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Collision frequency kernel free molecular ØF m5/2 s°1

Collision frequency kernel continuum ØCo m3s°1

Coagulation constant free molecular KF m5/2 s°1
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Cunningham Slip Correction factor C (v) °
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Geometric standard deviation w.r.t. particle size æ °
dimensionless particle size distribution ', n(v)v

N °
Total number of residence times Ñ = tTOTAL

tR
°

k-th Moment Mk m3k

geometric mean particle size vg m3

Constants

Boltzmann constant kB m2 kg/s2K 1.38064852£10°23
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1
INTRODUCTION

Nanoscience is the field of research that allows scientists to observe, study and manipulate the smallest build-
ing blocks of every physical aspect on Earth: nanoparticles. Nanoparticles range from 1 to 100 nm in size and
consist of (a combination of) (in)organic molecules. To compare, the typical size of a nanoparticle to a foot-
ball, is as a football to the Earth (Figure 1.1). Materials at this scale obtain different physical properties like
electric charge, color, and viscosity, than they experience in bulk form. The ability to control these properties
at nanoscale will allow the development of new materials with countless applications. Although nanotech-
nology is a relatively new field of research, it has rapidly become indispensable for innovation in sectors like
sustainable energy, medicine and electronics.

The size of a 
nanoparticle is...

... to a football as a 
football is.... to the earth.

Figure 1.1: Nanoparticle size on a comparative scale.

The production of nanoparticles is required for research in the field of nanotechnology. VSPARTICLE side-
lines the original, complex and time consuming method using liquid chemicals, with a new and easy nanopar-
ticle production system: the VSP-G1. This system uses a gas phase physical process called spark ablation. The
material is heated shortly to an extremely high temperature causing the material to evaporate to a highly con-
centrated aerosol. The aerosol is transported through a tube allowing particles to collide and grow. Lastly,the
nanoparticles are deposited onto a substrate.

VSPARTICLE aims for a highly efficient and fully controllable system generating nanoparticles of any desired
quantity, particle size and shape. A computational model of the nanoparticle production process is required
to achieve an entire understanding with respect to the system, the output and the corresponding param-
eter sensitivity. It will contribute significantly to a completely controllable VSP-G1 system. This literature
study provides the theoretical groundwork necessary to construct such a computational model, describing
the transport of aerosol and nanoparticle growth in the VSP-G1 in particular. Smoluchowski [7] developed a
population balance equation which mathematically describes aerosol dynamics, forming the foundation of
this present study.

9



10 1. INTRODUCTION

The physical aspects of the VSP-G1, with emphasis on aerosol transport, is provided in the current chap-
ter. Chapter two provides extensive theory on aerosol dynamics and nanoparticle growth due to Brownian
Motion in particular. The physical properties of the VSP-G1 and the mathematical description of aerosol
dynamics are used to develop a basic model in Chapter three. Using the log-normal method of moments so-
lution method the model is implemented in Chapter four, and a reflection is given on the first results. Lastly,
chapter five concludes with findings from the present study and states preliminary research questions and
goals for the remainder of this thesis.
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1.1. VSP-G1
The production of tailor-made nanoparticles is traditionally performed by wet-chemistry techniques, often
leading to material impurities and production wastes. In contrast, a gas-phased technique like the method
of the VSP-G1, guarantees a user-friendly and fast production of ultra pure nanoparticles. The production
process consists of three phases.

N
Ar
Air

Electrodes

1 2 3

Figure 1.2: Nanoparticle production process of the VSP-G1

A physical description of the VSP-G1 and the corresponding set up is given in figure 1.2.

First, a potential difference causes a spark which locally vaporizes the bulk material of the electrodes. The
resulting plasma has a temperature of order 104 K, and therefore is in the gas phase, containing individual
atoms [8]. Almost instantly after, the vapor blends with a continuous flow of carrier gas, which is channeled
through the electrodes. The gas has a controllable temperature of around of 296.15 K and is either composed
of nitrogen, argon or air. The sudden drop in temperature causes the material to condensate, producing an
aerosol of pure nanoparticles [9] with a certain starting concentration N0.

Transport of aerosol through a tube is the second phase and allows nanoparticles to interact due to Brownian
Motion [8]. When two or more particles collide they either fuse into one larger spherical particle or (loosely)
stick together to form a non-spherical agglomerate. Particle growth is dependent on various parameters. A
computational model simulating this phase will provide a parameters sensitivity analysis with respect to the
particles final size and shape and therefore contribute to the production of pure, tailor-made nanoparticles.

The last phase consists of three possible methods to deposit nanoparticles onto a substrate. A diffusion cham-
ber lets particles randomly diffuse onto a surface, creating a smooth coating used for instance for the devel-
opment of microchips. Impaction, visualized in figure 1.2, is another technique that accelerates a stream
of particles through a nozzle, literately "impacting" on the substrate and making exact positioning of parti-
cles possible. Lastly, it is also possible to deposit particles of a certain size range by applying a filter with a
corresponding mesh size.
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1.2. GOAL
The aim of this literature study is to support the development of a numerical and computationally efficient
model of phase two of the nanoproduction process: nanoparticle growth during aerosol transport. Such a
model is generated by taking the following steps:

1. Define the physical aspects of nanoparticle growth in the VSP-G1.

2. Define a corresponding mathematical description to construct a mathematical model.

3. Identify the most feasible solution method.

4. Develop a computational model, and generate results.

5. Expand the model to improve accuracy and efficiency.

This report treats steps 1-4 for nanoparticle growth in the VSP-G1 under the most basic conditions: purely
spherical growth in a closed space. The present study concludes by reflecting on the current model, recom-
mending feasible expansions and looking into future possibilities with respect to this master thesis.

1.3. LITERATURE OVERVIEW
An overview of the general properties, behaviour and measurement of airborne particles is given by Hinds
[10] and Hampden-Smith [2], providing the theoretical fundamentals of aerosol dynamics.

Nanoparticle growth due to coagulation, a growth mechanism caused by collision and fusion of particles,
was first mathematically described by a population balance equation in 1916, and was named after Marion
Smoluchowski [7]. Twelve years later the original Smoluchowski equation was expanded by Müller [11], incor-
porating the Navier Stokes equations and taking other growth mechanisms into account [12]. The expression
for aerosol dynamics still had limitations with respect to the solid- and gas particle size ratio. Fuchs overcame
this in 1970, by deriving the Smoluchowski equation for the entire particle size range.

A wide range of publications focus on different solution methods for the population balance equation in
terms of particle number concentration. Lee (1983) [5] provided an analytical solution for the Smoluchowski
equation based on an integration of the method of moments and a log-normal approximation of the solution,
the so called "log-normal method of moments", which is the technique used in the present study. The further
development the method of moments, is given by Yu and Yueyan [12]. The work of Lee, Chen and Gieseke ex-
tended Lee’s previous theory and developed the solution method for the entire particle size range (1984)[32].
The present study follows this method and applies it to approximate the particle growth in the VSP-G1.

