the non-linear implicit system.

7.4 Numerical results

The finite difference discretisation of the elasticity equation with dynamic boundary condi-
tions has been programmed in Matlab. Both the Forward Euler as well as the backward Euler
have been applied. For the Backward Euler method, algorithm (7.1) has been applied. See
Appendix A.3 for the Matlab implementation.

A uniform mesh with mx = 40 and my = 30 elements has been used to discretise the half-
plane. This matrix A as in (7.30) for this very small problem is already roughly 12000×12000
large. In generic 3D situation this would be even larger. As a result, computing solution of
Ax = v is computationally very expensive. This is even worse for implicit methods that
require the use of an iterative process at each time step. If CONTACT is used to compute
the pressure instead of applying Hertz theory, computing the right hand side f would also
require much more computational power. In short, we are severely restricted on the amount
of mesh points.
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In the implementation we have used to different values of ∆t. We use ∆t = 10−3 for those
time steps j where zj−1

c > 0, i.e. there is no penetration yet, hence we can solve (7.31)
instead of the implicit (7.30). If zj−1

c > 0, i.e. there was penetration at the previous time
step, we use ∆t = 10−4. There are two reasons for the dynamic time step. First of all, contact
happens very quickly and the contact force and pressure therefore change rapidly as function
of the time. It is therefore important to observe this in great detail. Additionally, for implicit
methods, the Picard iteration can break down if either the time step or the Young’s modulus
of the material is too large.

In Figure 7.4 the deformation of the half-plane can be seen just right after impact. Backward
Euler has been applied to get these results. The impact of the sphere can clearly be seen and
the boundary of the half-plane follows the boundary of the cylinder perfectly. During the
impact, waves appear near the boundary which slowly propagate to the rest of the half-plane.

There are some problems that occur, though. As mentioned before, the algorithm is compu-
tationally extremely expensive if a fine mesh for the elastic half-plane is used. The accuracy
of the discretisation is therefore very limited. Furthermore, approximately halfway during
impact a gap between the half-plane and the cylinder emerges when the elements at the
boundary of the half-plane continue to move downwards but the cylinder has reached its low-
est point. This is an unrealistic phenomenon and might point to a problem in the formulation
of the pressure at the boundary.

Another major problem is that if the materials is made of a stiff material like steel, the
iterative process never converges. A similar problem occurs in Chapter 10. There a solution
is proposed which might also be applied on this problem.

The explicit Forward Euler turned out to be unstable. Right after the impact between the
cylinder and the half-plane occurs, the elements at the boundary of the half-plane jump to
random directions. This instablity starts at the contact area and slowly propagates to the
rest of the half-plane. This phenomenon can be seen in Figure 7.5.

It appears that there is a hidden CFL condition needs to be satisfied in order for the explicit
time integration to be stable. This will be discussed for a similar differential equation in
Section 8.3.3.

7.5 Conclusion

In this chapter we have shown how the finite difference method can be used in order to
discretise the elasticity equations. Central differences (except near the boundary) can be used
to approximate the spatial derivatives. To solve the differential algebraic equation, a time
integration scheme has been combined with the algebraic relations between the displacement
and the strain as well as the relations between the stress and the strain into one single system.

A similar problem as in Chapter 6 involving a cylinder falling on an elastic half-space has
been solved using this approach. Explicit time integration schemes break down quickly, but
implicit schemes like Backward Euler combined with a Picard approach can result in fairly
realistic deformations. However, this approach is computationally extremely expensive, can
result in unrealistic scenarios, or even breaks down in the iterative process for rigid materials
like steel.
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Figure 7.4: The deformation of the surface just after the impact of a rigid cylinder, using
Backward Euler as integration scheme.
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Figure 7.5: The deformation of the surface just after the impact of a rigid cylinder using the
instable Forward Euler as integration scheme.
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Chapter 8

Global deformation of a bridge

In the previous chapters, we have discussed the contact dynamic of an object falling on an
elastic half-plane. The half-plane itself is fixed and does not move as a whole. Deformation
only occurs strictly around the contact area. This is what we call local deformation.

In this chapter, we will discuss the global deformation of a bridge. Consider an elastic bridge of
length L with an object exerting a force downwards. Not only will this cause local deformation
of the beam around the initial point of contact as we have discussed previously, the whole
beam will also deform as a whole. This is what we will describe as global deformation.

The difference between this situation and the problem of the same object exerting a force on
an half-plane is hidden in the boundary condition at the bottom of the bridge and half-plane.
For the half plane, we have the boundary condition 0 = limy→−∞ u(x, y, t) for all x ∈ R and
t ≥ 0. That is, particles far away from the contact area are not capable of moving. Particles
at the bottom of a bridge, however, are not fixed to anything. But we do know that there is
no external force at the bottom of the bridge. This can be translated to the traction boundary
condition σ · n = 0.

In this chapter, we will focus on the theory of global deformations. In particular, we are
interested in solving a moving load problem, such as a train riding on a bridge. The force
of the train exerting on the bridge differs with respect to both place and time. The bridge
will deform globally as a train moves over it. To compute this deformation, two different
approaches will be discussed; the discrete approach and the modal approach.

8.1 The 1D dynamic beam equation

Consider an elastic beam (such as a bridge) and suppose a force is being exerted on the top
of this beam. The resulting deformation can be computed by solving the elasticity equations
using an approach such as described in Chapter 7.

If this beam is supposed to be long and thin, which is the case if we consider a bridge,
Euler-Bernoulli theory also becomes applicable for this problem. The Euler-Bernoulli beam
equation is a simplification of the elasticity equations and describes the deformation of a beam
as function of space and time. Shear deformation is being ignored and the solution is only
accurate for long thin beams. More complex (Timoshenko) beam theories have been developed

55
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that account for these problems, but we will solely focus on the simpler Euler-Bernoulli beam
equation [15].

Euler-Bernoulli theory assumes that particles in the beam cannot move in the x direction.
Additionally, it is assumed that the vertical displacement is constant for particles at the same
x-coordinate; the effect in the z direction is being ignored. As the result, the displacement
u = uz described by the beam equation is only a function of x and t. The beam equation is
given by

∂2

∂x2

(
E(x)I(x)

∂2u

∂x2

)
= −ρ(x)

∂2u

∂t2
+ p(x, t) (8.1)

Here E is the elasticity modulus of the material of the beam. The parameter ρ(x) describes
the mass per unit length and p corresponds to the force per unit length (their 3D counterparts
being density and pressure, respectively). I is the second moment of area of the cross section
of the beam. This property reflects how the points of an object are distributed with respect
to a certain axis L and is defined as

I(x) =

∫
A(x)

d(z)2dz (8.2)

in the one dimensional case, or

I(x) =

∫∫
A(x)

d(y, z)2dydz (8.3)

in the two dimensional case. Here A(x) is the (either one or two dimensional) cross section
of the beam at x, and d is defined as the distance from this point to the axis L. For the
beam, this axis L is simply the axis y = z = 0. If the cross section of the beam has the same
distribution and size for each x ∈ [0, L], then the second moment of area I(x) = I is constant.

When assuming the beam is homogeneous, then E, I and ρ are constant and therefore the
following equation can be derived:

EI
∂4u

∂x4
= −ρ∂

2u

∂t2
+ p(x, t) (8.4)

8.2 Boundary and initial conditions

Equation (8.1) is a partial differential equation which is of fourth order with respect to the
x variable, hence we need 4 spatial boundary conditions. Various boundary conditions are
possible for this problem and the choice depends on the problem. A reasonable assumption (if
we see the beam as a bridge) is that the beam is fixed at x = 0 and x = L. In this situation,
vibration can only occur in x ∈ (0, L). Outside of this area, the rails are fixed to the ground.
Both the displacement u and the angle ∂u

∂x should be zero at the boundaries:

u(0, t) = 0 =
∂u

∂x
(0, t)

u(L, t) = 0 =
∂u

∂x
(L, t)

(8.5)
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These conditions are called clamped boundary conditions. Another (more realistic) possibility

is to consider a simply supported beam. In this situation the bending moment M = −EI ∂
2u
∂x2

is assumed to be zero at the boundary, instead of the slope of the beam. This boundary
conditions is satisfied if the beam is free to rotate at the boundaries and does not experience
any torque. Usually, this torque is insignificant and may therefore be ignored.

The corresponding boundary conditions for this case are, since both E and I are assumed to
be non-zero:

u(0, t) = 0 =
∂2u

∂x2
(0, t)

u(L, t) = 0 =
∂2u

∂x2
(L, t)

(8.6)

Furthermore, we have a second derivative for the time variable, so that we need an initial
condition for both the displacement u and the velocity ∂u

∂t of the displacement. Usually, we

assume the beam is in rest at t = 0, hence u(x, 0) = ∂u
∂t u(x, 0) = 0 for all x ∈ [0, L].

8.3 The discrete problem

8.3.1 Discretisation of the differential equation

For a general force function p(x, t), differential equation (8.1) cannot be solved analytically. A
straightforward approach to get an approximation of the solution is by discretising differential
equation (8.4). Both the Finite Element method and the Finite Difference method can be
applied for this problem. As we will discuss in Section 8.4, a modal approach is also very
effective.

• • • • •
x0 x1 x2 x3 xn

0 ∆x L

Figure 8.1: The discretisation of the beam for n = 4.

The simple geometry of a one dimensional beam allows us to apply the Finite Difference
method. In this section we will solely focus on this method, but of course a Finite Element
approach can be used instead. Suppose we use a uniform grid of n + 1 grid points in total,
which includes the grid points x0 and xn of both boundaries. The position of the grid points
are given by xi = i∆x for 0 ≤ i ≤ n, where ∆x = L

n .

Since there is a second order time derivative in differential equation (8.4), we should first
convert it to a system of two first order differential equations. To do so, we define v = ∂u

∂t as
the speed of the displacement of the beam. By substituting this into (8.4) and rearranging
the terms a bit, we arrive at the system of equations

∂u

∂t
= v

∂v

∂t
= −EI

ρ

∂4u

∂x4
+
p(x, t)

ρ

(8.7)



58 CHAPTER 8. GLOBAL DEFORMATION OF A BRIDGE

For convention, we denote ukj as a shorthand notation of u(xj , tk). As shown in [18], the

fourth order derivative ∂4

∂x4u
k
j = ∂4u

∂x4 (xj , tk) can be approximated using the following scheme:

∂4

∂x4
uj(t) =

uj−2(t)− 4uj−1(t) + 6uj(t)− 4uj+1(t) + uj+2(t)

∆x4
+O(∆x2) (8.8)

8.3.2 Implementation of the boundary conditions

The Dirichlet boundary conditions u(0, t) = u(L, t) = 0 can be applied by adding the equation
uk0 = 0 and ukn = 0, which corresponds to the element at the boundary x = 0 or x =
L, respectively, to the linear system of equations, similarly to our approach in Chapter 7.
Alternatively, one can simply eliminate all the terms uk0 or ukn directly for each expression
that contains these terms.

Both the boundary conditions for the clamped beam ∂u
∂x (0, t) = ∂u

∂x (L, t) = 0 as well as the

boundary conditions for the simply supported beam ∂2u
∂x2 (0, t) = ∂2u

∂x2 (L, t) = 0 are implemented
by introducing a virtual point outside the domain [0, L] and then eliminating it by using the
boundary conditions.

Consider the left boundary. We introduce a virtual point x−1 = −∆x. Since at i = 0 we
added the equation uk0 = 0 to the linear system (or eliminated uk0 by replacing it with zero),
we do not have a term uk−2 in the system. For i = 1, however, we have

d

dt
vk1 = −EI

ρ

[
uk−1 − 4uk0 + 6uk1 − 4uk2 + uk3

∆x4

]
+

1

ρ
pk1 (8.9)

where pki = p(xi, tk). The Neumann condition ∂u
∂x (0, t) = 0 for the clamped beam can be

discretised at t = tk using central differences:
uk
1−u

k
−1

2∆x , hence uk−1 = uk1 . Therefore, we can
eliminate uk−1 at i = 1:

d

dt
vk1 = −EI

ρ

[
−4uk0 + 7uk1 − 4uk2 + uk3

∆x4

]
+

1

ρ
pk1 (8.10)

Similarly, the boundary condition ∂2u
∂x2 (0, t) = 0 for the simply supported can be discretised

at t = tk using
uk
1−2uk

0+uk
−1

∆x = 0, hence uk−1 = −uk1 + 2uk0 . This results in the equation

d

dt
vk1 = −EI

ρ

[
−2uk0 + 5uk1 − 4uk2 + uk3

∆x4

]
+

1

ρ
pk1 (8.11)

After discretising, we arrive at the system of n+ 1 equations

du

dt
= v

dv

dt
= Au + f

(8.12)

Next, an appropriate time integration scheme should be used, such as the ones described in
Chapter 5, in order to find an approximation of the solution.
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8.3.3 The CFL condition

A very important mathematical property to consider for the discrete problem is the CFL
number and the CFL condition. If this condition is not satisfied, then information does not
propagate fast enough, creating artificial wiggles in the solution that tend to infinity, thereby
making the results useless.

The CFL condition usually occurs in parabolic and hyperbolic differential equations. Al-
though the beam equation is neither parabolic nor hyperbolic, for this differential equation
the CFL number also plays a role.

Consider a fully discretised model, where the partial derivative ∂2

∂t2uj(tk) is discretised using

∂2

∂t2
ukj =

uk+1
j − 2ukj + uk−1

j

∆t2
+O(∆t2) (8.13)

If there are no external forces, i.e. p ≡ 0, then the discretised differential equation can be
written as

uk+1
j = ∆t2

EI

ρ

[
−ukj−2 + 4ukj−1 − 6ukj + 4ukj+1 − ukj+2

∆x4

]
+ 2ukj − uk−1

j (8.14)

Note that equation (8.14) is equal to the definition of the Verlet integration method. Von
Neumann stability analysis can now be applied on this equation.

Since this is a multistep scheme, we should apply its corresponding stability theorem [16].
Let ukj = gkeijξ (i being the imaginary unit here), where g 6= 0 is an amplification factor. By
substituting this into equation (8.14) and expanding the exponent, we find

gk+1eijξ =
EI∆t2

ρ∆x4
gkeijξ

[
−e−2iξ + 4e−iξ − 6 + 4eiξ − e2iξ

]
+ 2gkeijξ − gk−1eijξ (8.15)

Dividing by gk−1eijξ yields

g2 =
EI∆t2

ρ∆x4
g
[
−e−2iξ + 4e−iξ − 6 + 4eiξ − e2iξ

]
+ 2g − 1 (8.16)

Note that eiξ + e−iξ = 2 cos(ξ), so we can rewrite this to

g2 +

(
−2− EI∆t2

ρ∆x4
[−2 cos(2ξ) + 8 cos(ξ)− 6]

)
g + 1 = 0 (8.17)

Hence, there are two solutions for g. Let y = EI∆t2

ρ∆x4 [cos(2ξ)− 4 cos(ξ) + 3], then we find

g± =
2− 2y ±

√
(−2 + 2y)2 − 4

2
= 1− y ±

√
y2 − 2y (8.18)

Note that g± is allowed to be imaginary, that is, if y2− 2y < 0, then g± = 1− y± i
√

2y − y2.
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Both amplification factors g+ and g− should be less or equal to one in absolute value for all
values of ξ. First, we note that 0 ≤ cos(2ξ) − 4 cos(ξ) + 3 ≤ 8, so that y ≥ 0. If y > 2,

then y2 > 2y, so that g− = 1− y −
√
y2 − 2y ≥ 1− y < −1, so that the method is unstable.

However, if 0 ≤ y ≤ 2, then we have

|g±| = |1− y ± i
√

2y − y2| =
√

(1− y)2 + |2y − y2| =
√

1− 2y + y2 + 2y − y2 = 1 (8.19)

hence we have stability. Since furthermore 0 ≤ cos(2ξ)− 4 cos(ξ) + 3 ≤ 8 holds, we also find

y =
EI∆t2

ρ∆x4
≤ 2

cos(2ξ)− 4 cos(ξ) + 3
=

1

4
(8.20)

which is therefore the CFL condition for the fully discretised model, i.e. the Verlet method.
Note that this CFL condition does not only depend on which integration scheme is used, it

also depends on how the fourth order derivative ∂4u
∂x4 is discretised. If instead of (8.8) a better

approximation is made, the coefficients for the CFL condition can differ.

This is a fairly strong restriction. If the spatial mesh is required to be twice as fine as it was
before, then the time step should be set in the order of 4 times smaller, therefore requiring
in the order of 4 times more time integration steps.

8.3.4 Implicit methods

As we have seen, explicit time integration methods can result in a strong CFL condition.
To get rid of this condition, it might be a good idea to apply an implicit scheme instead.
Consider the Backward Euler method. This integration method is unconditionally stable, so
that there is no CFL condition. Picard iteration, however, can result in problems for implicit
time integration schemes. In general, Picard iteration can stop converging if ∆t is too large
compared to ∆x.

A different iterative solver should then be used instead, such as Newton-Raphson. This solver
could be combined with a line search algorithm so that it will converge more often.

For the implicit Backward Euler method, we can compute the solution analytically if we
suppose that fk+1 is known beforehand. A single Backward Euler step is given by

uk+1 = uk + ∆tvk+1

vk+1 = vk + ∆t[Ak+1 + fk+1]
(8.21)

If we define zk = [uk;vk], this system can be rewritten as

zk+1 = zk + ∆tBzk+1 + ∆tgk+1 (8.22)

where

B =

(
0 I
A 0

)
and gk+1 =

(
0

fk+1

)
(8.23)
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Therefore, zk+1 can be computed analytically:

zk+1 = (I −∆tB)−1(zk + ∆tgk+1) (8.24)

If the inverse of (I −∆tB) is computed, then uk+1 and vk+1 can be computed explicitly at
each time step.

8.4 Modal analysis

In many situations, we are interested in the eigenfrequencies of the solutions of equation (8.4).
As a bridge deforms, multiple waves of different wave lengths appear. These waves are called
mode shapes. As we will show shortly, these mode shapes only depend on the stiffness and
the mass of the beam; they are independent on the pressure function p. Engineers can make
sure that the frequency of the applied periodic force does not coincide with a modal frequency
in order to prevent resonance.

In this section, we will consider a different approach to solve the beam equation. This ap-
proach makes use the mode shapes of the beam. First, we will discuss how the mode shapes
and eigenfrequencies can be computed. Then, we will show how the response of each mode
shape as the result of a pressure being exerted on the beam can be derived. Finally, the total
response of the bridge is approximated by superposing the responses of each mode.

