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Chapter 1

Introduction

1.1 Background

Simulation of ocean waves can be categorized into two major groups. First one is based on the
physical models whereas the other generates the ocean waves based on either geometrical shapes
or oceanography spectrums. Even though the later method group requires less computational
effort, the waves modeled are less realistic in nature.

Currently MARIN (Maritime Research Institute Netherlands) provides ship manoevering sim-
ulators. Computation of the wave field is based on the wave spectra (Fourier theory). Being
deterministic in time and space; they are easy to implement on distributed simulation systems.
Also the ship movements are realistic. However, this model is not interactive, that is impact of
the ship movement on the wave field is not taken into account. Also, from a visualization point
of view, the model is limited.

In theory, for fluid simulation, the non-linear Navier Stokes equations along with the equation
of continuity are solved. Boussinesq’s approximation for water waves is applied for weakly
non-linear and fairly long waves. The essential idea in the Boussinesq approximation is the
eliminiation of the vertical coordinate from the flow structure, while still retaining some of the
influence of the vertical structure of the flow. This is possible because wave propagates in the
horizontal direction, whereas it has a different non-wave like behavior in the vertical direction.
In Boussinesq-like models, an approximate vertical structure of the flow is used to eliminate the
vertical space.

Frequency dispersion: Water waves exhibit frequency dispersion, i.e. water waves of different
wave lengths travel with different phase speeds. Classical Boussinesq models are limited to long
waves - having wavelengths much longer than the water depth.

The variational Bousinnesq model (developed by Gert Klopman [2]) can deal with deep waters
with varying depth, as the vertical structure is treated as a function of depth, surface elevation
and other parameters. The big advantage over the deterministic model is that it can incorporate
the influence of the ship movement, thus making it an interactive wave model. Owing to the
variation in the vertical structure and its interactive nature, it is much more computational
intensive, and much work has been done in order to improve the running time of the solver.
Two previous master thesis by Van’t Wout [3] and De Jong [1] have focussed on creating a fast
linear solver and increasing the efficiency by GPU programming.
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1.2 Earlier Work

1.2.1 Elwin van’t Wout: Fast solver and model explanation

Elwin’s work [3] comprised of improving the linear solver that is used in a real-time ship sim-
ulator. The underlying wave model is the variational Boussinesq model as suggested by Gert
Klopman [2]. Elwin starts with derivation of the Variational Boussinesq Model (VBM). Start-
ing point of the derivation of the model equations are the Euler equations which are valid for
motions of ideal fluids and are a special case of the Navier-Stokes equations (inviscid incom-
pressible flow). In order to reduce the problem from 3 dimensions to 2 dimensions, vertical
shape functions are employed. The resulting model is linearized to reduce complexity. The
linearized model is described in detail in Chapter 2.

Equations are then discretized (spatially) using a finite volume method with structured Carte-
sian grids. Time integration is performed using a leap-frog scheme. One of the equations
results in a system of linear equations. Elwin provides a detailed description of various numer-
ical methods available for solving linear system of equations. Based on the properties of the
matrix involved, he selects the Conjugate Gradient method as solver. This iterative method
is then combined with various preconditioners, namely diagoal scaling, modified incomplete
Cholesky and repeated red black ordering. Elwin modified the original implementation of the
repeated red black-preconditioner to a repeated red black preconditioner for a predefined num-
ber of levels, combined with a complete Cholesky decomposition on the maximum level. Elwin
concludes that the repeated red black preconditioner is the method with the lowest amount of
computation time, in most of the cases.

1.2.2 Martin De Jong: Developing a CUDA solver for large sparse matrices
for MARIN

The C++ RRB solver developed by Elwin was able to solve the system of linear equations within
50 ms for domains no bigger than 100,000 to 200,000 nodes. The focus of Martijn’s thesis was to
increase the performance of above solver by utilizing GPU architecture. By carefully selecting
the storage data structures, optimal CUDA programming parameters, Martijn was able to
achieve a speedup of 30x as compared to the serial code (Performance of the linear solver).
Martijn reports that the new solver can solve systems that have more than 1.5 million nodes
within 50ms with ease.

1.3 Current Work and Organization Of the Report

Our main target is to explore different approaches to increase the performance of the current
time dependent solver, and allow solution to large problems in a similar runtime. Literature
review on the project will focus upon exploring implicit time integration approaches, and non-
uniform grid formulation. The organization of the report is given below:

1. Chapter 2 describes the governing equations and discretization.

2. Chapter 3 discusses previous implementation by Martijn, the RRB solver and its key
features.

3. Chapter 4 discusses the implicit time integration techniques.

4. Chapter 5 discusses linear solvers for non-symmetric matrices
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5. Chapter 5 discusses the required research.
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Chapter 2

Model Equations and Discretization

2.1 The Variational Boussinesq Model (VBM)

The basic idea of the model is to minimize the pressure in the whole fluid. Starting point of the
derivation of the model equation comes from the physical model of the Navier-Stokes Equations.
The Euler equations are a special case of the Navier Stokes equations where viscous forces are
neglected. For ocean waves, this is considered to be a valid assumption as the Reynolds number
is typically large, and thus surface waves in water are a superb example of a stationary and
ergodic random process. Also, rotational effects are negligible in large water waves. The Euler
equation is given by:

∂u

∂t
+ (u.∇)u =

1

ρ
∇p− g, (2.1)

The fluid velocity is given by u, ρ denotes the mass density, p the pressure and g the gravitational
constant. Understanding physics behind the problem is important as it provides information
on the numerical techniques required for the solution of the problem. Note that the inviscid
and irrotational assumption is not necessarily valid near solid boundaries, where very small flow
structures associated with turbulence result from the no-slip boundary condition. In the current
model, this has been ignored and the assumptions are considered to be valid throughout the
domain.

Equation 2.1 is converted to the instationary Bernoulli equation (fluid being assumed irrota-
tional) , and then the pressure is integrated over the whole domain. The basic idea of the
variational Boussinesq model is to minimize the total pressure p. For irrotational flows, velocity
can be represented by a velcoity potential (φ). Another parameter ζ (water level) is also intro-
duced while performing integration. The problem thus becomes finding these functions (φ and
ζ). The vertical structure of the flow is often known. The velocity potential can be written as
a series expansion in predefined vertical shape functions, thus reducing the 3D model to a 2D
model.

2.1.1 Hamiltonian Description

Being an irrotational and incompressible flow, the system of equations has a Hamiltionian
structure, where the force acting on the system is the gravitational and the pressure force. The
Hamiltionian H(ζ, ϕ) is given by the sum of kinetic and potential Energy. In order to obtain
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the minimal value of total pressure, the Hamiltionian function is minimized with respect to
variables ζ and ϕ [3]. This results in :

∂ζ

∂t
= ∇Hϕ(ϕ, ζ) (2.2a)

∂ϕ

∂t
= ∇Hζ(ϕ, ζ) (2.2b)

where ∇Hζ refers to the partial derivative of H with respect to ζ. The structure of the above
equations will play an important role in the discussion of temporal integration which is discussed
in Chapter 4.

