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Abstract
Computing portfolio credit losses and associated risk sensitivities is crucial for the financial industry to
help guard against unexpected events. Quantitative models play an instrumental role to this end. As
a direct consequence of their probabilistic nature, portfolio losses are usually simulated using Monte
Carlo copula models, which in turn play a decisive role in their measurement of risk metrics such as the
Value­at­Risk (VaR). Semi­analytical numerical methods are alternatives to theMonte Carlo simulations
to compute the distribution of the portfolio credit losses, the 𝑉𝑎𝑅 and the 𝑉𝑎𝑅 sensitivities. We find that
numerical approaches such as the COS method, based on a Fourier cosine series expansion are
superior to the Monte Carlo based computations in terms of both, the computational speed and the
accuracy. [29] have demonstrated these results, using the examples of Gaussian and Gaussian­T
copula models on the CPU. In this study, we extend that scope and critically examine two modelling
approaches for improving the computing efficiency of the COS method in multifactor models. First, we
investigate and validate, a parallel algorithm for the COS method. Additionally, we study the effect of
dimensionality reduction techniques to approximate the factor copula models, in their own light. In this
process, we demonstrate the suitability of COS algorithm for parallelization on the GPU and highlight
the performance improvements over existing methods of an optimal algorithm that we develop using
the above techniques.
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1
Background

Financial institutions are engaged in borrowing and lending of monetary products, which means they
face two principal risks, namely market risk and credit risk. While market risk is associated with unex­
pected changes in the prices of market ingredients, credit risk corresponds to losses resulting from the
failure of an obligor to make a payment. The source of risk for a bank from credit risk is so significant
that market risk is analogised to be ’a pimple on the back of the elephant that is credit risk’.[18] In order
to reduce exposure, banks are involved in trading activities of such credit risky instruments. Thus, de­
cision makers seek for methods and technologies that are practically useful for managing their credit
portfolios and for enhancing their profits from trading these instruments.In the wake of the Global Finan­
cial Crisis of 2007­08, financial authorities have become committed to improve the existing directives
for risk management processes and the related capital buffers. This is linked to the banks’ obligation
to protect against unexpected losses that may arise from widespread defaults throughout their portfo­
lios. The Basel Committee on Banking Supervision (BCBS from now on) updated large parts of the
regulations for financial markets. The biggest change in decades for market risk, is the Fundamental
Review of the Trading Book (FRTB), to be in effect from 2022, but has already pushed banks to be
compliant with it [cf. 4, 26].The main goal of the FRTB is to put appropriate capital charges on risks
in the trading book. Previous regulation gave the opportunity to gain regulatory arbitrage by shifting
credit related products from the banking book to the trading book and vice versa. The FRTB requires a
different treatment of credit, and a sharper defined boundary between the trading and banking books.
The FRTB regulation has not only consequences for capital calculation, but as well effects the gran­
ularity of reporting. Previously, reporting took place at company­level, under FRTB it has to be done
at trading­desk level. A milestone example is represented by the competition between the Value at
Risk (VaR) and Expected Shortfall (ES). The VaR was adopted as the official market risk measure in
1996 by BCBS, [see 31]. Then,the academic community pointed out its drawbacks, such as the lack
of sub­additivity property.[21]

Historically, the Asymptotic Single Factor (ASRF) model described by Gordy [13] has been used for
determining capital charges for credit risk. This single factor model has been built on the foundations
of the work by Merton [25] and Vasicek [35], and by modifying the model it can also be applied to
default risk in trading portfolios. The use of factor models is a popular tool to model correlations in
large portfolios. The work of Vasicek [35] led to the widespread use of the Large Homogeneous Pool
(LHP) model, which at first was used to model defaults in loan portfolios. In the LHP model lies the
implicit assumption that defaults are correlated through a bivariate Gaussian copula. The use of the
Gaussian copula method became conventional after the publication of the work of Li [23]. Research
objective, questions and model xthe correlation of defaults. This led to a widespread application of the
Gaussian copula in the world of finance. However, after the 2008 global financial crisis the bivariate
Gaussian copula received heavy criticism. The main critique was on the lack of tail dependence implied
by the Gaussian copula. Other copulas like the Student­t copula and the Clayton copula exist, which
are known to imply fatter tails. Burtschell et al compare some of the factor copula models used in the
context of CDO pricing. The BCBS, 2016a [cf 4, Pg.20] does give financial institutions the freedom
of developing their own default models, as long as they are compliant to the BCBS’ requirements for
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internal models on market risk. This in combination with the global introduction of FRTB regulation
brings momentum to (re­)develop default models.

The BCBS also sets new regulations on the calculation of capital resulting from the risk of default:
the Default Risk Charge (DRC). The size of the capital buffer is intended to reflect the level of credit
quality that the bank affords its clients. It is determined in terms of a confidence interval, up to which
the bank claims it can absorb losses and remain solvent. As a result highly rated banks maintain large
capital buffers to justify their rating. DRC under the internal model approach of FRTB is defined as the
99.9% Value­at­Risk (VaR) of the total loss distribution of the trading book positions that are subject to
issuer risk. A review of the entire FRTB regulation for the DRC can be found in [5]. The recognized
industry standard for measuring a portfolio’s credit risk is the Monte Carlo (MC) simulation method.
However, it is worth noting that a very high quantile level, 99.9% for DRC, MC computed empirical
quantile can suffer from high variance estimation error. A huge number of heavy simulations are then
required to get convergence. This implies a time intensive task which can be difficult to set up, espe­
cially for a large trading portfolio. The volume of banks data calculation is increasing each year with
scale and complexity of different financial products. Subsequently, there is a need for fast and more
importantly, accurate numerical methods to reliably price and quantify risks in the banks’ portfolios.

In [29], MC simulation is replaced by a semi­analytical method to compute the distribution of the portfolio
credit losses, the VaR, and the VaR sensitivities in factor copula models. In essence, it directly recovers
the cumulative distribution function of the portfolio loss via the COS method, a method based on the
Fourier­cosine series expansion. Fourier coefficients are extracted from the characteristic function of
the portfolio loss which can be pre­calculated by means of numerical integration. Both the computa­
tional speed and the accuracy of this method are observed to be superior to MC simulation. To further
improve the computing efficiency, this thesis will focus in two directions. Firstly, we aim to design an
efficient parallel algorithm for the computation of characteristic function and to compare the perfor­
mances. Moreover, we consider an interesting exercise to approximate the factor copulas, which are
in practice of high dimensionality by lower dimensional models using dimensional reduction techniques
such as Principal Component Analysis (PCA).
In chapter 2, we lay the groundwork of formal terms and definitions in portfolio credit risk manage­
ment along with its associated risk measures and attributions. Furthermore, we explain the regulatory
framework of the Default Risk Charge introduced by BCBS, that banks adhere to and the guidelines
within which we create our models. Finally, a brief overview of High performance computing relevant
in the case of numerical simulations is explained. Chapter 3 gives the mathematical representation
of different Credit Risk models, i.e. the mathematical definitions of portfolio default loss, measures
under different multifactor copulas. We review the COS method and show how risk allocations ES
and VaR are derived from it. Chapter 4, will list some of our numerical experiments on two different
portfolios, starting from a simple test case to a more practical example. The computation speed and
accuracy will be tested and compared to the ’workhorse’ MC. Through these examples, we expect that
the associated challenges, specifically the computational complexity due to “curse of dimensionality”
will become apparent with the existing Monte Carlo and COS methods. This will help motivate our dis­
cussions on the optimized implementations of these algorithms. We discuss the feasibility of various
other improvement strategies in Chapter 5 and finally conclude by formulating our research aims.



2
Preliminaries

2.1. Credit portfolio losses
The primary objective of Credit Risk Management is to improve the ability of banks to identify optimal
credit portfolios. It is thus, important for financial institutions to possess tools for pricing and managing
their trading portfolios. Let us now see how this can be quantified. On an obligor level, the three basic
components of credit risk are:

• exposure at default (𝜖𝑛), the total amount that the bank is exposed at the time of default of the
n­th obligor. The bank can calculate 𝜖𝑛 at any specified time.

• loss given default (𝜐𝑛), this factor quantifies the losses incurred by the bank when there is a default
of the n­th obligor. 𝜐𝑛 is calculated separately from the 𝜖𝑛 because the bank is unlikely to lose all
the value that they may be exposed to. There can be some recovery from each obligor based on
a certain Recovery rate (𝑅𝑛). So the loss given default then becomes,

𝜐𝑛 = 𝐴𝑛(1 − 𝑅𝑛) (2.1)

where 𝐴𝑛 is the notional amount of the n­th obligor.

• probability of default of the n­th obligor (𝑃𝐷𝑛) within a fixed time horizon.