8.4.1 Mode shapes

We are interested in the frequencies that occur in the solutions of equation (8.4). The free
vibrations of the beam are solutions of the same equation where there is no external force,
i.e. p ≡ 0. The resulting partial differential equation can be solved using separation of
variables (also known as the Fourier method). Let v(x, t) = w(x)eiλt. By substituting this

into differential equation EI ∂
4u
∂x4 = −ρ∂

2u
∂t2 , we find that v is a solution if and only if

EIw(4)(x)eiλt = ρλ2w(x)eiλt (8.25)

Dividing by EIeiλt yields the ordinary differential equation

w(4)(x) =
λ2ρ

EI
w(x) (8.26)

This differential equation has solutions of the form w(x) = cos(βx), as well as sin(βx),

cosh(βx), and sinh(βx). The parameter β should satisfy β4 = λ2ρ
EI , and therefore

β =

(
λ2ρ

EI

)1/4

(8.27)

We write the solution w as

w(x) = c1 cos(βx) + c2 sin(βx) + c3 cosh(βx) + c4 sinh(βx) (8.28)
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Note that if β = 0, it follows immediately that w is a constant. It must therefore be identically
zero due to the boundary conditions. Since we are only looking for non-trivial solutions, we
can assume that β 6= 0.

8.4.2 Boundary conditions

For the clamped beam, we must have v(0) = v(L) = ∂v
∂x (0) = ∂v

∂x (L). w satisfies the boundary
equation if and only if

0 = v(0) = c1 + c3

0 =
∂v

∂x
(0) = β(c2 + c4)

0 = v(L) = c1 cos(βL) + c2 sin(βL) + c3 cosh(βL) + c4 sinh(βL)

0 =
∂v

∂x
(L) = β(−c1 sin(βL) + c2 cos(βL) + c3 sinh(βL) + c4 cosh(βL))

(8.29)

By dividing the third and fourth equation by β, this system can be denoted as


1 0 1 0
0 1 0 1

cos(βL) sin(βL) cosh(βL) sinh(βL)
− sin(βL) cos(βL) sinh(βL) cosh(βL)



c1
c2
c3
c4

 =


0
0
0
0

 (8.30)

or as Ac = 0. We are only looking for non-trivial solutions, i.e. solutions c 6= 0. Such a
solution can only exist if A is singular (not invertible), i.e. det(A) = 0. A simple computation
yields that this is equivalent to

cos(βL) cosh(βL) = 1 (8.31)

Equation (8.31) has infinitely many solutions. Since cosh(βL) > 1, cos(βL) > 0 must hold.
Furthermore, since cosh(βL) tends to infinity as β →∞, cos(βL) must be near zero for large
β. Therefore, the n-th solution βn tends to 1

L ( 1
2 + n)π for n ≥ 1 as n tends to infinity. The

solutions of (8.31) can be approximated by using a numerical method like Newton-Raphson.

The actual frequencies λn of the beam are then easily derived from equation (8.27):

λn = β2
n

√
EI

ρ
(8.32)

The coefficients cin for i = 1, 2, 3, 4 can be found by finding a non-zero vector cn in the
nullspace of A, i.e. Acn = 0, using the corresponding value of βn. Note that Rank(A) ≥ 3
and equality holds if and only if (8.31) is true, so that this vector is unique up to a scale
factor.

For this problem with clamped boundaries, wn can be computed analytically. After some
computation we find the following expression:

wn(x) = cosh(βnx)− cos(βnx) + kn sin(βnx)− kn sinh(βnx) (8.33)
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and any multiple of this is also a solution. In this formula kn is defined as

kn =
sin(βnL) sinh(βnL)

cos(βnL) sinh(βnL)− sin(βnL) cosh(βnL)
(8.34)

The functions wn are called the mode shapes of the beam with corresponding frequencies λn.
As an example, suppose E = I = ρ = L = 1. Using Newton-Raphson to solve (8.31), we find
the following first 5 values of βn and λn as in Table 8.1. The second column contains the
approximation of βn given by 1

L ( 1
2 + n)π.

n βn
1
L ( 1

2 + n)π λn
1 4.73004 4.71238 22.373
2 7.85320 7.85398 61.672
3 10.9956 10.9955 120.90
4 14.1371 14.1371 199.85
5 17.2787 17.2787 298.55

Table 8.1: The first 5 frequencies of the clamped beam using E = I = ρ = L = 1.

As one can see, the approximation 1
L ( 1

2 +n)π converges very quickly to the value of βn. Note
that β = 0 also satisfies (8.31), but this corresponds to a zero modal function. Furthermore,

since λn = β2
n

√
EI
ρ , we can ignore negative values of n too.

In Figure 8.2 the first five mode shapes are shown for the clamped beam.

From the boundary conditions for the simply supported beam, we find

0 = v(0) = c1 + c3

0 =
∂2v

∂x2
(0) = β2(−c1 + c3)

0 = v(L) = c1 cos(βL) + c2 sin(βL) + c3 cosh(βL) + c4 sinh(βL)

0 =
∂2v

∂x2
(L) = β2(−c1 cos(βL)− c2 sin(βL) + c3 sinh(βL) + c4 cosh(βL))

(8.35)

It follows directly from the first two equations that c1 = c3 = 0, since β is assumed to be
non-zero. The third and fourth equation yield 0 = c4(sinh(βL) + cosh(βL)) = c4eβL, hence
c4 = 0. Therefore, w(x) = c2 sin(βx). For non-trivial solutions we must have c2 6= 0, and
therefore sin(βL) = 0, i.e. βL is a multiple of π:

βn =
nπ

L
(8.36)

8.4.3 Orthogonality of the mode shapes

An important property of the mode shapes for both the clamped beam as well as the simply
supported beam, is that they are orthogonal. To prove this, we will first proof the following
important Lemma.

Lemma 8.1. For two mode shapes wi and wj , either for the case with the clamped beam or
the simply supported beam, the following equation must hold:
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Figure 8.2: The first five mode shapes of the clamped beam.

∫ L

0

EI
∂4wi
∂x4

wjdx =

∫ L

0

EI
∂4wj
∂x4

widx (8.37)

Proof: We integrate by parts twice. We have

∫ L

0

EI
∂4wi
∂x4

wjdx =

[
EI

∂3wi
∂x3

wj

]L
0

−
∫ L

0

EI
∂3wi
∂x3

∂wj
∂x

dx

=

[
EI

∂3wi
∂x3

wj

]L
0

−
[
EI

∂2wi
∂x2

∂wj
∂x

]L
0

+

∫ L

0

EI
∂2wi
∂x2

∂2wj
∂x2

dx

(8.38)

The first term is zero since wj(0) = wj(L) = 0. For the clamped beam, the second term is

also zero because
∂wj

∂x (0) =
∂wj

∂x (L) = 0. Additionally, for the simply supported beam, this

term is zero as well since ∂2wi

∂x2 (L) = 0.

It now follows directly that



8.4. MODAL ANALYSIS 65

∫ L

0

EI
∂4wi
∂x4

wj =

∫ L

0

EI
∂2wi
∂x2

∂2wj
∂x2

dx

=

∫ L

0

EI
∂2wj
∂x2

∂2wi
∂x2

dx =

∫ L

0

EI
∂4wj
∂x4

widx

(8.39)

which proves the Lemma.

Using the Lemma, proving the orthogonality of the mode shapes is fairly straightforward:

Theorem 8.2. For both the clamped beam and the simply supported beam, the mode shapes
are orthogonal.

Proof: Let wi and wj be mode shapes with corresponding eigenfrequencies λi and λj . Since
both vi(x, t) = wi(x)eiλit and vj(x, t) = wj(x)eiλjt satisfy equation (8.4), we have

EI
∂4wi
∂x4

(x)eiλit = −ρ∂
2u

∂t2
[
w(x)eiλit

]
= ρλ2

iw(x)eiλix (8.40)

and therefore

EI
∂4wi
∂x4

(x) + ρλ2
iwi(x) = 0 (8.41)

Next, we multiply by wj(x) and integrate from x = 0 to x = L:

0 =

∫ L

0

(
EI

∂4wi
∂x4

(x)wj(x) + ρλ2
iwi(x)wj(x)

)
dx

=

∫ L

0

(
EI

∂4wj
∂x4

(x)wi(x) + ρλ2
iwi(x)wj(x)

)
dx

=

∫ L

0

(
EI

∂4wj
∂x4

(x)wi(x) + ρλ2
jwi(x)wj(x)

)
dx+ ρ(λ2

i − λ2
j )

∫ L

0

wi(x)wj(x)dx

= ρ(λ2
i − λ2

j )

∫ L

0

wi(x)wj(x)dx

(8.42)

where we applied Lemma 8.1 for the first equation. If λi 6= λj , then ρ(λ2
i −λ2

j ) 6= 0, hence we

can conclude that
∫ L

0
wi(x)wj(x)dx = 0. If λi = λj , then

∫ L
0
wi(x)2dx > 0, since we did not

allow the zero function to be a mode shape. Therefore, the mode shapes are orthogonal.

Additionally, since orthogonality holds, we can safely assume that the mode shapes are or-
thonormal by dividing each mode shape by its norm.

8.4.4 Modal analysis using the discretisation

Another approach is to use the finite difference discretisation matrix A to compute the eigen-

frequencies and to construct the mode shapes. The exact mode shapes satisfy w
(4)
i (x) =

β4
i w(x). For a discretised mode shape, we have
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Aw(x) ≈ EI

ρ
w

(4)
i (x) =

EI

ρ
β4
iw(x) = λ2w(x) (8.43)

Hence, it seems that the eigenvectors of the matrix A satisfy a similar equation as the mode
shapes. The corresponding eigenvalues seem to be equal to the square of the eigenfrequencies.
Therefore, it is worth checking whether these eigenvectors and eigenvalues are approximations
of the mode shapes and eigenfrequencies.

λ
√
µ, nx = 20

√
µ, nx = 200

28.7004 28.3771 28.6974
79.1137 77.1775 79.0956
155.0946 148.6791 155.0336
256.3792 240.4848 256.2257
382.9863 350.0241 382.6624

Table 8.2: Comparison between the analytical eigenfrequencies λ and
√
µ, where µ represents

the eigenvalues of the discretisation matrix A.

As an example, consider a bridge with clamped boundaries using the elastic properties as
given in Table 8.3. The first three eigenvectors and their corresponding eigenfrequencies are
computed. This is done both by using 20 discretisation points as well as 200. Note that the
first two eigenvalues of A, both with value 1, are ignored. These eigenvalues are results of the
implementation of the boundary conditions.

Figure 8.3: Comparison between the first three mode shapes and the eigenvectors computed
for nx = 20

As one can see, the eigenfrequencies correspond well with the square root of the eigenvalues
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of A. The difference between the two is clearly much smaller if the discretisation matrix is
larger. However, the approximation becomes worse for larger eigenfrequencies. An important
property to mention is that the discretisation matrix A only has n eigenvalues (or n−2 if the
two 1-eigenvalues are ignored), yet there are an infinite amount of eigenfrequencies. Hence the
larger eigenvalues and their corresponding eigenvectors might be the combination of multiple
eigenfrequencies and mode shapes.

Similarly, we compare the eigenvectors with the mode shapes. Note that if w is an eigen-
vectors, any (non-zero) multiple is an eigenvector too. We have assumed that the mode
shapes are normalised, hence we should multiply each eigenvector by a constant so that its
interpolated function has norm 1, i.e. we set

w := w/

√√√√∆x

n∑
i=1

w2
i (8.44)

Figure 8.4: Comparison between the first three mode shapes and the eigenvectors computed
for nx = 200. The eigenvectors seem to approximate the mode shapes perfectly.

See Figure 8.3 and 8.4. Here, the first 3 (analytical) mode shapes as well as the normalised
eigenvectors corresponding to the smallest 3 eigenvalues (excluding the two eigenvalues with
value 1) are shown. The eigenvectors clearly approximate the mode shapes fairly well. Simi-
larly to the result for the eigenvalues, the approximation is better for smaller eigenvalues and
increasing the number of mesh points nx increases the accuracy of the solution.

This approach is useful if the mode shapes and/or the corresponding eigenfrequencies are
not known beforehand. For example, if the beam is not homogeneous (i.e. E,I, and/or ρ
are not constant), then the mode shapes do not satisfy (8.26). In this situation, the derived
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differential equation for w might be impossible to solve analytically. To get an approximation
of the mode shapes and eigenfrequencies, one could therefore compute the eigenvalues and
eigenvectors of the discretisation matrix instead.

Note that the eigenvectors only correspond to amplitudes for certain x. To compute wi(x)
for some general x ∈ [0, L], one may need to interpolate with respect to the discrete set
{xi|0 ≤ i ≤ n}. Next, the coefficients ci(t) for i = 1, . . . ,m can be computed, and the modal
approximation um can be constructed. The eigenfrequencies λ can be computed by taking
the square root of the eigenvalues µ of the matrix.

8.5 The stationary case

8.5.1 The analytic solution

Assume that the pressure is independent of the time. we will write the solution of equation
(8.4) as a superposition of the mode shapes. First, we will only look at the stationary situation,
i.e. the solution of the stationary beam equation

EI
d4u

dx4
= p(x) (8.45)

Using superposition the solution u can be written as

u(x) =

∞∑
i=1

ciwi(x) (8.46)

where wi is the ith mode shape and ci ∈ R for all i ≥ 1. In order to compute the coefficients
ci, we first substitute expression (8.46) into differential equation (8.45):

p(x) = EI
∂

∂x4

[ ∞∑
i=1

ciwi(x)

]
= EI

∞∑
i=1

ciw
(4)
i (x)

= EI

∞∑
i=1

ciβ
4
i wi(x) = ρ

∞∑
i=1

ciλ
2
iwi(x)

(8.47)

where equation (8.26) is applied.

Next, we multiply (8.47) by a mode shape wj(x) and then integrate from x = 0 to x = L. By
the orthonormality of the mode shapes, we find

∫ L

0

p(x)wj(x)dx = ρ

∫ L

0

∞∑
i=1

ciλ
2
iwi(x)wj(x)dx = ρ

∞∑
i=1

ciλ
2
i

∫ L

0

wi(x)wj(x)dx

= ρcjλ
2
j

(8.48)

And therefore, the coefficients cj are equal to
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cj =
1

ρλ2
j

∫ L

0

p(x)wj(x)dx (8.49)

8.5.2 Numerical approximation using mode shapes

The goal is to compute the coefficients ci and then approximate u by using a finite (say m)
number of modes:

u(x) ≈ um(x) =

m∑
i=1

ciwi(x) (8.50)

The coefficients ci are given by (8.49). In most practical situations, the integral cannot be
computed analytically. Hence, a numerical integrator should be used.

Computing the Riemann sum is the easiest way to approximate the integral. If a better
approximation is required, the Trapezoidal rule or a higher order Newton-Cotes formula can
be used.

It is worth noting that in many cases, the pressure p(x) is only non-zero in a relatively small
region. For example, the contact area of a train wheel on a bridge is very small, usually a
few millimeters at most, compared with the length of the complete bridge, which spans 10
meter easily. Therefore, computing this integral accurately requires far less grid points than
discretisating the entire bridge using the Finite Difference or the Finite Element method.

In Figure 8.5 the first four mode shapes for a simply supported beam is shown. The black line
represents the support of the pressure function. As an example, this can represent the pressure
of a wheel on a bridge located at x = 1/2. The mode shapes represented by the dashed lines
are odd function with respect to x = 1/2. Therefore the corresponding coefficients ci (for
i even) are approximately equal to zero. If p is assumed to be even around x = 1/2, then
p(x)wi(x) is odd, hence ci = 0 for i even.

8.5.3 Error analysis

Theorem 8.3. For both the clamped beam and the simply supported beam, let p ∈ L2(0, L)
and u the solution of the corresponding beam equation, and um the approximation using m
modes. Then we have the following error estimate:

‖u− um‖2 ≤
L4‖p‖2

3π4EIm3
(8.51)

Proof: By the triangle inequality,

‖u− um‖2 = ‖
∞∑
i=1

ciwi −
m∑
i=1

ciwi‖2 = ‖
∞∑

i=m+1

1

ρλ2
i

[∫ L

0

p(x)wi(x)dx

]
wi‖2

≤
∞∑

i=m+1

1

ρλ2
i

∣∣∣∣∣
∫ L

0

p(x)wi(x)dx

∣∣∣∣∣ ‖wi‖2
(8.52)
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Figure 8.5: The first four modes for a simply supported beam.

By the Cauchy-Schwarz inequality, since ‖wi‖2 = 1, it follows that

‖u− um‖2 ≤
∞∑

j=m+1

1

ρλ2
i

∣∣∣∣∣
∫ L

0

p(x)wi(x)dx

∣∣∣∣∣ ≤
∞∑

j=m+1

1

ρλ2
i

‖p‖2‖wi‖2

=

∞∑
j=m+1

1

ρλ2
i

‖p‖2 = ‖p‖2
∞∑

j=m+1

1

β4
jEI

≤ ‖p‖2
∞∑

j=m+1

1(
jπ
L

)4
EI

=
L4‖p‖2
π4EI

∞∑
j=m+1

1

j4

(8.53)

Since the function x 7→ 1
x4 is a decreasing function for x > 0, we can bound the sum∑∞

j=m+1
1
j4 by the integral

∫∞
m

1
x4 dx. Hence

‖u− um‖2 ≤
L4‖p‖2
π4EI

∫ ∞
m

1

x4
dx =

L4‖p‖2
π4EI

[
− 1

3x3

]∞
m

=
L4‖p‖2

3π4EIm3

(8.54)

which is exactly what was to be shown.
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Hence, given a function p and constants E and I, not only does the modal approach converge
to the exact solution, the error is of order O(m−3). The error can therefore by decreased by
a factor 1000 by simply taking 10 times as many modes in the approximation.

In most practical situations, we are interested in the reverse of this Theorem. The following
Corollary tells us how many modes are needed to find an accurate result.

Corollary 8.4. Given ε > 0, the error for the modal approximation is ‖u− um‖2 < ε, if m
satisfies

m >

(
εL4‖p‖2
3π4EI

)1/3

(8.55)

Proof: This is direct consequence of Theorem 8.3.

8.5.4 Numerical validation

Consider the following (arbitrary) example. Suppose L = E = I = 1 and consider the beam
to be simply supported at both x = 0 and x = L. Let p by given by

p(x) =


−1 for x ∈ [.299, .301]

2 for x ∈ [.899, .901]

0 otherwise

(8.56)

The solution of the stationary beam equation is approximated by using 1,2, or 3 mode shapes.
The result can be seen in Figure 8.6. The figure includes the result of the finite difference
method, using a very small mesh size ∆x = 1/1000.

