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Abstract

In light of our depleting fossil fuel reserves and the relatively ‘cheap’ extraction of oil and in spite of the highly
nonlinear nature of reservoirs, waterflooding has become big business. In recent times, the use of numerical
reservoir simulation has not only become possible but has increasingly been used in the petroleum indus-
try in the forecasting of output and money to be made. However, this numerical modelling and automated
history matching is not without its problems. The inner workings of sophisticated commercial reservoir sim-
ulators are often taken for granted, i.e., “black boxes”. These simulators are constructed around a numerical
method, with its advantages and disadvantages. Herein, the input settings play a role in the stability and
precision of results. For example, the chosen iteration method, grid spacing and time step size or even the
choice of iteration parameters, all based on insufficient data, leads simulators to be unreliable and inefficient.
Moreover, even under the assumption that such “black boxes” are able to produce a true prediction, this is
entirely conditional on correctly establishing the current state and conditions. Thus, practitioners have many
global settings given, many of which inaccurate. These many uncertainties can lead to costly mistakes. The
aim of this study therefore: is to develop a tool that can quantify the uncertainty of a core flood model and a
parameter estimation routine. Specifically, it investigates whether, given limited incoming data, an uncertain
parameter can be estimated and then used to simulate and quantify the uncertainty of the water saturation
and oil pressure in the core sample. In this context, we question if it be used to provide a history match of the
core sample. To see how the uncertain input parameters are reflected in a model output, the tool, based on,
the IMPES scheme simulates the two-phase flow, and the Ensemble Kalman filter (EnKF) to estimate the pa-
rameters. Building on the base twin experiment, a variety of twin experiments were performed to understand
the parameter estimation, by presenting and visualizing the uncertainties in the data and states. We investi-
gate the use of the EnKF for history matching and ways to improve are also explored. Based on the results of
this study, it is concluded that the Ensemble Kalman Filter is capable of effective parameter estimation. With
modification, it can also be used for history matching and uncertainty quantification. It clearly suggests that
the utility of numerical modelling and automated history matching will continue to make contributions to
the success of the exploration and extraction of fossil hydrocarbons.

K.C. O’Hara
Delft, December 14, 2021
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Introduction

Throughout history, humankind has relied on hydrocarbon fuels, initially as a source of light and heating.
Then the advent of the industrial revolution, exchanged human labor for the combustion engine and more.
Even in today’s world, hydrocarbons are cardinal to the global energy supply and underpin the global econ-
omy. With the depletion of fossil hydrocarbon reserves and the resulting climate change, new solutions will
need to be sought out. Currently however, world-wide we obtain approximately 80% of our energy from
hydrocarbons[2]. A large variety of fossil energy hydrocarbons are available with crude oil being the largest
source of energy consumption. In the year 2017 crude oil accounted for approximately 32% of total energy
produced worldwide[2].

An Introduction to Oil Extraction
Oil extraction is no easy task. Initially, a team of petroleum geologists survey the structural and sedimen-
tary specifics of the earth’s rock as well as seismic data in a designated area. Their goal is to locate possible
petroleum reservoirs, as well as pinpoint the best drill site. Crude oil is typically found in deserts, arctic areas,
river deltas and continental margins offshore. More specifically, it is found in subsurface cavities or struc-
tural traps in reservoirs between layers of impermeable rock. There are various types of impermeable layers
between which we find these fossil hydrocarbon reservoirs: structural geologic structures in deformed lay-
ers of rock like faults and folds whose geometries permit retention of hydrocarbons as well as strati-graphic
traps formed by changes in rock type or pinch-outs, unconformities, or sedimentary features such as reefs.
Different layers of rock, can have different amounts of porosity. Oil flows easily through a layer of sandstone,
for example, but would be trapped beneath a layer of shale. It is thus both this permeability and porosity
that are important in oil extraction [5]. To extract this oil, a hole is drilled into the earth with an oil rig to
create a production well. To maintain structural strength a steel pipe is then inserted. To allow the oil to
pass through the base, holes are made at the bottom of the well. At the top collection valves are inserted to
maintain pressure during the pumping of the oil. If the well is correctly placed then oil will now start flowing
upwards moving from an area of high pressure to low pressure which can then be collected at the surface.
Pumps are installed at this point to facilitate extraction. This type of extraction is called primary extraction
and usually leaves 70%-85% of hydrocarbons in the reservoir[5, 10]. When this technique no longer yields
results, there are two more main oil extracting techniques: secondary and tertiary recovery, which may then
be employed to ensure optimum extraction of any fossil hydrocarbons. Tertiary recovery is expensive as it re-
quires significantly more infrastructure and capital, and is not relevant to this study, consult [10, 15] for more
details. Alternatively, secondary recovery extraction can be applied to retrieve the remaining oil which is still
tightly trapped in the underground reservoir because once pressure drops, there is less oil flowing out. The
most often used method in secondary recovery extraction is water flooding which involves drilling injection
wells into a reservoir to maintain pressure and push the oil out. That is, water is pumped into the reservoir to
increase the pressure difference. This will consequently, flood the reservoir and help to push the remaining
oil to the production wells so it can be extracted. The flow of water and oil is called ‘flow in porous medium’.
35% to 45% of the oil in the reservoir can thus be extracted [10, 13, 15].

vii



viii 0. Introduction

Figure 1: Illustrating waterflooding technique of secondary recovery [19][24]

The entire process of oil extraction is not as easy as it seems. For one the pressure difference may be
hard to control when oil still flows naturally. Or extraction may be very difficult when the oil reservoir is in
hard to access places such as deep under the earth surface, or below the water in the ocean. It comes as no
surprise that multiphase-flow simulation results are used extensively as reservoir performance predictions
upon which to base economics for reservoir management decisions. However, accurate modelling requires
extensive knowledge of the domain, i.e the porous medium. Thereafter field measurements can be subject
to certain limitations. For example, permeability derived from well test data may be reduced by localized
formation damage (skin effects) and increased by fractures. As a result, laboratory data are used to support
field measurements. This data is gathered from Core Analysis experiments, which can be distinguished into 2
types: Routine (RCAL) and Special (SCAL). Special Core Analysis (SCAL) attempts to extend the data provided
by routine measurements to situations more representative of reservoir conditions. SCAL data is then used to
support log and well test data (field measurements). However, SCAL measurements are more expensive, and
are commonly only done on a small selected group of samples, or if a difficult strategic reservoir management
decision has to be made (e.g. to waterflood, or not to waterflood). None the less, even after extensive lab
experiments, reservoir properties will remain uncertain. In data assimilation, one combines the information
present in the observations and an existing numerical model, as well as the uncertainties in the observations
and the models, to produce more realistic results. In petroleum engineering this process is known as “history
matching”. Regardless, given that numerical models are only crude approximation of reality, together with
uncertain properties and data, subsequent predictions of the reservoir production are anything but certain.
But what does this actually mean to be certain or uncertain?
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What is Uncertainty?
During any type of uncertainty quantification, uncertainty is subdivided into different types. In the Bayesian
framework, the notion of uncertainty is divided into 2 types:

• Aleatoric: uncertainty about an inherently variable phenomenon.

