# Transport planning of the Dutch gas network 

Finding challenging transport situations by a sufficient method

Sandra Maring

Delft University of Technology, The Netherlands

June 2, 2017

## Overview

(1) Introduction
(2) Current method
(3) Network representation
(4) Linear programming
(5) Research questions
(6) Continuation \& discussion


## Gas transport

- Realistic transport situation
- Boundaries of capacity on e/e
- Flow conservation
- Transport moment: quantity for transport load
- Dependent of length, amount of flow, pressure, diameter of pipe, temperature
- Length and flow
- Transport moment equations:

$$
\begin{aligned}
T & =\sum_{e \in E} q(e) d(e) \\
T(a) & =\sum_{i=1}^{l} c\left(X_{i}\right) d\left(X_{i}, a\right)-\sum_{j=1}^{J} c\left(N_{j}\right) d\left(N_{j}, a\right)
\end{aligned}
$$

## Stress test

- Severe transport situations
- Vector with capacities on e/e
- Sum of vector is zero
- Restricted to bounds

Stress test


## Stress test, iteration 1

- Find entry and exit point
- Closest entry is $N_{A}$
- Furthest exit is $X_{D}$
- Minimum of the maximal capacity on the e/e: $\min \{100,90\}=90$
- Transport moment:

$$
T(A)=90 \cdot 8-90 \cdot 0=720
$$



## Stress test, iteration 2

- Find entry and exit point
- Closest entry is $N_{A}$
- Furthest exit is $X_{B}$
- Minimum of the maximal capacity left on the e/e: $\min \{10,80\}=10$
- Transport moment:

$$
T(A)=10 \cdot 7+90 \cdot 8-100 \cdot 0=790
$$



## Stress test, iteration 3

- Find entry and exit point
- Closest entry is $N_{A}$
- Furthest exit is $X_{B}$
- Minimum of the maximal capacity left on the e/e: $\min \{10,80\}=10$
- Transport moment:

$$
T(A)=10 \cdot 7+90 \cdot 8-100 \cdot 0=790
$$



## Stress test, iteration 4

- Find entry and exit point
- Closest entry is $N_{B}$
- Furthest exit is $X_{C}$
- Minimum of the maximal capacity left on the e/e: $\min \{90,80\}=80$
- Transport moment:
$T(A)=20 \cdot 7+90 \cdot 8+80 \cdot 7-100 \cdot 0-90 \cdot 7=790$



## Stress test, iteration 5

- Find entry and exit point
- Closest entry is $N_{B}$
- Furthest exit is $X_{A}$
- Minimum of the maximal capacity left on the e/e: $\min \{10,20\}=10$
- Transport moment:

$$
\begin{aligned}
T(A)= & 10 \cdot 0+20 \cdot 7+90 \cdot 8+80 \cdot 7 \\
& -100 \cdot 0-100 \cdot 7 \\
= & 780
\end{aligned}
$$



## Stress test



Stress test w.r.t. anchor point $A$ :
$\left.\begin{array}{l|c}N_{A} & 100 \\ N_{B} & 90 \\ X_{A} & -0 \\ X_{B} & -20 \\ X_{C} & -80 \\ X_{D} & -90\end{array}\right)$

## Distance between stress tests

- Measure difference between vectors
- $\mathcal{L}_{p}$, for example Euclidean distance
- Network properties
- Quadratic form distance