𝜖𝑛 is usually assumed to be deterministic. 𝜐𝑛 is a random variable and its uncertainty arises from 𝑃𝐷𝑛.
Suppose the random variable 𝑥𝑛 represents the creditworthiness of the n­th obligor. The n­th obligor
is said to have defaulted if 𝑥𝑛 falls below a certain default threshold 𝜉𝑛(𝑇), where 𝑇 can be taken as
fixed time horizon for bond maturity. 𝜉𝑛(𝑇) is based on the Merton’s structural model of default [25].
Suppose the asset value of the borrower 𝑉 follows a geometric Brownian motion with initial value 𝑉0,
drift 𝜇 and volatility 𝜎, so that 𝑑𝑉𝑡 = 𝜇𝑉𝑡𝑑𝑡+𝜎𝑉𝑡𝑑𝑥𝑡, where 𝑥𝑡 is a Brownian motion process representing
the creditworthiness of an obligor. The asset value at horizon 𝑇 can be given as

𝑉𝑇 = 𝑉0𝑒𝑥𝑝(𝑉0 + 𝜇𝑇 −
1
2𝜎

2𝑇 + 𝜎√𝑇𝑥𝑇)

. The obligor defaults if 𝑉𝑇 < 𝐵. Hence 𝜉𝑛(𝑇) is formulated as,

𝜉𝑛(𝑇) =
ln𝐵𝑛 − ln𝑉𝑛 − 𝜇𝑛𝑇 + 0.5𝜎2𝑛𝑇

𝜎𝑛√𝑇

The probability of default for obligor 𝑛 at time 𝑇 can then be formalized as

𝑃𝐷𝑛(𝑇) = 𝑃(𝜏𝑛 ≤ 𝑇) = 𝑃(𝑥𝑛 ≤ 𝜉𝑛(𝑇)) (2.2)

Let us now consider a credit portfolio containing 𝑁 obligors. We consider the risk/loss of the 𝑛 −
𝑡ℎ obligor as a random variable 𝐿𝑛 ∶ Ω → ℝ, where we work on a probability space (Ω, ℱ, ℙ). The
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2.2. Quantitative Risk Measures 4

dependence on 𝑇 can be suppressed for simplicity, since typically 𝑇 is chosen to be one unit. The loss
incurred by obligor n is given by,

𝐿𝑛 = 𝜖𝑛𝜐𝑛𝟙𝑥𝑛≤𝜉𝑛(𝑇) (2.3)

It follows that the portfolio loss is given by

𝐿 =
𝑁

∑
𝑛=1

𝐿𝑛 =
𝑁

∑
𝑛=1

𝜖𝑛𝜐𝑛𝟙𝑥𝑛≤𝜉𝑛(𝑇) (2.4)

where 𝟙𝐴 is the indicator function which equals 1 when 𝐴 is true and zero otherwise.

2.2. Quantitative Risk Measures
In order to manage credit risk it is imperative to quantify credit risk on a portfolio level. Financial
institutions calculate the required capital to shield against possible extreme losses and hence can
determine whether they are adequately compensated for the risk incurred. These are often measured
by Value at Risk (VaR) which is the quantile of the portfolio loss distribution at a given confidence
level. Aggregation of credit risk from individual obligors to a portfolio level involves specification of the
correlations among obligors. Factor models are utilized in common practice , in which the obligors itself
are independent but are dependent on some common factors, e.g systemic risks.(c.f Chapter 3) We
discuss this at length in Chapter 3. VaR for a given confidence level 𝛼 is the 𝛼­quantile of the portfolio
loss distribution 𝐿 and therefore is given by,

𝑉𝑎𝑅𝛼 = inf{𝑥 ∶ 𝑃(𝐿 ≤ 𝑥) ≥ 𝛼} (2.5)

VaR has faced criticism to not being statistically coherent[cf. 1]. In particular VaR does not satisfy
subadditivity,i.e., the VaR of a portfolio can be larger than the sum of the VaRs of its subportfolios.

2.2.1. Risk Allocation
After computing the overall risk distribution of a portfolio, an equally important task as to quantify the
portfolio level credit risk is to measure how much each obligor in a portfolio contributes to the total risk,
i.e., the risk contributions of single exposures. The Euler principle of risk allocation has been shown
(e.g. in [8]) to be the only compatible principle to the subadditivity of a risk measure. First, the Euler
decomposition is homogeneous, meaning that the risk attribution of a portfolio scales in proportion to
the size of the portfolio. Second, the decomposed risk across obligors or sub­portfolios sums up to the
risk measure of the portfolio.
Decomposition of ES or VaR boils down to solving conditional expectations of losses of obligors or sub­
portfolios, conditioned on the tail event that characterizes the risk measure. We consider the following
definition for allocating ES by the Euler principle:

𝐶𝐸𝑆𝑛 = 𝔼 [𝟙𝑥𝑛 ≤ 𝜉𝑛𝐿𝑛|𝐿 ≥ 𝑉𝑎𝑅𝛼] (2.6)

Both 𝐸𝑆 and 𝐶𝐸𝑆𝑛 scale in proportion to the size of the portfolio.

𝐸𝑆 = 𝔼 [∑
𝑛
𝟙𝑥𝑛 ≤ 𝜉𝑛𝐿𝑛|𝐿 ≥ 𝑉𝑎𝑅𝛼] =∑

𝑛
𝐶𝐸𝑆𝑛 (2.7)

Similar to Conditional ES, Conditional VaR decomposes VaR by the Euler principle for risk allocation.
Consider the definition,

𝐶𝑉𝑎𝑅𝛼 = 𝔼 [𝟙𝑥𝑛≤𝜉𝑛 ⋅ 𝐿𝑛|𝐿 = 𝑉𝑎𝑅𝛼] (2.8)

such that

𝑉𝑎𝑅 = 𝔼 [∑
𝑛
𝟙𝑥𝑛≤𝜉𝑛 ⋅ 𝐿𝑛|𝐿 = 𝑉𝑎𝑅𝛼] =∑

𝑛
𝐶𝑉𝑎𝑅𝑛 (2.9)
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2.3. Regulatory Framework
In this section we very briefly describe the Default Risk Charge (DRC) regulation introduced by the
Fundamental Review of the Trading Book (FRTB). In January 2016, BCBS revised the market risk
framework in FRTB [4]. Detailed regulations regarding DRC under IMA (Internal Model Approach) are
given in paragraph 186 of [4]. The FRTB in general aims to minimise regulatory arbitrage, improve
both the standardised approach and internal model approach, introduce a more granular framework,
and increase transparency. The DRC “captures default risk of credit and equity trading book exposures
with no diversification effects allowed with other market risks” (BCBS, 2016a). As stated, banks could
both use the standardised approach as an internal models approach. Compared to the currently in use
Incremental Risk Charge (IRC) framework, the main change of the DRC is that credit migrations are
not taken into account anymore. This ensures that the variability of the VaR is reduced under the new
default risk measure. The standardised Default Risk Charge is calibrated to the credit risk treatment
in the banking book. This reduces the potential discrepancies in capital requirements for similar risk
exposures in the banking and trading books. The model is based on a large number of Monte Carlo
simulations of portfolio default loss scenarios, and the DRC figure corresponds to a VaR at 99.9%
confidence level.

The design of the DRC model, we describe here is infact an interpretation of the DRC framework
as published in BCBS instructions [4]. The model has been refined based on several consultative
documents subsequently issued by the Basel committee. As a consequence of the need to increase
the number of risk factors for DRC, a multi­factor Gaussian copula model was developed. This is
basically an extension of the onefactor Gaussian copula model currently adopted for IRC. To estimate
the DRC, we first need to define a set of factors that represent the geographical regions and sectors
of the economy. For each of these regional and sectoral factors an index is chosen that encodes their
performance. The correlations between time series corresponding to these factors are then measured.

We will now briefly take a look at the procedure of calculating a total financial outcome of one
scenario. First, for each sector and each region, a standard normal random number is generated.
We store these generated values and start processing each issuer. For each issuer we generate one
more standard normal that represents its idiosyncratic contribution, then find the region and sector that
matches this particular issuer and select the corresponding random numbers. Then, all three random
numbers xescribing thex issuer (one for the sector, one representing the creditworthiness of an obligor
for the region and one for the idiosyncratic) are correlated. We thus get the credit­change index of the
issuer we are currently evaluating. Based on matching a threshold obtained from the 𝑃𝐷𝑛 of issuer and
𝐿𝑛 we find whether the financial impact of the default of the issuer should be added to a total portfolio
loss 𝐿. In cases were no default occurs the contribution of issuer is set to zero. By going through all
the issuers and all the scenarios, the vector with the cumulative financial impact across all issuers per
scenario, 𝐿, is created and subsequently sorted. From this vector a 99.9% quantile is taken, which is
the DRC value. Note that the scope of the DRC model excludes the migration charge, thus no rating
transition events occur.

2.4. High Performance Computing
In the context of financial calculations, the Monte Carlo method has a relatively slow rate of conver­
gence, and thus becomes a trade off between number of simulations and the required error tolerance.
A number of optimizations exist to increase the rate of convergence, some of them being improved
numerical algorithms such as the COS method which we later discuss. The purpose of this section is
to introduce the reader to High Performance Computing as an alternative. This type of optimization
alongside the COS method forms one of the focuses of this work. Eventually, we would like to explore
the advantages of both higher fidelity and fast algorithms.
An upgraded hardware may result in a higher CPU rate for instance or the use of advanced compiler
can result in better code optimization. A less straightforward but promising approach consists of paral­
lelizing the application. If utilized to a certain potential, parallelization can ensure higher acceleration.
It may be that the code be required to be refactored, (e.g. CUDA, openCL). In other cases, few added
lines could be enough to enable a parallel execution of a portion of a code, in general for/while­loops
(e.g. OpenMP, OpenACC). Nonetheless, parallelizing with the introduced methods requires a know­
how of our used hardware and the specifics of our application.
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Figure 2.1: Shared Memory Architecture

High performance systems can be classified following the memory architecture. The two main
architectures are the shared­memory and the distributed­memory systems. For the shared­memory
architecture, a set of processors shares the same memory contingent. Current popular architectures
such as multi­core CPUs belong to this group. OpenMP can handle parallelization tasks in such sys­
tems. With the help of few simple compiler directives (#pragmas) surrounding sequential for­loops
can divide automatically the work between available cores and every core processes a part of the loop.
The communication among processors is very simple since they all share the samememory contingent.
The maximum available number of cores and the memory capacities for this system are, however, too
low to cover large­scale problems.