• Epistemic: uncertainty arising from lack of knowledge.

Here the epistemic uncertainty can then be further subdivided into 2 sub-types:

• Model Form: uncertainty that the model is ‘structurally correct’.

• Parametric: uncertainty about the correct values to use for particular parameters in the model.

For example, a pressure sensor may have a prescribed accuracy which although deterministic has a very
slightly variability in measurements, which we characterize as noise. One could argue, given enough infor-
mation about the sensor and its environment then this variability could be characterized by a distribution
and the uncertainty would be epistemic and not aleatoric.

Problem Statement
Nowadays, reservoir engineers regularly rely on mathematical modelling. However, these models are simple
representations, and as such contain errors and uncertainties resulting from assumptions, approximations
and inaccurate parameterizations of physical phenomena. These errors and uncertainties propagate into
subsequent forecasts. Moreover, the very data used to calibrate model forecasts are imperfectly measured
and only at a few locations on a domain. It is thus the reduction of uncertainties that is key to the success of
reservoir modelling and consequently to oil exploration, e.g. those pertaining to uncertainty quantification
(UQ) in core flood simulations. In this thesis, the aim is to develop a tool that can quantify the uncertainty
of a core flood model and a parameter estimation routine. We assume our two-phase flow model G to be
perfect. That is, there is no aleatoric uncertainty present in our nonlinear physical model, G . So, when using
the true value of a parameter λ=λtr ue , it can be used to generate synthetic data d that reflects “reality”:

dt =G (dt−1;λtr ue ) (1)

However, this synthetic data only consists of the oil pressure in the first and last “control volume”, not the
entire domain,Ω. As such, Observation Operator H is used to relate the data d to the forecasts ψ:

dt =H (ψt )+ε (2)

Here we assume the measurement noise ε ∼ N
(
0,σ2

po

)
. It could be decried that the noise in (2), which is

purely aleatoric, should also be present in the synthetic model. However, we assume that this noise is purely
the result of the measurement process and not the model. That is, forecasts, ψ, are generated using the
numerical (IMPES) simulator, and are always assumed to be deterministic with no stochastic uncertainty.
Then using the initial condition, which is assumed to be exact, ψ0, in the deterministic model:

ψt =G (ψt−1;λ) (3)

Here, λ is the unknown parameter, an important component of relative permeability and capillary pressure
models, both of which heavily impact two-phase flow. This parameter is uncertain, and so introduces para-
metric uncertainty into the forecasts, ψt . As such, we wish to understand the effect of the uncertainty of the
unknown parameter, λ, on the model, G .
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Research Objectives
The aim is to develop a tool that can quantify the uncertainty of a core flood model and a parameter estima-
tion routine. We are interested in modelling the two-phase flow in porous media given a relative permeabil-
ities and capillary pressure model, which determines the flow of oil and water through a Core sample. It was
found that the following intermediate objectives have to be gained in order to achieve the major goal:

1. analyze the features and physical phenomena which influence two phase flow. From which we con-
struct a mathematical model that simulates two-phase flow and investigate the effect: of the inherent
nonlinearity in two-phase flow forecasts, as well as, the intractability and ill-posedness of estimating
parameters of two-phase flow models. We explore how the uncertainty of the unknown parameter λ
introduces dispersion into the forecast of the two-phase flow.

2. introduce history matching, study the data assimilation framework and implement the Ensemble Kalman
filter (EnKF). Discuss some of the foreseeable flaws of the EnKF: probabilistic, numerical, and physical;
specifically the issues with nonlinearity as well as conservation of mass.

3. construct an experimental framework from a base twin experiment and determine the behavior of the
EnKF wherein the effects of the initial sample, ensemble size, simulator accuracy (via grid refinement)
and measurement noise are explored. We closely investigate the issues with nonlinearity as well as
conservation of mass.

4. investigate the applicability of the EnKF as a history matching algorithm, whether it is capable of pro-
viding a physically accurate estimate, and if we can amend issues that we encounter. We perform twin
experiments to compare findings.

5. investigate whether data affect the history matching. Specifically, the quantity, timing, location and
type of data.

Thesis Outline
A summary of the chapters used to perform this analysis is listed below:

Chapter 1 provides the background necessary to analyze the main effects which influence core flooding perfor-
mance, and we construct a mathematical and numerical model simulating the two-phase fluid flow.
Preliminary investigations are conducted to better understand some of the geophysics involved, whilst
also introducing the problem of the uncertain parameter, λ. In addition, we discuss the non-linearity
of the model, the ill-posedness of the parameter estimation problem, and the initial parameteric un-
certainty.

Chapter 2 introduces the history matching problem. We start with the general data assimilation model, in which
we define the observable state and data, as well as any uncertainties or parameterizations. Using Bayes,
we then proceed to derive the associated cost function in order to define the base history matching
algorithm: the ensemble Kalman filter. We then analytically investigate the effect of the static state
parameterization. We conclude by defining the performance metrics that will be used throughout this
thesis.

Chapters 3 from a base twin experiment multiple experiments are conducted using the EnKF in order to determine
if it is suitable as a parameter estimation and history matching routine: we aim to understand if, given
the available measurement data, the EnKF is capable of providing a parameter estimate. In the second
section, we investigate the effect of the initial sample given the initial mean guess and spread. In doing
so we aim to discern their effects on the final parameter estimate. In the third section, we will check
the robustness of the EnKF by mis-specifying the value of a fixed laboratory environment-controlled
parameter. The last section focuses on how some filter settings such as ensemble size, the measurement
noise and the grid size may affect the final estimate.

Chapter 4 several twin experiments are conducted, we evaluate their outcome, and aim to introduce and explore
solutions for some of the problems that may be encountered. In addition, we evaluate the effects of the
data on the final estimate.