The approximation using one mode shape is constructed using only a half sine function, and
is therefore not accurate. However, as we can see, the shape of the finite difference solution is
matched by using only 2 modes. Using only 7 mode shapes, the difference between the finite
difference solution and the modal solution cannot be distinguished in a similar graph.

See Appendix A.4 for the Matlab code implementing both the discrete approach as well as
the modal approach. Here, the finite difference solution using a very small mesh is computed
as well as the modal solution using a variable number of mode shapes.

8.6 Forced vibrations

8.6.1 The differential equation

A similar approach can be taken to approximate the solution of the time-dependent differential
equation (8.1). Now, the external force p(x, t) is also allowed to be a function of the time.
For the moving load problem, as an example, the external force moves as wave from one side
to the other. This force can trigger vibrations of different frequencies.

Using superposition, we can write the solution of (8.4) as
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Figure 8.6: The approximation of the stationary beam equation using the first 3 mode shapes.

u(x) =

∞∑
i=1

ci(t)wi(x) (8.57)

The difference with the stationary case is that the coefficients ci(t) are not necessarily constant
and can vary with respect to time. To compute the coefficients, we substitute (8.57) into (8.4):

p(x, t) = EI
∂

∂x4

[ ∞∑
i=1

ci(t)wi(x)

]
+ ρ

∂

∂t2

[ ∞∑
i=1

ci(t)wi(x)

]

=

∞∑
i=1

[
EIci(t)w

(4)
i (x) + ρc′′i (t)wi(x)

]
=

∞∑
i=1

wi(x)
[
EIci(t)β

4
i + ρc′′i (t)

]
(8.58)

Next, we multiply by a mode shape wj(x) and integrate both sides from x = 0 to x = L:
Since the mode shapes are orthonormal, we have
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∫ L

0

p(x, t)wj(x)dx =

∫ L

0

∞∑
i=1

wi(x)wj(x)
[
EIci(t)β

4
i + ρc′′i (t)

]
dx

=

∞∑
i=1

[
EIci(t)β

4
i + ρc′′i (t)

] ∫ L

0

wi(x)wj(x)dx

= EIcj(t)β
4
j + ρc′′j (t)

(8.59)

The coefficients cj therefore each satisfy an ordinary differential equation. It is important
to note that the differential equations corresponding to different coefficients ci(t) and cj(t)
(i 6= j) are independent of each other.

8.6.2 Numerical approximation using mode shapes

Similarly to the stationary case, the solution of (8.1) can be approximated by using m modes:

u(x, t) ≈ um(x, t) =

m∑
i=1

ci(t)wi(x) (8.60)

To compute this approximation, we need to solve m independent differential equations for
ci(t), 1 ≤ i ≤ m. For each differential equation, we also need initial conditions for ci(0) and
c′i(0). Differential equation (8.59) is of second order, hence both ci(0) as well as c′i(0) should
be given.

In most situations, both u(x, 0) = u0(x) and v(x, 0) = v0(x) are known. Using the orthonor-
mality of the mode shapes, the initial conditions for ci can be extracted:

cj(0) = cj(0)

∞∑
i=1

∫ L

0

wi(x)wj(x)dx =

∞∑
i=1

cj(0)

∫ L

0

wi(x)wj(x)dx

=

∫ L

0

[ ∞∑
i=1

ci(0)wi(x)

]
wj(x)dx =

∫ L

0

u(x, 0)wj(x)dx

=

∫ L

0

u0(x)wj(x)dx

(8.61)

and similarly for c′j(0):

c′j(0) =

∫ L

0

[ ∞∑
i=1

c′i(0)wi(x)

]
wj(x) =

∫ L

0

vo(x)wj(x)dx (8.62)

In most problems, both the displacement as well as the velocity is zero at t = 0. It follows
from (8.61) and (8.62) that cj(t) = c′j(t) ≡ 0 for all j ≥ 1.

Note that (8.59) can be rewritten as

c′′j (t) =
1

ρ

∫ L

0

p(x, t)wj(x)dx− EI

ρ
β4
j cj(t) for all 1 ≤ j ≤ m (8.63)
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Note that for each separate mode shape wi, differential equation (8.63) is independent on wj
for all j ≤ i. Therefore, each differential equation corresponding to a different mode shape
can be solved separately. These ordinary differential equation (8.63) can be solved using an
integration scheme. This can be solved in a similar way as we have described before, see
Section 8.3.4 for the implementation of an implicit integration scheme.

The right hand-side of (8.63) involves the computation of an integral. This integral should be
approximated at each iteration using an integrator such as the trapezoidal rule or a similar
Newton-Cotes formula.

8.7 A simple moving load problem

Consider the following (very simplistic) problem with a train moving over a track. In this
problem we do not take local deformations into account, and therefore we can also ignore
phenomena such as slip. The train is modelled as a single point that exerts a constant
(moving) point force on the track.

Figure 8.7: The displacement of the beam at time t ≈ 4.67. The red star represents the load
of the train.

Consider a small bridge that spans a total of 20m which is clamped at both sides. There are
no supports between the two ends of the bridge. The bridge itself is made out of steel with
a thickness of 50cm. An NS DD-AR train with a mass of 76 tons moves over the the bridge
with a speed of 30m/s. This example corresponds to the values as shown in Table 8.3.

The force the train exerts on the bridge mg at the position of the train, which is x(t) = vt
and is therefore
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Property Value Explanation
E 2 · 1011 Elastic modulus of steel

I 0.0104m4 I(x) =
∫ 0.25

−0.25
|z|2dz

L 20m Bridge of 20 meters
ρ 7900kg/m3 Density of steel
m 76 · 104kg Mass of train
v 30 Speed of train in m/s

Table 8.3: The properties of the bridge and train.

p(x, t) = mgδ(x− vt) 0 ≤ x ≤ L (8.64)

where δ is the Dirac delta function. The resulting force is therefore

F (t) =

∫ L

0

p(x, t)dx = mg

∫ L

0

δ(x− vt)dx = mg (8.65)

which is indeed equal to the gravitational force of the train.

8.7.1 The discrete problem

Both the finite difference method as well as the modal approach will be analysed and used to
solved this problem. For the finite difference approach, (8.4) can be rewritten as two linear
ordinary differential equations by defining w = ∂u

∂t and using finite differences to approximate
the derivatives. Next, a time integration scheme such as the ones we have described in Chapter
5 can be used to integrate with respect to time. Alternatively, the partial differential equation
can also be discretised completely, i.e. including the time derivative, and then solving the
equation for the displacement and velocity components for the next iteration.

The algorithm to solve this problem (with the properties as shown in Table 8.3) has been
implemented in Matlab. We use a uniform mesh in the spatial direction with mesh size
∆x = L

100 . The time integration is done using Verlet integration. According to (8.20), the
following CFL condition should hold:

∆t ≤ (∆x)2

2

√
ρ

EI
≈ 3.8977 · 10−5 (8.66)

In Figure 8.7 the solution is shown at a certain point of time, using the time step ∆t =
3.8976 · 10−5. The integration is clearly stable. The train moves from the left side to the
right side, so as we would expect, a wave appears and follows the train to the right. After
applying Verlet integration numerically, it appears that the maximum displacement of the
beam occurs at about t ≈ 3.33. At this time, the train is exactly in the middle of the beam.
The total displacement is about 0.3cm.

To show the effect of the CFL condition, we use the same experiment but now with a time
step ∆t = 3.899 · 10−5, resulting in a CFL number slightly higher than the upper bound we
have found. See the results in Figure 8.8.
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Figure 8.8: The displacement of the beam at time t ≈ 0.06, using a CFL number slightly
larger than 1

4 . The red star represents the position of the wheel.

As we can see, artificial wiggles are created which tend to infinity. So our CFL condition is
very accurate.

The CFL condition (8.20) was computed for the fully discretised model, i.e. the Verlet
method. The Forward Euler method gives a similar result. However, this condition does
not seem to be accurate when using the Runge-Kutta 4 method. For the RK4 method, the
following CFL condition seems to hold:

∆t ≤ 0.188
ρ

EI
∆x4 = O(∆x4) (8.67)

This can numerically be verified by finding for multiple values of ∆x (up to a certain precision)
the lowest value of ∆t so that the integration is unstable. Afterwards, one applies Richardson
extrapolation to get the result.

The difference is significant. Although the time integration itself is of higher order, the time
step ∆t should be made roughly 16 times smaller when decreasing the mesh size by 2. For
Forward Euler and Verlet integration this is only 4 times. This makes the RK4 method not
preferable for many situations, as one easily needs an hour of computation time if more one
wishes to have more than 50 discretisation points in the spatial direction.

8.7.2 The modal approach

Similarly, the modal approach (using m = 10 modes) is applied to solve this moving load
problem. There is no CFL condition for the modal approach regardless of the choice of
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(explicit) time integration schemes. This is because each modal coefficient is prescribed
by an ordinary differential equation; this is solved without the need of a mesh width ∆x.
Additionally, the solution um only consists of waves with bounded wave lengths and therefore
cannot behave as in (8.8).

n βn
1
L ( 1

2 + n)π λn Frequency (λn/(2π))
1 0.23650 0.23561 28.700 4.567Hz
2 0.39266 0.39269 79.113 12.59Hz
3 0.54978 0.54977 155.09 24.68Hz
4 0.70685 0.70685 256.37 40.80Hz
5 0.86393 0.86393 382.98 60.95Hz

Table 8.4: The first 5 eigenfrequencies of the bridge.

Table 8.4 shows the corresponding values of λn and βn for the free vibration modes, as well
as the corresponding frequencies.

As an example, Verlet integration can be applied to solve (8.63). For each 1 ≤ i ≤ m, we set

c1i = c0i + ∆tċ0i +
1

2
(∆t)2

[
1

ρ

∫ L

0

p(x, t0)wi(x)dx− EI

ρ
β4
i c

0
i

]

ck+1
i = 2cki − ck−1

i + (∆t)2

[
1

ρ

∫ L

0

p(x, tk)wi(x)dx− EI

ρ
β4
i c

0
i

]
for k ≥ 1

(8.68)

which is by definition of p equal to

c1i = c0i + ∆tċ0i +
1

2
(∆t)2

[
mg

ρ
wi(vt0)− EI

ρ
β4
i c

0
i

]
ck+1
i = 2cki − ck−1

i + (∆t)2

[
mg

ρ
wi(vt

k)− EI

ρ
β4
i c

0
i

]
for k ≥ 1

(8.69)

The resulting solution um(x, tk) =
∑m
i=1 c

k
iwi(x) behaves similar to the static case. The

coefficients cki tend to 0 very quickly as i tends to infinity. This results in a similar situation
as shown in Figure 8.6.

8.7.3 Resonance

An advantage of applying the modal approach is that because resonance can easily be anal-
ysed. If the exerted pressure p is periodic and its frequency corresponds to any of the eigenfre-
quencies, then the corresponding modal coefficient (and hence the total solution) will amplify.

Suppose the pressure as in (8.64) is L−periodic, i.e.

p(x, t) = −mgδ(mod(x− vt, L)) (8.70)

This can represent the total exerted force of a train caused by the multiple wheels. We are
interested in the influence of the velocity v of the train.
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As computed in Table 8.4, the lowest eigenfrequency of the beam is equal to 4.567Hz. If the
speed v of the train is equal to 4.567L ≈ 91.356 m/s, then the first modal response integral∫ L

0
p(x, t)w1(x, t)dx is a periodic function. By definition, its frequency corresponds to the

lowest eigenfrequency of the beam. To see whether resonance can indeed occur at this speed,
we can compute the norm ‖u(t)‖∞. We have done so for the ‘critical’ speed v = 91.356m/s,
as well as a slightly different speed v = 100m/s. See Figure 8.9.

Figure 8.9: Resonance occurring when v ≈ 91.356m/s.

As one can see, the two solutions are similar at the beginning. However, after a while the two
solutions become out of phase. For the case where v = 100m/s, the phase change between the
exerted pressure and the first eigenfrequency will create damping. However, for the critical
speed v = 91.356, the periods are equal and hence resonance occurs.

8.8 Conclusion

Two methods have been proposed in order to solve the beam equation (8.4). First, there is the
usual finite difference approach. By discretising the bridge into elements and approximating
the derivatives we are capable of solving both the static as well as the time-dependent beam
equation. In the latter case, a time integration scheme should be used. We have shown that
explicit integration schemes for this differential equation can suffer from a CFL condition.
This CFL condition is fairly strict, and stability is only ensured if ∆t = O(∆x2). Spatial
accuracy is therefore limited since the number of time iterations need to increase rapidly.
This is however not the case for an implicit method such as Backward Euler.
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Secondly, the modal approach has been introduced. The mode shapes and the correspond-
ing eigenfrequencies can be computed analytically by the method of separation of variables.
Alternatively, as shown in Section 8.4.4, they can also be approximated by looking at the
eigenvectors and eigenvalues of the finite difference matrix. We have derived an ordinary
differential equation for each mode shape. These differential equations are independent and
can therefore be solved independently. Both explicit as well as implicit integration schemes
can be applied. Additionally, each iteration requires the computation of an integral. This
integral can be approximated by using an integrator such as the trapezoidal rule or a similar
Newton-Cotes formula.

Both approaches have been applied to solve a basic moving load problem. The solutions
computed using the finite difference method corresponds to the modal solution. We have
shown (for the static case, the time-dependent case seem to have simular results) that the
error of the modal approach is of orderO(m−3) so that the solution converges quickly. Usually,
taking 50 mode shapes is enough to get accurate results.

The modal approach looks promising. It is a stable and computationally inexpensive approach
of solving the beam equation. Additionally, each modal coefficient can be solved indepen-
dently of each other. Because of these advantages, we will use this approach in the coming
chapters.
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Chapter 9

Combining local and global
deformations using CONTACT

In the previous chapter we have introduced the concept of the global deformation of a beam.
This deformation is the result of a pressure being exerted on the surface. However, as we
have discussed in Chapter 6 and 7, this pressure will also result in local deformation, i.e.
deformation strictly around the contact area.

The finite difference approach can be used to solve the 2 dimensional (i.e. in the x and z
direction) linear elasticity equations given the right boundary conditions. This approach will
automatically take both global and local deformation into account. However, as we have
discussed in Chapter 7, this approach is computationally very expensive, often unstable and
the results do not always seem realistic.

The goal of this chapter is to show how CONTACT can be used to combine local defor-
mation with the global deformation of a bridge by using mode shapes. This approach will
be computationally much less expensive than the complete finite difference approach. Some
assumptions need to be made which will be discussed in this chapter.

9.1 Assumptions

9.1.1 The total deformation of a beam

We construct the total deformation a beam as the sum of the global and local deformation,
i.e.

utot(x, t) = u(x, t) + l(x, t) (9.1)

where utot is the total deformation. u denotes the global deformation, i.e. the solution
computed using modes, and l the local deformation. The local deformation must have the
important property that for fixed t, l is (almost) zero almost everywhere, except near the
area of contact.
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9.1.2 The penetration and approach for a globally deformed beam

In Chapter 6 we have discussed the basic dynamics of a rigid sphere falling on an elastic
half-space. We have seen the approach δ is simply given by δ(t) = −z(t), where z(t) is the
height of the lowest point of the sphere. Similarly, the penetration δ(x, y, t) is given by 6.10.
This example is simply since there is no global deformation.

However, consider the same sphere falling on an elastic beam. The beam is much more flexible
than the half-plane since elements on the bottom boundary are not fixed. As a result, the
height −z(t) does not equal to the approach δ(t). Instead, we assume that the penetration is
defined with respect to the globally deformed beam, i.e.

δ(x, y, t) = u(x, t)− z(x, y, t) (9.2)

where z(x, y, t) is the height of the surface of the sphere at position (x, y) at time t. The
approach δ is as usual δ(t) = max(x,y)∈Ωδ(x, y, t) the maximum penetration.

Using this definition, the two problems are consistent in that the approach and penetration
is computed with respect to the global deformed situation (which is zero for the half-plane
problem). The assumption is realistic since global deformation is more of a result of bending
and vertical translation, the material itself is not really compressed.

9.1.3 The pressure for a globally deformed beam

Since the penetration between the object and the beam is now defined with respect to the
global deformation of the beam, the situation becomes more complex. Hertz theory to com-
pute the pressure distribution and normal force is no longer valid since the geometry of the
surface of the beam is no longer flat as was the case for the half-space.

As discussed in Section 4.5, CONTACT can be used for arbitrarily shaped objects. CON-
TACT returns the pressure distribution p(x, y), the normal force Fn, as well as the static-
deformation. The same pressure distribution should be used to solve the beam equation.

9.1.4 The quasi-static local deformation

One of the advantages of the modal approach is that we do not need to discretise with respect
to the z direction, resulting in a much less computationally expensive algorithm. However,
this comes with a disadvantage. Without discretising in the z direction, the shock behaviour
occurring during and after the impact of an object on a half-plane or bridge can not be
computed and combined with the modal approach for the global deformation.

Therefore, we will make the important assumption that this shock behaviour can be neglected.
This shock will only occur near the contact area. This area is for the train-bridge problem
very small. By using the static local deformation ũl computed using CONTACT for the local
deformation, we are effectively solving the quasi-static elasticity equations. Using this will
result in an error, but we expect this error to be small, especially compared to the global
deformation of the bridge.
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9.2 Combining global and local deformations

In Chapter 6 we discussed the physics involving a sphere falling on an elastic surface. Using
Hertz theory we derived a differential equation that described the height of a rigid sphere
falling on an elastic half-plane. In Chapter 8 we described the total deformation and bending
of a beam.

These two chapters describe different phenomena. In Chapter 6 we only consider local de-
formation, the elastic surface itself does not move. We derived a differential equation and
algorithm to compute the height and quasi-static local deformation of the half-plane. Chapter
8 is focussed on the global deformation that occurs when there are forces being exerted on
the beam.

The interesting and challenging problem is that the two different kinds of deformation are
not independent of each other. Using mode shapes, the global deformation can be computed
if the external pressure p is known. This pressure distribution around the contact area can be
computed using CONTACT when supplying the penetration. This penetration, however, is
the distance between the sphere and the global deformed bridge. This information is not yet
known since the goal is to compute this global deformation. A very similar problem involving
the height of the sphere also occurs. This height depends on the normal force of the bridge
which is computed using CONTACT after supplying the penetration. But this penetration
is not known since it is dependent on the height of the sphere.

Computing the total deformation utot of the bridge is therefore not straightforward. An
algorithm should be used to compute the pressure distribution p, global deformation u, as
well as the contact force Fn in such a way both the global and local problems are consistent
with each other. That is, if the pressure is recomputed using the already computed global
deformation w and normal force Fn, the exact pressure distribution should be derived.