A simple model to predict the evolution of singlet nanoparticles produced by the VSP-G1 under conditions
that guarantee pure spherical growth is developed by Feng [9]. Fengs model analytically solves a first-order
homogeneous nonlinear ordinary differential equation, which clearly doesn’t correspond to a population
balance equation:

d N
d t

=°1
2
ØN 2(t ), (1.1)

where Ø is a constant and N (t ) is the total particle number concentration.

Although there are many publications on the computational aspects of nanoparticle growth, a detailed nu-
merical model based on the original Smoluchowski equation for approximating nanoparticle growth in the
VSP-G1 has not yet been developed. Therefore, it is worth conducting research on solution methods like the
log-normal method of moments to solve the Smoluchowski equation under conditions corresponding to the
VSP-G1.



2
THEORY

Aerosol kinematics and dynamics is influenced by interaction between solid particles. Coagulation is an
inter-particle mechanism which occurs when two particles collide and stick together to form a new, larger
particle. [2]. As coagulation takes place the average particle size increases, the particle concentration of a
certain aerosol sample decreases, while the total particle mass and volume stay constant. It is the most im-
portant nanoparticle growth mechanism to consider when simulating aerosol dynamics and the growth of
particles in particular as it is the basis of the mathematical description of nanoparticle dynamics: the Smolu-
chowski equation (Section 2.1).

Coagulation is mainly driven by Brownian Motion of particles. In a homogeneous gas, Brownian Motion is
the random motion of suspended particles due to their collisions with the gas particles [2]. The number of
collisions between particles is given by the collision frequency kernel which depends on various aerosol prop-
erties explained in Section 2.2.

The chapter concludes with an expression for the particle size distribution describing the effect of coagulation
with respect to particle size in Section 2.3.

2.1. SMOLUCHOWSKI EQUATION

The evolution of aerosol particle behaviour and properties originating from both internal and external mech-
anisms are described by the Smoluchowski equation. Its original form only accounts for colloid coagulation
[12]. A colloid is a mixture of microscopically dispersed particles which are incapable of being dissolved and
suspended with another substance. The original expression for the coagulation rate in a closed phase space
is [2]:

@n(v, t )
@t

= 1
2

Zv

0
Ø(v 0, v ° v 0, t )n(v 0, t )n(v ° v 0, t )d v 0 °n(v, t )

Z1

0
Ø(v, v 0, t )n(v 0, t )d v 0 (2.1)

Equation (2.1) gives the rate of change of the particle size distribution. n(v, t )d v is the number of particles
whose volume is between v and v +d v at time t [12]. The first term on the right hand side accounts for the
formation of particles of volume v , by coagulation of smaller particles. The factor 1/2 is necessary to avoid
double counting collisions. The second term accounts for the loss of particles of volume v , by coagulation
with others. This is called a "population balance equation". n(v, t ) is the number of particles with volume v
at time t . Ø(v, v 0) is the collision frequency kernel describing the number of collisions between particles of
size v and v 0 at time t .

The extended Smoluchowski equation accounts for almost all aerosol dynamics including external mecha-
nisms due to aerosol transport through air [12], which introduces the spatial coordinate x, and incorporates
the Navier-Stokes equation:
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14 2. THEORY

@n(v, x, t )
@t

+
@
°
un(v, x, t )

¢

@x
+
@
°
uthn(v, x, t )

¢

@x

= @

@x

≥
DB

@n(v, y, t )
@x

¥
+
@
°
Gr n(v, x, t )

¢

@v
+ J

°
v§, x, t )±(v ° v§)

° 1
2

Zv

v§
Ø(v 0, v ° v 0, t )n(v 0, x, t )n(v ° v 0, t )d v 0

°n(v)
Z1

v§
Ø(v, v 0, t )n(v 0, x, t )d v 0+

Z1

v
a(v 0)b(v |v 0)n(v 0, t )d v 0

°a(v)n(v, t )+ .... (2.2)

where n(v, x, t ) is the particle number density for particle volume v , spatial coordinate x, and time t ; the value
Ø represents the collision frequency; u is the particle velocity, uth is the velocity of particles in response the
change in temperature; DB is the Brownian diffusion coefficient; Gr is the particle surface growth rate; J is
the source term, i.e. the nucleation rate of atomic-sized particles v§; a and b are parameters accounting for
the breakage of (non)-spherical particles due to shear force along the walls of the tube. [12].

The thermophoresis velocity uth can be neglected considering the conditions in the VSP-G1: the aerosol
obtains a constant temperature during transport. Gr can also be discarded due to its dependence on ther-
modynamics.

The first and simplest method for describing aerosol dynamics in the VSP-G1 of this present study develops
a computational model for the original Smoluchowski equation (2.1), which accounts for coagulation in a
closed space. Eventually, the model can be extended with the most impactful parts of Equation 2.2, such as
the transport equation or the (continuous) nucleation of new particles.

2.2. COLLISION FREQUENCY KERNEL
The collision frequency kernel Ø, is dependent on the interaction between the ablated nanoparticles and the
surrounding gas particles, and in particular the size ratio between the two different particles. It is necessary
to introduce the mean free path ∏ and the Knudsen number K n.

The gas mean free path is defined as the average distance travelled by a gas molecule between successive
collisions [10]. The Knudsen number relates the gas mean free path to the particle diameter and determines
in which "regime" particle motion takes place. Each regime consists of a unique expression for Ø.

K n = 2∏
dp

(2.3)

Figure 2.1: Particle dynamics in continuum, transition and free-molecular regime [1]. Note, various publications obtain different Knud-
sen ranges with respect the corresponding the regimes. Kodas [2] states that the the transition regime holds for 1 < K n < 50, while it is
much lower according to Rader [3]: 0.4 < K n < 20.
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The gas mean free path is described in terms of the particle concentration n and the gas particle diameter dg
[2]:

∏= 1
p

2nºd 2
g

(2.4)

Using the ideal gas law the particle concentration can be described as n = N
V = P

kB T and another approxima-
tion of the gas mean free path is constructed:

∏= kB T
p

2ºd 2
g P

, (2.5)

where kB is the Boltzmann constant, T the temperature and P pressure.

The gas mean free path and the Knudsen number for different carrier gasses and particle diameters are de-
fined in Table 2.1 for standard VSP-G1 conditions.1

Gas ∏0 [µm] K n for dp = 1 nm K n for dp = 5 nm K n for dp = 10 nm

Argon gas 0.0703 140.60 28.12 14.06
Air 0.0674 134.80 26.96 13.40
Nitrogen gas 0.0230 460.00 92.00 23.00

Table 2.1: Gas free mean path and Knudsen values for argon-, air and nitrogen gas under standard VSP-G1 conditions for three different
particle sizes.