Chapter 5 we present an evaluation and conclusions are drawn. We query the use of the EnKF, EnKC: successes,
failures, problems, and solutions examined as well as the overall approach. Recommendations are
made for further research and conclusions drawn regarding the probable workability and efficiency of
these filtering techniques in parameter estimation and history matching in core flooding.



1
Modelling Core Flooding

When determining the suitability of a reservoir for waterflooding there are a number of things that need to be
considered. Therefore, the first step is to determine the parameters, and their uncertainties, which determine
the flow. Given enough knowledge of the reservoir properties, the underlying physical processes taking place
in the reservoir can be modelled. This model can then be solved to estimate or even predict the state of the
reservoir. Due to the vast complexity of reservoirs, such models must be solved numerically and as such there
are many commerical solvers available. However, even with the most sophisticated solver, if anything that
characterizes the reservoir is misspecified or uncertain, the resulting solution will not represent the reservoir
of interest. Due to the inherent nonlinearity of the reservoir physics, it may not even be feasible to directly
invert simulations to identify where inaccuracies originate.

In this chapter, we begin in the first section by reviewing the known domain properties of the core sample
as well as the known properties of the two phases present, i.e. oil and water. We then construct a physical flow
model applying the appropriate physical constraints and use physical parameterizations when necessary. We
then present a numerical formulation (IMPES) and identify the necessary physical initial and boundary con-
ditions. Finally, we define the physical parameterizations wherein one parameter λ is unknown and needs
to be estimated. From this, in the second section, we construct our own numerical solver, detailing the nec-
essary assumptions to be physically accurate. We then run some preliminary simulations to investigate the
inherent nonlinearity of the reservoir physics and subsequently the effect of the uncertainty of λ. We con-
clude the chapter with a short summary and discussion of the numerical solver.

1.1. Two-Phase Flow Model
We begin by stating in the first section physical properties of the domain/rock and then the two phases (oil
and water), the second section covers the governing physical model as well as the derived implicit formula-
tion and physical parameterization that we focus on in this work. Take note all subsequent computations are
handled in SI units. If one knows the relevant physical data such as rock and fluid properties, it is possible to
predict the resulting water and oil production through a simulation model.

1.1.1. Domain Properties
The reservoir is a porous medium whose pores are filled with water and hydrocarbons. How far these pores
can be filled with oil or water is determined by the medium’s: absolute permeability, porosity, the reservoir
pressure, and the inflow speed. However, it is prohibitively expensive and risky to perform experiments on
the entirety of the reservoir as such small cylindrical samples are taken. These core samples are taken from
an existing well and then used to determine the reservoir medium’s properties. In this thesis, we assume that
our domain is that of an in-compressible homogeneous core sample.

In this subsection we define the domain properties of the core sample. As “there are some quantities
for which the unit standards have not been clarified to the satisfaction of all parties”[34], we converted all
properties into SI units for consistency and provide a short description of each one.

1



2 1. Modelling Core Flooding

Material Parameters Notation Value Measured Unit Domain SI Value SI Unit
Absolute Permeability K 0.5 Dar c y 1 R≥0 4.9346165E-13 ≈ 5E-13 m2

Porosity φ 0.3 NA2(%) [0,1] 0.3 NA(%)
Core length L 6 cm R≥0 6E-2 m

Core cross-section A 11.4 cm2 R≥0 11.4E-4 m2

Injection Rate R = A · c 0.57 cm3/s R≥0 5.7E-7 m3/s
Inflow Speed c 0.05 cm/s R≥0 5E-4 m/s

Reservoir Pressure pr 1 bar R≥0 1E5 kg /(ms2)

Table 1.1: Core Sample Properties in SI units

Absolute
Permeability

: The measurement of the permeability, or ability to flow or transmit fluids through a rock, conducted
when a single fluid, or phase, is present in the rock.

Porosity: The percentage of pore volume or void space, or that volume within rock that can contain fluids.

Core length
cross-section

: A complete section of a conventionally drilled core. The section may be up to about 0.6m in length, with
typical core diameters lying between 4.4-13.3 cm. The term full-diameter core is also used, but gener-
ally refers to shorter sections of about 15cm. The advantage of whole core analysis is that it measures
properties on a larger scale, closer to that of the reservoir.

Injection Rate: Volume of fluid injected in a well during hydraulic pumping.

Reservoir
Pressure

: The pressure of fluids within the pores of a reservoir, usually hydrostatic pressure, or the pressure ex-
erted by a column of water from the formation’s depth to sea level.

1.1.2. Phase Properties
Typically there are many different types of hydrocarbons found in a reservoir. However, a full multi-component
model is usually prohibitively expensive computationally. Therefore simplifications are usually made to the
reservoir fluid flow model in order to obtain a computationally acceptable numerical model. A commonly
made assumption is to model phases by very limited number of chemical components. In this thesis we only
make use of 2 phases, oil and water. The primary variables or dynamic state variables are the 2 phase pres-
sures and saturations. In addition, we assume the phases to be viscose and in-compressible, i.e. constant
density. In this subsection we first state a generic ι phase’s physical properties, which in order to be consis-
tent, are all converted into SI units and provided with descriptions. Then we summarize the properties in SI
values of the two phases of interest, i.e. oil and water.

ι Phase Parameters Notation Measured Unit Domain SI Unit
Viscosity µι centi Poi se R kg /(m/s) = Pa · s
Density ρι kg /m3 R≥0 1kg /m3

ι Pressure p ι bar R≥0 kg /(ms2)
ι Saturation p ι (%) [0,1] (%)

Residual ι Saturation Sr ι (%) [0,1] (%)

Table 1.2: SI unit conversion table for a ι phase

Viscosity: The resistance to flow, defined as the ratio of shear stress to shear rate.3

Density: The mass per unit of volume of a phase.

ι Pressure: The force per unit area of a phase on the medium.

ι Saturation: The fraction of the void volume of a porous medium filled by this phase

Residual
ι Saturation

: The minimum fraction of the void volume of a porous medium filled by this, at which point a phase
ceases to flow.

The following physical properties will be fixed during entire twin experiment:

ι Phase Viscosity Density Residual ι Saturation Initial ι Saturation
[ι ∈ {w,o}] (µι)[kg · s/m] (ρι)[kg /m3] (Sr ι)[%] (S0

ι )[%]
Water (w) 1E-3 1000 0.2 0.29

Oil (o) 1E-2 730 0.2 0.71

Table 1.3: Fixed physical properties of oil and water phases

3Note that in older texts may not taken into account that “the terms poise, centipoise, stokes, and centistokes are no longer used . . . ”[34].
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1.1.3. Modelling flow in Porous Media
A mathematical model is simply a set of equations which describe certain physical processes occurring in
the reservoir. In nearly all cases of interest these equations express conservation of some quantity which is
flowing or being transported through the reservoir. The term two-phase flow denotes here the simultaneous
movement of two or more immiscible phases through a porous medium.