9.3 The stationary problem

For simplicity, we consider the stationary problem of a train standing still on a bridge. Our
goal is to compute the total deformation of the bridge utot(x). To do so accurately, both the
global and local phenomena should be taken into account. Denote the height of the train
wheels with respect to the xy-plane by w(x). The undeformed distance, similarly to the
penetration for the instationary case, between the train and the locally undeformed bridge is
therefore given by

h(x) = u(x)− w(x) (9.3)

Since we are looking at the stationary solution, we know that the normal force is equal to
Fn = −Fg = mcg, where mc is the mass of the cylinder. This normal force as well as the
undeformed distance can then be supplied to CONTACT. CONTACT will then the pressure
distribution p(x) around the contact area as well as the quasi-static local deformation l(x).

Note that p(x), computed by CONTACT, can only be computed after computing the global
deformation u(x). This global deformation, on the other hand, depends on the same pressure
distribution p(x) since it is the solution of the stationary beam equation
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EI
d4u(x)

dx4
= p(x) (9.4)

The problem that we see here is that the pressure distribution p(x) depends on the global de-
formation u(x), which depends on p(x). Since the computation from u to p using CONTACT
is one way only, i.e. this step cannot be inversed, p(x) cannot be solved explicitly.

The goal therefore is to compute the pressure distribution p(x) and the global deformation
g(x) of the bridge by using an implicit solver. See Algorithm 9.1.

Algorithm 9.1 Computing the total static deformation of a beam with CONTACT

1: Set u(x) ≡ 0.
2: repeat
3: Set u∗ ≡ u.
4: Set h(x) = u∗(x)− w(x) for all x.
5: Compute p(x) and l(x) with CONTACT using normal force Fn = mcg and undeformed

distance h.
6: for i = 1 to m do . Computing modal coefficients using (8.49)

7: Compute ci =
1

ρλ2
i

∫ L
0
p(x)wi(x)dx using a Newton-Cotes formula.

8: end for
9: Set u(x) =

∑m
i=1 ciwi(x) for all x.

10: Set error = ‖u− u∗‖2.
11: until error ≤ ε
12: Set utot(x) = u(x) + l(x).

If the algorithm converges, then the pressure distribution p(x) both corresponds to the global
problem (the beam equation) as well as the local problem (computed using CONTACT). The
stopping criterion that checks for the difference in global deformation u, i.e. ‖u − u∗‖2 < ε,
could also be changed check for a difference in pressure distribution, i.e. convergence is
reached if and only if ‖p− p∗‖ < ε.

Numerically it can be checked to see that the algorithm usually converges, as long as the
global deformation is not extraordinary large (that is; the maximum vertical displacement
shouldn’t be more than 5% of the length of the bridge). Additionally, it is important that the
mesh used to discretise the penetration for CONTACT should be fine enough; using 20× 20
grid points around the contact area is more than enough. Otherwise, convergence might not
be reached.
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See Figure 9.1 for the result. Note that the ratios in this figure are not realistic, the parameters
are chosen so that the result is more visually clear. The purple line represents the global
deformation, the red line the global deformation. The total deformation is the sum of the
local and global deformation. One can see that the wheel perfectly fits within the local
deformed bridge.

Figure 9.1: A visual interpretation of a train wheel on a bridge, combining global and local
deformations

9.4 The time-dependent problem

Consider the same problem, but now suppose that the height of the wheel w(x, t) is also a
function of time. To make it slightly easier, we suppose this height is known beforehand and
unrelated to the contact physics between the wheel and the bridge. In Chapter 10 we will
discuss the most general case where the height of the wheel depends on the current state of
the bridge.



86 CHAPTER 9. COMBINING LOCAL AND GLOBAL DEFORMATIONS

The penetration at a given time t is given by

δ(x, t) = u(x, t)− w(x, t) (9.5)

The global deformation u is constructed by using modes. The modal coefficients ci(t) for
i = 1, . . . ,m are computed by applying a numerical integration scheme to solve differential
equation (8.59). This scheme can be either explicit or implicit, which this is of importance
for the algorithm.

9.4.1 Explicit integration schemes

For explicit schemes, the problem is easy. When computing the global deformation at time
step j, the global deformation as time step j−1 is used. This information is known so that we
can compute the pressure distribution p and the local deformation l explicitly. See Algorithm
9.2.

Algorithm 9.2 Computing the total dynamic deformation of a beam with CONTACT with
an explicit integration scheme

1: Set c0i = ċ0i = 0 for all 1 ≤ i ≤ m. If the initial condition is not zero, use (8.61) and (8.62)
instead.

2: Set u0(x) ≡ 0.
3: for k = 1 to n do . Loop over each of n time steps
4: Set δ(x) = uk−1(x)− w(x, t) for all x.
5: Compute p(x) and l(x) with CONTACT using penetration δ(x).
6: for i = 1 to m do . Computing modal coefficients using (8.63)
7: Apply the explicit integration scheme to compute cki for

c′i(t) = ċi(t)

8: Apply a Newton-Cotes formula and the explicit integration scheme to compute ċki
for

ċ′i(t) =
1

ρ

∫ L

0

p(x, t)wi(x)dx− EI

ρ
β4
i ci(t)

9: end for
10: Set uk(x) =

∑m
i=1 c

k
iwi(x) for all x.

11: Set uktot(x) = uk(x) + l(x) for all x.
12: end for

However, we have seen in Chapter 6 that explicit integration schemes are generally not usable
if the material of the half-space (or bridge in this situation) is stiff. The use of this algorithm
is therefore limited.
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9.4.2 Implicit integration schemes

For implicit time integration methods such as Radau5, then at each time step we have a
similar problem as in the stationary case. The global deformation at time step j can not be
computed without knowing the pressure p at the same time step, which is also not known. A
combination between Algorithm 9.1 and 9.2 is therefore proposed, see Algorithm 9.3.

Algorithm 9.3 Computing the total dynamic deformation of a beam with CONTACT with
an implicit integration scheme

1: Set c0i = ċ0i = 0 for all 1 ≤ i ≤ m. If the initial condition is not zero, use (8.61) and (8.62)
instead.

2: Set u0(x) ≡ 0.
3: for k = 1 to n do . Loop over each time step
4: Set u ≡ uk−1.
5: repeat
6: Set u∗ ≡ u.
7: Set δ(x) = u(x)− w(x, tk) for all x.
8: Compute p(x) and l(x) with CONTACT using penetration δ(x).
9: for i = 1 to m do . Computing modal coefficients using (8.63)

10: Apply the integration scheme explicitly (using p(x), ck−1
i and ċk−1

i in place for

pk(x), cki and ċki respectively) to compute cji for

c′i(t) = ċi(t)

11: Apply a Newton-Cotes formula and the integration scheme explicitly to com-
pute ċki for

ċ′i(t) =
1

ρ

∫ L

0

p(x, t)wi(x)dx− EI

ρ
β4
i ci(t)

12: end for
13: Set uk(x) =

∑m
i=1 c

k
iwi(x) for all x.

14: Set error = ‖u− u∗‖2.
15: until error ≤ ε
16: Set uktot(x) = uk(x) + l(x) for all x.
17: end for

If this algorithm converges, then u∗ ≈ u for each time step and hence ci satisfies the implicit
expression of the time integration scheme for all 1 ≤ i ≤ m.
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Chapter 10

Full train-bridge simulation

In this chapter, we will develop an algorithm to be able to perform an accurate train-bridge
simulation by using CONTACT. This algorithm makes use of the theory as discussed in the
previous chapters. The numerical methods as described in Chapter 5 will be used to integrate
the differential equations for the modal coefficients as derived in Section 8.4. The algorithm
works closely together with CONTACT in order to compute the pressure distribution around
the point of contact as well as the normal contact force accurately.

In Chapter 9 we have seen that a fairly simple Picard iteration can be used to combine the
local and global contact problem using CONTACT. However, we assumed in this problem
the height of the wheel uw(x, t) is known beforehand. In reality, this height satisfies a similar
differential equation as the one described in Chapter 6. This differential equation, however,
strongly depend on each of the multiple differential equations for the mode shapes. The new
contact problem turns out to be much more complex. The iterative Picard iteration can be
adapted but will turn out to break down very quickly. Therefore, we had to figure out a way
to improve the stability of the iterative solver.

10.1 Formulation of the problem

We consider a single cylindrical wheel of radius R moving over a bridge of length L with a
horizontal speed of w. The bridge is 20m long, 8m width, 50cm thick and is made of steel. The
train wheel is also made of steel and can deform locally. See Table 10.1 for the corresponding
values.

The global deformation of the bridge is denoted by u(x, t) and is approximated by m modes.
The geometry of the wheel is denoted by g(x) and is defined as the difference in height of the
wheel with respect to its lowest point, the reference point. For a cylindrical wheel of radius
R, it is given by

g(x) = R−
√
R2 − x2 for |x| ≤ R (10.1)

However, we do allow arbitrary functions of g, i.e. arbitrarily shaped wheels, as long as g is
non-negative and zero at the reference point. The actual time-dependent height of the wheel,
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Property Value Explanation

I 0.0104m4 I(x) =
∫ 0.25

−0.25
|z|2dz

L 20m Length of bridge
B 8m Width of bridge
s 30m/s Speed of train in m/s
E 2 · 1011 Elastic modulus of steel
ρ 7900kg/m3 Density of steel
R 0.3m Radius of wheel
mc 76 · 104kg Mass of cylinder

Table 10.1: The properties of the bridge and the train wheel.

measured from the same lowest point, is denoted by z(t). The wheel moves at a constant
speed of s, so that the actual height of the undeformed wheel wtot is given by

wtot(x, t) = g(x− x0 − st) + z(t) for |x| ≤ st (10.2)

where x0 is the starting position of the reference element on the wheel.

Both the wheel as well as the bridge are capable of deforming locally. The local deformation
l(x) occurring during the contact is computed as the quasi-static result of CONTACT. Since
both the wheel as the bridge are made of the same material, no friction occurs and the local
deformation is evenly spread among the two objects, i.e.

utot(x, t) = u(x, t) +
1

2
l(x)

wtot(x, t) = w(x, t)− 1

2
l(x)

(10.3)

The penetration δ(x, y, t) is defined as the distance between the wheel and the globally de-
formed bridge at time t, a positive value representing penetration. Since the problem is
independent of the y axis (both the height of the wheel as well as the height of the bridge is
constant with respect to y), this penetration is actually a function of x and t only. It is by
definition equal to

δ(x, t) = u(x, t)− w(x, t) = u(x, t)− z(t)− g(x− x0 − st) (10.4)

The normal force Fn as well as the pressure distribution p is a function of δ(x, t) and can
be computed by using CONTACT. The normal force Fn directly influences the height of the
wheel. By the second law of Newton, the height z(x) satisfies

z′′(t) =
Fn
mc
− g (10.5)

For the bridge, the modal coefficients cj(t) satisfy the modal equation

EIcj(t)β
4
j + ρc′′j (t) =

∫ L

0

p(x, t)wj(x)dx (10.6)
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Differential equation (10.5) is dependent on each of the modal differential equations (10.6).
This is because the contact force Fn is computed using CONTACT by supplying the pene-
tration δ(x, t). This penetration is constructed using u(x, t) =

∑m
i=1 ci(t)wi(x) and hence the

dependency on ci(t). This relation also works in the opposite direction; The pressure p(x, t)
of (10.6) depends on the approach δ(t) and hence also on z(t).

10.2 The system of differential equations

To solve the problem, equations (10.5) and (10.6) should be combined to get one single
differential equation. To do so, define the vector v(t) by

vi(x, t) =

{
ci for 1 ≤ i ≤ m
z for i = m+ 1

(10.7)

The penetration and contact force can then be noted by p(x,v, t) and Fn(v, t) respectively,
so emphasize the dependency on both the modal coefficients cj as well as the height of the
cylinder z.

Both differential equation can be combined to get

v′′1 (t) =
−EIβ4

1

ρ
v1(t) +

1

ρ

∫ L

0

p(x,v, t)w1(x)dx

...
...

v′′m(t) =
−EIβ4

m

ρ
vm(t) +

1

ρ

∫ L

0

p(x,v, t)wm(x)dx

v′′m+1(t) =
Fn(v, t)

mc
− g

(10.8)

which can also be denoted as

v̈(t) = Av(t) + f(δ(v, t)) (10.9)

10.3 Implementation of Backward Euler

Next, we will apply the Backward Euler integration scheme to try to solve system (10.8).
The reason for this choice is that Backward Euler is the simplest implicit integration scheme.
As we will see later, the system can become very complex. Backward Euler will therefore be
used to illustrate the problem, but any other time integration scheme as discussed in Chapter
5 can also be used instead.

The Backward Euler integration scheme can only be applied to first-order ordinary differential
equation. Hence, we introduce components ċi(t) for 1 ≤ i ≤ m as the modal speed components
and ż as the vertical speed of the cylinder. System (10.8) can then be rewritten as the first
order ordinary differential equation
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c′1(t) = ċ1(t)

ċ′1(t) =
−EIβ4

1

ρ
c1(t) +

1

ρ

∫ L

0

p(x, c, z, t)w1(x)dx

...
...

c′m(t) = ċm(t)

ċ′m(t) =
−EIβ4

m

ρ
cm(t) +

1

ρ

∫ L

0

p(x, c, z, t)wm(x)dx

z′(t) = ż(t)

ż′(t) =
Fn(c, z, t)

mc
− g

(10.10)

Backward Euler applied to (10.10) is defined by



ck+1
1 = ck1 + ∆tċk+1

1

ċk+1
1 = ċk1 +

∆t

ρ

[∫ L

0

p(x, ck+1, zk+1, tk+1)w1(x)dx− EIβ4
1c
k+1
1

]
...

...

ck+1
m = ckm + ∆tċk+1

m

ċk+1
m = ċkm +

∆t

ρ

[∫ L

0

p(x, ck+1, zk+1, tk+1)wm(x)dx− EIβ4
mc

k+1
m

]
zk+1 = zk + ∆tżk+1

żk+1 = żk + ∆t

[
Fn(ck+1, zk+1, tk+1)

mc
− g
]

(10.11)

The terms ∆tċk+1
i , ∆tżk+1, and

−EIβ4
i

ρ
ck+1
i for 1 ≤ i ≤ m can be moved to the left-hand

side to get



ck+1
1 −∆tċk+1

1 = ck1

ċk+1
1 + ∆t

EI

ρ
β4

1c
k+1
1 = ċk1 +

∆t

ρ

∫ L

0

p(x, ck+1, zk+1, tk+1)w1(x)dx

...
...

ck+1
m −∆tċk+1

m = ckm

ċk+1
m + ∆t

EI

ρ
β4
mc

k+1
m = ċkm +

∆t

ρ

∫ L

0

p(x, ck+1, zk+1, tk+1)wm(x)dx

zk+1 −∆tżk+1 = zk

żk+1 = żk + ∆t

[
Fn(ck+1, zk+1, tk+1)

mc
− g
]

(10.12)

or in matrix-vector notation
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1 −∆t

∆t
EI

ρ
β4

1 1

. . .

1 −∆t

∆t
EI

ρ
β4
m 1

1 −∆t
0 1





c1
ċ1
...
cm
ċm
z
ż



k+1

=



c1
ċ1
...
cm
ċm
z
ż



k

+∆tf(ck+1, zk+1, tk+1)

(10.13)

where

f(ck+1, zk+1, tk+1) =



0

1

ρ

∫ L

0

p(x, ck+1, zk+1, tk+1)w1(x)dx

...
0

1

ρ

∫ L

0

p(x, ck+1, zk+1, tk+1)wm(x)dx

0
Fn(ck+1, zk+1, tk+1)

mc
− g


(10.14)

10.4 The Picard approach

10.4.1 The algorithm

Due to term f(ck+1, zk+1, tk+1) on the right-hand side, expression (10.13) is implicit. The
process of computing the normal force as well as the pressure distribution using CONTACT
is one-way only, i.e. we are not capable of computing the inverse of this process. Hence, an
iterative solver must be used at each time step in order to solve equation (10.13).

We will introduce a new index j which represents the iteration number. Furthermore, the
components zk+1

j and ck+1
i,j for 1 ≤ i ≤ m represent the approximations of zk+1 and ck+1

i ,

respectively. The goal is to define zk+1
j and ck+1

i,j iteratively so that

{
zk+1
j → zk+1

ck+1
i,j → ck+1

i for 1 ≤ i ≤ m
as j →∞ (10.15)

Preferably, the convergence should be quick since the computation of the normal force and
pressure distribution using CONTACT (as well as the communication between CONTACT
and Matlab, done by writing/reading input/ouput files) is computationally very expensive
compared to other computations such as solving a small linear system using Matlab.

The straightforward approach is to apply a Picard iteration. For the best stability of the

iterative process, it is better to take the linear term
−EIβ4

i

ρ ck+1
i as in (10.12) implicit. p and
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Fn need to be explicit terms in the iteration since they rely on the results of CONTACT.
Each iteration therefore involves solving the linear system as in (10.13) with the right-hand
side being computed explicitly, i.e. at each iteration we compute



c1
ċ1
...
cm
ċm
z
ż



k+1

j+1

=



1 −∆t

∆t
EI

ρ
β4

1 1

. . .

1 −∆t

∆t
EI

ρ
β4
m 1

1 −∆t
0 1



−1 



c1
ċ1
...
cm
ċm
z
ż



k

+ ∆tf(ck+1
j , zk+1

j , tk+1)


(10.16)

A convergence criterion is to check the relative difference between vk+1
j+1 and vk+1

j in a

certain norm. For example, we can repeat this process at each time step until ‖vk+1
j+1 −

vk+1
j ‖2/‖v

k+1
j ‖2 < ε for some small value of ε.

Algorithm 10.1 Performing a full train-bridge simulation using Picard iteration as solver

1: Set c0i = ċ0i = 0 for all 1 ≤ i ≤ m. If the initial condition is not zero, use (8.61) and (8.62)
instead.

2: Set z0 = ż0 = 0 or equal to the corresponding initial conditions.
3: Set u0(x) ≡

∑m
i=1 c

0
iwi(x).

4: for k = 1 to n do
5: Set y = [ck−1

1 ; ċk−1
1 ; . . . ; ck−1

m ; ċk−1
m ; zk−1; żk−1].

6: repeat
7: Set y∗ = y.
8: Set δ(x) =

∑m
i=1 c

∗
iwi(x)− z∗ − g(x− x0 − stk) for all x.