Based on the values in Table 2.1 and previous studies ([2, 3, 10, 13]), the free molecular regime is considered
for the production of nanoparticles with diameters up to 5 nm. The transition regime will apply for particles
exceeding this size. Although the continuum regime is not considered initially, it is treated in this present
study as its properties are necessary to define the collision kernel in the transition scheme. Furthermore, the
continuum regime may be applicable for the formation of agglomerates.

2.2.1. FREE MOLECULAR REGIME
In the free molecular regime, collisions take place by a ballistic process in which the particles can be treated
as large molecules [2]. The collision frequency kernel is described as:

ØF (vi , v j ) = KF

≥ 3
4º

¥1/6≥ 1
vi

+ 1
v j

¥1/2≥
v1/3

i + v1/3
j

¥2
(2.6)

KF =
≥6kB T
Ωg

¥1/2
, (2.7)

where vi and v j are particle volumes, KF the coagulation constant for the free-molecule regime, Ωg is the
gas density in (kg/m3), and the other parameters are previously defined. Under standard conditions1 the
densities and corresponding coagulation constants for different gas types in Table 2.2.

Gas Ωg 0 [kg/m3] KF [m5/2s°1 ]

Argon gas 1.645 1.221£10°10

Air 1.192 1.435£10°10

Nitrogen gas 1.165 1.451£10°10

Table 2.2: gas density and coagulation constants for primarily types of carrier gas used in the VSP-G1

1T0 = 296.15 K; P0 = 101.325 kPa
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The characteristic time for coagulation defines the importance of coagulation on aerosol dynamics. It is equal
to the time it takes for particles to reduce to a concentration which is half its initial value [2] and can be
compared to the experimental residence time, to indicate to what extent coagulation has taken place.

tC F º
≥°3V

4º

¢1/6KF N 5/6
0

¥°1
, (2.8)

where V is the total particle volume fraction, N0 the initial particle concentration and KF defined in Equation
2.7.

2.2.2. CONTINUUM REGIME
Particles are described in the continuum regime when their size is much larger than the mean free path
(K n ø 1). Collisions occur due to Brownian Motion and are described by the collision frequency kernel for
the continuum regime:

ØC (vi , v j ) = KC

≥
v1/3

i + v1/3
j

¥≥ 1

v1/3
i

+ 1

v1/3
j

¥
(2.9)

KC = 2kB T
3µ

, (2.10)

where µ is the gas viscosity in [kg/ms]. Non-continuum effects start to appear as the Knudsen number
reaches its upper boundary: K n = 0.25 [3], [13]. To account for these effects, the Cunningham Slip Correction
factor is incorporated into Equation 2.9:

ØCo(vi , v j ) = KCo

≥
v1/3

i + v1/3
j

¥≥C (vi )

v1/3
i

+
C (v j )

v1/3
j

¥
, (2.11)

where KCo = KC . The characteristic time for coagulation does not apply to the present research, but the
value for ØCo is needed in order to define the collision kernel of the transition regime in Section 2.2.3. Rader
conducted research on the slip correction factor for small particles in nine common gasses [3] and found the
following expression.

C (K n) = 1+K n
≥
Æ+Øexp(°∞/K n)

¥
(2.12)

Æ,Ø and ∞ are parameters that are adjusted to best fit the data and corresponding regime. Under standard
conditions 1, the following values hold for the transition regime:

Transition Regime Ar N2 Air

Æ 1.227 1.207±5% 1.207
Ø 0.42 0.40±5% 0.40
∞ 0.85 0.78±5% 0.78

Table 2.3: Parameters for Cunningham Slip Correction factor for different gasses and regimes
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2.2.3. TRANSITION REGIME

For particles with a diameter that is approximately the same as the gas mean free path (dp º ∏), coagulation
occurs in the transition regime. Different methods exists to combine ØF and ØCo to approximate the transi-
tion kernel.

Figure 2.2: Geometry of the collision model in the flux matching method [4]

Fuchs developed the flux matching method to combine the free - molecular and continuum kernel to form
the transition kernel [14]. The method assumes that outside a distance l , from the center of one of the collid-
ing particles, the diffusion theory is considered and fluxes are described as they are in the continuum regime,
(area I in Figure 2.2). Within the distance l , particle fluxes are considered by the kinetic gas theory [15], (area
II). Fluxes are matched at the distance l . The location of the boundary varies per method. The present re-
search investigates the most basic method: the harmonic mean, and Dahneke (1983)’s method, which is also
known for its accuracy and simplicity [14].

The harmonic mean matches the fluxes at the collision sphere [14], which is the distance between the centers
of two particles at the moment of collision (r1 + r2). The collision frequency kernel following the harmonic
mean method is equal to [15]:

ØTh =
≥ 1
ØCo(vi , v j )

+ 1
ØF (vi , v j )

¥°1
(2.13)

Dahneke describes the diffusion as a mean free path phenomenon [14] and matches the two fluxes at a dis-
tance equal to the mean free path of the particles. In the literature Dahneke’s kernel ØTD is preferred because
of its accuracy relative to the harmonic mean, but also for its simplicity in respect to other methods found by
Fuchs and Wright [13], [14],[15]:

ØTD =ØCo
1+K nD

1+2K nD +2K n2
D

, (2.14)

K nD =
ØCo(vi , v j )

2ØF (vi , v j )
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2.2.4. AGGLOMERATE KERNEL
If two solid particles collide, the result may be an agglomerate or a spherical particle, depending on the rela-
tive rates of fusion and collision. An agglomerate is a particle formed by two or more smaller particles which
have not fully fused into a sphere [2]. The mechanism that causes two particles to fuse is called sintering. The
rate of sintering is a strong function of temperature, particle size and material properties. When the charac-
teristic time for sintering tS is greater than the characteristic collision time tC , an agglomerate forms instead
of a spherical particle.

tS = Ad 4
p exp

≥ E
Rg T

¥
(2.15)

Where E is the activation energy for diffusion, Rg is the gas constant and A is a constant.

Figure 2.3: Particle morphologies v.s. collision rate [2]

The transport properties of agglomerates are substantially different from spherical primary particle prop-
erties. The mass fractal dimension, D f defines the irregular structure of the agglomerates in terms of its
"openness" [2]. Typically D f varies from 1 to 3. D f = 3 defines a solid sphere, while D f = 1 corresponds
with primary particles stuck together in a single line. According to previous research [9], the VSP-G1 creates
agglomerates with a fractal dimension between 1.7 < D f < 2.2.

The expression for the collision frequency kernel of agglomerates in the free-molecular regime varies slightly
from its expression for spherical particles (Equation 2.6):

ØF A(vi , v j ) = KF

≥ 3
4º

¥1/6≥ 1
vi

+ 1
v j

¥1/2≥
v

1/D f

i + v
1/D f

j

¥2
(2.16)

However, according to [2] this equation is limited to D f ∏ 2.