Here we consider waterflooding to be in a one dimensional domainΩ, where at one end water is injected,
in order to drain out oil. In this thesis, we will assume that this simplistic model is exact and mirrors the truth.
That is, given the correct domain and phase properties, initial conditions, and subsequent parameterizations
and conditions, the model generates the true state.4

In what follows is the initial derivation of a two-phase flow model of in-compressible fluid flows through
the porous medium which is given by the transport equations for the phase masses, i.e. oil and water (w=water,
o=oil).

∂ϕρw Sw

∂t
=−∇· (ϕρw v w )

(1.1a)

∂ϕρoSo

∂t
=−∇· (ϕρo vo)

(1.1b)

wherein Darcy’s law relates the volumetric velocity to the pressure gradient:

qo =−kr o

µo
K ·∇po =−λo ·∇po (1.2a)

q w =−kr w

µw
K ·∇pw =−λw ·∇pw (1.2b)

These equations are written in terms of the fluid phase pressures (po and pw ) and the fluid phase volume
fractions (the saturations So and Sw ), which need to be solved from these equations given appropriate data.
The actual velocities v ι are related to the Darcy (or superficial) velocities q ι by q ι =ϕv ι . Here we only state:

λι :=−kr ι

µι
K

as the transmissibility for a given ιphase. Herein kr ι is the relative permeability of phase ι see subsection 1.1.5.
In addition, oil, water, rock are assumed to be in-compressible, and hence the porosity and phase densities
are considered constants. As such the density terms can dropout of the model:

ϕ
∂Sw

∂t
=∇· (λw ·∇pw )

(1.3a)

ϕ
∂So

∂t
=∇· (λo ·∇po)

(1.3b)

Since the two fluids jointly fill the void space, we have :

Sw +So = 1 (1.4a)

Because of surface tension and the curvature of the interfaces between the two fluids within the small pores,
the pressure in the nonwetting fluid is higher than the pressure in the wetting fluid. The difference between
these two pressures is the capillary pressure, pc :

po −pw = pc (1.4b)

Notice that the water pressure can be larger than the oil pressure, allowing the capillary pressure to produce
negative pressures. This observation implies the following properties:

Capillary Pressure
Notation Measured Unit Domain SI Unit

pc bar R kg /(ms2)

Table 1.4: SI unit conversion table for Capillary Pressure, pc

In layman terms, the rock can “suck” and hold onto fluids5.

4Later in Chapter 2 we will use this model to generate synthetic data and simulated forecasts.
5Like a dry kitchen sponge absorbing liquid.
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1.1.4. Implicit Pressure Explicit Saturation Formulation
Now we wish to use our constraints (1.4a), (1.4b) to reformulate the (1.3a),(1.3b) into a Pressure-Saturation
Formulation.

Summing together (1.3a) and (1.3b)

ϕ

(
∂Sw

∂t
+ ∂So

∂t

)
=∇· (λw ·∇pw )+∇· (λo ·∇po)

By the derivative addition the LHS becomes

ϕ
∂

∂t

(
Sw +So)=ϕ∂1

∂t
= 0 =⇒ ∇· (λw ·∇pw )+∇· (λo ·∇po)= 0 (1.5)

Now we use the capillary pressure pc = po −pw and replace pw = po −pc in (1.5):

∇· ((λo +λw ) ·∇po)=∇· (λw ·∇pc) (1.6)

This is known as the Pressure Equation which needs to be solved implicitly! Hence, again using pw = po −pc

into (1.3a) we obtain the Saturation Equation

φ
∂Sw

∂t
=∇· (λw ·∇po)−∇· (λw ·∇pc) (1.7)

Thus from (1.6) and (1.7) we see that our formulation is only in terms of Sw , po . Hence, the only boundary
conditions required are:

po(t , x = L) = pr (1.8a)[−λo ·∇po −λw ·∇pw ]
(t ,x=0) = c (1.8b)

Sw (t , x = 0) = 1 (1.8c)

Typically, we would assume that po(t = 0, x) = pr . However, given that pc = f (Sw ) we are only required 1
initial condition:

Sw (t = 0, x) = 0.29

where using the pressure equation, (po)0 is implicitly (re)computed as a function of (Sw )0. Given that we
ignore any change of the oil and capillary pressures over the time step, the pressure equation is said to be
elliptic in nature. Whilst the saturation equation may be either parabolic or hyperbolic, depending on the im-
portance of the capillary pressure term relative to the convection term. When capillary pressure effects dom-
inate it will behave parabolic-ally. Whereas when capillary pressure effects are small or absent or, more im-
portantly sometimes, when velocities are large, then the convection term dominates, and thus it approaches
a first-order nonlinear hyperbolic equation.

1.1.5. Physical Parameterizations
In water flooding, very complex physical and chemical phenomena occur between the reservoir rock and
fluids. These phenomena are often dependent upon the direction of change in wetting phase saturation.
Previously in (1.2) and (1.4b), we stated the relative permeability and capillary pressure as parameters of the
mathematical model, without stating their properties or physical interpretations. Here we will parameterize
these physical phenomena as functions of the saturation, but will also make use of (hyper) parameters.

Specifically, in this thesis, we use the Brooks-Corey[8] framework to define the relative permeabilities
and the capillary pressure. In addition, we assume that one such parameter, i.e. the Corey parameter λ, is
uncertain and needs to be estimated. In this subsection we first present the physical parameterizations of the
Capillary Pressure and Relative Permeabilities before then introducing the uncertain Corey Parameter λ and
under which uncertainties.

Recall that previously we defined the capillary pressure as the difference between the oil and water pres-
sure. However, the Brooks-Corey formulation requires the knowledge of pb , a measure of the maximum pore-
size forming a continuous network of flow channels within the medium:

pc = pλ
b S

−1
λ for pc ≥ pb (1.9)

Instead of including an additional unknown pb , we take as an empirical fact, the capillary pressure is a unique
function of saturation:

po −pw = pc (S)
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Subsequently, we turn to a Leverett J-function [29], a dimensionless function of water saturation, to model
the capillary pressure, pc , we employ the Leverett J-function, a dimensionless function of water saturation:

J (S) = pc

σcosθ

√
Kφ−1

Surface
Tension

(σ): the property of the surface of a liquid that allows it to resist an external force, due to the cohesive nature
of the water molecules.