2.1.2 Linearized Model Description

The variational Boussinesq model constructed based on the above simplifications is non-linear
in nature. In order to simplify these equations and thus reducing the computational effort,
the Hamiltionian equations given by Equation (2.2) is linearized. Detailed derivation from the
Hamiltionian to linear set of equations is described in [3].

The final set of equations after performing the linearization are given by:

∂ζ

∂t
+∇.(ζU + h∇ϕ− hD0∇ψ) = 0, (2.3a)

∂ϕ

∂t
+ U.∇ϕ+ gζ = Ps, (2.3b)

M0ψ +∇.(hD0∇ϕ−N0∇ψ) = 0, (2.3c)

Notes:

1. Equations 2.3 are solved for three basic variables: water level ζ, surface velocity potential
(2-D) ϕ and vertical structure ψ. Splitting of the velocity potential into the surface
potential and the vertical shape function is given by:

φ(x, y, z, t) = ϕ(x, y, t) + f(z)ψ(x, y, t) (2.4)

2. Shape function f is chosen among either a parabolic or a cosine-hyperbolic shape. The
model parameters (functionals D,M and N ) are computed using the shape function f .

3. The water depth h = h(x, y, t) is relative to the reference level z = 0. The bottom of a
basin, river or sea is thus at level z = −h.

4. The total velocity can be split into the average current velocity and the velocity due to
the wave front. U = U(x, y, t) is the time average horizontal velocity of the current and
is used as an external input in the model.

5. Equations 2.3 represent the motion of waves. The impact of a moving ship is not seen
directly. In order to model a ship, a pressure pulse on the water surface is defined. In
the pressure functional given by Equation (2.3b), Ps represented the source term with
Ps := −ps

ρ . The draft of a ship’s hull is the vertical distance between the waterline and
the bottom of the hull. Given the draft of a ship, ps is computed as the hydrostatic
pressure at the given depth. Let the draft be given as ds, then ps = gdsα(x, y) with
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α(x, y) a shape function with one in the middle of the ship and zero on the horizontal
boundary of the ship. Alternatively, the shape of the ship’s hull can be imported from an
external surface description file.

2.2 Numerical Discretization

2.2.1 Computational Domain

Both Elwin and Martijn have assumed the domain to be rectangular, and divided the domain
in a rectilinear Cartesian grid. The dimensions of the domain are Lx × Ly. It is divided into
Nx×Ny grid points. The outermost nodes represent the physical boundary. The mesh spacing

in each direction is given as ∆x = Lx
Nx−1 and ∆y =

Ly

Ny−1 . An example is given in 2.2.1

Figure 2.1: Physical domain and corresponding cartesian grid

2.2.2 Spatial Discretization

The model Equations 2.3 are discretized using a finite volume method. The variables are
evaluated at the grid points and the finite volumes are rectangles of size ∆x × ∆y centered
around the grid point. The derivatives are approximated with centered differences yielding a
five-point stencil. For the grid point located at C (= center) the surrounding control volume
V and its four nearest neighbors (N = north,E = east, S = south, W = west) are indicated in
Section 2.2.1. On node (i, j), the discretized versions of the variables ζ, ϕ and ψ are given by
ζij , ϕij and ψij . In order to put the variables in matrix format, one dimensional ordering of the
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variables is defined which gives the vector ~ζ, ~ϕ and ~ψ. The spatial discretization can be written
as :

d

dt

~ζ~ϕ
0

+

Sζζ Sζϕ Sζψ
Sϕζ Sϕϕ Sϕψ
Sψζ Sψϕ Sψψ

~ζ~ϕ
~ψ

 =

 0
Ps
0

 (2.5)

The matrix S’s are given by five point stencils as follows:

Sζζ :

 0 1
2∆yVN 0

− 1
2∆xUW

1
2∆yVN −

1
2∆yVS −

1
2∆xUW + 1

2∆xUE
1

2∆xUE
0 − 1

2∆yVS 0

 (2.6)

where U and V denotes the current velocity in x and y direction respectively.

Sζϕ :

 0 − 1
∆y2

hN 0

− 1
∆x2

hW
1

∆y2
hN + 1

∆x2
hW + 1

∆x2
hE + 1

∆y2
hS − 1

∆x2
hE

0 − 1
∆y2

hS 0

 (2.7)

Sζψ :

 0 − 1
∆y2

hNDN 0

− 1
∆x2

hWDW
1

∆y2
(hNDN + hSDS) + 1

∆x2
(hWDW + 1

∆x2
hEDE) − 1

∆x2
hEDE

0 − 1
∆y2

hSDS 0


(2.8)

Sϕζ = g, Sϕψ = 0, Sψζ = 0 (2.9)

Sϕϕ :

 0 1
2∆yVN 0

− 1
2∆xUW −( 1

2∆yVN −
1

2∆yVS −
1

2∆xUW + 1
2∆xUE) 1

2∆xUE
0 − 1

2∆yVS 0

 (2.10)

Sψϕ : ∆x∆y

 0 1
∆y2

hNDN 0
1

∆x2
hWDW −( 1

∆y2
hNDN + 1

∆x2
hWDW + 1

∆x2
hEDE + 1

∆y2
hSDS) 1

∆x2
hEDE

0 1
∆y2

hSDS 0


(2.11)

Sψψ : ∆x∆y

 0 − 1
∆y2
NN 0

− 1
∆x2
NW 1

∆y2
NN + 1

∆x2
NW + 1

∆x2
NE + 1

∆y2
NS +M − 1

∆x2
NE

0 − 1
∆y2
NS 0

 (2.12)

The system can be written as :
q̇ = Lq + f, (2.13a)

S ~ψ = b (2.13b)
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with q =

[
~ζ
~ϕ

]
and q̇ its time derivative. The matrix L = −

[
Sζζ Sζϕ
Sϕζ Sϕϕ

]
is the spatial discretiza-

tion matrix and f = −

[
Sζψ ~ψ

Sϕψ ~ψ

]
.

Elwin and Martijn focused on solving the system of equations represented by Equation (2.13b).
One of the tasks of the current literature review is to study various time integration techniques
for Equation (2.13a).

2.2.3 Temporal Integration :Leap Frog Scheme

In the current work by Elwin and Martijn, the leapfrog method has been used to integrate equa-
tion 2.13a. The Leapfrog method is one of the Symplectic Integration techniques designed for
the numerical solution of Hamilton’s equations given by Equation (2.2). More about Symplectic
Integration is discussed in Chapter 4.

The method described in [3] is an explicit scheme and depends on two previous time steps (a
so-called multistep) method. The exact solution to Equation (2.13a) is approximated at the
time intervals tn = n∆t, n = 0, 1, 2, . . . with ∆t > 0 being the time step size. The numerical
approximations are denoted by qn ≈ q(tn).