Figure 2.2: Distributed Memory Architecture

In the distributed­memory configuration, better known as clusters, every processor has its ownmem­
ory. The communication between processors occurs through the Message Passing Interface (MPI). A
decomposition of the computational domain is essential for the parallelization on distributed­memory
systems. Every processor contributes to the solution of the simulation by solving a part of the com­
putational domain. A high number of cores (e.g. cluster of CPUs) could speed up the whole process
significantly. But the parallelization increases also the programming burden, since the designer has to
distribute the computational work among the available CPU processors and regulate the communica­
tion. For a realistic application, a large number of cores is essential and MPI is the most implemented
paradigm on today HPC systems. Hybrid systems, consisting of a cluster of shared­memory systems,
are getting more and more popular. The most powerful HPC systems nowadays are hybrid, where the
first benchmark measurement of exaflops performance was made [refer 32]. Hybrid systems use in
every cluster node not only standard CPUs but also accelerators such as Field Programmable Gate
Arrays (FPGAs) and Graphics­Processing Units (GPUs).

2.4.1. GPU vs. CPU
Before investigating the details of GPU computing, it is perhaps worthwhile to discuss the drivers be­
hind the recent shift towards GPU computing specifically as well as towards massive parallelism in
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Figure 2.3: Different characteristic trends for general purpose processor technologies

Source: Figure from Kunle Olukotun, Lance Hammond, Herb Sutter, Mark Horowitz
extended by John Shalf [see 28]. (Online version in colour.)

Figure 2.4: Massively parallel architecture (GPU)

general. Moore’s Law and Dennard Scaling have guided the development of the semiconductor in­
dustry. Traditionally, the performance gains realised in computing have been attributed to increasing
amounts of transistors on integrated circuits (ICs) as well as the frequency with which these transistors
could switch. Hence, Moore’s law states that the number of transistors doubles every 1.5­2 years, and
thus increasing the logic and computing power has been true since its inception circa 1965. Dennard
scaling described that the energy consumption of a chip would stay in proportion to the size of the
chip. Shrinking transistor sizes (i.e., reducing the process size) allowed us to increase the computing
capabilities of the device without consuming more energy. Moore’s Law and Dennard Scaling charted
a promising future for computers. As we reduce the transistor size, the performance of computing
devices would exponentially increase over time. But it has been predicted that within a decade (see
Figure 2.3), the technological underpinnings for the process that Gordon Moore described will come to
an end, as lithography gets down to atomic scale.[28] As the transistor sizes is approaching the prac­
tical limitations of physics, reducing transistor sizes can hardly improve performance. To guide future
semiconductor research, we need to revisit these historical development trends and find new directions
that can drive performance improvement. GPUs offer a way to continue accelerating applications as it
has been witnessed already in fields such as graphics and supercomputing[see 15, chap 4].
GPUs can be considered as a shared­memory system since a number of multi­processors are con­
nected to the same device memory. Notice the architectural differences between a traditional CPU
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and a GPU as depicted in Figures 2.1 & 2.4. A typical GPU contains hundreds of cores almost entirely
dedicated to single and double­precision arithmetic operations, called Arithmetic Logic Units (ALUs).
Compared to a CPU core, a GPU core is less powerful. The conventional multi­core CPU relies mainly
on a large and fast memory cache, which serves a small number of cores, in order to reduce the in­
structions execution time (latency) to a minimum. A significant portion of the transistors is dedicated to
the instruction flow control (instruction pipelining, branch prediction and similar tasks). The CPU cache
has a spacial and a temporal locality as data is more likely to be kept in the cache if it is often used (tem­
poral) and if it is close to an often used data (spatial). For a CPU, the computational power is provided
by a high­speed processor optimized for serial operations and low latency. A GPU includes, however,
a large number of these cores, which combined result in a higher computational power. Hence, the
second advantage is the specialization of the GPU cores. The GPU cache is much smaller and dis­
poses of spatial locality. The memory bandwidth in CPUs can be hoarded by requirements from the
operating system and I/O devices, which can make it more difficult for it to increase. This is reflected
in a performance gap between CPUs and GPUs in in terms of arithmetic throughput (FLOPS: FLoating
OPerations per Second) and memory bandwidth (amount of data transferred per second). [see 19,
p.10 ]

2.4.2. GPU Computing
Today’s GPUs evolved from graphics cards installed in most computers starting from the eighties [cite
some source]. A graphics card is a complex electrical circuit that processes graphical data sent from
the CPU to render and visualize it on the monitor with increasing quality and refreshing rates. The pri­
mary idea was to offload the CPU from rendering images on the display and use a dedicated hardware
instead. A high pressure on graphics cards for fast refreshing of pictures (mainly for video­gaming)
caused the spectacular increase of the computational power reflected by the large number of cores
packed in one card. The high computational power attracted scientists and engineers looking for low­
cost high­performance alternatives to speed up their numerical calculations in different applications.
However, to use these first graphics cards, scientists had to adapt their problems to the partially pro­
grammable GPU, which implied a change to the data storage and the programming language. The term
GPGPU, which stands for General Purpose Graphics Processing Unit, was established for this type of
use of the graphics card. In response to this emerging demand, NVIDIA released in 2007 the first fully
programmable open graphics processing units in a C­based programming language called CUDA. At
the same time, AMD released its programmable GPU with OpenCL. The programming model CUDA
is specialized for NVIDIA GPUs whereas OpenCL is preferred on AMD GPUs.

2.4.3. CUDA C programming
This subsection explains briefly some concepts of GPU programming implemented in the CUDA C or
CUDA language. An extensive and detailed treatment of the topic can be found in the CUDA user
manual 1. CUDA is based on the C programming language with a minimal set of extensions to handle
the parallel execution and the memory organization. The main computing systems involved in CUDA
programming are the host, which is the traditional CPU in a personal computer and the the devices,
which are the massively parallel processing devices, typically the GPUs. Many software programs have
sections that may exhibit data parallelism, a term used for a case that allows arithmetic operations to
be safely performed on different parts of the data structure in parallel. A CUDA program can help
accelerate these sections of programs by running them on CUDA compatible GPUs, which as we
discussed in 2.4.1 have massive number of arithmetic units. Hence a CUDA program contains both
host code and device code. The functions running on the GPU are called kernels and are executed by
threads, which are organized in grids of blocks distributed among the multiprocessors. CUDA kernels
are launched as follows:

kernel_name <<<nB , nT>>>(args ) ;

where, 𝑛𝐵 he number of thread blocks launched and 𝑛𝑇 the number of threads per block. A kernel
is usually executed by 𝑛𝐵 × 𝑛𝑇 threads, also known as a grid; though a run with one block of one
thread is equivalent to a serial run on a CPU. Each thread is executed by a core of the GPU and a
thread block can be computed on a streaming multiprocessor. Several concurrent blocks can reside
1https://docs.nvidia.com/cuda/index.html, retrieved December 2020
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on one streaming multiprocessor depending on the blocks’ memory requirements and the processor’s
memory resources. The GPU starts threads always as a multiple of the warp size, in which the input
blocks are divided into thread wide units. The division is implementation specific, though currently the
warp size is 32 contiguous threads per block. Therefore, the number of requested threads per block is
recommended to be a multiple of 32 otherwise, the last warp is not fully used and its extra threads are
inactive but consume, nevertheless, registers and shared memory space. When all threads of a kernel
complete their execution, the corresponding grid eliminates, and the execution continues on the host
until another kernel is launched. Multiple kernels can execute on a device at one time.
Let us illustrate a typical CUDA programming structure using the simple example of scalar vector ad­
dition (SAXPY), a popular benchmark in computing, y ← y + 𝛼x where x,y ∈ ℝ𝑁 and 𝛼 ∈ ℝ. First it is
helpful to review the CPU­only implementation. (see Listing 2.1)

Listing 2.1: sequential SAXPY in C

// compute saxpy
void saxpy(int N, float a, float *h_x, float *h_y)
{
for (i=0; i<N; i++) h_y[i] = h_y[i] + a*h_x[i];

}

int main(void)
{
// memory allocation for a , h_y and h_x
// I/O to read h_x and h_y, N elements each and scalar a

...

saxpy(N,a,h_x,h_y);

}

We prefix the variable names that are mainly processed by the host with h_ and that by the device
with d_. The implementation is straightforward. The saxpy() function uses a for loop to iterate through
the N vector elements and the ith iteration h_y[i] receives the sum of a*h_x[i] and h_y[i]. Since the
variables are passed by reference, when the function saxpy() returns, the new contents of h_y can be
accessed.
A standard way to execute vector addition in parallel is to replace the sequential loop with a grid of
threads (see Listing 2.2).

Listing 2.2: Revised parallel SAXPY for CUDA

#include <cuda.h>
...
__global__
void saxpy(int N, float a, float *x, float *y)
{
int i = blockIdx.x*blockDim.x + threadIdx.x;
if(i<N) y[i] = a*x[i] + y[i];

}

int main(void)
{
// I/O for host variables x, y and N
// Allocate d_x, d_y pointers to device memory

...