In general, the J-function would also depend on the contact angle θ with the rock surface, but in this thesis
we assume a one dimensional domain and so only effects parallel to the domain are relevant. That is, we
ignore the contact angle between phases, such that the surface tension is equivalent to the interfacial tension
between oil and water phases, which is the force per unit length. As a result θ = 0:

pc =σ
√
φK −1 J (S)

This together with (1.9) implies:

pc =σ
√
φK −1 · J 0S

−1
λ

Leverett
Threshold

(J 0): is the relative pressure necessary to start displacement of the nonwetting phase (e.g. oil) by the wetting
phase (e.g. water)

the following parameters are taken as constant:

Parameter: Notation Value Measured Unit Domain SI Value SI Unit
Surface Tension σ 30 D yne/cm R 30E-3 kg /s2

Leverett Threshold J 0 1 NA R 1 NA

Table 1.5: Capillary Pressure Constant Parameters in SI Units

Relative permeabilities kr ι are required when several phases in the porous media are modeled. If several
phases are flowing simultaneously through a porous medium, then the flow of each phase is slowed down
by the resistance of the pore structure and additionally by the presence of the other phases. Typically rela-
tive permeabilities must be determined empirically or experimentally for each particular porous medium of
interest. However, the literature is rich on analytical expressions for the relationship between relative perme-
abilities and the saturation of the wetting phase [12]. These expressions were usually obtained from simplified
porous media models. For this reason, the choice of parameterization is one of finding the best fit.

However, irreducible (water) saturations can vary from approximately 5% to almost 100%. If the rock
wettability is known from offset pool data, some limits can be set on the saturation[6]. This can then be used
to re-scale the saturation. Thus, in this thesis, we make use of the normalized water saturation:

Sn = Sw −Sr w

1−Sr o −Sr w

In this thesis we apply the Brooks-Corey model for the relative permeabilities and a Leverett J-function
for the capillary pressure:

pc (Sw ) =σ
√
φK −1 · J 0S

−1
λ

n (1.10a)

kr o = (1−Sn)2
(
1−S

2+λ
λ

n

)
(1.10b)

kr w = S
2+3λ
λ

n (1.10c)

Clearly, all three parameterizations depend on the saturation and uncertain Corey parameter λ. Notice that
the current parameterizations of the relative permeabilities are a power law of the normalized saturation.
Recall that for a power-law x−k has a well-defined mean x ∈ [1,∞) only if k > 2, and it has a finite variance
only if k > 3. For example in the case of kr w , for the normalized saturation to have a well defined mean we
need λ <−2 or λ > 0, and to have finite variance λ > 0, [4]. This is important to note, as it maybe one of the
sources of failure when estimating values of λ in the region of λ ∈ (0,2+ε), for some ε> 0.

In order to get some intuition for the Corey Parameterλ, in the figure below we demonstrate the sensitivity
of the capillary pressure and relative permeabilities given different values of λ.
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Figure 1.1: Brooks-Corey Curves

The Corey Parameter λ is an index of pore-size distribution and as such is dimensionless. Rather, Brooks
and Corey “reasoned that for media having a uniform pore-size, the index would be a large number that theo-
retically could approach infinity. On the other hand, media with a very wide range of pore sizes should have a
small value of λ that theoretically could approach zero. They found that typical porous media, have values of
λ≈ 2”[12]. Now, λ is empirically measured and is simply a shape parameter. This typically is obtained from
measured data either by optimizing to analytical interpretation of measured data, or by optimizing using a
history matching procedure. In this thesis, we take the Corey Parameter λ to be uncertain and will be esti-
mated via a history matching procedure using synthetic data. That is, we will sample data generated from the
same physical model as the history matching procedure but with a true Corey value, λ = 2.5. In this thesis,
unless explicitly stated otherwise, the true Corey parameter value is λ = 2.5. Experiments show for the case
of naturally occurring sand deposits, λ is often about 5 or 6, especially if the material is thoroughly mixed
and densely packed[12]. As such in this thesis, the history matching procedure we will take an mean guess,
E
[
λ0

]=λg uess = 6.5. However, for soils in an undisturbed state λ< 1 is not uncommon[12]. For this reason in
this thesis we assume that the range of likely values for λ ∈ (0,10), and as such assume that the initial variance
of Var

[
λ0

]= E[
(λ0 −bound)2

]=σ2
λλ

= 27.5.

Corey Parameter Notation Value Domain Extra information
True Value λ 2.5 [0,∞) Dimensionless

Initial Guess λg uess 6.5 (0,10) σ2
λλ

= 27.5

Table 1.6: Physical Parameterization Properties in SI Units

Later when we apply the history matching procedure, we will need an ensemble of initial guesses for λ.
Given that in theory λ ∈ [0,∞) with the aforementioned anecdotale evidence, (see [12]), we select a distribu-
tion whose properties reflects this best. That is, we assume λ∼Gamma (k,θ). From the method of moments

for the gamma distribution we compute; the scale parameter θ = σ2
λλ

λg uess
, and the shape parameter k = λg uess

θ .

In this thesis we will reuse this method of computing the gamma distribution parameters to sample an initial
ensemble of λ:
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Figure 1.2: 100 samples of unknown parameter λ. (green) initial guess/mean, (yellow) mode, (red) true value

1.2. Numerical Discretization
Typically the geometry of a reservoir is not smooth or convex, and requires complex mesh generation software
to partition into control volumes. To guarantee an accurate solution of the simulation the control volumes
should be small enough to accurately represent the reservoir heterogeneities, but large enough to assure that
the computational time of the model stays within practical limits. In this thesis, we only deal with a cylindrical
core sample which can be modelled as a one-dimensional domain. In this section we will construct the finite
volume discretization used to solve the two-phase flow problem.

The one-dimensional domain [0,L] is discretized into Ng equal sized control volumesΩi , i = 1, . . . , Ng , |Ωi | =
∆x, using a cell-centered discretization with cell centers denoted by xi :

0 1 2 i− 1 i i + 1 Ng Ng + 1

x = 0

i− 1
2 i + 1

2

x = L

Sw = 1 (∼ 100%)

c

pr = 105 PaΩi

di = xi+1 − xi

Figure 1.3: Cell Centered Domain Discretization

In this thesis, unless stated otherwise, we will take there to be Ng = 50 Control volumes, all of which are
equidistant apart, di = d j , ∀1 ≤ i , j ≤ Ng .

