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About VORtech

Founded in 1996 in Delft.

Specialized in mathematical consultancy and development
of high performance scientific software.

Broad range of customers.
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CONTACT

Software that solves contact problems between two
objects (e.g. train wheel & rails).
Main problem: simulation of a train over a bridge.
Research question: how can CONTACT be used for
dynamical contact problems?
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Rigid body motion

A rigid ball is dropped on
an elastic surface.

Height ball z(t) measured
from a reference point.

How to compute z(t)?

Gravitational force

Fg = mg

Normal force exerted by
the surface

Fn =
4

3
E∗
√
Rδ(t)3/2
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Possibilities CONTACT

CONTACT is capable of

Computing the normal force Fn.

Computing the distribution of the pressure pn in the
contact area.

Computing the (quasi-)stationary elastic deformation of
the surface.

Can be done for arbitrarily shaped objects by supplying the
penetration.
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Rigid body motion

The resulting force is F (z) = Fn(z)− Fg.

By Newton’s second law:

mz̈ = F (z)

= Fn(z)−mg

Can be solved using a time integration scheme.
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Time integration schemes

Different kind of integration schemes:

Runge-Kutta schemes, (Forward Euler, RK4, . . . )

Radau schemes, (Backward Euler, Radau5, . . . )

Verlet,

Leapfrog,

Adams methods,

Backward differentiation formulas,

Newmark-beta,

HHT, and

Generalized-α integration.
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Numerical results
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Computing the deformation

The deformation of the surface is described by:

ρ
∂2ui
∂t2

=

3∑
j=1

∂σij
∂xj

+ Fi i = 1, 2, 3

eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
i, j = 1, 2, 3

σij = 2Geij + λδij

3∑
k=1

ekk i, j = 1, 2, 3

This can be solved using a Finite Element approach.

Expensive, need to discretise w.r.t. z direction.

Accurate, inertia is taken into account.
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The quasi-static deformation

Using CONTACT

Computational inexpensive.
Quasi-static, inertia at the surface elements is ignored.
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Global deformation of a bridge

The (1D) Euler-Bernoulli beam equation:

∂2

∂x2

(
E(x)I(x)

∂2u

∂x2

)
= −ρ(x)

∂2u

∂t2
+ p(x, t)

EI
∂4u

∂x4
= −ρ∂

2u

∂t2
+ p(x, t)
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Modal analysis

Mode shapes are natural vibrations of the beam.

Substitute u(x, t) = eiλtw(x) into

EI
∂4u

∂x4
= −ρ∂

2u

∂t2
=⇒ EIw(4)(x) = ρλ2w(x)

=⇒ w(x) = c1 cos(βx) + c2 sin(βx)
+c3 cosh(βx) + c4 sinh(βx)

where β =

(
ρλ2

EI

)1/4
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Modal analysis

The mode shapes for a clamped beam satisfy

cos(βL) cosh(βL) = 1

The use of CONTACT in dynamical simulations November 26th 2015

13



Modal analysis

The solution can be written as

u(x, t) =

∞∑
i=1

ci(t)wi(x)

Idea: approximate u by

u(x, t) ≈ um(x, t) =

m∑
i=1

ci(t)wi(x)

How do we compute ci(t)?
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Modal analysis

EI

∞∑
i=1

ci(t)w
(4)
i (x) = −ρ

∞∑
i=1

c′′i (t)wi(x) + p(x, t)

We have w
(4)
i (x) = β4

i w(x), so that
∞∑
i=1

wi(x)
[
EIβ4

i ci(t) + ρc′′i (t)
]

= p(x, t)

Multiplying by wj(x) and integrating over [0, L] yields
∞∑
i=1

([
EIβ4

i ci(t) + ρc′′i (t)
] ∫ L

0
wi(x)wj(x)dx

)
=

∫ L

0
p(x, t)wj(x)dx
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Modal analysis

We arrive at the differential equation:

ρc′′j (t) =

∫ L

0
p(x, t)wj(x)dx− EIβ4

j cj(t)

The modal coefficients ci are independent of each other.

Can be solved by combining

A numerical integrator (such as a Newton-Cotes formula),

A time integration scheme (such as Newmark-beta), and

An iterative solver (such as Picard iteration).
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Theorem

The error of the stationary modal solution satisfies

‖u− um‖2 ≤
L4‖p‖2

3π4EIm3
= O(m−3)
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Combining local and global deformation

We described two different phenomena:

Local deformation (occurring around the contact area),
and

Global deformation.

In reality, a bridge can deform both globally as locally:

utot(x, t) = u(x, t) + l(x, t)
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Combining local and global deformation
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Combining local and global deformation

The global deformation can be derived by superposing the
modal coefficients that satisfy

ρc′′j (t) =

∫ L

0
p(x, t)wj(x)dx− EIβ4

j cj(t)

The rigid height z(t) of the wheel can be derived by
solving

mw
d2z

dt2
= F (t)

Both p(x, t) and F (t) are derived using CONTACT by
supplying the penetration

δ(x, t) =
m∑
j=1

cj(t)wj(x)− [z(t) + g(x− st)]
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Combining local and global deformation

Applied to Backward Euler:

ck+1
1 = ck1 + ∆tċk+1

1

ċk+1
1 = ċk1 +

∆t

ρ

[∫ L

0
p(x, ck+1, zk+1, tk+1)w1(x)dx− EIβ4

1c
k+1
1

]
...