To keep the derivation short, we will first focus on the fixed constant step size ∆t := tn+1 − tn.
A Taylor series expansion gives:

qn+1 = qn + ∆tq̇n +
1

2
∆t2q̈n +

1

6
∆t3

...
qn +O(∆t4), (2.14a)

qn−1 = qn −∆tq̇n +
1

2
∆t2q̈n − 1

6
∆t3

...
qn +O(∆t4) (2.14b)

Subtracting the second equation from first, we obtain:

qn+1 − qn−1 = 2∆tq̇n +O(∆t3), (2.15)

which reduces to

q̇n =
qn+1 − qn−1

2∆t
+O(∆t2), (2.16)

The explicit nature limits the size of the time-step for stability reasons. For example, given
the equation ẏ = λy (λ arises as an eigenvalue of a local Jacobian and could be complex), the
leapfrog method is stable only for |λ∆t ≤ 1|. In order to approximate the interaction between
the ship and the waves, a grid size of the order of half a meter or smaller is required. This limits
the time step to 0.01 seconds maximum, while the manoeuvering simualtor at MARIN often
can use time steps as large as 0.1 seconds. This provides the motivation to explore other time
integration methods like the implicit methods, which would allow us to use larger time steps,
without causing unstablity.
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Chapter 3

Linear Solver

In [3] and [1], methods are given to solve the system of equations represented by Equa-
tion (2.13b). In current literature review, the solver and the properties of the matrix will
be presented, as it is intended to use the same solver with minimum modification for the im-
plicit time integration. We will study the implicit time integration techniques in Chapter 4,
and whether the CUDA solver for Equation (2.13b) can be directly employed.

3.1 Properties of the Matrix

Numerical discretization of Equation (2.3c) gives Equation (2.13b). S is given by the five point
stencil given in 2.12. When using lexicographical ordering of the grid points, this leads to a
pentadiagonal matrix. Since the model parameters (functionals D,M and N ) are positive [3],
the center term in the stencil becomes positive and the outer elements are negative. The center
term is equal to the sum of the absolute value of the outer terms plus one additional term which
is also positive as h > 0 andM0C > 0. For a row of the matrix formed by the five point stencil,
the diagonal entry is given by the central point of the five point stencil, and the off-diagonal
entries are given by the remaining four entries of the stencil. As the diagonal entry is greater
than the sum of absolute value of other entries in a row of the matrix, the matrix is strictly
diagonally dominant.

To verify the symmetry of the matrix, one has to compare the outer diagonals with each other.
For example the contribution of the west term and the east term should be the same. Thus

it is required that
(

∆y
∆xN̄W

)
i,j

=
(

∆y
∆xN̄E

)
i−i,j

. In the case of non-uniform mesh, (∆x)i,j

will be different from (∆x)i−1,j . Only with the uniform meshes, mesh sizes are the same for
different grid elements. With the overbar notation, then the requirement can be rewritten
as (NW + NC)i,j = (NC + NE)i−1,j ⇔ (Ni−1,j + Ni,j) = (Ni−1,j + Ni,j), which is clearly
satisfied. Applying the same reasoning to the north and the south neghbours, we conclude that
the matrix is symmetrical. A symmetrical diagonally dominant matrix is positive definite and
special methods (Conjugate Gradient) can be used to solve Equation (2.13b).

3.2 Conjugate Gradient Method

The Conjugate Gradient(CG) method is an element of the class of Krylov subspace methods.
The Krylov subspace is created by repeatedly applying a matrix to a vector. These are iterative
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methods, i.e., for a starting vector x0, the method generates a series of vectors x1, x2, · · ·
converging to x = S−1b.

A detailed description and derivation of the CG method is provided in [1], [3]. Here we will
describe the convergence characteristics and the requirements for the method, along with the
algorithm pseudo-code.

The CG method can only be applied to the matrices which are symmetric and positive definite.
Convergence of the CG Method for solving the linear system of equations depends on the
wavelength spectrum of the matrix S. The improvement in the error is bounded by the Condition
Number of the matrix which is given as k(S) = λmax

λmin
, where λmax and λmin are the maximum

and minimum eigenvalues of the matrix S. Higher the condition number, slower the convergence
of the method. It can be derived [3] that for the given system represented by the stencil given
in 2.12, the number of iterations required for the convergence of the CG method is inversely
proportional to the mesh size.

3.3 Preconditioners

If the condition number of the matrix (k(S)) is large, preconditioning is used to replace the
original system Sψ − b = 0 by M−1(Sψ − b = 0) so that (k(M−1S)) gets smaller than
(k(S)). In most cases, preconditioning is necessary to ensure fast convergence of the CG method.
Algorithm 3.1 provides the pseudo-code for the PCG method.

Algorithm 3.1 Preconditioned CG Algorithm to solve Sx = b

Input x (Start Vector), r (Right Hand Side) , S (Matrix),
M (Preconditioner), ε (Tolerance)

r = b− Sx
solve : Mz = r
ρnew = rT z
i = 0
while ρnew > ε2||b|| do
i = i+ 1
if i = 1 then
p = z

else
β = ρnew

ρold
p = z + βp

end if
q = Ap
σ = pT q
α = ρnew

σ
x = x+ αp
r = r − αq
solve : Mz = r
ρold = ρnew
ρnew = rT z

end while

The choice of the preconditioner is important to achieve a fast solver. Using a preconditioner
should ultimately lead to a reduction in work coming from a reduction in required number
of iterations for CG to converge. This implies that solving the system Mz = r should be
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relatively cheap to solve in the case of PCG. Martijn [1] worked on two preconditioners and
translated them in an effective CUDA solver. We will describe the RRB (Repeated Red Black)
preconditioner in brief here. The other preconditioner (Incomplete Poisson) is specific to the
SPD (Symmetric Positive Definite) matrices, and may not be applicable for non-symmetric
matrices (for example the matrix given by the stencil in Equation (2.6) ).

3.3.1 Repeated Red Black (RRB) ordering as preconditioner

The RRB method uses a renumbering of the grid points according to a red-black ordering. Red-
black ordering is the classic way of parallelizing the Gauss Seidel iterative solver by removing
the dependencies between the adjacent cells.

What the RRB- method basically does is making the following decomposition:

A = LDLT +R (3.1)

where L is a lower triangular matrix, D a block diagonal matrix and R a matrix that contains
the adjustments made during the lumping procedure.

In a two dimensional grid, the red nodes are given by the points xi,j , yi,j with i + j as even,
and the black nodes with i + j as odd. First the black nodes are numbered in lexicographical
ordering and then the red points. For the RRB ordering, the red nodes are again split up into
red and black nodes, and we repeat the procedure. When the black node elimination is repeated
k times, the method is named RRB-k method. With an elimination process on the finest level,
a stencil is obtained on the next coarser level, which is then simplified by lumping some outer
elements (Converting the 9 point stencil on the coarser level back to 5 point stencil). The
process of elimination and lumping is then repeatedly applied on the resulting stencil, until the
grid is coarse enough to use a direct solver on it.

3.3.2 Implementation of RRB preconditioner

Martijn [1] has taken great efforts in describing the implementation of the RRB solver both
in C++ programming, and CUDA kernels. Instead of digressing into minor details, the main
points which will later impact the implicit time integration are described in brief here.