Further research regarding agglomeration is required in order to implement this mechanism into the com-
putational model. An accurate mathematical description is needed for agglomerates with D f ∑ 2, as well as
the formation of agglomerates in the transition regime.
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(a) Picture of agglomerates taken from the VSP-G1 af-
ter deposition

(b) Fractal dimension D f corresponding with the ir-
regular structure of agglomerates [16]

Figure 2.4: Agglomerate structures

2.3. SELF-PRESERVING SIZE DISTRIBUTION
Coagulation of nanoparticles is described by the particle number concentration and size change as a function
of time [10]. The particle size concentration (PSD) n(v, t ), is obtained by solving the Smoluchowski equation.

When coagulation occurs in a closed space, it is possible to write the PSD in dimensionless form [2], becoming
invariant with respect to time. The dimensionless PSD approaches a log-normal distribution with a constant
geometric standard deviation æ1 = 1.355 as t !1. The so called self-preserving size distribution (SPSD) is a
function of the dimensionless volume ¥= v

vg
and is log-normal with a geometric standard deviation æ1:

'(¥) = n(v)v
N

= 1

3
p

2º lnæ1
exp

∑ ° ln2 °
¥
¢

18ln2 °
æ1

¢
∏

, (2.17)

where vg is the geometric mean particle volume and N the total particle concentration. The time required
to reach the SPSD is dependent on the dispersity of the initial size distribution and particle concentration.
SPSDs for charged particles are generally much narrower than those obtained with uncharged particles [2].
Agglomerates also obtain different SPSDs than spherical particles, depending on fractal dimension. The time
it takes to reach the SPSD is about twice as long as the time it takes for a spherical particle:





3
MATHEMATICAL MODELS

The mathematical model of phase two of the nanoparticle production is based on the original Smoluchowski
Equation (2.1). Logically, this involves a list of simplifications with respect to the actual physical properties
and nanoparticle growth in the VSP-G1. The simplest model assumes pure spherical particle growth due co-
agulation in a closed space, neglecting aerosol transport and losses. It also claims that the physical properties
can be defined in a constant molecular free regime.

A model in its earliest stage aims for mathematical and computational simplicity. This motivates the initial
exclusion of agglomeration, the transport equation, secondary growth mechanisms, source or sink terms and
changes due to a regime transition.

The basic model presented in this study (Section 3.1) obtains the particle size distribution n(v), after a cer-
tain time tR , which corresponds to the time particles have to coagulate during transport in the tube of the
VSP-G1. A solution method which solves for n(v) was obtained by Pafnuty Chebyshev in 1887. The Method of
Moments (MoM) assumes particle volume conservation, an is therefore applicable for models approximating
particle growth in a closed spaces (Section 3.2).

The MoM has been applied in a wide range of fields such as electromagnetism [17], planetary formation[18],
finances, data processing [19], but also aerosol dynamics and nanotechnology [5, 6, 12, 20–23]. Frenklach and
Harris used the MoM in 1987 to simulate nanoparticle growth mechanisms like nucleation, surface reaction
and coagulation [23]. Without having to track the behavior of the entire PSD, the MoM extracts specific in-
formation of the coagulation process, so called "moments". The zeroth moment is equal to the total particle
concentration M0(t ) = N (t ), the first moment resembles the constant total particle volume and the second
moment is the total particle volume squared.

Having constructed a solvable, simple model for nanoparticle growth in the VSP-G1, possible expansions are
stated in Section 3.3, and evaluated with respect to feasibility. Lastly, two other solution methods are intro-
duced (Section 3.4), forming motivational groundwork for applying the Method of Moments in the current
study.

21
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3.1. COAGULATION IN A CLOSED SPACE WITHOUT AEROSOL TRANSPORT
The simplest computational model solves the original Smoluchowski Equation (2.1) and assumes coagulation
occurs in an unchanged regime: free-molecular. It considers that coagulation takes place in a closed space,
corresponding with the dimensions of the tube, over a fixed residence time tR . The residence time is the total
time that a particle spends inside the tube:

tR = Vtube

Q
=
ºd 2

tube L

4Q
, (3.1)

where dtube is the diameter of the tube; L is the length of the tube, Q is the carrier gas in (m3s°1).

Recall (2.1),

@n(v, t )
@t

= 1
2

Zv

0
Ø(v 0, v ° v 0, t )n(v 0, t )n(v ° v 0, t )d v 0 °n(v)

Z1

0
Ø(v, v 0, t )n(v 0, t )d v 0,

where the transport equation is neglected, however transport of aerosol is incorporated in the model via a
"detour". Let the total running time of the VSP-G1 be tTOTAL, and Ñ be the total number of tR 2 tTOTAL. First, the
original Smoluchowski equation is solved for 0 < t < tR . The result is a PSD corresponding to a small fraction
of the total particles, namely the particles that enter the tube at t = 0 and exit at t = tR . This PSD is noted
by n(v)tR . Once n(v)tR is obtained, the final particle size distribution n(v)tTOTAL is easily calculated with the
assumption that n(v)tR1

= n(v)tR2
= . . . = n(v)tRÑ

:

n(v)tTOTAL = n(v)tR · Ñ (3.2)

The model is visualized below:

Figure 3.1: A computational model of coagulation in a closed space without aerosol transport
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3.2. SOLUTION METHOD
A solution for the particle size distribution for a certain residence time n(v)tR is obtained by solving the origi-
nal Smoluchowski equation using the method of moments. The first task of the MoM is to convert the original
Smoluchowski equation into a linearized momentum equation based on the size distribution [12]: the mo-
ment governing equation (Section 3.2.1). A specific variant: the log-normal method of moments (log-MoM)
uses the assumption that the moment governing equation is a log-normal function. By doing so, a set of ordi-
nary differential equations is given in Section 3.2.2. The result is a solution for the PSD of particles undergoing
coagulation in the free-molecular regime.

3.2.1. MOMENT GOVERNING EQUATION
The derivation of the moment governing equation of the present study is followed according to [18]. Equation
2.1 can be written in terms of n(v):

dn(v)
d t

= 1
2

Zv

0
Ø(v 0, v ° v 0)n(v 0)n(v ° v 0)d v 0 °n(v)

Z1

0
Ø(v, v 0)n(v 0)d v 0 (3.3)

The k-th moment of the distribution, M k , where k need not be an integer is defined as:

Mk =
Z1

0
vk n(v)d v (3.4)

After five derivation steps (Appendix 6.1) the moment governing equation is obtained:

d Mk

d t
= 1

2

Z1

0

Z1

0

h
(v + v 0)k ° vk ° v 0k

i
Ø(v, v 0)n(v)n(v 0)d vd v 0 (3.5)

Now the key is to convert the integral term on the RHS of (3.5) to a set of closed ordinary differential equations
which represent the zeroth-, first- and second moment. Note, writing Equation 3.3 and 3.4 in terms of n(v, t )
will obtain the same set of ODE’s.