//copy x,y to device memory
cudaMemcpy(d_x, x, N, cudaMemcpyHostToDevice);
cudaMemcpy(d_y, y, N, cudaMemcpyHostToDevice);

// Perform SAXPY , warp size is 256
saxpy<<<ceil(N/256.0),256>>>(N, a, d_x, d_y);

//copy back result to host memory
cudaMemcpy(y, d_y, N, cudaMemcpyDeviceToHost);
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//free device pointers
cudaFree(d_x); cudaFree(d_y);

...
}

Notice the use of keyword __global__ before the function declaration. This instructs the compiler to
generate a kernel function, executed on the device but callable from the host. Other keywords such as
__device__ and __host__ define purely device and host functions respectively, callable only inside the
particular system. saxpy() kernel is launched using N/256.0 thread blocks and 256 threads per block.
There exists a set of predefined variables threadIdx, blockIdx, blockDim that assign each thread with
a unique global identifier. Every thread treats a small subset of elements, and the programmer must
ensure the proper use of an index inside the kernel. Kernel calls are asynchronous since the control
is returned to the host immediately after the call, which can then proceed with the control flow. A syn­
chronization or a memory copy can force the CPU to wait for the completion of the last called kernel.
Finally, CUDA supports a set of runtime API functions, for managing data in the device memory. In the
above example, cudaMemcpy() function is used for data transfer between device and host memories.
cudaFRee() is then used to free the object from device global memory.

It should be emphasised that the scalar vector addition example used above is trivial. Infact, the
overhead of allocating device memory, bandwidth between host and device, and final memory deal­
location will likely make the resulting code slower than the its sequential counterpart. Relative to the
floating point operations performed in this example, data processing requires more work. Hence an
important point to note is that, GPU code optimization would not always accelerate every algorithm. A
careful understanding of the use case and the device architecture is therefore, a must to reach good
performance. We will discuss this in later sections for our excercise. Several popular numerical li­
braries now exist in CUDA optimized for production, such as CUBLAS 2, CUSPARSE 3, CUFFT 4.
For brevity, we omit talking about other available functionalities here. An in depth discussion for other
CUDA features can be found in the official CUDA manual and in textbooks such as [19].

2.5. Useful Parallel Algorithms
The optimization of diverse mathematical algorithms used in financial mathematics marked with the
use of high performance computing has been promising. The increased performance as well as the
scalability provided by GPUs means that institutions are able to increase business at the same time as
having tighter control on their exposure. We observe the pervasive use of GPU computing in several
areas of quantitative finance. Most popular being the pricing of financial instruments such as options
[see 30, 33, 36]. In simulating credit risk losses of large portfolios, which is the focus of this work GPU
algorithms have implemented Monte Carlo methods. Monte Carlo simulations are very computationally
expensive owing to the slow convergence properties of the tails of the loss distribution; they require
no less than a CPU server farm consisting of several hundred cores running over several hours. The
motivation of GPU acceleration is to investigate the extent to which a single GPU can replicate the
performance of a typcial multicore CPU and, if so, what new capabilities does a GPU implementation
offer. Monte Carlo analysis are embarrassingly parallel processes and hence an good fit for GPU
both algorithmically and architecturally, Moreover, the onboard memory provides both the capacity and
bandwidth to complement the frequent processing of large portfolio data sets. We now look at a few
core algorithms that are useful for implementing the Monte Carlo simulation. [10, 27]

2.5.1. Random Number Generation
A core feature of theMonte Carlo simulation is the randomnumber generator requiring almost𝑂(1015) ∼
𝑂(250) samples with good statistical quality. The GPU architecture also places additional requirements
on the generator: the ability to generate different substreams on parallel nodes with no correlations be­
tween substreams on different nodes. If we use the same generator in all parallel processes, the
effective generator over the whole process will produce stretches of identical values. A master­worker
2https://docs.nvidia.com/cuda/cublas/index.html
3https://docs.nvidia.com/cuda/cusparse/index.html
4https://docs.nvidia.com/cuda/cufft/index.html
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generator, that generates random numbers on one thread and distributes them to other processes,
causes considerable overhead or may again cause correlation between processes. An alternative is to
set up independent generators with different parameter choices. One thread may generate the starting
point for the other thread’s generated sequence. A popular random number generator is the Mersenne
twister(MT19937). It has been adapted to allow parallel streams of uncorrelated numbers but may
require lots of memory. As a result, the former may not be ideal for the GPUs.
Two different GPU optimized generators, the pseudo random and the quasi­random number generators
have been benchmarked on the GPU and the CPU. The first is a pseudo­random number generator
which uses an implementation of L’Ecuyer’s multiple recursive random number generator (mrg32k3a)
described in [22]. This generator ports well onto the GPU because of its inherent structure of long
streams and substreams, providing a substantially large period of 2191. The latter is a quasi­random
number generator which uses a Sobol sequence implementation described in [6]. The block and grid
structures on the GPU complement the Sobol implementation. Using pseudo­random numbers, of­
fers a rate of convergence 𝑂(𝑁−

1
2 ), whereas with quasi­random numbers this rate of convergence can

improve to as much as 𝑂(𝑁−1). Making use of the latter scheme would require fewer simulations to
achieve the same convergence properties and effectively offer a speed­up.

2.5.2. Sorting Loss Distribution
Calculating the capital buffer based on the analysis of the portfolio losses requires the loss vector to be
sorted, a process which is particularly efficient. Performance benefits can be gained from the careful
ordering of the portfolio data, which results in better arrangement in memory and hence permitting
efficient data requests. Sort algorithms are supplied within the Thrust library 5. This library has several
performance optimized algorithms­ merge or radix sort.

2.5.3. Numerical Integration
Integration is one of many types of numerical computations that is highly suitable for parallel processing.
Due to the linearity of the integration operator, no communications among the processors are required
during computation, one can achieve high parallel efficiency. In addition, it scales well with many
workers. At the end of computation, a many­to­one, collective, communication is required to collect
the integral sums from all the processors and compute the final integral sum. In context of GPUs,
this approach implies that the points or the subregions of discretized domain processed at once is
equal to the number of threads. A GPU has to hold the state of each thread, hence the number of
threads executed simultaneously maybe limited by insufficient GPU resources. Popular approaches
with summation operations can be applied to numerical integration tasks easily. These include the
parallel sum reduction which uses a tree­based approach within each thread block to compute individual
sums. A schematic Fig. 2.5 shows this hierarchical approach. Let us consider without loss of generality,
a scalar valued function ℎ(x) ∶ ℝ𝑑 → ℝ to be integrated over a domain 𝐷 partitioned as ⋃𝑛𝑖 𝐷𝑖:

𝐼 = ∫
𝐷
ℎ(x)𝑑x ≈ Σ𝑛𝑖=1

𝐻𝑘
⏜⎴⎴⎴⏞⎴⎴⎴⏜
∫
𝐷𝑘
ℎ(x)𝑑x

5http://code.google.com/p/thrust/
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Figure 2.5: With each operator +, the parallel reduction algorithm repeatedly groups each computation of a subintegral, 𝐻𝑘 in
pairs. Each pair is computed in parallel with others, halving the overall array size in one step. The process is repeated until a

single element exists



3
Modeling Portfolio Loss Distributions

In section 2.1 we introduced the concept of credit portfolio losses and various defined measures that
are beneficial for determining the optimal portfolio. We now outline a few mathematical approaches to
model these portfolio losses. Models for estimating credit risk has progressed for a long time. There are
now three main approaches to modelling portfolio loss distributions of debt instruments: the “Merton­
style” approach, the purely empirical econometric approach, and the actuarial approach. Each of these
approaches has, in turn, produced several models. As described in 2.1, our concentration in this
thesis will be on models based on structural default approach of Merton[25] in a static context. A
key challenge in all such models always has been, to explain the relationship between default event,
including on the dependence between defaults, Loss given defaults and Obligor default probabilities.
Since direct modelling of the pairwise dependencies becomes unfeasible as credit portfolios become
larger. Models follow different approaches to reduce this computational complexity by utilizing several
kinds of approximations. The earliest credit risk measure models that were published, are popular
industrial examples such as CreditMetrics by J.P. Morgan, KMV’s Portfolio Manager, CreditRisk+ by
Credit Suisse. These models, though are slight variants of each other, essentially use a factor based
approach to introduce default dependence via a few common market variables and obligor dependent
idiosyncratic variables. We refer to [9] for a detailed description of the above. Before understanding
what factor based models are, let us give a brief overview of an important tool used for representing
correlations.

3.1. Copulas
Copulas are tools to describe the interrelation of several random variables. Let us consider an ex­
planatory example: what can be a simple way to map a one dimensional random variable, 𝑋, to a
one dimensional standard normal, 𝑌? The answer is built on a transformation that takes either one
to a standard uniform random variable, 𝑈. Standard uniform means that the probability density of 𝑈
is ℎ(𝑢) = 1 if 0 ≤ 𝑢 ≤ 1, and ℎ(𝑢) = 0 otherwise. The copula construction is based on the above
mapping. The cumulative distribution function (CDF), 𝐹(𝑥) = 𝑃𝑟(𝑋 ≤ 𝑥) maps any random variable,
𝑋 to a standard uniform. If X is a random variable whose CDF is F , then 𝑈 = 𝐹(𝑋) has the standard
uniform distribution. This goes both ways. If 𝑈 is standard uniformly distributed then, 𝑋 can be found by
solving 𝐹 = 𝑈(𝑋). An 𝑁­dimensional copula is a distribution function on [0, 1]𝑁 with standard uniform
distributions:

𝐶(𝑢) = 𝐶(𝑢1, 𝑢2, … , 𝑢𝑁) (3.1)

Theorem 3.1.1 (Sklar’s theorem (1959)). Consider an 𝑁­dimensional CDF 𝐹 with marginals 𝐹1, ...., 𝐹𝑁.
There exists a copula 𝐶 ∶ [0, 1]𝑁 → [0, 1], such that

𝐹(𝑥1, ...., 𝑥𝑁) = 𝐶(𝐹(𝑥1), ....𝐹(𝑥𝑁)) (3.2)

∀𝑥𝑖 ∈ [−∞,∞], 𝑖 = 1, ...., 𝑑. If 𝐹𝑖 is continuous ∀𝑖 = 1, ...., 𝑑 then 𝐶 is uniquely determined; otherwise
𝐶 is uniquely determined only on 𝑅𝑎𝑛𝐹1 × .... × 𝑅𝑎𝑛𝐹𝑁, where 𝑅𝑎𝑛𝐹𝑖 denotes the range of CDF 𝐹.