9: Compute p(x), F and l(x) with CONTACT using penetration δ(x).
10: Compute right-hand vector g = yk−1 + ∆tf(y∗, tk) as in (10.13), using a Newton

Cotes formula for f .
11: Solve (10.13) for y = [c1; ċ1; . . . ; cm; ċm; z; ż; ].
12: Set error = ‖y − y∗‖2.
13: Set y = (1− ω)y∗ + ωy
14: until error ≤ ε
15: Set uk(x) =

∑m
i=1 ciwi(x) for all x

16: Set uktot(x) = uk(x) + 1
2 l(x) for all x.

17: Set wk(x) = g(x− x0 − stk) + z for all x.
18: Set wktot(x) = wk(x)− 1

2 l(x) for all x.
19: end for

Equation (10.16) can be written as yk+1
j+1 = A−1(yk + ∆tf(ck+1

j , zk+1
j , tk+1)). To achieve

better convergence, we will also introduce the principle of under relaxation. The relaxation
factor ω > 0 is a value that represents the magnitude of the relaxation. If ω < 1, then this
is called under relaxation; ω > 1 represents over relaxation. The idea is that a single Picard
iteration might overshoot so that the sequence (yk+1

j )∞j=1 diverges. To prevent this, we can
instead set
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yk+1
j+1 = (1− ω)yk+1

j + ωA−1(yk + ∆tf(ck+1
j , zk+1

j , tk+1)) (10.17)

If ω = 1, there is no under relaxation and hence (10.17) is the same as (10.16). If ω is close
to 0, then the difference between yk+1

j+1 and yk+1
j is small. This can prevent overshoot in the

Picard process, thereby improving the stability of the method. The downfall of this is that
single time step might take more iterations, so more computational power is required. This
will be shown below.

The actual height of the wheel and bridge at time step tk is represented by wktot(x) and uktot(x).
These values include the rigid displacements of the objects as well as the total deformation.
See Algorithm 10.1.

10.4.2 Numerical results

Running CONTACT is computationally fairly expensive. On an average modern computer,
a single CONTACT run takes about half a second, or more if a finer mesh is given for a
better precision. The Picard iteration might take 10 steps until convergence is reached, which
would make a single time step to take about 5 seconds. The number of time steps we can
do is therefore very limited. In practice we were not able to use a time step smaller than
∆t = 0.01s and still being able to perform a meaningful simulation.

Using this fixed time step and the properties as in Table 10.1, the Picard iteration does not
converge. To understand this behaviour, it is important to note that the matrix as in (10.16)
is a block diagonal matrix. Between the transition from iteration j to j + 1, there is no
interaction between the mode coefficients and the height of the wheel nor any interaction
between the mode coefficients mutually. As an example, suppose that the wheel at iteration
j has height 0m and vertical speed −0.1m/s. The height and vertical speed of the wheel at
iteration j + 1 using a time step ∆t = 0.01 will be given by

(
zk+1
j+1

żk+1
j+1

)
=

(
1 −∆t
0 1

)−1(
0

−0.1−∆tg

)
≈
(
−.002
−.198

)
(10.18)

Hence, after this iteration, the approach is roughly 0.2mm. For a rigid material like steel,
this is huge. The corresponding contact force (assuming no global deformation) is enormous
and is approximately Fn = 9.6 · 108N . The next iteration will try to correct this error but
this will only results in an even larger error:

(
zk+1
j+2

żk+1
j+2

)
=

(
1 −∆t
0 1

)−1( −.002
−.198 + ∆t( Fn

mc
− g)

)
≈
(

5.274
527.6

)
(10.19)

The extreme approach resulted in an extreme correction by the Picard iteration; the wheel
was suddenly hovering 5 meters above the bridge. The iteration will clearly not converge.

It is still worth checking when the problem does converge and how we can improve the
stability. It appears that if a very low Young’s modulus is used for the the bridge, for
example if we consider the bridge to be made out of rubber, the algorithm converges. Our
goal is to maximize this Young’s modulus E so that the Picard iteration converges. To do
so, we will make use of under relaxation to prevent overshoot. We will count the number of
iteration it takes until convergence is reached, i.e. ‖y−y∗‖ < ε for ε = 10−4 for the first time
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step of the problem. In this experiments, the parameters as in Table 10.1 are used, except
for the Young’s modulus E which we will vary.

E
1 · 106 5 · 106 10 · 106 20 · 106 50 · 106

ω

1 6 16 ∞ ∞ ∞
0.9 4 12 ∞ ∞ ∞
0.7 8 7 13 ∞ ∞
0.5 13 11 11 18 ∞
0.3 25 20 21 22 ∞
0.1 82 64 67 70 ∞

Table 10.2: The number of iterations it takes until the Picard iteration converges.

In Table 10.2 the amount of time iterations are represented as function of E and ω. As we can
see, under relaxation can have both positive and negative influence on the iterative process.
For small E, using a slight under relaxation ω can lower the number of iterations needed. The
larger E, the smaller ω should be in order to achieve convergence. In all situations, however,
a smaller ω will require more iterations.

It is worth noting that Table 10.2 only shows the amount of iterations it takes until the
iterative process for the first time step has converged. Often, the time integration can break
down in the middle of the algorithm.

From Table 10.2 it is clear that under relaxation can be used to improve stability or even
lower the number of iterations needed. However, the optimal choice of ω is different for
different values of E. The use of under relaxation is limited. In practice, convergence cannot
be reached for E = 2 · 1011 (i.e. the Young’s modulus for steel) regardless of the (reasonable)
choice of ω. Hence, we will need to improve our iterative solver.

10.5 The Quasi-Newton approach

10.5.1 Linearisation

The Newton-Raphson method is a well known root finding algorithm. In order to find a
root of a function, the method effectively linearises the function around the current point
and solves the resulting linear system. The method requires the derivative f ′(xj) at each
iteration, or the full Jacobi matrix J(xj) with all partial derivatives for functions of multiple
variables.

A similar root finder can be applied to equation (10.12) by moving all terms to the left hand
side. The problem here is that the (partial) derivatives required by the Newton method are
not known. For convenience, denote

F k+1
j = Fn(ck+1

j , zk+1
j , tk+1), and Ik+1

i,j =

∫ L

0

p(x, ck+1
j , zk+1

j , tk+1)wi(x)dx (10.20)

Each of these terms relies on the results of CONTACT. CONTACT does not return time
derivatives of Fn nor of the pressure p. The Newton method thus can not be applied. However,
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approximations for each partial derivative can be made using finite differences. For example,
we can approximate

∂

∂z
F k+1
j ≈

Fn(ck+1
j , zk+1

j , tk+1)− Fn(ck+1
j , zk+1

j − α, tk+1)

α
(10.21)

using backward differences. As long as CONTACT remains accurate enough, α can be chosen
arbitrarily small so the low rate of convergence from forward differences is not an issue.
Usually, we take α = 10−7. If, however, the approximation ∂

∂zF
k+1
j as in (10.21) turned out

to be zero due to rounding issues and α being too small, even if penetration occurs at this
iteration, then this is not a problem. In this case, we can dynamically increase α until the
derivative is non-zero.

Using finite differences instead of the analytical derivatives for the Newton-Raphson method
is a Quasi-Newton approach. The convergence of the this approach is only slightly slower
than of the real Newton-Raphson method due to a small error in the derivative. In system
(10.12), we have 2m+ 2 variables. Suppose that we apply Newtons method to solve (10.12).
For multiple dimensions such as in this problem, linearising requires the computation of the
Jacobi matrix at each iteration. This is, however, extremely expensive. Many derivatives,
in particular ∂

∂ci
F k+1
j for each 1 ≤ i ≤ m, are not known analytically and should hence be

approximated using finite differences. This is done in a similar way as (10.21). Each separate
partial derivative requires a separate computation using CONTACT, so that we end up with
over m CONTACT runs. This is extremely expensive. Additionally, this does not scale well
with the number of modes m; the number of times CONTACT is ran should preferably not
depend on m.

To solve this problem, one might argue not to linearise with respect to each and every variable
and take some of the equations explicit. However, this can be dangerous since a small change
in the geometry of the bridge can heavily alter the penetration δ(x, t) and therefore also the
pressure as computed by CONTACT. Only linearising with respect to the height of the wheel
z(t), for example, is not enough; the iterative process will generally not converge. This is
because we cannot neglect the difference in change of shape of the global deformed beam
between two iterations j and j + 1.

The arguably most important variable in the system is the approach δ(t). The approach is
the maximum penetration and can be formulated as

δ(t) = max0≤x≤L [u(x, t)− w(x, t)]

= max0≤x≤L

[
m∑
i=1

ci(t)wi(x)− z(t)− g(x− x0 − st)

]

= max0≤x≤L

[
m∑
i=1

ci(t)wi(x)− g(x− x0 − st)

]
− z(t)

(10.22)

The approach is therefore a fairly complex function dependent on each modal coefficient ci(t)
as well as the height z(t). We propose to linearise only with respect to the approach, so
that we do not neglect any important information regarding the change of shape of the beam
between two iterations.

The derivative with respect to the approach can be approximated in many different ways, but
the most straightforward approach is



98 CHAPTER 10. FULL TRAIN-BRIDGE SIMULATION

∂

∂δ
F k+1
j = − ∂

∂z
F k+1
j ≈ −

Fn(ck+1
j , zk+1

j , tk+1)− Fn(ck+1
j , zk+1

j − α, tk+1)

α
, and

∂

∂δ
Ik+1
i,j = − ∂

∂z
Ik+1
i,j ≈ −

∫ L

0

(p(x, ck+1
j , zk+1

j , tk+1)− p(x, ck+1
j , zk+1

j − α, tk+1))wi(x)dx

α
(10.23)

Hence, by linearising F k+1 and Ik+1
i at each iteration j we arrive at the approximation

F k+1
j+1 = F k+1

j +
∂

∂δ
F k+1
j · (δk+1

j+1 − δ
k+1
j )

Ik+1
i,j+1 = Ik+1

i,j +
∂

∂δ
Ik+1
i,j · (δ

k+1
j+1 − δ

k+1
j )

(10.24)

where δk+1
j is the approach during time step k+1 at iteration j, which is according to (10.22)

equal to

δk+1
j = max0≤x≤L

[
m∑
i=1

ck+1
i,j wi(x)− g(x− x0 − stk+1)

]
− zk+1

j (10.25)

Hence, the difference δk+1
j+1 − δ

k+1
j as in (10.24) is equal to

δk+1
j+1 − δ

k+1
j = max0≤x≤L

[
m∑
i=1

ck+1
i,j+1wi(x)− g(x− x0 − stk+1)

]

− max0≤x≤L

[
m∑
i=1

ck+1
i,j wi(x)− g(x− x0 − stk+1)

]
− (zk+1

j+1 − z
k+1
j )

(10.26)

This term cannot be simplified any further. For each j, let xk+1
j ∈ [0, L] be the value that

minimizes the sum as in (10.25) during iteration j in time step k. Since xk+1
j+1 is not known

beforehand, we cannot express F k+1
j+1 and Ik+1

i,j+1 using (10.24) explicitly. To solve this, note
that the train remains at the same x position during time step j and j + 1. Furthermore,
xk+1
j+1 is independent of the height of the wheel zk+1

j+1 . We therefore make the assumption that

xk+1
j+1 ≈ x

k+1
j . This assumption can be justified by noting that only the coefficients ck+1

i,j+1 for

1 ≤ i ≤ m effect the value of xk+1
j+1 . A small change of these coefficients, however, will hardly

change the shape of the global deformation and hence will hardly effect the value of xk+1
j+1 .

Therefore, (10.26) can be approximated by
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δk+1
j+1 − δ

k+1
j =

m∑
i=1

ck+1
i,j+1wi(x

k+1
j+1 )− g(xk+1

j+1 − x0 − stk+1)

−
m∑
i=1

ck+1
i,j wi(x

k+1
j )− g(xk+1

j − x0 − stk+1)− (zk+1
j+1 − z

k+1
j )

≈
m∑
i=1

ck+1
i,j+1wi(x

k+1
j )− g(xk+1

j − x0 − stk+1)

−
m∑
i=1

ck+1
i,j wi(x

k+1
j )− g(xk+1

j − x0 − stk+1)− (zk+1
j+1 − z

k+1
j )

=

m∑
i=1

(ck+1
i,j+1 − c

k+1
i,j )wi(x

k+1
j )− (zk+1

j+1 − z
k+1
j )

(10.27)

In (10.27), we eliminated the use of a maximum and hence (10.24) can be approximated by

F k+1
j+1 = F k+1

j +
∂

∂δ
F k+1
j ·

[
m∑
i=1

(ck+1
i,j+1 − c

k+1
i,j )wi(x

k+1
j )− (zk+1

j+1 − z
k+1
j )

]

Ik+1
i,j+1 = Ik+1

i,j +
∂

∂δ
Ik+1
i,j ·

[
m∑
i=1

(ck+1
i,j+1 − c

k+1
i,j )wi(x

k+1
j )− (zk+1

j+1 − z
k+1
j )

] (10.28)

It is important to note that (10.28) is completely linear for the implicit terms at iteration
j + 1; the coefficients wi(x

k+1
j ) are known values. These expressions, combined with the

approximations (10.23), can be used to linearise the equations in (10.8) with respect to the
penetration. For implicit integration schemes, this yields a linear system which can then be
solved for ck+1

i,j+1 and zk+1
j+1 .

This Quasi-Newton approach (we only linearise with respect to a single variable using finite
differences) will be applied for the Backward Euler integration scheme. This approach, how-
ever, can be applied for any other implicit scheme but this will results in even more complex
expressions.

10.5.2 Applied to Backward Euler

Suppose that at each time step k and iteration j the derivatives as in (10.23) are computed.
The solution of (10.11) will be computed using the just described Quasi-Newton approach.
For each mode shape i, we iteratively set

ċk+1
i,j+1 = ċki +

∆t

ρ

[
Ik+1
i,j+1 − EIβ

4
i c
k+1
i,j+1

]
for all 1 ≤ i ≤ m

żk+1
j+1 = żk + ∆t

[
F k+1
j+1

mc
− g

] (10.29)

By substituting (10.28) into (10.29), we arrive at
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ċk+1
i,j+1 = ċki +

∆t

ρ

[
Ik+1
i,j +

∂

∂δ
Ik+1
i,j ·

(
m∑
l=1

(ck+1
l,j+1 − c

k+1
l,j )wl(x

k+1
j )− (zk+1

j+1 − z
k+1
j )

)
− EIβ4

i c
k+1
i,j+1

]

żk+1
j+1 = żk +

∆t

mc

[
F k+1
j +

∂

∂δ
F k+1
j ·

(
m∑
i=1

(ck+1
i,j+1 − c

k+1
i,j )wi(x

k+1
j )− (zk+1

j+1 − z
k+1
j )

)
− gmc

]
(10.30)

This can then be rearranged by moving all terms of iteration j + 1 to the left side. We arrive
at

ċk+1
i,j+1 +

∆t

ρ

[
EIβ4

i c
k+1
i,j+1 +

∂

∂δ
Ik+1
i,j ·

(
zk+1
j+1 −

m∑
l=1

ck+1
l,j+1wl(x

k+1
j )

)]

= ċki +
∆t

ρ

[
Ik+1
i,j +

∂

∂δ
Ik+1
i,j ·

(
zk+1
j −

m∑
l=1

ck+1
l,j wl(x

k+1
j )

)]

żk+1
j+1 +

∆t

mc
· ∂
∂δ
F k+1
j ·

(
zk+1
j+1 −

m∑
i=1

ck+1
i,j+1wi(x

k+1
j )

)

= żk −∆tg +
∆t

mc

[
F k+1
j +

∂

∂δ
F k+1
j ·

(
zk+1
j −

m∑
i=1

ck+1
i,j wi(x

k+1
j

)]
(10.31)

Let xk+1
j = [ck+1

1,j ; . . . ; ck+1
m,j ; zk+1

j ] and ẋk+1
j = [ċk+1

1,j ; . . . ; ċk+1
m,j ; żk+1

j ]. Then (10.31) can be
written using vector notation as

ẋk+1
j+1 + ∆tAk+1

j xk+1
j = ẋk + ∆tgk+1

j (10.32)

Here, gk+1
j is equal to

gk+1
j =



1

ρ

[
Ik+1
1,j +

∂

∂δ
Ik+1
1,j ·

(
zk+1
j −

∑m
i=1 c

k+1
i,j wi(x

k+1
j )

)]
...

1

ρ

[
Ik+1
m,j +

∂

∂δ
Ik+1
m,j ·

(
zk+1
j −

∑m
i=1 c

k+1
i,j wi(x

k+1
j )

)]
1

mc

[
F k+1
j +

∂

∂δ
F k+1
j ·

(
zk+1
j −

∑m
i=1 c

k+1
i,j wi(x

k+1
j

)]
− g


(10.33)

The matrix A changes every iteration and every time step because of the derivatives with
respect to δ and the coefficients wi(x

k+1
j ). It is defined by
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Ak+1
j =



EI

ρ
β4

1 −
w1(xk+1

j )

ρ
· ∂
∂δ
Ik+1
1,j . . . −

wm(xk+1
j )

ρ
· ∂
∂δ
Ik+1
1,j

1

ρ
· ∂
∂δ
Ik+1
1,j

...
. . .

...
...

−
w1(xk+1

j )

ρ
· ∂
∂δ
Ik+1
m,j . . .

EI

ρ
β4
m −

wm(xk+1
j )

ρ
· ∂
∂δ
Ik+1
m,j

1

ρ
· ∂
∂δ
Ik+1
m,j

−
w1(xk+1

j )

mc
· ∂
∂δ
F k+1
j . . . −

wm(xk+1
j )

mc
· ∂
∂δ
F k+1
j

1

mc
· ∂
∂δ
F k+1
j


(10.34)

Additionally, the displacement components xk+1
j+1 are described by the Backward Euler scheme

and are equal to (see also (10.12))

xk+1
j+1 −∆tẋk+1

j+1 = xk (10.35)

Now define yk+1
j = [xk+1

j ; ẋk+1
j ]. Then (10.32) and (10.35) can be combined to get the linear

system

Bk+1
j yk+1

j+1 = yk + ∆thk+1
j (10.36)

where

Bk+1
j =

(
I −∆tI

Ak+1
j I

)
, and hk+1

j =

(
0

gk+1
j

)
(10.37)

10.5.3 Solving the linear system

At each iteration, equation (10.36) should be solved. This iteration should be repeated until
convergence is reached, for example till ‖yk+1

j+1 − yk+1
j ‖/‖yk+1

j ‖ < ε. The matrix Bk+1
j is a

fairly small matrix so that this shouldn’t be a problem. However, the matrix has an interesting
structure which allows us to compute its inverse very efficiently.