3.2.2. LOG-NORMAL MOM
The log-normal method of moments (log-MoM) was developed by Cohen and Vaughan and assumes that
the kth moment is a function of time t , particle size v , mean particle size vg (t ), and the geometric standard
deviation based on particle radius æ(t ) [6]:

Mk (v, t ) = 1

3
p

2º lnæ(t )
vk exp

∑° ln2 v/vg (t )

18ln2æ(t )

∏
d v
v

(3.6)

Taking k = 0 generates the particle size distribution as a function of time and volume [5], which is of most
interest in the present study:

n(v, t ) = 1
3v

N (t )
p

2º lnæ(t )
exp

∑° ln2 v/vg (t )

18ln2æ(t )

∏
, (3.7)

where N (t ) = M0(t ) is the total number concentration of particles. In order to solve this equation, expressions
for M0(t ),æ(t ) and vg (t ) are necessary [12, 18]:

vg (t ) =
M 2

1

M0(t )3/2M2(t )1/2
(3.8)

ln2æ(t ) = 1
9

ln
∑

M0(t )M2(t )

M 2
1

∏
(3.9)

From equation 3.5, the following set of ODEs is derived (Appendix 6.2 gives the complete derivation):
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(3.10)

Acceptable initial- and boundary conditions, along with a numerical descritezation method are used to solve
the equations in 3.10 for M0, M1, M2. Next, vg (t ) and æ(t ) are computed with Equations 3.8 and 3.9, making
it possible to obtain the particle size distribution with respect to time and particle volume from equation 3.7.

3.3. MODEL EXPANSIONS
A sufficient level of accuracy and model reliability is obtained by expanding the mathematical model with
certain particle growth mechanisms or other physical phenomena.

An important element to incorporate in the current model is the effects of the a change in regime. Once
the particle diameter exceeds a value of five nanometers, the collision frequency kernel will gradually shift
from free-molecular to transition [14]. The geometric standard deviation of the PSD, æ, is characterized by
its asymptotic behaviour, regardless of the regime an aerosol originates from [5]. It is necessary to test the
current model on the same theoretical behaviour for both regimes.

Figure 3.2: Change in the geometric standard deviation æ as a function of time as the particle size makes a transition from the free-
molecule regime to the continuum regime. [5]

The logical next step is take agglomeration into account. Hypothetically, the corresponding computational
aspects are comparable to that of the previous element, by simply incorporating a new type of collision ker-
nel. However, further research is necessary with respect to interpretation and validation of the model results.
It might be useful to look into how the fractal dimension can be added to the output, in order to classify
the level of agglomeration. Validation with VSP-G1 measurements occurs with a Differential Mobility Ana-
lyzer (DMA), which measures the sizes of all electrically charged nanoparticles (± 10 % of the total produced
nanoparticle concentration). Information on the DMA’s ability to detect and classify agglomerates is needed
for experimental validation of the extended model.
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According to previous research conducted with the DMA, the total mass of a certain measured particle con-
centration, scaled to include both neutral and electrically charged particles, does not correspond with the
total mass loss of the electrodes. This initiates aerosol loss, probably due to particle deposition in the spark
chamber as well as on the tube wall. The corresponding loss of particles can be incorporated into the com-
putational model with a simple sink term. [24] states that the particle loss due to turbulent diffusion to the
wall and can be described as:

nsink(v, t ) =°4k(v)n(v, t )/dtube, (3.11)

where k(v) is the size dependent mass transfer coefficient.

The assumption that the particle size distribution is equivalent for all residence times can also be challenged.
If necessary, a stochastic factor can be applied to account for the effects of Brownian Motion.

Lastly, the effects of aerosol transport can be analyzed by incorporating the Navier Stokes Equation. Hypo-
thetically, a new solution method is necessary to obtain the new PSD in terms of particle volume, time and
space.

@n(v, x, t )
@t

+
@
°
un(v, x, t )

¢

@x
=

° 1
2

Zv

v§
Ø(v 0, v ° v 0, t )n(v 0, x, t )n(v ° v 0, t )d v 0 °n(v, t )

Z1

v§
Ø(v, v 0, t )n(v 0, x, t )d v 0

(3.12)

Figure 3.3: A computational model of coagulation in an open space with aerosol transport
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3.4. OTHER SOLUTION METHODS
SECTIONAL METHOD

The sectional method solves the Smoluchowski Equation at every interval in terms of timestep, particle size
and spacial location [18] and can therefore be applied to solve Equation 3.12. The solution is obtained us-
ing numerical discretization methods such as Runge Kutta to approximate the Smoluchowski integrals. A
finite element scheme can be applied for the spacial coordinate of the transport equation [25]. The sectional
method is used to study the evolution of the PSD over time [18], and generates the most detailed outcome.
However, computational costs follow, making it quite impractical [12].

MONTE CARLO METHOD

A stochastic particles approach is the last alternative for computationally modelling the coagulation of nanopar-
ticles. The method allows coagulation of two particles to occur with a certain probability and contains various
algorithms; the direct simulation algorithm (DSA) and the mass flow algorithm (MFA) are the most popular.
[26], [27]. The stochastic particles approach or, Monte Carlo method, allows the PSD to fully be determined
along with the moments of the distribution. Also, it has proven to be computationally less expensive com-
pared to the sectional method [27]. A draw back is that the derivation of a stochastic coagulation model is
mathematically complex and requires a thorough understanding of probability theory. Moreover, the incor-
poration of computational fluid dynamics (CFD) is still limited [12].

The computational expense of the sectional method, and the complexity and limits of Monte Carlo are non-
existent in the Method of Moments. Although the original MoM is unable to trace the evolution of the particle
size distribution, the log-normal MoM overcomes this by reconstructing the PSD from a log-normal distribu-
tion.



4
IMPLEMENTATION AND RESULTS

The model corresponding with coagulation in a closed space without aerosol transport, for the free - molecu-
lar regime is implemented. The initial conditions derived in Section 4.1 hold for all MoM techniques, though
only the log-normal technique is treated in the present study. Section 4.2 obtains a dimensionless expression
for the stiff set of ordinary differential equations derived in the previous chapter (Equation set 3.10).

A Forward Euler discretization method is used to solve the dimensionless set of equations. To validate the
model with literature in Section 4.3, the particle concentration N and geometric mean particle volume vg are
derived in dimensionless form in terms of their initial values N0 and vg 0, and compared with results obtained
by Lee et al. [6]. Furthermore, the geometric standard deviation is calculated with Equation 3.9 and tested on
asymptotic behaviour. All values are plotted against dimensionless time, N0v1/6

g 0 K̃F t . The dimensionless, log-
normal MoM-based particle size distribution is derived and compared with the theoretical self-preserving
size distribution (SPSD) [6] [2].

Section 4.4 obtains results from the initial conditions based on standard VSP-G1 settings. A sensitivity anal-
ysis is performed on the input parameters to obtain an understanding of the model behaviour. Finally, the
dimensionless PSD is plotted against actual measurements.

Throughout Sections 4.3 and 4.4, the model is tested on accuracy and reliability with respect to theory [6]
and to a data set generated by the DMA. The non-asymptotic behaviour of the PSD indicates a possible im-
plementation error. Furthermore, a better understanding of VSP-G1 measurement techniques is needed in
order to validate the model with the actual nanoparticle production of the system.