13
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According to Theorem 3.1.1, we can extract a unique representation of copula 𝐶 explicitly, in terms
of 𝐹 and its continuous margins by calculating

𝐶(𝑢1, 𝑢2, … , 𝑢𝑁) = 𝐹(𝐹−11 (𝑢1), 𝐹−12 (𝑢2), … , 𝐹−1𝑁 (𝑢𝑁)) (3.3)

where 𝐹−11 , … , 𝐹−1𝑁 are (generalised) inverses of 𝐹1, … , 𝐹𝑁.
Li [23] used the copula function conversely. The copula function links univariatemarginals to their full

multivariate distribution. For 𝑁 given univariate marginal distribution functions 𝐹1(𝑥1), 𝐹2(𝑥2), … , 𝐹𝑁(𝑥𝑁)
with 𝑥𝑖 = 𝐹−1𝑖 (𝑢𝑖) the joint distribution function C is defined as

𝐶(𝐹1(𝑥1), 𝐹2(𝑥2), … , 𝐹𝑁(𝑥𝑁), Σ) = 𝑃𝑟[𝑈1 ≤ 𝐹1, 𝑈2 ≤ 𝐹2, … , 𝑈𝑁 ≤ 𝐹𝑁]
= 𝐹(𝑥1, 𝑥2, … , 𝑥𝑁) (3.4)

where Σ is correlationmatrix of𝑈1, 𝑈2, … , 𝑈𝑁With givenmarginal functions, we can construct the joint
distribution through copulas accordingly. Thus, with given individual distribution (e.g., creditworthiness
over a 1­year horizon) of each credit asset within a portfolio, we can obtain the joint distribution and
default correlation of this portfolio through copula function. In our methodology, we do not use copula
function directly. We describe the concept of factor copula for further improvement to form the default
correlation. If there are substantial number of instruments (for instance, N > 1,000) in our portfolio,
to capture obligor­obligor interactions, we may be required to store a 𝑁 × 𝑁 correlation matrix, hence
scalability can be a challenge. Factor copulas can be used to avoid constructing a high­dimensional
correlation matrix. We can attempt to explain a large part of interactions in terms of a smaller set of
market variables.

3.1.1. Linear Factor Copulas
Factor copula describes dependence structure between random variables not from the perspective
of a certain copula form but from the factors model. Factor copula models have been broadly used
for derivative pricing as well as computing banks’ capital charge requirements. The main concept of
factor copula model is that under a certain macro environment, credit default events are independent
to each other. And the main causes that affect default events come from potential market economic
conditions. Therefore a variation in the 𝑁­dimensional creditworthiness vector X = (𝑥1, … , 𝑥𝑛 , … , 𝑥𝑁),
can be explained in terms of the variation of a smaller set of market economic conditions or systematic
risk factors, say Z = (𝑍1, … , 𝑍𝑑). Formally we define a linear factor model as follows.

Definition 3.1.1 (Linear Factor Copula model). The random vector X is said to follow a 𝑑−factor
model if it can be decomposed as

X = 𝜷𝑇Z+ b ∘ 𝝐

where, ∘ represents the Hadamard product of vectors and

• Z ∈ ℝ𝑑 with 𝑑 < 𝑁 and a covariance matrix that is positive definite.

• 𝝐 ∈ ℝ𝑁 is a random vector of idiosyncratic risk factors, which are uncorrelated.

• 𝜷 ∈ ℝ𝑑×𝑁 & b ∈ ℝ𝑁 are the constant factor loadings matrices.

3.1.2. Examples
Gaussian copula A 𝑑−factor Gaussian copula model assumes that the correlations among 𝑥𝑛 are
imposed by linking them to 𝑑 × 1 Z vector of independent standard normal variables, for 𝑛 = 1,… ,𝑁.

𝑥𝑛 = 𝛽𝑇𝑛Z+ 𝑏𝑛𝜖𝑛 , (3.5)

where Z = (𝑍1, … , 𝑍𝑑)
𝑇 with 𝑍𝑛 ∼ 𝑁(0, 1), 𝛽𝑛 = (𝛽𝑛,1, … , 𝛽𝑛,𝑑)

𝑇
, 𝑏𝑛 = √1 − ∑

𝑑
𝑖=1 𝛽2𝑛,𝑖 and 𝜖𝑛 ∼ 𝑁(0, 1).

Using the result of the above Gaussian assumptions in the context of modeling credit portfolio losses
as described in Section 2.1, the default threshold of 𝑥𝑛 is given by

𝜉𝑛 = 𝑁−1(𝑝𝑛)
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(a) bivariate Gaussian copula with correlation=0.5 (b) bivariate T­copula with correlation=0.5 and 𝛾 = 1

Figure 3.1: Visualization of bivariate copula on a unit cube [0, 1]2 with corresponding marginal distributions. Note the
differences of the distributions in the tail.

T Copula As an alternative to the Gaussian copula, the correlations of defaults can be modelled
by a Student­t copula. Banking regulations published by the Basel group [4] suggested two ways of
modelling for the correlations via a Student­t copula for credit risk, either using a Student­t copula for
all issuer risk factors, or using a Student­t copula for the systematic risk factors. Here we discuss
the second case. Particularly, we model the systematic risk factors as a multivariate­t random vector
and the idiosyncratic factors as Gaussian random variables. This model choice gives another layer
of difficulty since the default thresholds of the obligors do not have analytical solutions. The standard
Student­t copula 𝐶𝑡𝛾,Σ given by

𝐶𝑡𝛾,Σ(𝑢1, … , 𝑢𝑑) = ∫
𝑡−1𝛾 (𝑢1)

−∞
…∫

𝑡−1𝛾 (𝑢𝑑)

−∞

Γ (𝛾+𝑑2 )

Γ (𝛾/2)√(𝜋𝛾)𝑑 ∣ Σ ∣
(1 + X𝑇Σ−1X

𝛾 )
− 𝛾+𝑑2

𝑑X

If a random vector X has the t copula 𝐶𝑡𝛾,Σ as the component­wise probability transformed random
vector and the student­t distribution as the component­wise marginal distribution with the same degree
of freedom 𝛾, then it follows a multivariate student­t distribution with 𝛾 degrees of freedom. Specifically,
the d­dimensional random vectorX is said to have amultivariate t distribution with 𝛾 degrees of freedom,
the mean vector 𝜇 and a positive­definite dispersion matrix Σ, denoted by X ∼ 𝑡𝑑(𝛾, 𝜇, Σ). Another
convenient representation for simulation is

X = √𝑊Z (3.6)

where Z ∼ 𝑁𝑑(0, Σ), and𝑊 is independent of 𝑍 and has an inverse gamma distribution i.e,

𝑊 ∼ 𝐼𝑔(𝛾/2, 𝛾/2) (3.7)

Hence incorporating the dependence of the (3.6) to modify the systematic factors of 𝑥𝑛 we find,

𝑥𝑛 = √𝑊𝛽𝑇𝑛Z+ 𝑏𝑛𝜖𝑛 (3.8)

The marginal distribution of 𝑥𝑛 is a convolution of a Student t distribution and a Gaussian distribution,
while the dependence among 𝑥𝑛 solely depends on the common factors W, Z and the idiosyncratic
factors 𝜖𝑛 remain independent.
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3.1.3. The Vasicek model
The first copula model for portfolio credit risk was given by Li [23]; his model is based on the Gaus­
sian copula. The one­factor Gaussian copula model offers analytic tractability by the assumption that
the underlying portfolio of assets is large and homogeneous, hence a special case of the examples
described above. This approach by [35] is also referred to as the Large Homogeneous Pool (LHP)
Model. Although it relies on the Gaussian distribution and is often criticized for being simplistic, there
have been extensions to this model.[cite] For now, we follow the standard assumptions. Without loss
of generality, we set loss value at default (𝜖𝑛𝜐𝑛) (Ref. eqn 2.3) constant for all obligors. The Vasicek
model evaluates the default of an obligor in terms of the evolution of its asset value over a fixed time
horizon 𝑇 > 0, based on the firm value model of Merton (Ref. section 2.1). With 𝛽 constant for all
obligors, Equation (3.5) for a single factor Gaussian copula for the n­th obligor reduces to,

𝑥𝑛 = 𝛽𝑍 + √1 − 𝛽2𝜖𝑛 , (3.9)

where 𝑍 and 𝜖𝑛 are i.i.d standard normal random variables. Other assumptions of the Vasicek model
are that all 𝑃𝐷𝑛 are equal and 𝜖𝑛 equals 1. The probability of default conditional on the common factor
𝑍 = 𝑧 can be given by,

𝑝𝑛(𝑧) = ℙ [𝜖𝑛 <
𝜉𝑛 − 𝛽𝑍
√1 − 𝛽2

|𝑍 = 𝑧] = 𝑁(𝑁
−1(𝑃𝐷𝑛) − 𝑧𝛽
√1 − 𝛽2

) (3.10)

The resulting loss distribution is 𝐿 = ∑𝑁𝑛=1 𝟙𝑥𝑛≤𝜉𝑛 ∼ 𝐵𝑖𝑛(𝑁, 𝑝𝑛). As a consequence of the Central Limit
theorem,

lim
𝑛→∞

𝐿/𝑛 = 𝑝(𝑍) = 𝑁(𝑁
−1(𝑃𝐷𝑛) − 𝑍𝛽
√1 − 𝛽2

) 𝑎.𝑠.