3.3.3 Effect of RRB ordering on sparsity pattern

The matrix S in the system Sψ = b is given by a five point stencil, see Section 2.2.2. This
results in a matrix whose structure is pentadiagonal. The sparsity pattern changes when RRB
ordering is applied.

3.3.4 RRB-k method

The maximum number of levels of the RRB ordering could be computed given the dimensions
of the grid in x and y direction. Though, it is not required to go upto the coarsest level. It
is possible to stop at any level of coarsening. Such level is named k, and hence the RRB-k
method. On level k, the nodes are numbered naturally (not in red-black fashion). From these
nodes a matrix E is formed, which is a symmetric pentadiagonal matrix. The idea of stopping
earlier is that we want to solve the remaining nodes accurately and exactly. In order to keep
the computational cost lower, it is important to keep the size of the matrix E small.
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Figure 3.1: Sparsity pattern of S ∈ R64x64 before RRB ordering [1]

Figure 3.2: Sparsity pattern of S ∈ R64x64 after RRB ordering [1]

On level k, we have to solve the system of like Ex = b, where x is formed by level k nodes of
z and b by the level k nodes of r in the problem Mz = r. It is possible to use direct solvers
(Complete Cholesky factorization) or Gaussian elimination for such small problem.

3.3.5 The Schur complement and the 9-point Stencil

With the basic red-black numbering, the matrix S can be written in a block matrix format.
The system Sψ = b can then be written in the form:[

Db Sbr
Srb Dr

] [
ψb
ψr

]
=

[
bb
br

]

Subscript b and r denotes the black and red nodes respectively. Dr and Db are the diagonal
matrices, and for a symmetric matrix S, Srb = STbr (matrices with 4 off-diagonals).

Next, the black nodes are eliminated by applying Gaussian elimination. This yields:[
Db Sbr
0 Dr − SrbD−1

b Sbr

] [
ψb
ψr

]
=

[
bb

br − SrbD−1
b Sbr

]

13



The matrix S1 := Dr −SrbD−1
b Sbr is called the 1st Schur complement and is given by a 9-point

stencil, the vector b1 := br−SrbD−1
b Sbr is the corresponding right-hand side. Using the solution

of red nodes, it is thus possible to compute the solution of black nodes. The catch here is that
instead of the five point stencil of S, more expensive 9-point stencil of S1 has to be solved.

3.3.6 Constructing the preconditioning matrix M

The preconditioning matrix M = LDLT is constructed in following four steps:

• Elimination of black nodes: 9-point stencil is generated from the 5-point stencil (creation
of the Schur complement). In the case of C++ code, all the five diagonals are stored
separately, whereas in CUDA code only three out of five diagonals are stored. West and
South stencil are used to access the East and North stencil respectively (utilizing the
symmetry of the matrix).

• Lumping from the 9-point stencil to the 5-point stencil for the remaining red nodes.
This ensures removing stencil dependencies by adding the respective coefficients to other
coefficients.

• Elimination of the first level red nodes using the lumped 5-point stencil (creating the
second level red nodes with 9-point stencil).

• Lumping on the second level. The resulting matrix on the coarse grid is pentadiagonal
and has the same properties as the original matrix S.

The above procedure is only one RRB iteration. It consists of an elimination S = L1S1L
T
1 ,

lumping S1 = S1 + R1 and again an elimination S1 = L2S2L
T
2 and lumping S2 = S2 + R2.

Combined we have,

S = L1L2S2L
T
2 L

T
1 + L1L2R2L

T
2 L

T
1 + L1R1L

T
1

= LDLT +R.

3.3.7 Solving Mz = r

As given in Algorithm 3.1, in each iteration the preconditioning step Mz = r =⇒ LDLT z = r
has to be solved for z. This is done in three steps:

• La = r is solved using forward-substitution. This is done level-wise going from finer grid
to the coarser grid.

• b = D−1a. As D is block diagonal matrix, its inverse is easy to compute.

• LT z = b is solved using back-substitution. This is done by going from coarser grids to
fine grids level-wise.

3.3.8 Efficient CUDA and C++ Code Implementation

In order to boost performance, Martijn has implemented efficient kernels for the following:

• Matrix Vector product
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• Dot product : Performing mass reduction on GPU and using Kahan summation algorithm
on CPU. Kahan summation algorithm greatly reduces error in floating point additionns
(It makes possible to sum n numbers with an error that only depends on the floating-point
precisions)

• Vector Updates

These optimized codes could be reused even if the PCG algorithm is changed.
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Chapter 4

Temporal Discretization

The system of equations to be advanced in time are given in Equation (2.13a). Expanding the
equation we get:

~̇ζ = −Sζζ~ζ − Sζϕ~ϕ− Sζψ ~ψ (4.1a)

~̇ϕ = −Sϕζ~ζ − Sϕϕ~ϕ− Sϕψ ~ψ + Ps (4.1b)

The equation for ϕ can be further simplified taking into account the structure of the stencils.

~̇ϕ = −Sϕϕ~ϕ− g~ζ + Ps (4.1c)

where g is the gravitational constant. Above equations in the form of Equation (2.13a) are
solved using the explicit Leap-Frog scheme in [1] and [3]. The method is described in 2.2.3.

The equation for variable ψ, which does not contain the time derivative, but still depends on
the other variables is given by

Sψψ ~ψ = −Sψϕ~ϕ (4.1d)

4.1 Explicit Time Stepping

In explicit schemes, the fluxes and the sources are computed at the nth time level and their
contribution is added to the current value of the variable. In [3] and [1], explicit leap frog method
has been used which has a second order accuracy in time, and is only conditionally stable.
Explicit time integration is simple and fast, and is easily parallelized for parallel computers.

The main disadvantage is that the time step is limited by the numerical stability requirements.
For the equations represented by Equation (2.13a). the stability condition requires that the
time step is shorter than the crossing time of the grid cells by the faster wave:

∆t <
∆xi
cmaxi

(4.2)

for all grid cells and all directions i = x, y and c represents the velocity of the wave. This is the
famous Courant-Friedrich-Levy (CFL) condition valid for explicit time integration of arbitrary
hyperbolic PDE’s. In the current implementation, with the uniform-grid, ∆x is constant for each
cell, and average current velocity (~U) is chosen as the maximum wave velocity to determine the
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time step such that it satisfies the CFL condition. A safety margin is added to ensure stability
without needing to check the stability criteria at each time step.

The intention to use lower mesh sizes to capture details of wave interaction with ships at finer
levels will require a further reduction in the time step, hence increasing the computation time.
Thus it becomes more and more important to explore time integration methods which are more
stable, hence allowing us to use larger time steps, and still giving good accuracy.