1.2.1. Pressure Equation Discretization
Now we integrate the pressure equation (1.6) over the i th control volume (Ωi )

∫
Ωi

∇· ((λw +λo) ·∇po)
dΩ=

∫
Ωi

∇· (λw ·∇pc)dΩ

Applying Gauss’ Theorem ∫
∂Ωi

((
λw +λo) ·∇po) ·~n dΓ︸ ︷︷ ︸

I o

=
∫
∂Ωi

(
λw ·∇pc) ·~n dΓ︸ ︷︷ ︸

I c

(1.11)
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Note we upwind λi+ 1
2
= λi as the flow i → i +1. In addition, ∇p in the flux terms in approximated by a finite

difference scheme.

I c :=λw
i

( pc
i+1 −pc

i

di

)
︸ ︷︷ ︸

F
i+ 1

2

−λw
i−1

( pc
i −pc

i−1

di−1

)
︸ ︷︷ ︸

F
i− 1

2

=
[
λw

i−1
di−1

−
(
λw

i−1
di−1

+ λw
i

di

)
λw

i
di

]pc
i−1
pc

i
pc

i+1


and similarly

I o := . . . =
[ (
λw

i−1+λo
i−1

)
di−1

−
( (
λw

i−1+λo
i−1

)
di−1

+
(
λw

i +λo
i

)
di

) (
λw

i +λo
i

)
di

]po
i−1

po
i

po
i+1


Now we will first apply the right Dirichlet Boundary Condition (1.8a). To do this we must linearly extrapolate
the value on the boundary. In 1D we are able to expand a Taylor series around Ng + 1

2 to Ng in order to find a
first order accurate boundary condition. That is,

po
Ng

= po
Ng + 1

2
− ∂po

∂x

∣∣∣∣
Ng + 1

2

·
(dNg

2

)
+O

((dNg

2

)2)
∂po

∂x

∣∣∣∣
Ng + 1

2

= 2

dNg

(
po

Ng + 1
2
−po

Ng

)
−O

(dNg

2

)
Setting po

Ng + 1
2

= pr

=⇒ ∂po

∂x

∣∣∣∣
Ng + 1

2

= 2

dNg

(
pr −po

Ng

)
−O

(dNg

2

)
(1.12)

We apply the same technique on pc , however we assume that pc
Ng + 1

2

= 0 as otherwise pc →−∞ as So → Sor .

That is, in this thesis we are only interested in the case of drainage, and so imposing this conditions on the
capillary pressure we avoid imbibition. Then replacing these into the flux terms:

I o := 2

dNg

[(
λw

Ng
+λo

Ng

)(
pr −po

Ng

)]
− (
λw

N−1 +λo
N−1

)( po
Ng

−po
Ng −1

dNg −1

)

=
[ (

λw
Ng −1+λo

Ng −1

)
dNg −1

−
( (
λw

Ng −1+λo
Ng −1

)
dNg −1

+
2
(
λw

Ng
+λo

Ng

)
dNg

)][
po

Ng −1

po
Ng

]
+

2
(
λw

Ng
+λo

Ng

)
pr

dNg

and

I c := 2

dNg

[
λw

Ng

(
0−pc

Ng

)]
−λw

N−1

(
pc

Ng
−pc

Ng −1

dNg −1

)

=
[
λw

Ng −1

dNg −1
−

(
λw

Ng −1

dNg −1
+

2λw
Ng

dNg

)][
pc

Ng −1

pc
Ng

]

Second we apply the left Neumann Boundary Condition (1.8b), which states that the total Darcy Velocity is
constant, c, at the inlet (i.e. x = 0):

c = q =qo +q w =−λo ·∇po −λw ·∇pw =−(
λw +λo) ·∇po +λw ·∇pc

Hence, (λw +λo) ·∇po =λw ·∇pc − c. Thus, the first control volume:

I o :=(
λw

1 +λo
1

)( po
2 −po

1

d1

)
−

[
λw

0

(
pc

1 −pc
0

d0

)
− c

]
and

I c :=λw
1

(
pc

2 −pc
1

d1

)
−λw

0

(
pc

1 −pc
0

d0

)
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Notice how at the inlet, the capillary pressure terms in I o and I c cancel each other out. This implies that the
left Dirichlet condition (1.8c) is not relevant to the pressure equation and results in the first row terms:

I o :=
[
−

(
λw

1 +λo
1

)
d1

(
λw

1 +λo
1

)
d1

][
po

1
po

2

]
and

I c :=
[
−λw

1
d1

λw
1

d1

][
pc

1
pc

2

]
− c

Hence the resulting Matrix System:

T ~po =M ~pc +~b where~b =
−c,0, . . . ,0,−

2
(
λw

Ng
+λo

Ng

)
pr

dNg

ᵀ

(1.13)

where M and B are tridiagonal symmetric matrices with σ(T ) ⊂ R−1, σ(M) ⊂R−1. Since pc
i = f (Sw

i ), then

M ~pc +~b = ~B(( ~Sw )n , x) ∈RNg :

T ~po =~B (1.14)

This can then be explicitly solved for ~po , for example by Gaussian elimination. In this thesis, we relying
on Tensorflow’s built-in linear operators[3], which when run on a GPU relies on Nvidia’s CUDA cuSPARSE
library[33].... this library is closed source. So we encourage to read [21, 35, 40] for implementation inspiration.
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1.2.2. Saturation Equation Discretization
Similarly, we integrate the Saturation Equation (1.7) over the i th control volume (Ωi ):∫

Ωi

φ
∂Sw

∂t
dΩ=

∫
Ωi

∇· (λw ·∇po)
dΩ−

∫
Ωi

∇· (λw ·∇pc)dΩ

Now we apply Gauss’ theorem to the RHS and 1 point integration to the LHS

1

2
(di−1 +di )φ

∂Sw

∂t
=

∫
∂Ωi

(
λw ·∇po) ·~n dΓ︸ ︷︷ ︸

I p

−
∫
∂Ωi

(
λw ·∇pc) ·~n dΓ︸ ︷︷ ︸

I c

Firstly, as we are in 1D we only integrate in the x direction. In addition we upwind transmissibilitiesλα
i+ 1

2

=λαi ,

then first for the oil pressure, po :

I p :=
[
λw

i−1
di−1

−
(
λw

i−1
di−1

+ λw
i

di

)
λw

i
di

]po
i−1

po
i

po
i+1


Identically for the capillary pressure, pc :

I c :=
[
λw

i−1
di−1

−
(
λw

i−1
di−1

+ λw
i

di

)
λw

i
di

]pc
i−1
pc

i
pc

i+1


Now we apply boundary conditions. Beginning with the RHS Dirichlet Boundary condition, where, like the in
the pressure equation, we interpolate the pressure at the wall. For the oil pressure this results in po

Ng + 1
2

= pr .