The analytical asymptotic Vasicek formula is helpful for calibrating our results which we will see in
Chapter 4.

The methodology for measuring credit risks in debt instruments is in a state of rapid development.
Here, we have only presented only a few of them. We refer to Laurent and Gregory [20] and Burtschell,
Gregory and Laurent [7], that provide comparative analyses of various copula­based factor models.
Typically factor copulas are simulated using the Monte Carlo method. An alternative approach are the
whole branch of semi­analytic methods, which are based on on a combination of numerical integration
and analytic methods. These models are significantly faster than Monte Carlo calculations. Hull and
White introduced a bucketing approach[], Andersen and Sidenius [2] and Jackson [17] proposed a re­
cursive method valid in more general cases. Saddle­point approximations were analyzed by Huang and
Oosterlee [16]. Fourier transform methods were analyzed by Laurent and Gregory [20] and Grundke
[14]. These methods suggest using Fourier transforms of densities , that is characteristic functions of
the random variables, to compute the distribution of the sum of the independent assets. This alterna­
tive class of methods based on Fourier transforms, leads us to our main approach in this thesis for our
models, the COS method which we describe in Section 3.4. A recent numerical approach proposed by
Colldeforns­Papiol et al [8] is based on the Haar wavelets basis instead of a Fourier basis to compute
the inversion of the characteristic function.

3.2. Monte Carlo methods
For computing a general cumulative loss distribution function, denoted by 𝐹𝐿 and its corresponding risk
measures, the industry standard is using Monte Carlo methods. First we need to draw independent
and identically distributed replicates of the random variable 𝐿, and then given a set of 𝑛 i.i.d samples
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𝐿(1), … , 𝐿(𝑛), we require a method to estimate the risk measures.
Algorithm 1: Monte Carlo method for single factor Gaussian copula
Data: number of simulations 𝑛, factor loadings � ∈ ℝ𝑁, obligor specific properties PD & l ∈ ℝ𝑁
Result: Portfolio Loss vector L ∈ ℝ𝑛
for i=1,..,n do

𝐿(𝑖) = 0;
Generate 𝑧 ∼ 𝒩(0, 1);
for j=1,...,N do

Generate 𝜖 ∼ 𝒩(0, 1);
𝑥𝑗 = 𝛽𝑗𝑧 + √1 − 𝛽2𝑗 𝜖;
if 𝑥𝑗 < 𝑁−1(𝑃𝐷𝑗) then

𝐿(𝑖) = 𝐿(𝑖) + 𝑙𝑗;
end

end
end
The Crude Monte Carlo estimator of VaR comes from the quantile estimator explained in traditional

statistics. From our definition of VaR (Ref. eqn 2.5) the analytical distribution is replaced with the
equivalent empirical distribution function 𝐹̂𝐿,

𝑉𝑎𝑅𝛼 = inf 𝑥 ∶ 𝐹̂𝐿(𝑥) ≥ 𝛼

where, 𝐹̂𝐿(𝑥) =
1
𝑛 ∑

𝑛
𝑖=1 𝟙(𝐿(𝑖)≤𝑥) is the empirical distribution function of the iid sorted samples 𝐿(𝑖) such

that 𝐿(1) ≤,⋯ ≤ 𝐿(𝑛). For Expected Shortfall (eqn. 2.7), the estimator is just the an expectation.

𝐸𝑆 = 1
𝑁(1 − 𝛼)

𝑁

∑
𝑖=1
𝐿(𝑖)𝟙𝐿(𝑖)≥𝑉𝑎𝑅𝛼

By the virtue of central limit theorem, the 𝑉𝑎𝑅 and 𝐸𝑆 estimators have asymptotically normal distribu­
tions. An efficient variant of the Monte Carlo based methods is the Importance Sampling (IS) approach.
Since the canonical Monte Carlo estimators generally require a very large sample size for desired lower
tolerances, IS approach in practice can give better performance with lower sample sizes. However, we
do not discuss this approach in our study. Refer to [See 24, Chapter 8] for a detailed treatment.

3.3. Fourier Transform Techniques
The essence of the Fourier transform is that it represents a function as a continuous superposition
of periodic functions. Often we will obtain an analytic expression for the Fourier transform but not
be able to analytically find the original function, and instead numerical schemes are used to invert
the transformation.However , the amount of computational effort is small compared to that required to
compute option prices via other means such as Monte Carlo simulation. A suggested approach is using
Fourier transforms of densities ,that is characteristic functions of the random variables, to compute the
distribution. This method relies on the fact that if 𝑥𝑛 are independent random variables then

𝔼 (𝑒𝑖𝜉 ∑𝑛 𝑥𝑛) =∏
𝑛
𝔼 (𝑒𝑖𝜉𝑥𝑛) (3.11)

This corresponds to the fact that the Fourier transform of a convolution is the product of the Fourier
transforms.We therefore compute the characteristic function of the random variable expressing the
contribution of each asset to the loss distribution , take their product, and take the inverse Fourier
transform to compute the loss distribution. Given the individual characteristic functions , it is simple to
take the product. The loss distribution is then calculable via an inverse Fourier transform. A detailed
analysis is given in the paper by Laurent and Gregory. [20]
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3.4. The COS method
The previous section briefly outlined the general Fourier transform approach. Our work concentrates
on the related idea of the COS method [11]. The algorithm is based on the usage of a cosine series on
a truncated finite interval. In contrast to the complete Fourier transform, the cosine series converges
rapidly for smooth functions on a bounded interval. Thus one needs to compute only a small number
of terms. We will also see that the cosine coefficients of the density can be easily computed from its
characteristic function , and so whenever there is a closed­form , they are simple to find.

3.4.1. Characteristic Function of the Portfolio Loss
We use 𝜙𝐿 to denote the characteristic function of the portfolio loss 𝐿 described in Section 2.1. It then
follows that

𝜙𝐿(𝑧; 𝜔) = 𝔼 [𝔼 [𝑒𝑖𝜔∑
𝑁
𝑛=1 𝑙𝑛⋅𝟙𝑥𝑛≤𝜉𝑛 |𝑍 = 𝑧]]

= 𝔼 [
𝑁

∏
𝑛=1

𝔼 [𝑒𝑖𝜔𝑙𝑛⋅𝟙𝜖𝑛≤𝛼𝑛(𝑧𝑛) |𝑍 = 𝑧]] (3.12)

and, 𝛼𝑛(𝑧) =
𝜉𝑛−𝛽𝑛𝑧
𝑏𝑛

𝜙𝐿(𝑧; 𝜔) = 𝔼 [
𝑁

∏
𝑛=1

[1 + 𝑃(𝜖𝑛 ≤ 𝛼𝑛(𝑧))(𝑒𝑖𝜔𝑙𝑛 − 1)]]

= ∫
ℝ
𝑓𝑍(𝑧)

𝑁

∏
𝑛=1

[1 + 𝑃(𝜖𝑛 ≤ 𝛼𝑛(𝑧𝑛))(𝑒𝑖𝜔𝑙𝑛 − 1)] 𝑑𝑧.

= ∫
ℝ
Φ(𝑧;𝜔)𝑑𝑧. (3.13)

𝑓Z(z) denotes the joint probability density function of the systematic factors. The above integral can
be computed by using any standard numerical integration scheme. Clenshaw­Curtis quadrature rule is
preferred because of its exponential convergence on a smooth integrand as well as fast computational
performance ­ the discretized integral can be solved via Fast Fourier Transform (FFT) algorithm, with
𝑂(𝐽 log(𝐽)) complexity where 𝐽 is the total number of quadrature points.

3.4.2. Recover the CDF
The main idea of the COS method is that the density of a continuous random variable can be re­
constructed from a Fourier cosine series. If the portfolio loss is a continuous function over a real
domain, we could fix a range [𝑙𝑎 , 𝑙𝑏] that is sufficiently broad to cover a large enough probability level,
and consider the finite 𝐾 terms Fourier cosine expansion of the density 𝑓𝐿of the portfolio loss L within
the range as

𝑓𝐿 ≈ 𝑓̃𝐾(𝑥) ≡
𝐴0
2 +

𝐾

∑
𝑘=1

𝐴𝑘 cos(𝑘𝜋
𝑥 − 𝑙𝑎
𝑙𝑏 − 𝑙𝑎

) (3.14)

Whilst we have the Fourier cosine series, the Fourier cosine coefficients can be directly extracted from
the characteristic function.