4.2 Implicit Time Stepping

4.2.1 Fully Implicit Scheme

Stability of the time integration can be significantly improved by employing fully implicit time
integration techniques. The most common and simplest of the fully implicit scheme is the
Backward Euler scheme. For the set of equations given by Equation (2.13a), we get:

qn+1 − qn
dt

= (Lqn+1 − Sζψ ~ψn+1) (4.3a)

where q =

[
~ζ
~ϕ

]
. The method is first order accurate in time (can be derived from the Taylor

series expansion) and is unconditionally stable.

While the stability of the implicit time discretization is a great improvement over the explicit
schemes, one has to solve the implicit equations for the unknowns qn+1 and ~ψn+1, which requires
solving a system of equations (Differential Algebraic Equations) represented by :

(I − L)qn+1 = qn − Sζψ ~ψn+1 (4.4a)

Sψψ ~ψn+1 = −Sψϕ~ϕn+1 (4.4b)

As the method is first order accurate in time, and the spatial discretization was second order
accurate, overall accuracy of method is only first order. Such methods are usually good to
achieve steady-state results, but not very accurate. The disadvantages of using the fully implicit
scheme includes:

• Moving from explicit to implicit schemes incurs extra computational efforts as it requires
solving the linear system of equations given by Equation (4.4a). For the system represented
above, the iterative linear solvers are used, which are described more in detail in Chapter
5.

• First order implicit methods simply under-relax more to maintain the stability of the
iterative solution. It is this increased damping, with the increase in time-step size, which
induces more inaccuracies in transient behavior.

• Spatial discretization plays an important role in the stability of the numerical solutions
of unsteady state hyperbolic equations. Generally for the Euler equations, the central
difference scheme is more accurate than the first order upwinding schemes. Also stability
in the case of the central differencing scheme is not an issue as the diffusive forces are
not active. In the case flux limiters are used for spatial discretization which have the
capability of capturing shocks, discontinuities or sharp changes in the solution domain,
the implicit scheme results in the formation of non-linear system of equations, which then
requires more computational effort (computation of Jacobi.
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4.2.2 β - Implicit Scheme

Semi-implicit methods try to combine the stability of the implicit methods with the efficiency of
the explicit methods. The system of equations is discretized using a one parameter (β) implicit
scheme to advance in time:

qn+1 = qn + ∆t(β(Lqn+1 − Sζψ ~ψn+1) + (1− β)(Lqn − Sζψ ~ψn)) (4.5a)

The parameter β can vary between 0 and 1. For β = 1, we get the Backward-Euler method
(fully implicit) and the so-called trapezoidal scheme for β = 0.5

For β = 0.5 , we can rewrite the equations as:

qn+1 = qn + 0.5∆t( ˙qn+1 + q̇n) (4.6a)

= qn + ∆tq̇n + 0.5∆t( ˙qn+1 − q̇n) (4.6b)

= qn + ∆tq̇n +
1

2
∆t2

dq̇

dt
+O(∆t3) (4.6c)

which gives the trapezoidal method of second order temporal accuracy.

4.2.3 Stability

The Scalar Test Equation

To understand the stability of time integration methods, we consider the scalar, complex test
equation :

w
′
(t) = λw(t) (4.7)

where λ ∈ C .

Application of the time integration scheme (Explicit or Implicit) gives :

wn+1 = R(∆tλ)wn, (4.8)

R(∆tλ) is called the Stability Function. Let z = ∆tλ. For the explicit schemes of Order s, R(z)
is a polynomial of degree ≤ s. For implicit methods it is a rational function with degree of both
numerator and denominator ≤ s. The stability region is defined in terms of R(z) as:

S = z ∈ C : |R(z)| ≤ 1 (4.9)

The scheme that has the property that S contains entire left half plane C− = x ∈ C : Rez ≤ 0
is called A-Stable. A scheme is said to be Strongly A-Stable if it is A-stable with |R(∞)| < 1,
and it is said to be L-stable if in addition |R(∞)| = 0.

For the semi-implicit scheme with parameter β, the stability function is R(z) =
1 + (1− β)z

1− βz
.

The implicit trapezoidal rule given by β = 0.5 is A-stable, whereas the fully implicit Backward
Euler method is L-stable with β = 1.

Stability for Linear Systems

Let the linear system of equations (m equations, m unknowns) given as:

w
′
(t) = Aw(t) + g(t) (4.10)
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with A ∈ Rmxm. Application of the semi-implicit scheme with parameter β gives:

wn+1 = R(∆tA)wn + (I − β∆tA)−1∆tgn+β (4.11)

where
R(∆tA) = (I − β∆tA)−1)(I + (1− β)∆tA) (4.12)

and gn+β = (1− β)g(tn) + βg(tn+1). Starting from initial solution of w0, we obtain:

wn = R(∆tA)nw0 + ∆t
n−1∑
i=0

R(∆tA)n−i−1(I − β∆tA)−1gi+β (4.13)

If we perturb the initial solution ŵ0, we get the formula for the perturbed solution at nth time
step as:

ŵn − wn = R(∆tA)n(ŵ0 − w0) (4.14)

Hence, the powers R(∆tA)n determine the growth of the initial errors.

Let λj with 1 ≤ j ≤ m denote the eigenvalues of the matrix A, and let A be diagonizable such
that A = UΛU−1 where Λ = diag(λj) and condition number of U ≤ K. [7]

Then for ∆tλj ∈ S, 1 ≤ j ≤ m =⇒ ||R(∆tA)n|| ≤ K ∀n ≥ 1 where S represents the stability
region given above in the scalar test equation case.

Stability of the semi-implicit methods thus requires a moderate bound for these powers. Thus,
unfortunately this trapezoidal scheme is only marginally stable for linear advection problems.

4.2.4 Backward Differentiation Formula

Another approach to achieve second order temporal accuracy is by using information from
multiple previous time steps. This gives rise to a two-parameter three-level time integration
scheme:

qn+1 = qn + ∆t

[
α
qn − qn−1

∆t
− αq̇n + β ˙qn+1 + (1− β)q̇n

]
(4.15)

where (̇qn represents the derivative of q at the nth time interval.

This scheme is three-level whenever the parameter α 6= 0. When α = 1/3 and β = 2/3, we
obtain the second order Backward Differentiation Formula (BDF2) for constant time step ∆t.

The analysis of the accuracy for a multi-step method is presented below. Let us assume that
qn was computed from qn−1 with a second order temporal accuracy. This implies

qn − qn−1

∆t
= q̇n − (∆t/2)

dq̇

dt
+O(∆t2) (4.16)
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Substituting this into Equation (4.15)

qn+1 = qn + ∆t

[
q̇n − α

∆t

2

dq̇

dt
+ β∆t

dq̇

dt
+O(∆t2)

]
(4.17a)

= qn + ∆tq̇n + ∆t2(β − α

2
)
dq̇

dt
+O(∆t3) (4.17b)

The method is second order temporal accurate when 2β−α = 1. At the start of simulation, one
could use trapezoidal scheme for second order accuracy, or more stable backward Euler method
(as the value at n − 1th time step is not available). The BDF2 method has better stability
properties than trapezoidal rule, and is regularly used for stiff problems. It can also be viewed
as an implicit counterpart of the explicit Leap-Frog scheme.

