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Background 
 
At ASML Research, advanced modeling, identification, and control techniques are studied in order 

to comply with desired overlay performance for the next generation lithography machines. These 

machines are critical in the production of Integrated Circuits (IC’s). In the next generation Extreme 

Ultra Violet (EUV) machines, imaging distortions due to the inevitable presence of thermal 

disturbances induced by the exposure become more critical in the overall imaging performance 

as the source power demand is increasing rapidly, see also Figure 1.  

 
Figure 1: Evolution of the source power over time1 

The increasing demand for higher source powers is due to the following two reasons: 
1. The throughput demand of future lithography machines requires higher source powers, 
2. A higher source power allows a higher exposing dose which results in improved local 

critical dimension uniformity (CDU) and thus better yield. 

 

To overcome the image distortions due to the increasing thermal disturbances, there is a strong 

need for methodologies to actively suppress the deformations induced by these thermal loads.  

 
Figure 2: NXE:3400B system 

                                                 
1 Source: Jan van Schoot, Eelco van Setten, Kars Troost, Frank Bornebroek, Rob van Ballegoij, Sjoerd Lok, Judon 

Stoeldraijer, Jo Finders, Paul Graeupner, Joerg Zimmermann, Peter Kuerz, Marco Pieters, Winfried Kaiser, "High-

NA EUV lithography exposure tool progress," Proc. SPIE 10957, Extreme Ultraviolet (EUV) Lithography X, 

1095707 (14 March 2019); 



The main challenges in suppressing the thermal loads include dealing with the limited ranges of 

thermal actuators and with the large variety of spatially distributed thermal loads that can occur. 

For this purpose, the use of model predictive control (MPC) schemes is being investigated as it 

allows to explicitly take into account the presence of input and performance constraints. In 

Figure 3, a typical MPC scheme is illustrated. The main idea of MPC is as follows: 

• Given a state-estimate, a dynamical model, a cost function and input/output constraints, 

an optimal control input sequence is computed over a finite horizon. This optimization 

problem is also referred to as the finite horizon optimization problem. 

• Only the first element of this sequence is implemented on the actual system.  

• At the next time step, the optimization procedure is repeated using an updated state- 

estimate that is based on new sensor measurements.  

Since the optimization procedure is repeated at every discrete time-step, the principle of 

feedback is present.   

 
Figure 3: Schematic illustration of the MPC scheme where 𝑧 denotes the performance signal, 𝑦 

the measured output, 𝑤 (𝑤̃) the (estimated) disturbance acting on the plant, 𝑥̃ the estimated 

state of the plant, and 𝑢 (𝑢𝑠𝑎𝑡) the (saturated) control input of the plant. 

To accommodate for the large variety of thermal loads, high fidelity (finite-element) models need 

to be considered in the MPC scheme. Within ASML, thermo-mechanical systems are typically 

modeled via the finite element method (FEM) resulting in a dynamical system with large state 

dimensions (>50.000). To be more specific, the thermal behavior of the model is given by 

𝐸𝑇̇ = 𝐴𝑇 + 𝐵𝑢𝑢 + 𝐵𝑤𝑤𝑒𝑢𝑣     ( 1 ) 

where 𝑇 denotes the thermal state vector, 𝑢 the actuation signal, 𝑤𝑒𝑢𝑣 the disturbance signal 

and 𝐸, 𝐴, 𝐵𝑢 and 𝐵𝑤 (sparse) system matrices. The deformations induced by the thermal loads 
can be computed by solving 

𝐾𝑇𝑓(𝑇) + 𝐾𝑀𝑑 = 0      ( 2 ) 

where 𝐾𝑀 denotes the (sparse) mechanical stiffness matrix, 𝐾𝑇 the (sparse) thermal stiffness 

matrix and 𝑓 is a non-linear function that represents the temperature-strain characteristics of the 

material.  

 

As the targeted sampling time for the controller is in the order of seconds, an important aspect 

in the design of an MPC scheme is the demand of computational resources of the on-line 

optimization scheme in terms of memory, scalability and overall computation time. In previous 

work, it is shown that the bottle-necks of solving the finite horizon optimization problem are  

1. computing a particular response of the system over a finite horizon with the most recent 

state-estimate as initial condition.  

2. computing the thermal-induced deformation.  



Let us emphasize that the finite horizon optimization problem needs to be solved at each 

discrete time instant and thus includes the two computations mentioned above.  
 

Assignment 
 
The objective of the MSc project is to investigate efficient numerical methods (in terms of 
memory, scalability and overall computation time) that can be exploited in the context of model 
predictive control for both the thermal as the mechanical part of the system. To be more 
specific, in this project the following techniques might be explored: 
 
Deflation (possibly based on model order reduction techniques) 
Deflation is a well-known technique for removing the slowly converging components in iterative 
methods. A key ingredient in this technique is choosing a suitable deflation subspace. In particular 
for the thermal domain, using the orthogonal projections resulting from model order reduction 
techniques (such as Krylov subspace model order reduction methods or proper orthogonal 
decompositions) to construct the deflation subspace is a promising direction.  
 
(Adaptive) algebraic multi-grid methods 
Next to deflation, multi-grid methods is a common method to improve the converging properties 
of iterative methods. The high fidelity models used at ASML unstructured grids with a mixture of 
different element types. For this reason, it is of interest to investigate algebraic multi-grid methods 
that do not rely on the availability of geometric information. Classical algebraic multi-grid methods 
work effectively for so-called M-matrices but the converging behavior degrades significantly for 
matrices that do not have this property such as thermal capacity and stiffness matrices resulting 
from finite-element methods. To overcome this limitations, adaptive algebraic multi-grid methods 
have been proposed in which the smoother, prolongation and the coarsening process are adapted 
to the slow converging components in the iterative scheme. The latter procure might also benefit 
from model-order reduction techniques.  
 
Space-time discretization:  

As mentioned before, computing a particular response of the system over a finite horizon is one 

of the computational bottlenecks in solving the finite horizon optimization problem corresponding 

to the MPC scheme. Typically, this solution is computed in a sequential fashion over time using 

separate spatial and temporal discretization schemes. To speed up the computation, it is of 

interest to examine integrated spatial and temporal discretization schemes that allow to exploit 

parallel computing for both the spatial as the temporal domain.  

 
Domain decomposition: 
Due to the rapid developments in multi-processing technology, an important property in numerical 
methods is scalability. For this purpose, domain decomposition techniques in which the 
computation corresponding to the subdomains can be distributed over multiple processors are of 
interested.  
 
The effectiveness of the proposed methods will be evaluated by means of a numerical case study 
with a numerical model that represents an optical element in an EUV machine with various 
numbers of states, actuators and sensors.  
 
 
 
 



Deliverables 
 

• Short literature study 

• Presentations in control meetings @ASML 

• Tooling (compatible with MATLAB) 

• Final MSc report 
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