I p :=
[
λw

Ng

(
2(pr −po

Ng
)

dNg

)]
−

[
λw

Ng −1

(
po

Ng
−po

Ng −1

dNg −1

)]

=
[
λw

Ng −1

dNg −1
−

(
λw

Ng −1

dNg −1
+

2λw
Ng

dNg

)][
po

Ng −1

po
Ng

]
+2

λw
Ng

dNg

pr

Here the pr term is sent to the boundary vector, ~f . However, in the case of the capillary pressure we instead
assume pc

Ng + 1
2

= pc
Ng

in order to avoid an unphysical“end-effect” and remain in a pure drainage scenario :

I c :=
[
λw

Ng

(
2(pc

Ng
−pc

Ng
)

dNg

)]
+

[
λw

Ng −1

(
pc

Ng
−pc

Ng −1

dNg −1

)]

=
[
λw

Ng −1

dNg −1
−

(
λw

Ng −1

dNg −1
+

2λw
Ng

dNg

)][
pc

Ng −1

pc
Ng

]
+2

λw
Ng

dNg

pc
Ng

Notice that to keep the discretization matrices of po and pc to be identical, we send this extra pc
Ng

term to the

boundary vector, ~f . Now we apply the LHS Boundary conditions, recall that

c =−λo ·∇po −λw ·∇pw ⇐⇒ λo ·∇po + c =−(
λw ·∇po −λw ·∇pc)

Now (1.8c) implies that λo
0 = 0:

=⇒ 0+ c =−(
λw ·∇po −λw ·∇pc)

and so very naturally we can impose (1.8b)

I p − I c =
[
λw

1

(
po

2 −po
1

d1

)
−λw

1

(
pc

2 −pc
1

d1

)]
+ c

=
[
−λw

1
d1

λw
1

d1

][
po

1
po

2

]
−

[
−λw

1
d1

λw
1

d1

][
pc

1
pc

2

]
+ c

Notice immediately that the resulting discretization matrices for po and pc are identical to M found in (1.13).
On a side note, it is easier and more numerically efficient to compute ∇pw =∇(po−pc ) such that M(po−pc ) =
I p − I c . We then result in the following system of equations:

Dφ
∂ ~Sw

∂t
= M

(
~po − ~pc

)+~f
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where

D = diag

(
1

2
(di−1 +di )

)
and ~f =

[
c 0 · · · 0 2

λw
Ng

dNg
(pr −pc

Ng
)

]ᵀ

Finally we apply Forward Euler time integration. The resulting system is known as the saturation equation:

~Sw n+1 = ~Sw n +δt φ−1D−1
[

M
(
~po n − ~pc n

)
+~f n

]
︸ ︷︷ ︸

E n∈Rn

where E n is can be seen as the evolution:

=⇒ ~Sw n+1 = ~Sw n +δtE n

1.2.3. IMPES Summary
In summary we formulated the two-phase flow in porous media model (1.1) as a Pressure-Saturation For-
mulation, and then discretized it using the Implicit Pressure and Explicit Saturation scheme (IMPES). This
results in three spatial discretization operators T, M ,D and two boundary vectors b, f which are used in the
following equations:

Pressure Equation:

T ~po =M ~pc +~b (1.15a)

Saturation Equation:

~Sw n+1 = ~Sw n +δtφ−1D−1
[

M
(
~po n − ~pc n

)
+~f n

]
(1.15b)

In industry, commercial solvers are often, if not always, “black boxes”. Thus, rather than giving an upper
bound to computational complexity of the IMPES scheme, we simply claim it has a complexity of O

(
χ(Ng )

)
.
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1.3. Preliminary Physical Model Investigations
In Section 1.1, we defined the domain, phase and parameterizations properties, yet we still are uncertain of
what observable phenomena each property is responsible for. Having just defined in Section 1.2 a numerical
model, we can now investigate the effects of each property. In this section we run some preliminary simula-
tions to investigate: the effects of the constant parameters, the inherent nonlinearity of the reservoir physics,
and the effect of the uncertainty of λ.

1.3.1. Effects of the Known (Constant) Properties
Below we investigate the effects of the domain properties φ,K , the phase properties Sr o ,Sr w ,µo ,µw , and the
parameterization properties, σ, Jo . To do this we recall that our base experiment has the following constant
properties:

φ= 0.3, K = 5E −13, Sr o = 0.2, Sr w = 0.2, µo = 1E −2, µw = 1E −3, σ= 30E −3, Jo = 1.0

Then from this base set we deterministically change a property value in order to investigate the subsequent
observable phenomena. What we hope to achieve is intuition for the overall nonlinearity of the physical
model. The results are plotted in Figure 1.4 below:

Figure 1.4: The effect parameters on the Water Saturation and Oil Pressure with Nt = 100, Nx = 50. Base Parameters: λ = 2.5, σ =
0.03, Jo = 1.0, φ= 0.3, K = 5e −13, Sr o = 0.2, Sr w = 0.2, µo = 0.01, µw = 0.001

Notice that we have omitted any changes to the domain dimensions, phase properties, or initial and
boundary conditions, i.e. A, L, µ∗, Sr∗, Sw 0, po 0, c, or pr . These are controllable properties that in a lab
environment are predetermined by the available sample, whilst we are only interested in the uncontrollable
properties specific to the relative permeabilities and capillary pressure. From the Figure 1.4 above we see the
following:

σ & Jo : Neither can be too large otherwise it results in oscillations present in both the water saturation and oil
pressure. Furthermore, we see that increasing σ diffuses the water saturation wavefront and keeps the
oil pressure low. Neither appear to be critical in this context.

φ : the value of φ inversely controls the speed of the profiles, e.g. φ increases the speed decreases.

K : Sw is quite insensitive to K , contrary to po which is highly sensitive.
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1.3.2. (Non)Linearity of the Physical Model
In the previous subsection, we observed the effects of the relationships between known (constant) properties
by how they affected the dynamic state variables. In this subsection we investigate the “inherent nonlinearity”
of the physical model caused by the Corey parameter λ. A very simple check for this is by verifying if it is a
linear mapping.