4.2.5 Predictor Corrector Methods

Simply stating, a predictor-corrector method is an algorithm that proceeds in two steps. First,
the prediction step computes a rough approximation of the desired quantity using not so expen-
sive algorithms like explicit method. Second, the corrector step refines the initial approximation
using other means for example an implicit method.

There are various variants of a predictor-corrector method, depending upon how is the corrector
algorithm applied, and how many times.

• A predictor formula is used to get a first estimate of the next value of the dependent
variables, and the corrector formula is applied iteratively until convergence is obtained.
In this case, the stability properties of the algorithm are completely determined by the
corrector formula alone and the predictor formula only influences the number of iterations
required.

• The values of the dependent variables obtained from one application of the corrector
formula are regarded as the final values. The predicted and corrected values are compared
to obtain an estimate of the truncation error associated with the integration step. Based
on the allowable error limits, the corrected value is either accepted, or the time step
reduced starting from the last accepted point. For such method, stability analysis of
the corrector equation alone is not sufficient. The analysis must include the predictor
equation, the corrector equation and the manner in which they are used.

The application of predictor corrector method here may require another set of iteration, which
is the computation of ~ψ by solving the linear system of equation given by Equation (4.4a).

4.2.6 Minimum Residual Predictor Corrector (MR-PC) Time Stepping [4]

One time step by the MR-PC scheme consists of an explicit predictor step (with a time step
larger than normally allowed by the CFL condition) and a corrector step where the linear system
of an implicit scheme is solved by a few minimum residual-type (e.g. GMRES or BiCGSTAB)
iterations with the initial guess from the predictor step. A nice aspect of the GMRES method is
that it constructs implicitly an integration polynomial of which the coefficients are adjusted to
the specific right-hand side of the system of equations (generated from the implicit scheme). If
after some time steps, components of high frequencies in the solution have not damped out, then
they are present in the right-hand side. As soon as they become large, they are automatically
damped out by the GMRES polynomial, provided that the time step is not too large with
respect to the number of GMRES iterations. [5]
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Any of the implicit schemes described above can be taken for the correction step. To obtain good
temporal accuracy, the choice of the predictor step is important. For second order accuracy, an
initial guess from an explicit second order scheme (e.g. Leap-Frog/ trapezoidal) can be used. If
the corrector step is also second order, the overall MR-PC will also be second order.

The stability region of the MR-PC is wider than that of the explicit schemes discussed. For
example, even with a single iteration in the corrector step, a second order MR-PC with BDF2
corrector has an effective time step (time step accounted for additional computational effort)
three times that of the explicit scheme. Also, it is possible to control the time step to ensure
stability based on the information received from the GMRES process.

The use of residual iterations is mainly to smoothen the error generated by the explicit scheme.
Also, no preconditioning is required, as we do not intend to solve the implicit set of equations.

We will present this idea for the fully implicit backward Euler method. It is given by

qn+1B − qn = ∆t(Lqn+1B − Sψϕ ~ψn+1B) (4.18)

Sψψ ~ψn+1B = −Sψϕ~ϕn+1B (4.19)

In order to solve this equation by MR-PC, we apply the Euler forward (explicit) method instead
to get the initial guess.

qn+1F − qn = ∆t(Lqn − Sψϕ ~ψn) (4.20a)

Sψψ ~ψn+1F = −Sψϕ~ϕn+1F (4.20b)

And let ∆q = qn+1B − qn+1F and ∆~ψ = ~ψn+1B − ~ψn+1F . Thus we obtain:

qn+1F + ∆q = qn + ∆t(L(qn+1F + ∆q)− Sψϕ(~ψn+1F + ∆~ψ)) (4.21a)

Sψψ∆~ψ = −Sψϕ∆~ϕ (4.21b)

This leads to

∆q = qn + ∆t(Lqn+1F + L∆q)− qn+1F −∆tSψϕ(~ψn+1F + ∆~ψ) (4.22a)

(I − L∆t)∆q = qn − (I − L∆t)qn+1F −∆tSψϕ(~ψn+1F + ∆~ψ) (4.22b)

Sψψ∆~ψ = −Sψϕ∆~ϕ (4.22c)

We intend to perform GMRES iterations on the Equation (4.22b). After performing one explicit
step (Equation (4.20)) and obtaining most of the terms of the right-hand side, we are still left
with ∆~ψ, which is linked to ∆q through Equation (4.22c). On the first pass, we could assume
∆~ψ to be zero, perform few iterations of GMRES and then solve for Equation (4.22c). Based
on the value of ∆~ψ obtained, we could decide if another round of correction is required or not.

On similar ground, a higher order method (2nd order Trapezoidal order) can be constructed.

GMRES iterations

The iterations are applied to the linear system with matrix L
′

= I−L∆t for the Euler backward
scheme. The matrix is non-symmetric and general in nature, and thus we cannot apply the
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Conjugate Gradient method for the iterations. More general Krylov space methods (GMRES,
BiConujgate Stab ) can be used to perform the minimal residual iterations.

For k steps of GMRES iterations, k matrix-vector multiplication with L
′

and
k(k + 1)

2
+ k

innerproducts will be required. It might be possible to use the existing CUDA or C++ methods
of computation of matrix-vector product with minimal adaptation.

4.2.7 Semi-Implicit schemes

Any implicit method requires solving a linear system of equation. In [1], linear solver has
been developed for the case when the system of equation is represented by a pentadioganal
matrix. (The matrix is also SPD, but that we will deal with later). From the Equation (4.4a),
the linear system of equations formed for the variables qn+1 is block pentadiagonal instead of

pentadiagonal as q =

[
~ζ
~ϕ

]
, and each ~ζ and ~ϕ are represented by their own five point stencils.

As previously mentioned, it is our intention to make use of the linear solver in [1] with minimum
modifications possible. For this reason, we split the Equation (4.4a) into Equation (4.1a) and
derive the corresponding equations for various implicit time integration procedures.

In the first approach, we implicitly advance variable ~ζ, and use the previous time step values of
variables ~ϕ and ~ψ. After advancing ~ζ, equation for ~ϕ is advanced implicitly, and then the linear
system of equations for ~ψ is solved. The equations for the same are given below:

~ζn+1 = ~ζn + ∆t(−Sζζ~ζn+1 − Sζϕ ~ϕn − Sζψ ~ψn) (4.23a)

(
I

∆t
+ Sζζ)~ζn+1 =

1

∆t
~ζn − (Sζϕ ~ϕn + Sζψ ~ψn) (4.23b)

Please note that variables ϕ and ψ here are treated explicitly.

~ϕn+1 = ~ϕn + ∆t(−Sϕζ~ζn+1 − Sϕϕ~ϕn+1 − Sϕψ ~ψn) (4.24a)

(
I

∆t
+ Sϕϕ)~ϕn+1 =

1

∆t
~ϕn − (Sϕζ~ζn+1 + Sϕψ ~ψn) (4.24b)

Only variable ψ here is treated explicitly. As the value of ζ at n + 1th time step is available,
we use it. As it is a combination of implicit and explicit scheme, Stability of the method is not
guaranteed.