𝐴𝑘 =
2

𝑙𝑏 − 𝑙𝑎
ℜ{𝜙𝐿(

𝑘𝜋
𝑙𝑏 − 𝑙𝑎

) ⋅ 𝑒−𝑖
𝑘𝜋𝑙𝑎
𝑙𝑏−𝑙𝑎 } (3.15)

For computing the CDF 𝐹𝐿, it follows from (3.14) that yields,

𝐹𝐿(𝑥) ≈ 𝐹̃𝐾(𝑥) ≡
𝐴0
2 (𝑥 − 𝑙𝑎) +

𝐾

∑
𝑘=1

𝐴𝑘
𝑙𝑏 − 𝑙𝑎
𝑘𝜋 sin(𝑘𝜋 𝑥 − 𝑙𝑎𝑙𝑏 − 𝑙𝑎

) (3.16)

Here in the integration of the density function we again truncate the integration range and the last
equation is obtained by interchanging the order of summation and integration. It can be seen that the
CDF is expressed in the form of sine series.
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3.4.3. Gibbs phenomenon
Since 𝑓𝐿(𝑥) in our case will always be a probability mass function, the corresponding Fourier cosine
density expansion 𝑓̃𝐾(𝑥) will not converge to it in cases of highly non­smooth functions for example,
step functions. The rate of convergence drops to first order and spurious oscillations develop near the
discontinuities known as Gibbs phenomenon. The spurious effects do not die out as the number of
the Fourier terms increases and also causes a slow convergence rate of the Fourier series at other
continuous locations. Several techniques have been developed to mitigate or remove the Gibbs phe­
nomenen, which includes applying spectral filters, change of basis for example using wavelets series
expansion and edge detection algorithms [12]. In our study, we follow the approach of filtering. The
main idea of applying spectral filters is to let the obtained series coefficients decay faster. Modifying
eqn. (3.14), we obtain the COS density function after applying a spectral filter as,

𝑓̃𝜎𝐾 (𝑥) =
𝐴0
2 +

𝐾

∑
𝑘=1

𝐴𝑘𝜎(𝑘/𝐾) cos(𝑘𝜋
𝑥 − 𝑙𝑎
𝑙𝑏 − 𝑙𝑎

) (3.17)

where the spectral filter 𝜎(𝜂) ∈ 𝒞𝑞−1[−∞,∞] with the following properties,
• 𝜎(𝜂) = 0 for |𝜂| > 1
• 𝜎(0) = 1 and 𝜎(1) = 0
• 𝜎𝑚(0) = 𝜎𝑚(1) = 0 ∀𝑚 ∈ [1,… , 𝑞 − 1]

Analogously we get the COS CDF approximation using the now modified filtered density distribution
eqn. (3.17),

𝐹̃𝜎𝐾 (𝑥) =
𝐴0
2 (𝑥 − 𝑙𝑎) +

𝐾

∑
𝑘=1

𝐴𝑘𝜎(𝑘/𝐾)
𝑙𝑏 − 𝑙𝑎
𝑘𝜋 sin(𝑘𝜋 𝑥 − 𝑙𝑎𝑙𝑏 − 𝑙𝑎

) (3.18)

Error convergence of Fourier series expansion with spectral filters has been studied in literature, such
as [34]. The analysis in shows that, to restore convergence in the Fourier series after applying a
spectral filter, the function itself has to be at least piecewise continuous. However, it is already proven
in [29] that, though 𝑓𝐿 is not piecewise continuous, the recovered CDF function in the eqn. (3.18) still
converges to the true CDF. The proof is based on the observation that the recovered expression is
nothing but a finite linear combination of the Fourier series expansions of some piecewise constant
functions.

3.4.4. Computation of Risk Measures
In Section 2.2, we have already seen the definitions of various credit risk measures. Here, we see how
they are calculated under the COS method. The computation of 𝑉𝑎𝑅 and 𝐸𝑆 are trivial. Since, once
we have recovered the CDF, i.e 𝐹̃𝐾(𝑥), the 𝑞­th quantile can be solved numerically, 𝐹̃𝐾(𝑥) = 𝑞. 𝐸𝑆 can
be evaluated by for e.g. a numerical integration scheme.
As we have seen in Section 2.2.1, there exist standard decompositions of 𝐸𝑆 and 𝑉𝑎𝑅 of the portfolio
loss that follow the properties of Euler risk allocation. From equations (2.6) and (2.8) the decomposition
of 𝑉𝑎𝑅 and 𝐸𝑆 essentially is a problem of solving a conditional loss distribution. This is again solvable
by applying the COS to conditional characteristic function. It follows from eqn (2.6),

𝐶𝐸𝑆𝑛 = 𝑙𝑛𝑃(𝑥𝑛 ≤ 𝜉𝑛|𝐿 ≥ 𝑉𝑎𝑅𝛼)

= 𝑙𝑛
𝑃(𝑥𝑛 ≤ 𝜉𝑛 , 𝐿 ≥ 𝑉𝑎𝑅𝛼)

𝑃(𝐿 ≥ 𝑉𝑎𝑅𝛼)

= 𝑙𝑛𝑃𝐷𝑛
𝛼 𝑃(𝐿 ≥ 𝑉𝑎𝑅𝛼|𝑥𝑛 ≤ 𝜉𝑛) (3.19)

To solve the conditional probability 𝑃(𝐿 ≥ 𝑉𝑎𝑅𝛼|𝑥𝑛 ≤ 𝜉𝑛), we can start from its characteristic function
𝜙𝑛,𝐿,

𝜙𝑛,𝐿(𝜔) = 𝔼 [𝑒𝑖𝜔𝐿|𝑥𝑛 ≤ 𝜉𝑛]

= 1
𝑃𝐷𝑛

𝔼 [(∏
𝑗≠𝑛

𝔼 [𝑒𝑖𝜔𝑙𝑛⋅𝟙𝑛≤𝛼𝑗(𝑧𝑗) |𝑍 = 𝑧]) ⋅ 𝔼 [𝑒𝑖𝜔𝑙𝑛⋅𝟙𝜖𝑛≤𝛼𝑛(𝑧𝑛) |𝑍 = 𝑧]] (3.20)
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where 𝔼 [𝑒𝑖𝜔𝑙𝑛⋅𝟙𝑛≤𝛼𝑗(𝑧𝑗) |𝑍 = 𝑧] = 1+𝑃(𝛼𝑗(𝑧𝑗))(𝑒𝑖𝜔𝑙𝑗−1) and 𝔼 [𝑒𝑖𝜔𝑙𝑛⋅𝟙𝜖𝑛≤𝛼𝑛(𝑧𝑛) |𝑍 = 𝑧] = 𝑃(𝛼𝑛(𝑧𝑛))⋅𝑒𝑖𝜔𝑙𝑛
From eqn (2.8) it follows that,

𝐶𝑉𝑎𝑅𝛼 = 𝑙𝑛 ⋅ 𝑃(𝑥𝑛 ≤ 𝜉𝑛|𝐿 = 𝑉𝑎𝑅𝛼)

≈ 𝑙𝑛 ⋅ 𝑃𝐷𝑛 ⋅
𝑃(𝑉𝑎𝑅𝛼 − 𝜀 ≤ 𝐿 ≤ 𝑉𝑎𝑅𝛼 + 𝜀|𝑥𝑛 ≤ 𝜉𝑛)

𝑃(𝑉𝑎𝑅𝛼 − 𝜀 ≤ 𝐿 ≤ 𝑉𝑎𝑅𝛼 + 𝜀)
(3.21)

Above we replace the 𝐿 = 𝑉𝑎𝑅𝛼 by approximating within 𝜀 tolerance of 𝑉𝑎𝑅𝛼. COS method can be
used to evaluate the probabilities in eqn. (3.21).



4
Preliminary Results

In this chapter we use the methodology described in the previous chapters to determine the loss dis­
tribution and the corresponding risk measure 𝑉𝑎𝑅. Other risk measures follow naturally from the com­
puted distribution. Since our primary concern is finding an performance­optimized version of the COS
method, we therefore ignore computing the risk measures in this literature report. These computations
will eventually form a part in the final version of this thesis. More specifically, we see some preliminary
results of performance (i.e accuracy and computational speed) of the COS method and benchmark
it against conventional approaches like the Vasicek one­factor model and Monte Carlo simulations.
Other risk measures follow naturally from the computed distribution, and therefore, we ignore comput­
ing them here. The reason is two fold. First, our intention is to gain fidelity on our implementation of
the COS method. Next it allows us to benchmark performance of the present serial algorithms against
an initial GPU­parallel version of the COS. We finally conclude the chapter by showing a few charac­
teristic trends and identifying bottlenecks within this simplistic GPU implementation. These results will
motivate our future study to find a computationally efficient implementation of the COS method. These
results should also provide an impression of the ’embarrassingly parallel’ nature of the algorithm, and
thereby hinting at an opportunity to make significant performance upgrades over the current state of
the art.

4.1. Test scenario
We first test the COS method with a small artificial portfolio with a name concentrated artificial portfolio
with 10 obligors. This is achieved by setting probability of default and loss­at­default of the first obligor
to be 10 times as large as of the other obligors. In details, we set the default probabilities of the obligors
to be 𝑃𝐷1 = 0.01, 𝑃𝐷𝑛 = 0.001, ∀𝑛 = 2,… , 10. The loss at default of obligors was taken to be 𝑙1 = 10,
𝑙𝑛 = 1, 𝑛 = 2,… , 10, respectively. We assume a one­factor Gaussian copula correlation between all
obligors. Without loss of generality the factor loading 𝛽𝑛 = 0.2 is set constant for all obligors. The
piecewise constant CDF of the portfolio loss with name concentration is more likely to have a wide step
at the location of 𝑉𝑎𝑅, particularly if the concentrated obligor defaults with a large probability at the
event of 𝑉𝑎𝑅. In this case the loss CDF is a step function of few steps, and therefore we can notice the
Gibbs phenomenon at the steps very clearly. Thus, the objective of this test case is to show that the
filtered Fourier cosine series can recover the piecewise constant CDF. Figure 4.1 plots the recovered
CDF of the portfolio loss from Monte carlo method with 100000 simulations compared with the result
obtained from COS in both cases. As the plot indicates, the filtered COS approximation is accurate.

4.1.1. Verification with the Vasicek model
In 3.1.3 we described the model of Vasicek [35]. Here, we verify our recovered CDF from COS with the
Large Homogeneous Pool (LHP) approximation from [35]. As described in earlier sections, the LHP
approximation uses a one­factor Gaussian copula to represent the default correlation structure. The
portfolio contains an infinite number of entities, which all have the same characteristics (e.g. 𝑃𝐷𝑛, 𝑙𝑛,
𝛽𝑛). So, we check whether our piecewise constant CDF converges 𝑎.𝑠 in the limiting case of number of
obligors 𝑁 to the computed Vasicek CDF with the same input data. Figure – shows the convergence.