Note that Ak+1
j can be written as as the sum of a constant diagonal matrix and a rank 1

matrix, i.e. Ak+1
j = diag(d) + ek+1

j (fk+1
j )T , where

d =



EI

ρ
β4

1

...
EI

ρ
β4
m

0

 , ek+1
j =



1

ρ
· ∂
∂δ
Ik+1
1,j

...
1

ρ
· ∂
∂δ
Ik+1
m,j

1

mc
· ∂
∂δ
F k+1
j


, and fk+1

j =


−w1(xk+1

j )
...

−wm(xk+1
j )

1

 (10.38)

The following Lemmas will show that because of the special structure of Ak+1
j , equation

(10.36) can be solved explicitly.
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Lemma 10.1. The inverse of Bk+1
j is given by

(Bk+1
j )−1 =

(
(Xk+1

j )−1 ∆t(Xk+1
j )−1

1
∆t ((X

k+1
j )−1 − I) (Xk+1

j )−1

)
, where Xk+1

j = I + ∆tAk+1
j (10.39)

Proof: A simple multiplication yields

Bk+1
j

(
(Xk+1

j )−1 ∆t(Xk+1
j )−1

1
∆t ((X

k+1
j )−1 − I) (Xk+1

j )−1

)
=

(
I(Xk+1

j )−1 −∆tI 1
∆t ((X

k+1
j )−1 − I) I∆t(Xk+1

j )−1 −∆tI(Xk+1
j )−1

Ak+1
j (Xk+1

j )−1 + I 1
∆t ((X

k+1
j )−1 − I) Ak+1

j ∆t(Xk+1
j )−1 + I(Xk+1

j )−1

)
=

(
I 0

1
∆t ((∆tA

k+1
j + I)(Xk+1

j )−1 − I) (I + ∆tAk+1
j )(Xk+1

j )−1

)
= I

(10.40)

which proves the Lemma.

Therefore, our goal is to compute the inverse of Xk+1
j . The following Lemma gives an explicit

expression for this inverse

Lemma 10.2. The inverse of Xk+1
j is given by

(Xk+1
j )−1 = D −

∆tDek+1
j (fk+1

j )TD

1 + ∆t(fk+1
j )TDek+1

j

(10.41)

where D is the diagonal matrix given by Dii = (1 + ∆tdi)
−1.

Proof:

First, note that

Xk+1
j = I + ∆tAk+1

j = (I + ∆tdiag(d)) + (∆tek+1
j )(fk+1

j )T (10.42)

Hence Xk+1
j is, similarly to Ak+1

j , a rank-1 update of a diagonal matrix. According to the
Sherman-Morrison formula (see [19]), the inverse is given by

(Xk+1
j )−1 = (I + ∆tdiag(d))−1 −

(I + ∆tdiag(d))−1(∆tek+1
j )(fk+1

j )T (I + ∆tdiag(d))−1

1 + (fk+1
j )T (I + ∆tdiag(d))−1(∆tek+1

j )

(10.43)

By rearranging the terms and noting that I + ∆tdiag(d) is a diagonal matrix and thus its
inverse is the diagonal matrix with the inverted components, we arrive at the result.

Lemma 10.1 and 10.2 can be combined to get an explicit expression for the solution of (10.36)
at each iteration. At each iteration, we set yk+1

j+1 = (Bk+1
j )−1[yk + ∆thk+1

j ] using the inverse

of Bk+1
j as in Lemma 10.1. Although this matrix changes every iteration and time step, the

expression for yk+1
j+1 is explicit. No inverse needs to be computed, we only need to compute

D once which is extremely easy since it is a diagonal matrix.
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10.6 The algorithm

Having discussed the Quasi-Newton approach, we will combine all theory discussed in this
report to construct an algorithm to simulate train-bridge contact. The algorithm is applied
for the Backward Euler integration scheme, but other (implicit) time integration schemes can
be applied as well. The only difference here is that the expression (10.36) is no longer valid;
the integration scheme should be applied to get a similar expression.

Compared with the algorithm using Picard iteration, the Quasi-Newton approach requires
a bit more computation per iteration. At each iteration, CONTACT needs to be run twice
instead of once; one for a given penetration δ(x) and one for the penetration δ(x) + α for α
for small value. This is used to compute the derivatives as in (10.23). Additionally, the value
xk+1
j , i.e. the x position of the initial point of contact at iteration j, should be computed.

This value is required to compute the matrix Bk+1
j . Solving (10.36) can either be done by

constructing Bk+1
j and solving the linear system, or by computing (Bk+1

j )−1[yk + ∆thk+1
j ]

directly by using Lemma 10.1 and 10.2.

The Quasi-Newton approach is therefore per iteration approximately twice as computationally
expensive as the Picard approach. However, it is far more stable and converges much quicker.
Numerical results show that under relaxation is no longer needed to achieve converge. It can
still be used similarly as in (10.17) and can be advantageous if the under relaxation factor ω
is taken small. This can be used to prevent additional overshoot during each iteration. In
practice it appeared that the under relaxation is mostly useful during the first few iterations.
Hence, the under relaxation factor ωj can be a function of j. For the best convergence speed,
ωj should be near 1 (i.e. only a small amount of under relaxation is used) for larger j.

The full algorithm is described in Algorithm 10.2. For the complete (more detailed) Matlab
implementation, see Appendix A.5.
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Algorithm 10.2 Performing a full train-bridge simulation using the Quasi-Newton approach

1: Set c0i = ċ0i = 0 for all 1 ≤ i ≤ m. If the initial condition is not zero, use (8.61) and (8.62)
instead.

2: Set z0 = ż0 = 0 or equal to the corresponding initial conditions.
3: Set u0(x) ≡

∑m
i=1 c

0
iwi(x).

4: for k = 1 to n do
5: Set ci = ck−1

i for all 1 ≤ i ≤ m.
6: Set z = zk−1.
7: repeat
8: Set c∗i = ci for all 1 ≤ i ≤ m.
9: Set z∗ = z.

10: Set δ(x) =
∑m
i=1 c

∗
iwi(x)− z∗ − g(x− x0 − stk) for all x.

11: Approximate xpos = argmaxx∈[0,L]δ(x).
12: Compute p(x), F and l(x) with CONTACT using penetration δ(x).
13: Compute p2(x) and F2 with CONTACT using penetration δ(x) + α.
14: Set Ḟ = (F2 − F )/α.
15: for i = 1 to m do
16: Approximate int =

∫ L
0
p(x)wi(x) using a Newton-Cotes formula.

17: Approximate int2 =
∫ L

0
p2(x)wi(x) using a Newton-Cotes formula.

18: Set İi = (int2 − int)/α.
19: end for
20: Compute h as in (10.33) and (10.37).
21: Solve (10.36) for y = [c; z; ċ; ż] (can be done explicitly with Lemma 10.1 and 10.2)
22: Set error = ‖[c− c∗; z − z∗]‖2.
23: until error ≤ ε
24: Set uk(x) =

∑m
i=1 ciwi(x) for all x

25: Set uktot(x) = uk(x) + 1
2 l(x) for all x.

26: Set wk(x) = g(x− x0 − stk) + z for all x.
27: Set wktot(x) = wk(x)− 1

2 l(x) for all x.
28: end for
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10.7 Numerical results

Using the properties as given in Table 10.1, the Quasi-Newton approach has been applied to
perform a full train-bridge simulation for the Backward Euler integration scheme. The algo-
rithm converges, and each time step only takes an average of 3 iterations before convergence
has been reached.

10.7.1 Visual observations

Figure 10.1: Representation of the deformation of the deformed bridge at 3 different time
steps. The black lines represent the wheel at the corresponding time. The pink stars represent
the lowest points of the bridge.

In Figure 10.1, the deformation of the bridge is shown for 3 different time steps. Note that
the local deformation of both the bridge and the wheel is very small with respect to the global
deformation. As expected, the bridge slowly deforms around the left side. This asymmetry
becomes less visible as the train moves further. Interesting is that at the moment right before
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the train has passed the bridge, the bridge becomes S-shaped as the second mode shape
becomes dominant.

One aspect we are interested in is the influence of the speed of the train on the deformation
of the bridge. Consider the exact same problem, but now suppose that s = 6m/s, i.e. 5 times
as slow as the previous example. The results can be shown in Figure 10.2.

Figure 10.2: Representation of the deformation of the deformed bridge at 3 different time
steps. Here, the speed of the train is only 6m/s.

As one can see, the results are similar. The bridge starts to deform at its left side, and
the asymmetry continues to move to the right. The maximum deformation of approximately
1.5mm is slightly lower but remains of the same magnitude as for the case when s = 30m/s.

An interesting difference is that there is less vibration near the moment the train has passed
the end of the bridge. This can be explained by the fact that around this time, the gravita-
tional force being exerted on the bridge will cause additional damping. This is because the
train moves five times as slow, and hence the damping caused by gravity remains five times
as long.

In Figure 10.3 the first four modal coefficients are plotted as function of the time. As expected,



10.7. NUMERICAL RESULTS 107

the first modal coefficient has by far the largest amplitude. Interesting is that small oscillations
occur. These oscillations, however, become smaller as time passes. This is most likely the
result of the numerical damping of the Backward Euler scheme. For a better approximation,
another numerical scheme with better energy conservation properties such as the Newton-
method should be applied instead.

Figure 10.3: The first four modal coefficients ci(t).

10.7.2 Effect on the approach and dynamic amplification factor

In Figure 10.4, the approach δ(t) between the train wheel and bridge can be seen. Throughout
the simulation, the approach hovers around δ(t) ≈ 4.64 · 10−7, except near t = 0, where
δ(0) = 0. As we can see, the approach tends to be larger in the middle of the simulation.
An explanation for this behaviour is that around this time, the global deformation was of
the largest magnitude. It appears that the global deformation does indeed have a reasonable
large impact on the local deformation.

This observation can also be made by applying Hertz theory. Near the contact area, the
surface of the bridge can be approximated by a cylinder of a large radius R2. If the bridge is
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Figure 10.4: The approach between the train wheel and the bridge as function of time.

globally undeformed, then we say that this radius is R2 =∞. The wheel can be represented
by a cylinder of radius R1. From (4.17) and (4.21) it follows that

δ ≈ a2

R
= a2

(
1

R1
+

1

R2

)
(10.44)

As the global deformation becomes larger, the radius R2 decreases. From (10.44) it follows
that this will result in a larger approach, exactly what we have noticed in Figure 10.4.

Additionally, Figure 10.4 shows local oscillations of different magnitude and seem fairly ran-
dom. These oscillations occur due to the inertia of the wheel, similar as the result we have
seen in Chapter 6.

The dynamic amplification factor is the relative difference between the gravitational force and
the force exerted by the bridge. This is therefore equal to Fn(t)/(mcg). This factor depends
on the time; a plot can be seen in Figure 10.5.

The dynamical amplification factor is directly related to the normal force and thus also to the
approach δ, hence the figure is similar as in Figure 10.44. As we can see, the dynamical ampli-
fication factor hovers around 1, i.e. the normal force exerted by the bridge is roughly equal to
the gravitational force. The maximum amplification and dissipation factor are approximately
1.8% and 1.3%, respectively.
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Figure 10.5: The dynamic amplification factor as function of time.

10.7.3 Numerical convergence

In Theorem 8.3, we have seen that the error of the beam equation by using m modes is
‖u − um‖2 = O(m−3). However, we have only proved this for the stationary case. We will
show from the numerical results that this convergence rate remains valid for the instationary
case. In order to do so, we have computed the norm ‖ci‖∞ = maxt∈[0,t0]|ci(t)| for a number
of modal coefficients ci. The results can be seen in Table 10.3.

i ‖ci‖∞ ‖ci − c2i‖∞/‖c2i − c4i‖∞
1 7.3 · 10−3 24.231
2 3.09 · 10−4 16.116
4 1.92 · 10−5 16.048
8 1.20 · 10−6 16.063

16 7.45 · 10−8 15.998
32 4.67 · 10−9 16.004
64 2.90 · 10−10 16.055

Table 10.3: The sup norm of each modal coefficient.

By Richardson extrapolation, we can show that the norm ‖cm‖∞ = O(m−4). Using Taylor
expansion, we write ‖cm‖∞ = K(1/m)p +O((1/m)p+1) some K, p > 0. Note that
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‖cm‖∞ − ‖c2m‖∞ = K((1/m)p − (1/(2m))p) = K(1/m)p(1− (1/2)p) +O((1/m)p+1)

‖c2m‖∞ − ‖c4m‖∞ = K((1/(2m))p − (1/(4m))p) = K(1/m)p(1/2)p(1− (1/2)p) +O((1/m)p+1)
(10.45)

By dividing the second from the first equation, we arrive at

‖cm‖∞ − ‖c2m‖∞
‖c2m‖∞ − ‖c4m‖∞

= 2p +O((1/m)p+1) (10.46)

This relative difference in norm is also shown in Table 10.3. It seems clear that ‖ci −
c2i‖∞/‖c2i − c4i‖∞ → 16 as i becomes larger. Hence, by (10.46), it follows that 2p = 16, i.e.
p = 4. In conclusion, ‖cm‖∞ = O(m−4) seems to hold.

Note that this conclusion is in agreement with Theorem 8.3. The error u−um consists of the
terms ci for i = m + 1 to infinity. By summing of each of these terms, we lose an order of
convergence, i.e. ‖u− um‖∞ = O(m−3).



Chapter 11

Summary and Further Research

11.1 Summary and conclusions

In this thesis, we have discussed the basics of non frictional contact problems. The main goal
of this thesis was to figure out how CONTACT can be used for dynamical contact problems
involving two objects interacting with each other. Specifically, we were looking at a contact
problems occurring in the train industry; how does a (for instance) bridge deform when a
train is moving over it and how can this deformation be computed efficiently?

We have argued that two different phenomena occur in this problem, namely global and local
deformations. Local deformation occurs solely around the initial point of contact and involves
the material of the object being compressed. This compression results in a force pointing in
the normal direction. Such a problem has been discussed in Chapter 6. Here, we have looked
at the problem involving a rigid sphere (or any other arbitrary object) dropping on an elastic
half plane. A differential equation for the height of the sphere has been derived by using
Newton’s second law of motion by computing the normal force exerted by the half space
using Hertz theory or by running CONTACT.

By using a time integration scheme for this simple one-dimensional differential equation, we
were capable of computing the approach of the contact between the sphere and half-space as
function of time. Multiple time-integration schemes have been discussed. We have argued
that implicit integration schemes are the best choices for this problem, especially for stiff
materials such as steel. Radau5 (or the Radau family of integrations schemes as a whole)
turned out to be effective due to their unconditional stability and their high (adaptable) order
of accuracy. The computationally inexpensive Verlet and the Leapfrog method are also very
useful due to their energy conservation. For very stiff problems, the Newmark-beta method is
the most practical scheme. This is because Newmark-beta is both energy conserving as well
as stable because it is an implicit scheme.

CONTACT can also be used for this problem. Not only will this result in the same contact
force as in Hertz theory, CONTACT will also result the quasi-static deformation of the half-
plane. This spatial deformation is the solution of the quasi-static elasticity equation for
the particles at the surface of the half plane. This can be used to approximate the local
deformation for our problem. However, this deformation is not valid for dynamical contact
problems; it is based on the assumption that inertia is neglected. Hence, the quasi-static
deformation occurs instantaneously, ignoring shock waves occurring right after the moment
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of impact. In reality, inertia plays a role in dynamical contact problems and should also be
taken into account.

This can be done by discretising the linear elasticity equations. These equations form a
so-called differential algebraic equation. We have shown in Chapter 7 how this differential
equation can be discretised using a finite difference approach and how this can be solved with
an integration scheme and at the same time be combined with the algebraic relations between
the elasticity components. Using this expression, the same contact problem as discussed
before has been solved. The result was fairly similar to the quasi-static result computed
using CONTACT, but the main differences occur directly after the moment of impact and
after the moment contact was lost. In these moments, the waves resulting from the inertia of
the elasticity equations were most visible and not existing in the quasi-static solution.

In this thesis, we have proposed a different, much less computational expensive, way of com-
puting the deformation of a bridge. We have modelled the deformation of the bridge as
the sum of the global and local deformation. The local deformation is approximated using
the quasi-static results computed by CONTACT. The theory behind global deformations has
been thoroughly discussed in Chapter 8. By using mode shapes to approximate the solution
of the beam equation, we have arrived at a system of independent ordinary differential equa-
tions. These equations can be solved by using a time integration scheme combined with a
Newton-Cotes formula. This approach has several advantages; the main one being that the
differential equations for the modal coefficients are independent of each other. Furthermore,
the solution converges quickly to the analytical solution so that only a few (usually 50 at
most) mode shapes are needed. It also has favourable stability properties. Additionally, the
usual finite difference approach will only approximate the deformation at given grid points.
This is not the case for the modal approach, which results in a C∞ function which can be
evaluated at arbitrary x ∈ [0, L] without the need to interpolate. This is especially useful to
compute modal response integrals for pressure distributions which have a very small support,
which is the case for the train-bridge contact problem.

For this contact problem, the main problem that occurs is that the global and local deforma-
tion of the bridge are not independent of each other. The external pressure used by the beam
equation is computed using CONTACT, which requires the global deformation to be known.
To compute the stationary solution, we have proposed a simple algorithm that combined the
two in Chapter 9. For the instationary problem, this turned out to be much harder. The
algorithm turned out to break down very easily for implicit time integration schemes.

Hence, we have proposed a Newton-Raphson like method. We have argued that linearising
with respect to the approach is the most computationally efficient way of achieving stability.
Additionally, the linearisation allows the iterative process to converge much faster compared
to the usual Picard iteration, usually only needing three iterations per time step. The resulting
expression for implicit time integration schemes is a linear system. Originally, it seemed that
this linear system was dense; so that the computational power required to solve this system
would be significant. However, we have shown that this (dense) matrix corresponding to
this system contains some very useful properties; it can be written as the sum of a constant
diagonal matrix and a rank-one matrix. This makes it possible to solve the linear system
explicitly. This unique property is the result of the fact that the differential equations for the
mode shapes are independent.

Overall, the modal approach combined with the quasi-static local deformation is a very ef-
fective way of computing the total deformation of a bridge. Although inertia of the par-
ticles around the contact area is ignored, the beam equation will reintroduce inertia as a
global phenomenon. The local and global deformation have been successfully combined by
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using CONTACT. Combined with an implicit time integration scheme such as Radau5 or
Newmark-beta, the resulting algorithm is an accurate, but most importantly, extremely com-
putationally efficient way of of computing the total deformation of a bridge compared with
the usual finite difference (or finite element) approach.