Another possibility here is to use a predictor-corrector kind of scheme, described below:

• Advance ~ϕ using an explicit time integration scheme.

• Based on the new value of ~ϕ, compute ~ψ by solving linear system of equations.

• Implicitly advance ~ζ where the values of ~ϕ and ~ψ on the right-hand side of Equation (4.23)
are substituted by above computed values.

• Perform implicit correction of ~ϕ and compute ~ψ.

This will definitely demand more number computational effort, but will be more stable than
Equation (4.23). Similar derivations can be done for higher order methods.
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4.3 Symplectic integration

The Symplectic integrators are designed for the numerical solution of Hamiltonian equations
given by Equation (2.2). Symplectic integrators ensures time-reversibility and preservation of
the symplectic (Ergodic) nature of the equation.

The so-called symplectic Euler method (first order) can be constructed as follows:

ζn+1 = ζn + ∆t∇Hϕ(ζn+1, ϕn) (4.25a)

ϕn+1 = ϕn + ∆t∇Hζ(ζn+1, ϕn) (4.25b)

The methods are implicit for general Hamiltionian systems. However if H(ζ, ϕ) is separable as
H(ζ, ϕ) = T (ζ) + U(ϕ), it turns out to be explicit.

The Stormer-Verlet schemes are the Symplectic methods of order 2. They are composed of the

two symplectic Euler methods with step size
∆t

2
.

ζn+1/2 = ζn +
∆t

2
∇Hϕ(ζn+1/2, ϕn) (4.26a)

ϕn+1 = ϕn +
∆t

2
(∇Hζ(ζn+1/2, ϕn) +∇Hζ(ζn+1/2, ϕn+1) (4.26b)

ζn+1 = ζn+1/2 +
∆t

2
∇Hϕ(ζn+1/2, ϕn+1) (4.26c)

Implicit mid-point rule:

For a fully implicit method, two variables are combined in one equation , representesd by
variable q, the implicit mid-point rule is given by:

qn+1 = qn + ∆t∇H(
qn+1 + qn

2
) (4.27)
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Chapter 5

Solvers for Non-Symmetric Matrices

As we have seen, most of the implicit time integration methods described in Chapter 4 (ex-
cept MR-PC) will require solving a set of equations with the matrices given by the stencils in
Section 2.2.2. The matrices involved are not symmetrical as compared to the matrix given by
Stencil Sψψ. For this reason, the PCG method as described in Chapter 3 cannot be applied
directly to solve the linear system of equations arising from the implicit time integration.

The objective is therefore to determine the solution vector for a large, sparse and linear system
of equations which is not symmetric. An overview of these methods can be found in [6], which
forms the basis for this Chapter.

As mentioned before in Chapter 3, the idea of some iterative methods is to project a n-
dimensional problem into a lower-dimensional Krylov subspace. Given a matrix A and a vector b,
the associated Krylov sequence is the set of vectors b, Ab,A2b, A3b, · · · , which can be computed
by matrix-vector multiplications in the form b, Ab,A(Ab), A(A(Ab))), · · · . The corresponding
Krylov subspaces are the spaces spanned by successively larger group of these vectors.

5.1 From Symmetric to Non-Symmetric Matrices

Figure 5.1 shows the classification of Krylov Subspace methods as we move from symmetric
matrices to non-symmetric matrices. The Conjugate Gradient (CG) method results in the
tridiagonal orthogonalization of the original matrix, which can be described as A = QTQ∗ ,
where Q is the Unitary matrix and T is a tridiagonal matrix. When A is non-symmetric, this
result cannot be obtained from a CG iteration. Two approaches are followed :

• Use of the so-called Arnoldi Iteration, a process of Hessenberg orthogonalization. This
results in A = QHQ∗ where Q is the Unitary matrix and H is the Hessenberg matrix.
(An upper Hessenberg matrix has zero entries below the first sub-diagonal).

• Bi-orthogonalization methods are based on the opposite choice. If we insist on obtaining
a tridiagonal result, then we have to give up the unitary transformations, which gives us
tridiagonal biorthogonalization : A = V TV −1 , where V is non-singular but generally not
Unitary. The term ’biorthogonal’ refers to the fact that though all the columns of V are
not orthogonal to each other, they are orthogonal to the columns of V −1∗.
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Figure 5.1: Classification of Krylov Subspace iterations

5.2 Arnoldi Iteration and GMRES

Arnolid iteration can be understood as the analogue of Gram-Schmidt type iteration for similary
transformations to Hessenberg form. It has the advantage that it can be stopped part-way,
leaving one with a partial reduction to hessenberg form that is exploited when dimensions upto
Krylov subspace are considered. A simple algorithm of Arnoldi iteration is given below:

Algorithm 5.1 Arnoldi Iteration

b = arbitrary, q1 = b/||b||
for n = 1, 2, 3, · · · do
v = Aqn
for j = 1 do
hjn = q∗j v
v = v − hjnqj

end for
hn+1,n = ||v||
qn+1 = v/hn+1,n

end for

The above algorithm can be condensed in the following form:

• The matrices Qn generated by the Arnoldi iteration are reduced QR factors of the Krylov
matrix:

Km = QnRn (5.1)

• The Hessenberg matrices Hn are the corresponding projections : Hn = Q∗
nAQn

• The successive iterates are related by the formula: AQn = Qn+1H
′
n, where H

′
n is the

(n+ 1)xn upper-left section of H
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The idea of GMRES is one-liner. At step n, the exact solution (x∗ = A−1b) is approximated
by the vector xn ∈ Kn that minimizes the norm of the residual rn = b−Axn, hence the name :
Generalized Minimal Residuals (GMRES). It was proposed in 1986 and is applicable to system
of equations when the matrix is general (Non-singular) square matrix. Arnolidi iteration is
used to construct a sequence of Krylov matrice Qn whose columns q,q2, · · · successively span
the Krylov subspace Kn. Thus we can write xn = Qny , where y represents the vector such
that

||AQny − b|| = minimum (5.2)

Using the similarity transform, this equation can be written as:

||Qn+1H
′
ny − b|| = minimum (5.3)

Multiplication by Unitary matrix does not change the norm, thus we can rewrite above equation
as:

||Q∗
n+1Qn+1H

′
ny −Q∗

n+1b|| = minimum||H ′
ny −Q∗

n+1b|| = minimum (5.4)

Finally, by construction of the Krylov matrices Qn, Q∗
n+1b = ||b||e1 where e1 = (1, 0, 0, · · · )∗.

Thus we obtain:

||H ′
ny − ||b||e1|| = minimum (5.5)

The GMRES algorithm (unPreconditioned) can be written as :

Algorithm 5.2 GMRES

q1 = b/||b||
for n = 1, 2, 3, · · · do

¡step n of Arnoldi iteration, Algorithm 5.1¿
Find y to minimize ||H ′

ny − ||b||e1||(= ||rn||)
xn = Qny

end for

in order to find y, QR factorization can be used which required O(n2) flops, because of the
hessenberg structure of the matrix H

′
. Also it is possible to get the QR factorization of H

′
n

from that of H
′
n−1 by using Given’s Rotation.