21



4.1. Test scenario 22

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

 0  2  4  6  8  10  12  14

1
-C

D
F

(x
)

Portfolio Loss (x)

Monte Carlo

COS

(a) without filtering

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

 0  2  4  6  8  10  12  14

1
-C

D
F

(x
)

Portfolio Loss (x)

Monte Carlo
COS (with spectral filtering)

(b) with exponential filter of order 2

Figure 4.1: Recovered CDF from Monte Carlo and COS methods for a test portfolio with 10 obligors.
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Figure 4.2: Comparison of Loss CDF for 𝑃𝐷 = 0.1, 𝛽 = 0.2

4.2. S&P rated portfolio
We further give a numerical example with a large portfolio with 1000 obligors to mimic real­world situ­
ations. We first sample ratings of the obligors uniformly from the levels AAA, AA, A, BBB, BB, B and
CCC, and the assign to each obligor the S&P1 default probability by rating. Then the loss­at­default l
n per obligor is uniformly sampled from [10, 1000]. Finally, a few name concentrations are created by
means of multiplying the losses of some CCC obligors by a factor of 50 or 10. The reference values
for calculating the relative errors are generated using the COS method, where we set the number of
COS terms to be 800, the tolerance level of the integration range truncation error equal to be 1𝑒 − 9,
the number of integration points to be 220. The benchmark MC results are obtained with 1 million sim­
ulations. As witnessed in the previous numerical example, the Figure 4.3 (a), confirms a good match
of the loss distributions from the MC method and the COS method. As demonstrated in the Figure 4.3
(b), we see the errors of the COS method converge in a regular pattern for computed risk metric 𝑉𝑎𝑅
with the increase in COS terms. The errors are computed with respect to the benchmark MC results.

4.3. GPU runs
Serial runs on the CPU of the second numerical example from the previous section show that the
computational time of the COS method is around one order of magnitude less than MC simulation.
Profiling of the CPU implementation (runtimes tabulated in Table ) reveals that the program spends
approximately 99% of its entire runtime on calculating the Fourier cosine coefficients 𝐴𝑘 (Ref. eqn
(3.15)). This is expected since the integration of the characteristic function (Ref. (3.13))is computa­
tionally expensive. We show this task performed on a GPU using the CUDA platform [Ref. Section
2.4.3]. Earlier work in the direction of GPU acceleration of COS based option pricing have achieved
impressive speed­ups on the GPU [36], where two approaches were followed, a parallelization over
each vector element and a parallel vector summation. We follow a similar technique to the former.
Thus, our first approach is to attempt to parallelize the computation of the Fourier cosine coefficients
over threads of a GPU.2

Figure 4.4 presents a comparison of the time consumed by our simple GPU implementation and also
1Standard and Poor’s credit rating system url: https://www.spglobal.com/ratings/en/research/articles/200429­default­transition­
and­recovery­2019­annual­global­corporate­default­and­rating­transition­study­11444862, Accessed: February 2, 2021

2The GPU we work on is a NVIDIA Maxwell architecture based TitanX card with 12GB of memory whereas the CPU test was
done on the same computer on a dual 8­core 2.4GHz (Intel Haswell e5­2630­v3) with 64GB of memory. [3]
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Figure 4.3: Results from an S&P rated portfolio with 1000 obligors

Figure 4.4: Runtime comparision between serial CPU and an initial GPU parallel versions of COS method with 1000 obligors

the CPU time. Clearly, the GPU version is faster than the CPU version only when the number of COS
terms taken 𝐾 is large. We follow 2 types of GPU thread divisions­ one where all threads allocated over
a single block (pt:1xn) and another where 32 threads are taken per block (pt:32xn). As observed in the
plot, the latter performs slightly better with regards to computation time. Therefore, the division of work
over constant 32 threads per block is a better alternative than using just a single block with all threads.
In the particular example, the GPU implementation of the COS was an order of magnitude faster than
the CPU version and almost 2 times as fast as the CPU implementation of the Monte Carlo method (see
Table ). However we note that it is not necessary to take such a large values of 𝐾 in the COS method in
practice, as with 𝐾 = 256, the distribution already in the order of 10−6. Therefore, the COSmethod with
smaller values of 𝐾 is not really advantageous on the GPU. Nevertheless, the implementation clearly
shows the parallel nature of the COS method and identifies further areas of potential improvements, for
example, when dealing with multi­factor models or parallelizing over other variable dimensions. Some
approaches we outline in Section 5.1. The implementation of such strategies will require many more
computations, hence the performance of the GPU version will be profound.



5
Concluding Remarks

This literature study provides an opportunity to gather the theoretical background necessary for un­
derstanding the problem of modeling portfolio credit risk measures using factor copula based COS
method and its potential for data parallelism. The existing methods for modeling portfolio losses are
outlined in Chapter 3. Traditional methods still used in this field use Monte Carlo approaches that are
computationally slow and inefficient. The semi­analytical COS method is an attractive alternative that
demonstrates superior computational speed as well as accuracy. However,a drawback of the method
is the impact on computational speed when extending the higher dimensional spaces, such as with
the multifactor copula models. However, due to the “embarrassingly parallel” nature of the algorithm,
the COS method can be optimized further with the help of data parallelism concepts such as the GPU
device. The future master thesis will try to address the identified problem. In particular, with the help
of a few preliminary numerical tests in Chapter 4, the feasibility of tackling this problem was justified
and further study aims to address the existing challenges. The work will be performed with the coop­
eration of ING’s Quantitative Risk Analysis division within the Structured Products and Quants team.
Corresponding research questions, goals and approach stated in this chapter are guidelines for the
remaining part of the master thesis.

5.1. Discussions
This section reflects on some points of the thesis. We combine this with some directions for further
research.

5.1.1. Factor Copula models
Our current numerical experiments utilized a straightforward implementation of the single factor Gaus­
sian copula correlation structure. However, many different model configurations are possible. First it
would be interesting to compare the results from the factor model in our situation, for example with the
Gaussian­t model (Ref. 3.1.2) applied by [29]. Next, in the DRC model there are different systematic
factors we could have applied for modelling the capital charge. The ’sector’ and ’country’ factor are
the two systematic factors the BCBS suggests. Since, we have only considered a single systematic
factor so far, the model doesn’t mimic real life portfolios. Experiments with multifactor copulas allow for
a more detailed specification of correlation structure between obligors.

5.1.2. Parallelization Strategies
As mentioned in 4.3, the preliminary GPU implementation of the COS method with smaller values of 𝐾
is not really advantageous. The loss values already are within the required tolerance. However, there
are subtasks within the algorithm which can be optimized. We first concentrate on our computation of
the characteristic function 𝜙𝐿, which is essentially a numerical integration routine (Ref. eqn. (3.13)). As
we discussed briefly in Section 2.5.3, the numerical integration operation can be divided across threads
and finally using reduction, a resulting summation can be computed. This requires to be able to use
multiple thread blocks and each thread block reduces a portion of the array in a tree based approach.
Here, we omit more implementation specific details here for brevity. The well known bound for time
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complexity of a parallel sum reduction [19] is known to be O(𝑀/𝑃 + log2 𝑃), where 𝑀 in our situation
becomes the number of quadrature points and 𝑃 is the number of threads. Our next approach will be
to vectorize the calculation of the characteristic function itself. Recall from eqn. (3.13) the computation
as follow,

𝜙𝐿(𝑧; 𝜔) = ∫
ℝ
𝑓𝑍(𝑧)

𝑁

∏
𝑛=1

[1 + 𝑃(𝜖𝑛 ≤ 𝛼𝑛(𝑧𝑛))(𝑒𝑖𝜔𝑙𝑛 − 1)]
⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝

𝑑𝑧.

The product term, as demarcated above can be divided over threads. Analogous to a parallel summa­
tion, the multiplication operator is also linear, hence each process can compute a single multiplicand
independently. This approach has the advantage of scaling over the number of obligors 𝑁, which can
significant performance upgrades in cases of large portfolios. Interesting results should be expected.

5.1.3. Principal Component Analysis
Finally, another direction for further research is the topic of dimensionality reduction. Principal compo­
nent analysis (PCA) aims to reduce the dimensionality of highly correlated data by finding a small num­
ber of independent linear combinations that approximately captures all the characteristic behaviours
of the original data. In the same vein as factor copula models although PCA is not a model in itself,
it can be used as a way of constructing appropriate factors for a factor model. The key mathematical
result behind the technique is the theorem of spectral decomposition of normal matrices. Although this
is a popular approach largely discussed in the literature, our aim will be use the principal components
computed, in our implementation of our efficient data­parallel version of the factor copula based COS
method. We will contrast our approaches from the existing approaches with the PCA optimized COS
implementation and detail our findings.

5.2. Research Questions
As a final note, we formulate our research questions based on the contents of this report. In the course
of this MSc project, the aim is to address these main research questions.

• We have noted the computational complexities of the “workhorse” Monte Carlo methods and the
COS method in computing large portfolios with high dimensional correlated structures. Prelimi­
nary results have shown a GPU parallelized version improve the baseline performance. But, a
related question remains: can we find the optimal parallel implementation for this baseline model?

• As outlined in the previous subsections, the parallel optimization of the COS method can be
achieved by different approaches. Which will be the most appropriate approach to reduce the
time complexity or does the most efficient approach include a careful combination of them all?
What could be understood about of performance as well as in the accuracy of the parallel version
over the existing serial routine ?

• Our final aim is to compete with the existing models with the literature. Hence, an important
question is: do the performance metrics improve upon the current industry standard models like
the Monte Carlo method?
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