4.1. INITIAL CONDITIONS
The properties of the log-normal function are such that the following equation holds for any kth moment [6]:

Mk = M0vk
g exp

≥9
2

k2 ln2(æ)
¥
, (4.1)

Equation 4.1 is applied to retrieve the initial conditions:

M0(0) = N0 (4.2)

M1(0) = M1(t ) = N0vg 0 exp
≥9

2
ln2(æ0)

¥
(4.3)

M2(0) = N0v2
g 0 exp

≥
18ln2(æ0)

¥
, (4.4)

It is can be seen that the initial conditions fully depend on the initial values for the particle number concentra-
tion N0, geometric mean particle volume vg 0, and the geometric standard deviation based on particle sizeæ0.

27
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N0 is derived from a list of input variables: ablation power P A (W), spark frequency f (s°1), molecular mass
mm (kg/mol), Avogadro’s number NA (atoms/mol), and the residence time tR (s). The computations leading
to the derivation of N0 are schematized in Figure 4.1, where input variables that are controllable by the VSP-
G1 are colored grey.

Initial condition

Controllable input variable

Dependent input variable

Figure 4.1: Derivation of initial particle concentration N0

Furthermore, the initial geometric volume depends on the initial geometric particle radius:

vg 0 =
4r 3

g 0

3º

A value for the initial geometric spread with respect to particle size æ0 is based on either previous literature
or measurements.

INITIAL CONDITIONS CORRESPONDING TO MONOTONE INITIAL AEROSOL

Under the assumption that spark ablation provides a monotone aerosol consisting of single atoms of pure
material, the following initial conditions hold:

vg 0 =
4r 3

p

3º
æ0 = 1

M0(0) = N0

M1(0) = M1(t ) = N0vg 0

M2(0) = N0v2
g 0
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4.2. NONDIMENSIONALIZATION
Given the system of ODE’s from 3.10, for 0 < t < tR :
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The unscaled set of equations is extremely stiff which results in numerical instability. Using an extremely
small step size isn’t suitable and therefore nondimensionalizing the set of ODE’s is necessary. The following
dimensionless parameters for t , M0 and M2 have been introduced by previous research [6], [5], [14]:

ø= v1/6
g 0 K̃F N0t (4.6)

fM0 = M0M0(0)°1 (4.7)

fM2 = M2M2(0)°1 (4.8)

Also, let b(t ) = b(ø(v1/6
g 0 K̃F N0)°1) = B(ø).

Expressing 4.5 in terms of the previously defined dimensionless parameters obtains the following dimension-
less ordinary differential problem (the complete derivation is given in Appendix 6.3).

Given the dimensionless set of ordinary differential equations for 0 < ø< øR :
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with initial conditions:
(

fM0(0) = 1
fM2(0) = 1

(4.10)
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4.3. RESULTS WITH RESPECT TO THEORY
Solving System 4.9 allows the accuracy of the model to be tested with respect to results obtained by literature
research by Lee et al. [6] (Figure 4.2).

present study

Lee and Gieseke

(a) (c)

(b) (d)

Figure 4.2: (a) Lee’s dimensionless particle concentration. (b) present study’s dimensionless particle concentration. (c) Lee’s di-
mensionless particle volume. (d) present study’s dimensionless particle volume. All functions are dependent on dimensionless time
ø= N0v1/6

g 0 KF t

Differences between Lee’s results and the values obtained from this present study are mainly visible in Figure
4.3, which shows a different course of the geometric standard deviation with respect to dimensionless time.
Lee et al. (top plot) claims that the dimensionless size distribution experiences asymptotic behaviour and
approaches a fixed geometric standard deviation, æ1 = 1.355, independently of the initial size spread of the
distribution æ0 [6]. The same behavious is observed by Kodas [2] and Park [14] (recall Figure 3.2 in Section
3.3).

The present model assumes a monodisperse initial size distribution ( æ0 = 1). Although the corresponding
geometric spread does approach the equivalent limit as Lee et al., the course of the other functions foræ deny
any asymptotic behaviour of the PSD.

This may indicate an error in the implementation of the log-normal method of moments in the present study,
possibly due to the assumption that coagulation occurs in a constant free-molecular regime, neglecting in-
crease in polydispersity of the aerosol.
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present study 

(b)

Lee et al. 

(a)

Figure 4.3: Geometric spread of particle size derived by to Lee. et al [6] (a). The geometric spread of particle size obtained in the present
study (b)

DIMENSIONLESS PARTICLE SIZE DISTRIBUTION

Recall the self-preserving size distribution '(v/vg ) in Equation 2.17. An equivalent, time-dependent form
of the distribution function is achieved when writing the expression for the PSD defined in Equation 3.7 in
dimensionless form in terms of N /N (ø) and v/vg (ø),

n(v,ø)v
N (ø)

= 1

3
p

2º lnæ(ø)
exp

∑° ln2 °
v/vg (ø)

¢

18ln2 °
æ(ø)

¢
∏

, (4.11)

Figure 4.4 shows a comparison of Function 4.11 for various residence times ø = {øR ,2øR ,4øR }, with a self-
preserving size distribution obtaining a constant spread æ1 = 1.335. In theory, n(v,øR )v

N (ø) will approach '(¥).
However for æ0 6= 1.0, results don’t comply due to the previously observed non-asymptotic behaviour of æ
(Figure 4.3).
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Figure 4.4: The dimensionless PSD in terms of particle volume, n(v)v
N (Equation 4.11) and the self-preserving particle size distribution

in terms of particle radius '(v) with æ1 = 1.355 (Equation 2.17). Results are plotted for two different initial geometric size standard
deviations æ0 = 1.0 (left) and æ0 = 1.5 (right), and for three different residence times with tR = 0.42s. The y-axis is defined by n(v)v

N , the
x-axis is defined by v

vg
.
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4.4. RESULTS WITH RESPECT TO VSP-G1
The following results are obtained with inputs that correspond to conditions applicable for the VSP-G1. The
ablated material is gold, with a particle radius of 135 pm. The settings of the G1 correspond with 1 L/min
inflow ,5 J/s ablation power, 175 Hz spark frequency, 1 m tube length, 3 mm tube diameter and a temperature
of 296.15 K. These conditions result in the following initial values and residence time:

N0 = 4£1014 particles

vg 0 = 1£10°30 m3

æ0 = 1.0

tR = 0.42s

The relative particle concentration is generated by solving System 4.9 for the dimensionless zeroth- and sec-
ond moment fM0 fM2. The relative geometric mean particle volume and the geometric spread of particle size
are generated by equations 3.8 and 3.9 respectively:

vg (t ) =
M 2

1

M0(t )3/2M2(t )1/2

ln2æ(t ) = 1
9
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∑

M0(t )M2(t )
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Figure 4.5: the relative particle concentration N (ø)
N0

, the relative particle volume
vg (ø)
vg 0

and the geometric spread of particle size æ as a

function of dimensionless time ø for initial conditions corresponding to the VSP-G1 standard settings.