11.2 Further research

As an interesting extension to the problem, one could take tangential forces (friction) into
account. Often, the circumferential velocity 2πωR of a train wheel is not exactly equal to the
overall forward velocity V . If the train is accelerating, for example, the circumferential speed
of particles at the wheel boundary is larger than overall velocity of the train. This creates
creepage between the wheel and rail in the tangential direction. The contact area of the wheel
will be split into two different parts; the adhesion and the slip area, as can be seen in Figure
11.1. The physics of this contact is described by Kalker’s rolling contact model [20].

Figure 11.1: The different contact areas of the wheel that occur during rolling. Source: [5].

CONTACT has implemented this model and is capable of taking creepage into account for
the contact model. Further research should therefore be done to figure out how this can be
used for dynamical contact problems.
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Appendix A

Matlab codes

A large amount Matlab codes have been written and used for this report. The most important
ones are shown here.

A.1 run contact.m

The following code provides a functionality to communicate between Matlab and CONTACT.

1 function [Fc,pressure,deformed] = run contact(penetration, settings)
2 % Computes the normal force & pressure as well as the quasi−static
3 % deformed distance of the surface.
4 % The user should supply the penetration in a rectangular uniform grid
5 % as well as various other variables such as the elasticity coefficients.
6 % This should be supplied using a Matlab struct.
7

8 if min(penetration(:)) >= 0
9 % No penetration, we do not need to run CONTACT.

10 % All output is zero.
11 Fc = 0;
12 [deformed,pressure] = deal(zeros(size(penetration)));
13 else
14 % There is penetration.
15

16 % Creating the input file:
17 fid = fopen(’temp.inp’, ’w’);
18 fprintf(fid,’ 3 module %% result element 1, Contact patch 1\n’);
19 fprintf(fid,’%% Next case 1\n’);
20 fprintf(fid,’ 200020 P−B−T−N−F−S PVTIME, BOUND , TANG , NORM , FORCE , STRESS\n’)

;
21 fprintf(fid,’ 022020 L−D−C−M−Z−E FRCLAW, DISCNS, INFLCF, MATER , RZNORM, EXRHS\

n’);
22 fprintf(fid,’ 002111 G−I−A−O−W−R GAUSEI, IESTIM, MATFIL, OUTPUT, FLOW , RETURN\n

’);
23 fprintf(fid,’ 200 30 30 1 1.0E−04 MAXGS , MAXIN , MAXNR , MAXOUT, EPS\n’);
24 fprintf(fid,’ 0.000 0.000 0.000 0.000 FUN, FUX, FUY, CPHI\n’);

117



118 APPENDIX A. MATLAB CODES

25 fprintf(fid,’%% Note: N=1 means FUN == FN, F=0 means FUX == CKSI, FUY == CETA\n’);
26 fprintf(fid,’ 0.3000 0.3000 FSTAT, FKIN\n’);
27 fprintf(fid,sprintf(’ %.4f %.4f %.4E %.4E SIGMA 1,2, GG 1,2\n’,settings.nu,settings.nu,settings.G,1

E+20));
28 fprintf(fid,’ 1 IPOTCN\n’);
29 fprintf(fid,sprintf(’ %3d %3d %6.3f %6.2f %5.8f %5.8f MX,MY,XL,YL,DX,DY\n’,size(penetration

,2), size(penetration,1), −size(penetration,2)/2 ∗ settings.dx, −size(penetration,1)/2 ∗
settings.dy, settings.dx, settings.dy));

30 fprintf(fid,’ 9 1 IBASE, IPLAN\n’);
31 fprintf(fid,’%% PENETRATION, (1)−(2): SPECIFIED PER ELEMENT’);
32

33 for i = 1:size(penetration,1)
34 fprintf(fid,’\n’);
35 for j = 1:ceil(size(penetration,2) / 5)
36 fprintf(fid,’\n ’);
37 p = penetration(i,5∗(j−1)+1:min(size(penetration,2),5∗(j−1)+5));
38 fprintf(fid,sprintf(’ %.4E’,p));
39 end
40 end
41

42 fprintf(fid,’\n%% UNRESTRICTED PLANFORM’);
43 fprintf(fid,’\n 0 module’);
44 fclose(fid);
45

46 % Running CONTACT:
47 tic;
48 system(’../i01/contact v13.1/bin/contact 2 temp.inp’);
49 disp([’Running CONTACT took ’,num2str(toc),’ seconds.’]);
50

51 % Reading the contact force
52 fid = fopen(’temp.out’);
53

54 while isempty(findstr(fgets(fid), ’TOTAL FORCES’))
55 end
56

57 fgets(fid);
58 array = str2num(fgets(fid));
59 Fc = array(1);
60 Fx = array(2);
61 Fy = array(3);
62

63 % Reading the deformed distance and pressure
64 data = load(’temp.0001.mat’,’−ascii’);
65 data = data(4:end,:);
66

67 deformed = reshape(data(:,8), size(penetration’))’;
68 pressure = reshape(data(:,5), size(penetration’))’;
69 end
70 end
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A.2 SphereOnPlaneCONTACT.m

This Matlab code computes the height of the sphere as discussed in Chapter 6. CONTACT is
used to determine the normal force Fn as well as the quasi-static deformation of the half-plane.
Differential equation (6.3) is integrated using some of the integration schemes of Chapter 5,
specifically Radau5, Runge-Kutta 4 and Verlet.

1 % Computes the rigid height of a rigid sphere falling on an
2 % elastic half−plane. Verlet, Radau and RK schemes are implemented.
3 % Plots the height as function of the time as well as the
4 % quasi−static deformation of the half−plane.
5

6 % Global settings:
7 settings.g = 9.81; % Gravitational acceleration
8 R = 0.10; % Radius of ball
9 z0 = 1; % Height of ball at t=t0

10 v0 = 0; % Speed of ball at t=t0
11

12 % Material properties
13 E = 1.5E+8; % Young’s modulus of Polybutadiene
14 nu = 0.50; % Poisson ratio
15 rho = .91E+6; % Density in g / mˆ3
16

17 % General settings:
18 eps = 0.0001; % Max picard error
19 dt = .001;
20 t0 = 0;
21 t1 = 1;
22

23 % End of configuration
24

25 % Initialising variables
26 t = t0:dt:t1;
27 m = 4/3∗pi∗Rˆ3 ∗ rho; % Mass of ball
28 n = length(t);
29 Estar = E / ((1 − nuˆ2));
30 z = [z0; zeros(n − 1, 1)];
31 v = [v0; zeros(n − 1, 1)];
32 a = [−g; zeros(n − 1, 1)];
33

34 % Creating the ball
35 settings.dx = .01;
36 settings.dy = .01;
37 x = −R/2:settings.dx:R/2;
38 y = −R/2:settings.dy:R/2;
39 [X,Y] = meshgrid(x,y);
40 Z = R − sqrt(Rˆ2 − X.ˆ2 − Y.ˆ2);
41 Z(imag(Z) ˜= 0) = R;
42 deformed = zeros([size(Z), n]);
43 Fg = m ∗ settings.g;
44 Fn = zeros(n,1);
45

46 % We are solving the differential equation z’’ = A(z), where
47 A = @(F) F / m − settings.g;
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48

49

50 if 1
51 % Verlet
52 for k = 2:n
53 [Fn(k),pressure,deformed(:,:,k)] = run contact(Z + z(k − 1), settings);
54

55 Fres = Fn(k) − Fg;
56 a(k) = Fres / m;
57

58 % Integrating using Verlet
59 if k == 2
60 z(2) = z(1) + v0 ∗ dt + 1/2 ∗ a(1) ∗ dtˆ2;
61 else
62 z(k) = 2 ∗ z(k − 1) − z(k − 2) + a(k − 1) ∗ dtˆ2;
63 end
64 end
65 end
66

67

68 if 0
69 % RADAU5
70 % Butcher tableau:
71 if 1
72 % IA Method
73 T = [1/9, (−1−sqrt(6))/18, (−1+sqrt(6))/18;
74 1/9, 11/45 + 7∗sqrt(6)/360, 11/45 − 43∗sqrt(6)/360;
75 1/9, 11/45 + 43∗sqrt(6)/360, 11/45 − 7∗sqrt(6)/360];
76 b = [1/9, 4/9 + sqrt(6)/36, 4/9 − sqrt(6)/36];
77 else
78 % IIA Method
79 T = [11/45 − 7∗sqrt(6)/360, 37/225 − 169∗sqrt(6)/1800, −2/225 + sqrt(6)/75;
80 37/225 + 169∗sqrt(6)/1800, 11/45 + 7∗sqrt(6)/360, −2/225 − sqrt(6)/75;
81 4/9 − sqrt(6)/36, 4/9 + sqrt(6)/36, 1/9];
82 b = [4/9 − sqrt(6)/36, 4/9 + sqrt(6)/36, 1/9];
83 end
84 [kz, kv, kzn, kvn] = deal(zeros(3,1));
85 for k = 2:n
86 % Integrating with RADAU5
87 % Solving the system with Picard iteration
88 while 1
89 for i = 1:3
90 kzn(i) = v(k − 1) + dt ∗ T(i,:) ∗ kv;
91 kvn(i) = A(run contact(Z + z(k − 1) + dt ∗ T(i,:) ∗ kz, settings));
92 end
93 error = norm([kzn;kvn] − [kz;kv]);
94 kz = kzn;
95 kv = kvn;
96 if error < eps
97 z(k) = z(k − 1) + dt ∗ b ∗ kz;
98 v(k) = v(k − 1) + dt ∗ b ∗ kv;
99 % Computing deformation

100 [Fn(k),pressure,deformed(:,:,k)] = run contact(Z + z(k), settings);
101 break;
102 end
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103 end
104 end
105 end
106

107

108 if 0
109 % RK4
110 % Butcher tableau:
111 % IIA Method
112 T = [0,0,0,0;
113 1/2,0,0,0;
114 0,1/2,0,0;
115 0,0,1,0];
116 b = [1/6, 1/3, 1/3, 1/6];
117 [kz,kv] = deal(zeros(4,1));
118 for k = 2:n
119 kzo = kz;
120 kvo = kv;
121 for i = 1:4
122 kz(i) = v(k − 1) + dt ∗ T(i,:) ∗ kvo;
123 kv(i) = A(run contact(Z + z(k − 1) + dt ∗ T(i,:) ∗ kzo, settings));
124 end
125 z(k) = z(k − 1) + dt ∗ b ∗ kz;
126 v(k) = v(k − 1) + dt ∗ b ∗ kv;
127 [Fn(k),pressure,deformed(:,:,k)] = run contact(Z + z(k), settings);
128 end
129 end
130

131

132 % Plotting the quasi−static deformation
133 if 1
134 f = figure;
135 xlabel(’x (m)’);
136 ylabel(’y (m)’);
137 zlabel(’z (m)’);
138 for k = 1:n
139 if z(k) < .2
140 surf(X, Y, Z + z(k)); % The ball (bottom)
141 hold on;
142 surf(X, Y, −Z + 2∗R + z(k)); % The ball (top)
143 surf(X, Y, −deformed(:,:,k)) % The surface
144 axis equal;
145 axis([−R, R, −R, R, min(z), .1 + 2 ∗ R]);
146 hold off;
147 pause(dt);
148 end
149 end
150 end
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A.3 ElasitictySphereHalfplane.m

In this code, the contact between a rigid cylindrical object and an elastic-half plane is simu-
lated. The linear elasticity equations have been discretised and solved using Backward Euler
such as described in Chapter 7.

1 % Discretisation of the half−plane
2 % Based on the equations:
3 % nabla ∗ sigma + F = rho u’’
4 % eps = 1/2 [nabla u + (nabla u)ˆT]
5 % sigma = lambda Tr(eps)I + 2Ge
6

7 if 1
8 % Configuration here:
9 mx = 31;

10 my = 15;
11 hx = .3;
12 hy = .1;
13

14 dtbig = 0.001; % If there is penetration, using dtsmall
15 dtsmall = 0.0001; % instead of dtbig
16 dtplot = 0.001;
17 t1 = .5;
18

19 % General settings:
20 E = 200E+3; % steel = 200GPa
21 nu = .285; % steel = .285;
22 rho = 7900; % steel = 7900kg/mˆ3
23 g = 9.81;
24

25 R = 0.1; % Radius of cylinder
26 L = 1; % Length of cylinder
27 z0cyl = .1; % Height of cylinder at t=t0
28 v0cyl = 0; % Speed of cylinder at t=t0
29 rhocyl = 7900;
30 eps = 1E−10; % Picard error
31

32 % End configuration
33

34 % Initialising variables
35 dx = hx / (mx − 1);
36 dy = hy / (my − 1);
37 m = mx ∗ my;
38 t = 0;
39

40 G = E / (2∗(1 + nu));
41 lambda = E∗nu / ((1 + nu) ∗ (1 − 2∗nu));
42 Estar = E / ((1 − nu)ˆ2);
43 mass = pi∗Rˆ2 ∗ rhocyl ∗ L; % Mass of cylinder
44 zcyl = z0cyl;
45 vcyl = v0cyl;
46

47 x = @(i) dx∗(mod(i − 1,mx));
48 y = @(i) dy∗floor((i − 1) / mx);
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49 xi = @(i) mod(i − 1,mx) + 1;
50 yi = @(i) floor((i − 1)/mx) + 1;
51

52 % Boundaries:
53 in = (repmat(2:mx−1,my−2,1) + mx∗repmat((1:my−2)’,1,mx−2))’;
54 b1 = [1:mx,1+mx∗(1:my−1),mx+mx∗(1:my−1)];
55 b2 = 2 + (my−1)∗mx:mx∗my−1;
56 in = in(:);
57 lin = length(in);
58

59 u = zeros(2∗m,1);
60 v = zeros(2∗lin,1);
61 f = sparse(8∗m + 2∗lin,1);
62

63 % Initial conditions:
64 u(:,1) = 0;
65 v(:,1) = 0;
66

67 % Creating the matrix B for eps = B∗u
68 B = sparse(3∗m,2∗m);
69

70 for i = 1:m
71 % Discretisation of eps = 1/2(du/dx + (du/dx)ˆT)
72 % First eps 11 = du1/dx1
73 if abs(x(i)) < 1e−10; % == 0, ignoring numerical errors
74 % Left boundary
75 B(i, i + 1) = 1/(dx);
76 B(i, i) = −1/(dx);
77 elseif abs(x(i) − hx) < 1e−10;
78 % Right boundary
79 B(i, i) = 1/(dx);
80 B(i, i − 1) = −1/(dx);
81 else
82 % Center
83 B(i, i + 1) = 1/(2∗dx);
84 B(i, i − 1) = −1/(2∗dx);
85 end
86

87 % Now eps 12 = 1/2 (du1/dx2 + du2/dx1)
88 % du1/dx2:
89 if abs(y(i)) <1e−10;
90 % Bottom boundary
91 B(i + m, i + mx) = 1/(dy) / 2;
92 B(i + m, i) = −1/(dy) / 2;
93 elseif abs(y(i) − hy) < 1e−10;
94 % Top boundary
95 B(i + m, i) = 1/(dy) / 2;
96 B(i + m, i − mx) = −1/(dy) / 2;
97 else
98 % Center
99 B(i + m, i + mx) = 1/(2∗dy) / 2;

100 B(i + m, i − mx) = −1/(2∗dy) / 2;
101 end
102 %du2/dx1:
103 if abs(x(i)) < 1e−10;
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104 % Left boundary
105 B(i + m, i + m + 1) = 1/(dx) / 2;
106 B(i + m, i + m) = −1/(dx) / 2;
107 elseif abs(x(i) − hx) < 1e−10;
108 % Right boundary
109 B(i + m, i + m) = 1/(dx) / 2;
110 B(i + m, i + m − 1) = −1/(dx) / 2;
111 else
112 % Center
113 B(i + m, i + m + 1) = 1/(2∗dx) / 2;
114 B(i + m, i + m − 1) = −1/(2∗dx) / 2;
115 end
116

117 % Thirdly, eps 22 = du2/dx2
118 if abs(y(i)) < 1e−10;
119 % Bottom boundary
120 B(i + 2∗m, i + m + mx) = 1/(dy);
121 B(i + 2∗m, i + m) = −1/(dy);
122 elseif abs(y(i) − hy) < 1e−10;
123 % Top boundary
124 B(i + 2∗m, i + m) = 1/(dy);
125 B(i + 2∗m, i + m − mx) = −1/(dy);
126 else
127 % Center
128 B(i + 2∗m, i + m + mx) = 1/(2∗dy);
129 B(i + 2∗m, i + m − mx) = −1/(2∗dy);
130 end
131 end
132

133 % Creating the matrix C for sigma = C eps
134 C = [(lambda + 2∗G)∗speye(m), sparse(m,m), lambda∗speye(m); ...
135 sparse(m,m), 2∗G∗speye(m), sparse(m,m); ...
136 lambda∗speye(m), sparse(m,m), (lambda + 2∗G)∗speye(m)];
137

138 % Given the vector [u;eps;sigma;v], compute dˆ2u/dtˆ2 u = T∗sigma for the internal points
139 T = sparse(2∗lin,3∗m);
140 for i = 1:lin
141 j = in(i);
142 T(i,j + 1) = 1/(2∗dx) / rho; % dsigma11/dx1
143 T(i,j − 1) = −1/(2∗dx) / rho;
144 T(i,j + m + mx) = 1/(2∗dy) / rho; % dsigma12/dx2
145 T(i,j + m − mx) = −1/(2∗dy) / rho;
146

147 T(i + lin,j + m + 1) = 1/(2∗dx) / rho; % dsigma12/dx1
148 T(i + lin,j + m − 1) = −1/(2∗dx) / rho;
149 T(i + lin,j + 2∗m + mx) = 1/(2∗dy) / rho; % dsigma22/dx2
150 T(i + lin,j + 2∗m − mx) = −1/(2∗dy) / rho;
151 end
152

153 % Creating the full matrix
154 Asmall = [sparse(2∗m, 8∗m + 2∗lin); ...
155 −B, speye(3∗m), sparse(3∗m, 3∗m + 2∗lin); ...
156 sparse(3∗m, 2∗m), −C, speye(3∗m), sparse(3∗m, 2∗lin); ...
157 sparse(2∗lin, 5∗m), −dtsmall∗T, speye(2∗lin)];
158 Asmall([in;in+m],[in;in+m]) = speye(2∗lin);
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159 Asmall([in;in+m],8∗m+1:8∗m+2∗lin) = −dtsmall∗speye(2∗lin);
160