## Quadratic form distance



## Quadratic form distance

$$
a_{i j}=1-\frac{d_{i j}}{d_{\max }}
$$

$Q F D_{A}(u, v)=\sqrt{(u-v)^{T} A(u-v)}$

## Quadratic form distance

$$
\begin{gathered}
a_{i j}=1-\frac{d_{i j}}{d_{\max }} \\
D=\left(\begin{array}{llllll}
0 & 7 & 0 & 7 & 7 & 8 \\
7 & 0 & 7 & 0 & 6 & 7 \\
0 & 7 & 0 & 7 & 7 & 8 \\
7 & 0 & 7 & 0 & 6 & 7 \\
7 & 6 & 7 & 6 & 0 & 7 \\
8 & 7 & 8 & 7 & 7 & 0
\end{array}\right), \quad A=\left(\begin{array}{cccccc}
1 & \frac{1}{8} & 1 & \frac{1}{8} & \frac{1}{8} & 0 \\
\frac{1}{8} & 1 & \frac{1}{8} & 1 & \frac{1}{4} & \frac{1}{8} \\
1 & \frac{1}{8} & 1 & \frac{1}{8} & \frac{1}{8} & 0 \\
\frac{1}{8} & 1 & \frac{1}{8} & 1 & \frac{1}{4} & \frac{1}{8} \\
\frac{1}{8} & \frac{1}{4} & \frac{1}{8} & \frac{1}{4} & 1 & \frac{1}{8} \\
0 & \frac{1}{8} & 0 & \frac{1}{8} & \frac{1}{8} & 1
\end{array}\right)
\end{gathered}
$$

## Earth mover's distance

- Minimal amount of work to go from one situation to another
- Based on transportation


## Earth mover's distance

$$
\begin{equation*}
\min \sum_{i=1}^{I} \sum_{j=1}^{J} d_{i j} f_{i j} \tag{1a}
\end{equation*}
$$

subject to

$$
\begin{align*}
\sum_{i=1}^{I} \sum_{j=1}^{J} f_{i j} & =\min \left\{\sum_{i=1}^{I} c\left(N_{i}\right), \sum_{j=1}^{J} c\left(X_{j}\right)\right\} &  \tag{1b}\\
\sum_{j=1}^{J} f_{i j} & \leq c\left(N_{i}\right) & \forall i \in[1, I]  \tag{1c}\\
\sum_{i=1}^{I} f_{i j} & \leq c\left(X_{j}\right) & \forall j \in[1, J]  \tag{1d}\\
f_{i j} & \geq 0 & \forall i \in[1, I], j \in[1, J] \tag{1e}
\end{align*}
$$

## Earth mover's distance

$$
\begin{gathered}
E M D=\frac{\sum_{i=1}^{l} \sum_{j=1}^{J} d_{i j} f_{i j}}{\sum_{i=1}^{l} \sum_{j=1}^{J} f_{i j}} \\
E M D=\sum_{i=1}^{l} \sum_{j=1}^{J} d_{i j} f_{i j}
\end{gathered}
$$

$(100,0,0,-100)^{T}$
$(20,0,0,-20)^{T}$
$(0,100,-100,0)^{T}$
$(0,20,-20,0)^{T}$

## Distance

QFD:

- No big pre-calculation
- Only distance matrix and stress tests needed
- Matrix is big in practice $(I+J) \times(I+J)$

EMD:

- Based on flows
- Two matrices, but smaller $I \times J$
- Based on two different transport moments

Flow representation


Flow representation


Flow representation


Flow representation


Flow representation


Flow representation



## Linear Programming

$$
\begin{aligned}
\max & c^{\top} x \\
\text { s.t. } & A x \leq b \\
& x \geq 0
\end{aligned}
$$

- x optimisation variable: flow
- c cost function: distance
- $A, b$ constraints, flow conservation, etc.


## Linear Programming

- Simplex method
- Mostly polynomial time complexity
- Worst-case exponential time complexity
- Simple algorithm
- Interior-point method
- All cases polynomial time complexity
- Based on different numerical methods


## Research questions

(1) Current method

- Are all severe situations taken into account?
- Other distances
- Criterion on similarity in distances
(2) Other methods
- Advantages and disadvantages
- How can the computer find the flow through the network for the earth mover's distance?
(3) Network structures
- Which complex structures should be taken into account?
- How in each method


## Research questions

(4) Transformation from capacity (e/e) to flow representation

- Advantages and disadvantages
- Algorithms
(5) Pressure
- Addition to each method
- Transformation to linear programming


## Continuation

Answering the research questions:
(1) Current method
(2) Other methods
(3) Network structures
(4) Representation of the network
(5) Pressure