It is observed in Figure 4.5a that the total particle concentration decreases with about 45%, this corresponds
to a geometric mean particle volume increase of 250%. The geometric standard deviation increases with 20%.

MODEL BEHAVIOUR

A parameter sensitive analysis is conducted to obtain an understanding of the computational model, focus-
ing on the influence of initial conditions on the coagulation rate. Increasing the ablation power has a direct
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positive influence on the initial concentration. Logically the particle concentration will experience a larger
decrease, due to the fact that particles will encounter each other, collide and fuse more frequently when con-
sidering a constant space. This proposition also initiates an increase of mean particle volume after time tR .

One might think that increasing the tube length will have the opposite effect, as the chance of inter-particle
collision decreases. However, this effect is some what canceled out by the increase of residence time, recall
the definition for tR in Equation 3.1.

The initial particle volume, determined by the initial particle radius, also determines the rate of coagulation.
However modifying vg 0 is five time less effective on the final results than modifying N0. Logically, this effect
is clarified when one understands the physical aspects of the problem.

PARTICLE SIZE DISTRIBUTION

Figure 4.6 compares the PSD generated in this present study (blue), with actual VSP-G1 measurements (black).
Equation 4.11 is defined in terms of the particle radius r , and plotted for residence times: tR = 190ms,340ms
and 490 ms. The data sets are generated by a differential mobility analyzer (DMA) to measure particle size
concentration. The DMA excludes particles with no electric charge (90% of the aerosol), and particles ex-
ceeding a certain radius. The latter causes a mode shift to the right, as the particle radius is scaled to the
mean particle radius of the corresponding data set.

The modes obtained by the computational model are comparable to the DMA measurement. However, mea-
surements obtained from other data sets are not as consistent. Therefore a better understanding of the DMA
measurement technique is required in order to analyze the accuracy of the model with respect to VSP-G1
measurements.
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Figure 4.6: PSD from log-normal MoM based model (top), PSD from VSP-G1 data measurements (bottom). (a) for øR = 190ms, (b) for
øR = 340ms, (c) for øR = 490ms.





5
CONCLUSIONS

This literature study provides the theoretical background necessary to develop a complete, accurate and ef-
ficient computational model of nanoparticle growth in the VSP-G1. A first version of the model has been
developed, assuming the most basic physical conditions: nanoparticle growth due to coagulation, in a closed
space, for a constant (free molecular) regime. Subsequently, the results are tested with respect to previous re-
search [6] and VSP-G1 measurements. Observed is that the resulting particle size distribution doesn’t obtain
the required asymptotic behaviour. This could be the result of a computational error. Another hypothesis is
that excluding the computational aspects of the transition regime prohibits the model to take the effects of
an increasing polydispersity into account.

Furthermore, this literature study prospects on the possibilities to expand the model, which will eventually
provide a model for nanoparticle growth in the VSP-G1 consisting of sufficient accuracy, efficiency and reli-
ability. Corresponding research questions, goals and approach are stated in this chapter prospecting on the
remaining part of this thesis.

5.1. PRELIMINARY RESEARCH QUESTIONS

"How can nanoparticle growth in the VSP-G1 be modelled to study the particle size distribution?"

In the course of this thesis, the aim is to address the main research question stated above. The corresponding
sub-questions are:

1. What is causing the non-asymptotic behaviour of the particle size distribution in the current version of
the model?

2. What is the effect of incorporating the transition regime on the accuracy of the output?

3. Consider the following possible elements for model expansion: agglomeration, sink/source term, trans-
port equation and other growth mechanisms. Which elements are most feasible to implement?

4. When incorporating agglomeration, how can the results be interpreted with respect to particle size and
shape?

5. How sensitive is the model to perturbations of the input parameters. Can the accuracy of the input
parameters be improved?

6. What is the quality of the numerical model and can it be improved?

7. How does the final model perform compared to measurements provided by VSPARTICLE?
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5.2. GOALS & METHODOLOGY

"Develop an accurate and computationally efficient numerical model which describes the growth of

nanoparticles produced in the VSP-G1."

The main goal is reached by the approach below. Completing all steps, each coupled to a previously stated
research question, will eventually result in obtaining a sufficient computational model for the nanoparticle
growth in the VSP-G1.

1. Obtain a grounded explanation for the non-asymptotic behaviour of the PSD. The computational model
will be thoroughly reviewed for implementation errors, with respect to the model developed by Lee [6].
Alternatively, look into the effect of incorporating the transition regime.

2. Introduce the physical aspects of nanoparticles entering the transition regime by gradually incorporat-
ing the transition collision frequency kernel ØT .

3. Conduct a feasibility analysis on model expansion possibilities with respect to computational and math-
ematical complexity and their predicted impact on model accuracy. Incorporate the most feasible ele-
ment(s).

4. Incorporate agglomeration into the model by adding the corresponding collision frequency kernel.
Conduct research on the interpretation and classification of agglomerates in a particle size distribu-
tion, and the ability to measure agglomeration for instance with the DMA. Finally, the results will be
analyzed respect to agglomeration.

5. Once the model obtains a sufficient level of accuracy and efficiency, a sensitivity analysis with respect
to the controllable input parameters will be performed.

6. Perform a numerical analysis, testing the model on stability, order and convergence.

7. Compare the results obtained from the model with measurements from the VSP-G1. Conclude on the
accuracy, efficiency and reliability of the model.
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APPENDIX

6.1. MOMENT GOVERNING EQUATION
Given the Smoluchowski equation expressed in terms of n(v):

dn(v)
d t

= 1
2

Zv

0
Ø(v 0, v ° v 0)n(v 0)n(v ° v 0)d v 0 °n(v)

Z1

0
Ø(v, v 0)n(v 0)d v 0 (6.1)

The k-th moment of the distribution, M k , where k need not be an integer is defined as:

Mk =
Z1

0
vk n(v)d v (6.2)

Step A
Both sides of the equation 6.1 is multiplied by vk and both sides are integrated over volume v . Also, (6.2) is
inserted on the RHS.

d Mk

d t
=

Z1

0
vk dn

d t
d v = 1

2

Z1

0

Zv

0
vkØ(v 0, v ° v 0)n(v ° v 0)n(v 0)d v 0d v °

Z1

0

Z1

0
vkØ(v, v 0)n(v)n(v 0)d v 0d v (6.3)

Step B
A Heaviside function, H(v ° v 0), is introduced such that:

H(v ° v 0) =
(

1 v ° v 0 ∏ 0

0 v ° v 0 < 0

to extend the limits of the integral over v 0 from (0, v) to (0,1).

d Mk

d t
= 1

2

Z1

0

Zv

0
vk H(v ° v 0)Ø(v 0, v ° v 0)n(v ° v 0)n(v 0)d v 0d v °

Z1

0

Z1

0
vkØ(v, v 0)n(v)n(v 0)d v 0d v (6.4)