...

ck+1
m = ckm + ∆tċk+1

m

ċk+1
m = ċkm +

∆t

ρ

[∫ L

0
p(x, ck+1, zk+1, tk+1)wm(x)dx− EIβ4

mc
k+1
m

]
zk+1 = zk + ∆tżk+1

żk+1 = żk + ∆t

[
F (ck+1, zk+1, tk+1)

mc
− g
]
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Combining local and global deformation

This can be written as



1 −∆t

∆t
EI

ρ
β4

1 1

. . .

1 −∆t

∆t
EI

ρ
β4
m 1

1 −∆t
0 1





c1

ċ1
...
cm
ċm
z
ż



k+1

=



c1

ċ1
...
cm
ċm
z
ż



k

+ ∆t



0

1

ρ

∫ L

0
p(x, ck+1, zk+1, tk+1)w1(x)dx

...
0

1

ρ

∫ L

0
p(x, ck+1, zk+1, tk+1)wm(x)dx

0
F (ck+1, zk+1, tk+1)

mc
− g



or
Ayk+1 = yk + ∆tfk+1

Picard approach:
yk+1
j+1 = A−1(yk + ∆tfkj )

For stiff materials, this doesn’t converge!
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The Quasi-Newton approach

We linearise F (ck+1
j , zk+1

j , tk+1) at each iteration j.

Cannot be done analytically, but instead we can set

∂Fj

∂zk+1
j

≈
F (ck+1

j , zk+1
j , tk+1)− F (ck+1

j , zk+1
j − α, tk+1)

α

To achieve stability, we should also linearise w.r.t to ck+1
j .

This is computationally very expensive.

Idea: we only linearise with respect to the approach δk+1
j .

F k+1
j+1 = F k+1

j +

(
∂F

∂δ

)k+1

j

· (δk+1
j+1 − δ

k+1
j )
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The Quasi-Newton approach

δ(t) = max
0≤x≤L

[u(x, t)− w(x, t)]

= max
0≤x≤L

[
m∑
i=1

ci(t)wi(x)− g(x− st)

]
− z(t)

After iteration j of time step k + 1, we have

δk+1
j+1 = max

0≤x≤L

[
m∑
i=1

ck+1
i,j+1wi(x)− g(x− stk+1)

]
− zk+1

j+1

≈
m∑
i=1

ck+1
i,j+1wi(x

k+1
j )− g(xk+1

j − stk+1)− zk+1
j+1
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The Quasi-Newton approach

After linearising, we arrive at

ċk+1
i,j+1 +

∆t

ρ

[
EIβ4

i c
k+1
i,j+1 +

(
∂I

∂δ

)k+1

i,j

·

(
zk+1
j+1 −

m∑
l=1

ck+1
l,j+1wl(x

k+1
j )

)]

= ċki +
∆t

ρ

[
Ik+1
i,j +

(
∂I

∂δ

)k+1

i,j

·

(
zk+1
j −

m∑
l=1

ck+1
l,j wl(x

k+1
j )

)]

żk+1
j+1 +

∆t

mc
· ∂
∂δ
F k+1
j ·

(
zk+1
j+1 −

m∑
i=1

ck+1
i,j+1wi(x

k+1
j )

)

= żk −∆tg +
∆t

mc

[
F k+1
j +

∂

∂δ
F k+1
j ·

(
zk+1
j −

m∑
i=1

ck+1
i,j wi(x

k+1
j )

)]
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The Quasi-Newton approach

This can be written as

ẋk+1
j+1 + ∆tAk+1

j xk+1
j = ẋk + ∆tgk+1

j , where

Ak+1
j =



EI

ρ
β4

1 −
w1(xk+1

j )

ρ
· ∂
∂δ
Ik+1

1,j . . . −
wm(xk+1

j )

ρ
· ∂
∂δ
Ik+1

1,j

1

ρ
· ∂
∂δ
Ik+1

1,j

...
. . .

...
...

−
w1(xk+1

j )

ρ
· ∂
∂δ
Ik+1
m,j . . .

EI

ρ
β4
m −

wm(xk+1
j )

ρ
· ∂
∂δ
Ik+1
m,j

1

ρ
· ∂
∂δ
Ik+1
m,j

−
w1(xk+1

j )

mc
· ∂
∂δ
F k+1
j . . . −

wm(xk+1
j )

mc
· ∂
∂δ
F k+1
j

1

mc
· ∂
∂δ
F k+1
j



The matrix Ak+1
j is dense; the mode shapes ci and the rigid

height z are dependent on each other!
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j is dense; the mode shapes ci and the rigid

height z are dependent on each other!
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The Quasi-Newton approach

We arrive at the system(
I −∆tI

Ak+1
j I

)(
x
ẋ

)k+1

j+1

=

(
x
ẋ

)k
+ ∆t

(
0

gk+1
j

)

Theorem

The solution of the system is given by(
x
ẋ

)k+1

j+1

=

(
Y k+1
j (xk+1

j + ∆tẋk+1
j + (∆t)2gk+1

j )

Y k+1
j (ẋk+1

j + ∆tgk+1
j + 1

∆tx
k+1
j )− xk+1

j

)

where

Y k+1
j = D −

∆tDek+1
j (fk+1

j )TD

1 + ∆t(fk+1
j )TDek+1

j
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ẋ

)k+1

j+1

=

(
x
ẋ
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ẋ

)k+1

j+1

=

(
Y k+1
j (xk+1

j + ∆tẋk+1
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Numerical results
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Conclusion & Further Research

Quasi-static deformation is computed using CONTACT.

Combined with a time integration scheme such as
Newmark-beta or Radau5.

Global deformation is solved using modal analysis.

The total deformation is solved using a Quasi-Newton
approach.

Further research: taking friction into account as the result
of rolling and sliding of wheels.
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Any questions?
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