One of the disadvantage of the GMRES method is the storage requirements. As it requires
storing the whole sequence of the Krylov subspace, a large amount of storage is required as
compares to the Conjugate Gradient method. For this reason, restarted versions of this method
are used, where computational and storage costs are limited by specifying a fixed number of
vectors to be generated.

5.3 BiConjugate Gradient methods

The Biconjugate gradient method (BCG) is the other extension for the non-symmetric matrices.
As we saw in the previous section, the principle of GMRES is to pick the vector xn such that
the residual corresponding to xn is orthogonal to the nth Krylov subspace. The principle of
BCG algorithm is to pick xn in the same sub-space, i.e. xn ∈ Kn , but to enforce that the
residual is orthogonal to < w1, A ∗w1, · · · , (A∗)n−1w1 >, where w1 ∈ Rm is an arbitrary vector
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satisfying w1 ∗ v1 = 1. Its advantage is that it can be implemented with three-term recurrences
rather than the (n+1) - term recurrences of GMRES (Difference arising from Hessenberg form
of matrix vs. Triangular form).

There are two major problems with BiCG method :

• Convergence is slower as compared to GMRES and often erratic. Also, it may have the
consequence of reducing the ultimately attainable accuracy because of rounding errors.

• It required multiplication with A∗ (transpose) as well as A. Computing the transpose
brings serialization to the code and thus is not preferred.

To address this problem, other variants of BiCG method were developed. One of them is
stabilized BiCG method (Bi-CGSTAB). As for the Conjugate Gradient method, any other
Krylov subspace method needs a good preconditioner to ensure fast and robust convergence.
Algorithm for the Preconditioned BiCGSTAB method is given below. Converting this algorithm
to adjust to the PCG algorithm used in [1] will be one of the future tasks.

Algorithm 5.3 BiCGSTAB

Solve the system of equation given by Ax = b BiCGSTAB
Compute r0 = b−Ax0 for some initial guess x0.
Choose r̃ (for example r̃ = r0)
for i = 1, 2, 3, · · · do
ρi−1 = isimportanttohavetilderT r i−1

if ρi−1 = 0 then
Method Fails

end if
if i = 1 then
pi = ri−1

else
βi−1 =

ρi−1

ρi−2

αi−1

ωi−1

pi = ri−1 + βi−1(pi−1 − ωi−1v
i−1

end if
Solve Mp̃ = pi

vi = Ap̃

αi =
ρi−1

r̃T
vi

s = ri−1 − αivi
Check norm of s; if small enough, set xi = xi−1 + αip̃
Solve Ms̃ = s
t = As̃

ωi =
tT s

tT t
xi = xi−1 + αip̃+ ωis̃
ri = s− ωit
Check Convergence, continue if necessary
For continuation it is required that ωi 6= 0

end for
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Chapter 6

Test Problems and Further Research

6.1 Test problem for time discretization schemes

To assess the stability of various implicit time integration procedures, we shall consider a sim-
plified problem in one dimension given below as the test problem.

∂ζ

∂t
+∇.(ζU + h∇ϕ) = 0, (6.1a)

∂ϕ

∂t
+ U.∇ϕ+ gζ = 0, (6.1b)

Here, we have neglected the impact of the vertical structure ψ and pressure puls Ps. This is now
a coupled initial boundary value problem, where both the equations are hyperbolic in nature
and also represents a Hamiltonian Set. Also, the boundary conditions for both ζ and ϕ are
taken as periodic.

Assuming no spatial variation of mean current velocity U and depth h, the above equations can
be written as:

∂ζ

∂t
+ U

∂ζ

∂x
+ h

∂2ϕ

∂x2
= 0, (6.2a)

∂ϕ

∂t
+ U

∂ϕ

∂x
+ gζ = 0, (6.2b)

Implicit time integration procedures will require solving a system of linear equations. We will use
MATLAB to solve the system after performing spatial discretization and applying the boundary
conditions. Idea here is to assess the stability and accuracy of various methods and not the
performance.

6.2 Test problem for generalized Krylov Subspace methods

In order to validate and analyze the performance of the generalized Krylov subspace methods,
we will test the method with Poisson equation given by:

−∆u = f(x, y) on Ω = (0, 1)× (0, 1) (6.3a)

u(x, y) = 0 on δΩ. (6.3b)
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The discretization of the Poisson equation results in a symmetric matrix where both CG and
generalized Kyrlov Subspace methods can be applied. The RRB-k PCG method developed in
[1] has been tested for the Poisson equation, and we will compare the performance and the
storage requirements of RRB-k PCG method with the generalized Krylov Subspace methods.

6.3 Realistic problems Ijssel, Plymouth

Two realistic problems are obtained from MARIN’s database and previous simulations by Mar-
tijn in [1]. Testing will be carried out with respect to the validated models in [1]. A very small
time step (much lower than then allowable limit) will be used to first carry out simulations with
the current model which uses explicit leap frog time integration. Results from implicit time
integration will then be compared with the results from explicit time integration.

6.3.1 The Gelderse IJssel

The Gelderse IJssel, a small river, is a branch from the Rhine in the Dutch provinces Gelder-land
and Overijssel. The river flows from Westervoort and discharges in the IJsselmeer. In Figure
6.1 a (small) part of the river is shown. From this part several test problems are extracted.
This is done by extracting small regions out of the the displayed region . For the discretization
an equidistant 2 m by 2 m grid is used. During later part of the thesis, non-uniform grids will
be explored and the discretization modified accordingly.

Figure 6.1: The Gelderse IJssel (Google Maps)

29



6.3.2 The Plymouth Sound

Plymouth Sound is a bay located at Plymouth, a town in the South shore region of England,
United Kingdom. The Plymouth Break- water is a dam in the centre of the Plymouth Sound
which protects anchored ships in the Northern part of the Plymouth Sound against south-
western storms. From this region also test problems are extracted, see Figure 6.2. For the
discretization an equidistant 5 m by 5 m grid is used. For the non-uniform grid structure,
discretization will be modified accordingly.

Figure 6.2: The Plymouth Sound (Google Maps)
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6.3.3 Research Questions

Following research questions and goals, are the topics that will be treated during the rest of the
research:

• Implement generalized Kyrlov subspace method.

– Analyze the impact on the performance (speed-up) and storage requirements for the
generalized Kyrlov Subspace methods for CUDA and C++ code.

• Implement various time integration schemes.

– Analyze the stability and accuracy of various time integration schemes and assess
the storage and performance requirements.

– From the current time step of 0.01 seconds, how much improvement without loss of
accuracy and performance can be achieved.

• If time integration schemes do not yield significant improvement in stability, analyze the
possibility of using the non-uniform mesh.

– Provide a framework for the use of either Adaptive mesh refinement or moving mesh
method.
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