Step C
The substitution u = v ° v 0, du = d v and vk = (u + v 0)k in equation 6.4. As the first integral is integrated over
purely positive values for u, the Heaviside function is always equal to one.

d Mk

d t
= 1

2

Z1

0

Z1

0
(u + v 0)kØ(u, v 0)n(u)n(v 0)d v 0du °

Z1

0

Z1

0
vkØ(v, v 0)n(v)n(v 0)d v 0d v (6.5)

Step D
Without loss of generality, the subsitution v for u is allowed and both integrals can be taken in one. The result
is the moment equation:
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d Mk

d t
=

Z1

0

Z1

0

h1
2

(v + v 0)k ° vk
i
Ø(v, v 0)n(v)n(v 0)d vd v 0 (6.6)

Step E
Due to symmetry the equation above also holds for vk = v 0k , which means the moment equation can be
rewritten:

d Mk

d t
= 1

2

Z1

0

Z1

0

h
(v + v 0)k ° vk ° v 0k

i
Ø(v, v 0)n(v)n(v 0)d vd v 0 (6.7)

6.2. DERIVATION OF ODES USING LOG-NORMAL MOM
Given equation 6.7, it is observed that the collision frequency kernel Ø is present in the moment governing
equation. Due to the assumption that particle growth occurs in a constant regime, a set of ODE’s is derived
using the log-normal MoM for the free molecular regime.

In the free-molecular regime, it is difficult to expand the kernel ØF (equation 2.6) into a power series [28].

Therefore, a coefficient b is introduced such that:
q

1
vi

+ 1
v j

= b
≥q

1
vi

+
q

1
v j

¥
. The coefficient b is dependent

on the polydisperisty of the aerosol [5], which is represented by the geometric spread of the particle size
distribution æ. The function b is fitted to only depend on æ by Park, Lee, Otto and Fissan in [5]:

b = 1+1.2exp(°2æ)°0.646exp(°0.35æ2) (6.8)

The collision frequency kernel for the free-molecular regime is rewritten in the following form:

ØF (vi , v j ) = bKF (
3

4º
)1/6

≥s 1
vi

+
s

1
v j

¥≥
v1/3

i + v1/3
j

¥2
(6.9)

Inserting the new expression for ØF into the moment governing equation gives:

d Mk

d t
= bKF

2
(

3
4º

)1/6
Z1

0

Z1

0

h
(v + v 0)k ° vk ° v 0k

i≥s 1
vi

+
s

1
v j

¥≥
v1/3

i + v1/3
j

¥2
n(v)n(v 0)d vd v 0

= bKF

2
(

3
4º

)1/6
Z1

0

Z1

0

h
(v + v 0)k ° vk ° v 0k

i≥
v1/6v 01/6 2v1/3

v 01/6
+ 2v 01/3

v1/6
+ v 02/3

v1/2
+ v2/3

v 01/2

¥
n(v)n(v 0)d vd v 0

(6.10)

Let k = 0 , k = 1 and k = 2:

8
>><

>>:

d M0
d t =° bKF

2 ( 3
4º )1/6 R1

0

R1
0

≥
v1/6v 01/6 2v1/3

v 01/6 + 2v 01/3

v1/6 + v 02/3

v1/2 + v2/3
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¥
n(v)n(v 0)d vd v 0

d M1
d t = 0

d M2
d t = bKF

2 ( 3
4º )1/6 R1

0

R1
0 (2v v 0)

≥
v1/6v 01/6 2v1/3

v 01/6 + 2v 01/3

v1/6 + v 02/3

v1/2 + v2/3

v 01/2

¥
n(v)n(v 0)d vd v 0

(6.11)

Then, relation (6.2) is used to transform the RHS of (6.11) as a function of fractal moments:

8
><

>:

d M0
d t =°bKF ( 3

4º )1/6°M1/6M0 +2M1/3M°1/6 +M2/3M°1/2
¢

d M1
d t = 0

d M2
d t = 2bKF ( 3

4º )1/6°M7/6M1 +2M4/3M5/6 +M1/2M5/3
¢

(6.12)

In order to close the set of ODEs in (6.12) the property of a log-normal function ensuring that any kth , where
k not need be an integer, may be expressed as:
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Mk = M0vk
g exp(

9
2

k2 ln2(æ)), (6.13)

is used. Rewriting (6.13) in terms of vg and æ for k = 0,k = 1,k = 2 gives:

vg =
M 2

1

M 3/2
0 M 1/2

2

(6.14)

ln2æ= 1
9

ln
∑

M0M2

M 2
1

∏
(6.15)

Inserting (6.13, 6.14, 6.15) into the set of unclosed moment governing equations (6.12) closes the set of ODE’s
and completes step 2:

8
><

>:

d M0
d t =°bKF ( 3

4º )1/6°M 151/72
0 M°13/36

1 M 19/72
2 +2M 131/72

0 M 7/36
1 M°1/72

2 +M 127/72
0 M 11/36

1 M°5/72
2

¢

d M1
d t = 0

d M2
d t = 2bKF ( 3

4º )1/6°M 19/72
0 M°97/36

1 M 31/72
2 +2M°1/72

0 M°77/36
1 M 11/72

2 +M°5/72
0 M°73/36

1 M 7/72
2

¢
(6.16)

6.3. NONDIMENSIONALIZATION
Given the system of ODE’s from for 0 < t < tR :

(
d M0

d t =°bKF ( 3
4º )1/6°M 151/72

0 M°13/36
1 M 19/72

2 +2M 131/72
0 M 7/36

1 M°1/72
2 +M 127/72

0 M 11/36
1 M°5/72

2

¢

d M2
d t = 2bKF ( 3

4º )1/6°M 19/72
0 M°97/36

1 M 31/72
2 +2M°1/72

0 M°77/36
1 M 11/72

2 +M°5/72
0 M°73/36

1 M 7/72
2

¢ (6.17)

To generate a dimensionless system of equations, each variable is replaced by a quantity scaled relative to a
characteristic unit of measure, noted by the subscript c, which are yet to be determined.

Set M0 = fM0M0c , M2 = fM2M2c and t = øtc . Also, let b(t ) = b(øtc ) = B(ø) and fill the these new definitions into
set of equations 6.17.

d fM0

dø
M0c

tc
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¥

For simplicity, introduce f (M0, M2) and g (M0, M2), and K̃F = KF ( 3
4º )1/6, .
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The characteristic units of measure tc , M0c and M2c are defined next. A wide range of literature [6], [5], [14],
take the dimensionless time as

ø= v1/6
g 0 K̃F N0t ,

which leads to tc =
°
v1/6

g 0 K̃F N0
¢°1. A logic choice for the remaining units of measure is: M0c = N0 and M2c =

N0vg (0)2. After some rearranging the dimensionless set of ODE’s is obtained:
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