161 Abig = [sparse(2∗m, 8∗m + 2∗lin); ...
162 −B, speye(3∗m), sparse(3∗m, 3∗m + 2∗lin); ...
163 sparse(3∗m, 2∗m), −C, speye(3∗m), sparse(3∗m, 2∗lin); ...
164 sparse(2∗lin, 5∗m), −dtbig∗T, speye(2∗lin)];
165 Abig([in;in+m],[in;in+m]) = speye(2∗lin);
166 Abig([in;in+m],8∗m+1:8∗m+2∗lin) = −dtbig∗speye(2∗lin);
167

168 % Creating the boundary conditions and right hand vector.
169 for i = b1 % left, bottom, and right boundary
170 % Setting u x,u y = 0
171 Asmall(i, i) = 1; % u x
172 Abig(i, i) = 1;
173 f(i) = 0;
174

175 Asmall(i + m, i + m) = 1; % u y
176 Abig(i + m, i + m) = 1;
177 f(i + m) = 0;
178 end
179

180 for i = b2 % top boundary
181 % Setting sigma12 = 0, sigma22 = −1
182 Abig(i, i + 6∗m) = 1; % sigma12
183 f(i) = 0;
184

185 Abig(i + m, i + 7∗m) = 1; % sigma22
186 f(i + m) = −1;
187 end
188

189 % Computing the stress/strains at t = 0:
190 sigma = zeros(3∗m,1);
191 data = zeros(8∗m+2∗lin+2,1);
192 data(end − 1) = z0cyl;
193

194 % Now iterating over time, using Euler Backward
195 j = 2;
196 upwards = 0;
197 while t(j − 1) < t1 && upwards <= 1
198 % Checking which time step we should use
199 if zcyl(j − 1) <= 0 || zcyl(j − 1) + 1.2 ∗ dtbig∗vcyl(j − 1) <= 0
200 dt = dtsmall;
201 A = Asmall;
202 else
203 dt = dtbig;
204 A = Abig;
205 end
206

207 % Dynamic allocation of displacement/velocity components
208 u = [u, zeros(2∗m,1)];
209 v = [v, zeros(2∗lin,1)];
210 t = [t, t(j − 1) + dt];
211 zcyl = [zcyl, 0];
212 vcyl = [vcyl, 0];
213
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214 % Integrating with Euler backwards
215 % Solving using Picard iteration
216 f([in;in+m]) = u([in;in+m],j − 1); % u {j+1} = u j + ...
217 f(8∗m+1:8∗m+2∗lin) = v(:,j − 1); % v {j+1} = v j + ...
218

219 iter = 1;
220 uprev = u(:,j − 1);
221 vprev = v(:,j − 1);
222 zcylprev = zcyl(j − 1);
223 vcylprev = vcyl(j − 1);
224

225 % Checking where height cylinder < height surface
226 xb = (xi(b2)’ − 1) ∗ dx + uprev(b2); % x position of points at surface
227 yb = sqrt(max(0,Rˆ2 − (xb − hx/2).ˆ2)); % height of cylinder wrt x
228 yb(yb == 0) = −Inf;
229 yb = zcylprev − yb + R; % actual height cylinder
230 occurspen = yb <= uprev(b2 + m) & uprev(b2 + m) <= 0;
231

232 while upwards <= 1
233 % Integration z,v cylinder
234 F = pi/4 ∗ Estar ∗ L ∗ max(0, −zcylprev);
235 a = [1, −dt; 0, 1] \ [zcyl(j − 1); vcyl(j − 1) + dt ∗ (F/mass − g)];
236 zcyl(j) = a(1);
237 vcyl(j) = a(2);
238

239 % Applying boundary conditions for top boundary
240 xb = (xi(b2)’ − 1) ∗ dx + uprev(b2); % x position of points at surface
241 yb = sqrt(max(0,Rˆ2 − (xb − hx/2).ˆ2)); % height of cylinder wrt x
242 yb(yb == 0) = −Inf;
243 yb = zcyl(j) − yb + R;
244

245 for i = 1:length(b2)
246 % Setting pressure distribution OR displacement
247 A(b2(i), :) = 0;
248 A(b2(i) + m, :) = 0;
249 if occurspen(i)
250 % Penetration, setting u and v
251 A(b2(i), b2(i) + 0∗m) = 1; % u
252 f(b2(i)) = 0;
253

254 A(b2(i) + m, b2(i) + m) = 1; % v
255 f(b2(i) + m) = yb(i);
256

257 else
258 % No penetration, setting p n = 0
259 % i.e. sigma12 = sigma22 = 0;
260 A(b2(i), b2(i) + 6∗m) = 1; % sigma12
261 f(b2(i)) = 0;
262

263 A(b2(i) + m, b2(i) + 7∗m) = 1; % sigma22
264 f(b2(i) + m) = 0;
265 end
266 end
267

268 % Solving the linear system
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269 data = A \ f;
270 u(:,j) = data(1:2∗m);
271 epsilon = data(2∗m+1:5∗m);
272 sigma = data(5∗m+1:8∗m);
273 v(:,j) = data(8∗m+1:8∗m+2∗lin);
274

275 nrm = norm([u(:,j);v(:,j);zcyl(j);vcyl(j)] − [uprev;vprev;zcylprev;vcylprev]);
276 if nrm < eps
277 % Convergence reached.
278 disp(sprintf(’Time step %d (t = %d s ) took %d iterations. Cylinder height: %d m.’, j, t(j),

iter, zcyl(j)));
279 if ˜upwards && vcyl(j) > 0
280 upwards = 1;
281 elseif upwards && vcyl(j) <= 0
282 upwards = 2;
283 end
284 break;
285 end
286 if iter > 100
287 disp(’Not converging!’);
288 end;
289 uprev = u(:,j);
290 vprev = v(:,j);
291 zcylprev = zcyl(j);
292 vcylprev = vcyl(j);
293 iter = iter + 1;
294 end
295 if upwards <= 1
296 j = j + 1;
297 end
298 end
299 end
300

301 % Plotting
302 if 1
303 f = figure;
304 xlabel(’x (m)’);
305 ylabel(’y (m)’);
306 X = x((1:m)’) − hx/2;
307 Y = y((1:m)’) − hy;
308 j = 0:pi/100:2∗pi;
309 spherex = R ∗ cos(j);
310 spherey = R ∗ sin(j) + R;
311

312 j = 1;
313 while ˜isempty(j)
314 plot(X + u(1:m,j), Y + u(m+1:2∗m,j), ’b∗’);
315 hold on;
316 plot(spherex, spherey + zcyl(j));
317 axis([−hx/2, hx/2, −hy, z0cyl + 2∗R]);
318 hold off;
319 pause
320 j = find(t >= t(j) + dtplot, 1);
321 end
322 end



128 APPENDIX A. MATLAB CODES

A.4 StationaryBeam.m

The following code computes the stationary solution of the beam equation given a pressure
distribution p. Both the finite difference as well as the modal approach are applied and
compared.

1 % The following solves the differential equation
2 % 0 = −E∗I ∗ (dˆ4 u / dxˆ4) + p
3

4 % We use a simply supported beam with boundary conditions
5 % u(0) = u’’(0) = u(L) = u’’(L) = 0
6

7 close all;
8

9 % Overal settings:
10 [L, E, I] = deal(1);
11

12 % Method 1: Default finite difference discretisation
13 % dˆ4/dxˆ4 u i is discretised by (u (i−2) − 4u (i−1) + 6u i − 4u (i+1) + u (i+2)) / dxˆ4
14 % Discretised equation becomes 0 = A∗u + p/mu
15

16 % Discretisation settings:
17 n = 10000;
18 dx = L / (n − 1);
19 x = (0:dx:L)’;
20

21 % Choices for the pressure distribution:
22 %p = zeros(n, 1);
23 %p(floor(2/10 ∗ n)) = 3;
24 %p(floor(9/10 ∗ n)) = −5;
25 %p = −x.ˆ2 .∗ (1 − x);
26 %p = −ones(n,1);
27 p = −sin(pi∗x / L);
28

29 % Creating the matrix A
30 A = sparse(n,n);
31 %A(2,1:4) = −1 ∗ E ∗ I ∗ [−4, 7, −4, 1]; % Clamped
32 A(2,1:4) = −1 ∗ E ∗ I ∗ [−2, 5, −4, 1]; % Fixed
33 for i = 3:n − 2
34 A(i, i − 2 : i + 2) = −1 ∗ E ∗ I ∗ [1, −4, 6, −4, 1];
35 end
36 %A(n − 1, n − 3:n) = −1 ∗ E ∗ I ∗ [1, −4, 7, −4]; % Clamped
37 A(n − 1, n − 3:n) = −1 ∗ E ∗ I ∗ [1, −4, 5, −2]; % Fixed
38 A = A / dxˆ4;
39

40 A(1,1) = 1;
41 p(1) = 0; % Setting u = 0 on boundary
42 A(n,n) = 1;
43 p(n) = 0;
44

45 % Solving the linear system
46 u = −A \ p;
47

48
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49 % Method 2. Using modes
50 % Modes are given by : u n(x) = 2 / L ∗ sin(n pi x / L)
51

52 % Settings:
53 k = 4; % Amount of nodes
54

55 % Computing the Riemann integral
56 int = zeros(k, 1);
57 for i = 1 : k
58 int(i) = dx ∗ sum(sqrt(2/L) ∗ sin(i ∗ pi ∗ x / L) .∗ p);
59 end
60

61 % Computing the modal coefficients c
62 c = 1 / (E∗I) ∗ (L ./ ((1:k)’ ∗ pi)).ˆ4 .∗ int;
63

64 % Computing the modal solution
65 um = zeros(n, 1);
66 for i = 1 : k
67 um = um + c(i) ∗ sqrt(2/L) ∗ sin(i ∗ pi ∗ x / L);
68 end
69

70

71 % Plotting
72 plot(x, u, ’b−’, x, um, ’r−.’);
73 legend(’Finite difference’, ’Modes’);
74 hold off;
75

76 % Computing the error
77 norm(um − u)
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A.5 FullBridgeModes.m

This is the Matlab code simulating train-bridge contact. Global deformation is computed
using modes and combined with the quasi-static results of CONTACT. The Quasi-Newton
approach is applied and combined with the Backward Euler scheme.

1 % The following program simulates the deformation that occurs
2 % for a train moving over a bridge.
3 % This approach uses modes and is combined with the quasi−static
4 % results computed using CONTACT.
5

6 if 1
7 % Properties of the bridge
8 L = 20;
9 B = 8;

10 E = 2E+11;
11 nu = 0.50; % Poisson ratio
12 I = 0.0104;
13 mu = 7900;
14

15 % Properties of the cylinder
16 rho = 7900;
17 R = 0.3;
18 veloc = 30;
19

20 % Other settings
21 g = 9.81; % Gravitational acceleration
22 m = 30; % Amount of modes
23 nxplot = 500; % Only used for plotting
24 nxc = 25;
25 ny = 11;
26 dt = 0.001;
27 plotdt = 0.01;
28 t1 = 0.67;
29 eps = 1e−5;
30

31 % Dynamic variables
32 omega = 0; % Relaxation, 0 = none
33 xif = 0; % Relaxation of derivative. 0 = none
34 micro = 1e−7; % For finite difference derivative
35

36 dxc = 2∗R / (nxc − 1);
37 dxplot = L / (nxplot − 1);
38 dy = B / (ny − 1);
39 y = (−B/2:dy:B/2)’;
40 t = (0:dt:t1)’;
41 k = length(t);
42 c = zeros(2∗(m + 1), k);
43 deltav = zeros(k, 1);
44 Fv = zeros(k, 1);
45 pos = 0 + veloc ∗ t;
46 xcyl = (−R:dxc:R)’;
47 zcyl = R − sqrt(max(0, Rˆ2 − xcyl.ˆ2));
48 xplot = (0:dxplot:L)’;
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49 mc = rho ∗ pi∗Rˆ2 ∗ B; % Mass of cylinder
50

51 % For contact
52 settings.G = E / (2∗(1 + nu));
53 settings.nu = nu;
54 settings.dx = dxc;
55 settings.dy = dy;
56

57 % Modes
58 w = @(j,x) sqrt(2/L) ∗ sin(j ∗ pi ∗ x / L);
59 beta = @(j) j∗pi/L;
60 lambda = @(j) beta(j).ˆ2 ∗ sqrt(E∗I/rho);
61

62

63 if 1
64 % Euler Backwards
65 % Creating the matrix D
66 D = zeros(2∗m + 2);
67 for i = 1:m
68 D(2∗i − 1 : 2∗i, 2∗i − 1 : 2∗i) = [1, −dt;
69 dt ∗ E∗I/rho ∗ beta(i)ˆ4, 1];
70 end
71 D(2∗m + 1:end, 2∗m + 1:end) = [1, −dt;
72 0, 1];
73 for j = 2:k
74 fclose(’all’);
75 % Solving the implicit system using Picard iteration for the rhs
76 cprev = c(:, j − 1);
77 iter = 1;
78

79 while 1
80 before = tic;
81 xi = 1 + xifˆiter;
82

83 disp([’Time step ’, num2str(j),’/’, num2str(k),’ iteration ’, num2str(iter), ’.’]);
84

85 % Creating the matrix B
86 B = D;
87

88 % First, we run CONTACT
89 % Computing the height of the bridge wrt x points on wheel at time step k + 1
90 x = pos(j) + xcyl;
91 zbridge = zeros(nxc, 1);
92 for i = 1:m
93 zbridge = zbridge + cprev(2∗i − 1) ∗ w(i, x);
94 end
95

96 % The right hand side:
97 rhs = c(:, j − 1);
98

99 % Computing the penetration
100 pen = (zcyl + cprev(2∗m + 1)) − zbridge;
101

102 a1 = x(max(1, find(pen < 0, 1) − 1));
103 a2 = x(min(nxc, find(pen < 0, 1, ’last’) + 1));
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104

105 if isempty(a1) || isempty(a2)
106 % No penetration
107 dx = dxc;
108 settings.dx = dxc;
109

110 [delta, xpos] = min(pen);
111 x0 = x(xpos);
112 pen = pen − delta; % Acting as if penetration is exactly 0
113 cprev(end − 1) = cprev(end − 1) − delta;
114 else
115 % There is penetration, changing mesh size
116 dx = (a2 − a1) / (nxc − 1);
117 settings.dx = dx;
118 x = (a1:settings.dx:a2)’;
119

120 % Computing height of the bridge for new x
121 zbridge = zeros(nxc, 1);
122 for i = 1:m
123 zbridge = zbridge + cprev(2∗i − 1) ∗ w(i, x);
124 end
125

126 % Computing penetration for new x
127 pen = ((R − sqrt(max(0, Rˆ2 − (x − pos(j)).ˆ2))) + cprev(2∗m + 1)) − zbridge;
128 %zcyl + height cyl − height bridge
129

130 [delta,xpos] = min(pen(:));
131 x0 = x(xpos);
132 end
133 deltav(j) = −delta;
134

135 % Repmat to use for CONTACT
136 pen = repmat(pen’, ny, 1);
137

138 % Running CONTACT and computing the pressure distribution and contact force
139 [Fc,p,l] = run contact(pen, settings);
140 p = −p(round(size(p,1) / 2), :)’;
141 Fv(j) = Fc;
142

143 [Fc2,p2] = run contact(pen − micro, settings);
144 p2 = −p2(round(size(p2,1) / 2), :)’;
145

146 if Fc == Fc2
147 disp(’WARNING: d F / d delta = 0. Making micro larger.’);
148 micro = micro ∗ 10;
149 pause(3);
150 continue;
151 end
152

153 % Settings the fpenratio
154 fpenratio = (Fc2 − Fc) / micro;
155

156 % For each mode, we compute the integrals p(x,t) w(x) d x and p2(x,t) w(x) dx
157 % The derivative w.r.t. delta is computed
158 % The matrix B
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159 for i = 1:m
160 int = dx ∗ sum(p .∗ w(i, x));
161 int2 = dx ∗ sum(p2 .∗ w(i, x));
162 intpenratio = (int2 − int) / micro;
163

164 B(2∗i, 2∗m + 1) = dt/rho ∗ xi ∗ intpenratio;
165 for i2 = 1:m
166 B(2∗i, 2∗i2 − 1) = B(2∗i, 2∗i2 − 1) − dt/rho ∗ xi ∗ intpenratio ∗ w(i2, x0);
167 end
168 rhs(2∗i, 1) = rhs(2∗i, 1) + dt ∗ 1/rho ∗ (int + xi ∗ intpenratio ∗ (cprev(2∗m + 1) − zbridge(

xpos)));
169 end
170

171 % For the height of the cylinder:
172 for i = 1:m
173 B(end, 2∗i − 1) = −dt ∗ xi ∗ fpenratio ∗ w(i, x0) / mc;
174 end
175

176 % For the height of the cylinder continued:
177 B(end, end − 1) = dt ∗ xi ∗ fpenratio/mc;
178 rhs(end, 1) = rhs(end, 1) + dt ∗ ((Fc + xi ∗ fpenratio ∗ (cprev(2∗m + 1) − zbridge(xpos)))/

mc − g);
179

180 % Finally, applying Picard iteration by solving the system
181 cnewact = B \ rhs;
182

183 % Using under relaxation
184 cnew = (1 − omega) ∗ cnewact + omega ∗ cprev;
185

186 disp([’The iteration took ’,num2str(toc(before)),’ seconds.’]);
187 % Testing for convergence
188 if norm(cnewact − cprev) < eps
189 disp([’Time step ’, num2str(j), ’ converged after ’, num2str(iter), ’ iterations.’]);
190 c(:, j) = cnew;
191 break;
192 end
193

194 if iter >= 100
195 disp(’Picard iteration does not converge.’);
196 return;
197 end
198

199 cprev = cnew;
200 iter = iter + 1;
201

202 end
203 end
204 end
205

206 end
207

208

209 % Computing the solution
210 u = zeros(nxplot, k);
211 for j = 1:k
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212 for i = 1:m
213 u(:, j) = u(:, j) + c(2∗i − 1, j) ∗ w(i, xplot);
214 end
215 end
216

217

218 % Plotting
219 if 1
220 f = figure;
221 xlabel(’x (m)’);
222 ylabel(’z (m)’);
223 set(gca, ’ydir’,’reverse’);
224 for i = 1:max(1,round(plotdt/dt)):k
225 plot(xplot,u(:,i), pos(i) + xcyl, zcyl + c(2∗m + 1, i));
226 axis([0,L,min(u(:)),max(u(:))]);
227 pause;
228 end
229 end