Definition 1.3.1 (Linear Mappings). A linear map f (x) is a function which satisfies both of the following prop-
erties:

• Homogeneity: f (ςx) = ς f (x) ∀ς ∈R
• Additivity: f (x + y) = f (x)+ f (y)

otherwise the mapping is termed nonlinear.

An example of such a linear mapping is integration. In addition, recall that compositions of linear map-
pings are also linear mappings. Thus, given that integrations are linear, if the spatial mean water saturation is
linear with respect to the unknown parameter then the water saturation is a linear mapping of the unknown
parameter itself. Specifically, we recall that the generalized arithmetic mean of a function is:

f̄ = 1

V ol (Ω)

∫
Ω

f dΩ

Thus in the case of the discretized Sw we can interpret this as:

E
[
Sw (λ)

]= 1

N

∑
Ωi

Sw
i (λ)

Hence, what is to be shown is that:

• E [Sw (ςλ)] = ςE [Sw (λ)]

• E [Sw (λ+δλ)] = E [Sw (λ)]+E [Sw (δλ)]

Thus, we run the simulator for given constants ς and δλ and take the difference of the LHS and RHS which if
linear should be 0:

• E [Sw (ςλ)]−ςE [Sw (λ)] = 0

• E [Sw (λ+δλ)]− (E [Sw (λ)]+E [Sw (δλ)]) = 0

In Figure 1.5, we plot the results of these tests at each time step with parameters ς= 5, δλ=+2 and then repeat
with their inverses ς= 1

5 , δλ=−2. What we see is that as the simulation progresses the difference increases.
Moreover, there appear to be 2 clear states with a third intermediary transition state. These reflect the 3 states
above where the two clear states are injection flood front formation and post-breakthrough, with the third
transition state being the pre-breakthrough to post-breakthrough transition. These can be identified by the
change in the growth of the difference. Furthermore, we see that for ς = 5 and δλ = +2 (i.e. larger values of
λ), there is a greater nonlinear effect than for ς= 1

5 and δλ=−2 (i.e. smaller values of λ).

Figure 1.5: Linearity of Physical Model
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Notice that E [Sw (δλ=−2)]) is not physically possible as δλ ∉ (0,∞) and interestingly renders the relative
permeability of the oil kr o = 0, for any level of water saturation. This means that relative to the water flow the
oil flow is relatively immobile. More concretely, kr o = 0 =⇒ λo = 0 then returning to the pressure equation:

=⇒ ∇· ((0+λw ) ·∇po)=∇· (λw ·∇pc)
=⇒ ∇· (λw ·∇(po −pc )

)= 0

6. Then replacing this into the Saturation Equation we see that:

φ
∂Sw

∂t
= 0

and so clearly the water saturation never changes regardless of the boundary conditions imposed. Physically
this means that changing the injection rate will not improve production. Rather by closely examining the left
boundary conditions we see that: [

0−λw ·∇pw ]
(t ,x=0) = c (1.16)

so the water pressure gradient will change with respect to the injection rate.

1.3.3. Intractability of Nonlinear Physical Model
Given that we have shown the physical model is nonlinear why is this even a problem? Recall currently our ob-
jective is to identify how the uncertainty of the parameter affects the dynamic state. With this knowledge our
main objective, estimating the unknown parameter, is equivalent to identifying the state dynamics from the
data. However, even in the linear case this is not trivial if the problem is “ill-conditioned”, that is if there does
not exist an unique solution. On the other hand,the case when a linear problem is “well-conditioned”, then
the problem can be solved by direct inversion, e.g. x = A−1b. However, as there does not exist a closed form
solution for multiphase flow in porous media, we cannot even attempt a direct inversion. Moreover, even if
there existed a nonlinear closed form solution the inverse would not necessarily be correct. J.S. Hadamard7

believed that mathematical models of physical phenomena should have[22]:

• a solution exists,

• the solution is unique,

• the solution’s behavior changes continuously with the initial conditions.

Problems that satisfied these conditions came to be known as “well-posed”, whilst those that do not are
known as “ill-posed”. Thus in this thesis, the parameter estimation problem is said to be “ill-posed”. That
is, as the behavior of the dynamic state does not change continuously given the initial λ estimate, which is
a result of the nonlinearity of the dynamic state. Thus, there may not exist or be an unique solution to the
dynamic state, and this then implies that the parameter estimation problem of λmay be “ill-conditioned”. In
that, for each estimate λ there does not necessarily exist an unique solution, and so the estimation problem
is not “well-posed”. To illustrate this problem we take a simple example, take nonlinear function x2 with prior
x ∼ N (0,1) this then has posterior distribution as chi squared distribution. Now the direct inversion of the
posterior using the exact inverse, i.e. the square root, would yield the chi distribution not the N (0,1).

6so po −pc is a harmonic, neat right?
7(8 December 1865 - 17 October 1963) a French mathematician known for major contributions in number theory, complex analysis,

differential geometry and partial differential equations.
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1.3.4. Dispersion of the initial parameter uncertainty through the physical model
In order to gauge the effect of the uncertainty of an initial ensemble of parameters we propagate the dynamic
state, i.e. water saturation and oil pressure, from a fixed initial state, then by observing how the uncertainty
propagates into the dynamic state we can determine the effect of the initial uncertainty. Below in Figure 1.6
we plot the results at 3 distinct time steps; 100, 400, 801. These represent 3 distinct time points in core flood-
ing; injection flood front formation, pre-breakthrough, post-breakthrough.

Figure 1.6: Initial parameter uncertainty propagation

In green we observe the forward propagation of uncertainty[38] caused by the uncertainty of parameter
λ propagating into the dynamic state variables, Sw , po . That is, the water saturation, Sw , suffers a smearing
effect where small values of λ increase the wave height and slow down the wave front, and conversely large
values of λ decrease the wave height and speed up the wave front. 8 An explanation results from Brooks and
Corey’s Interpretation which defines λ as an index for the distribution of pore sizes in the rock. For narrow
distributions, λ is greater than 2; for wide distributions, λ is less than 2. In terms of the effects on the dynamic
state variables, when λ decreases less than 2 the pore sizes in the rock can greatly vary, this means that water
will need to fill small and large pores, thereby preventing the water phase from distributing itself across the
domain easily. Whilst, when λ increases above 2 the water phase is able to distribute itself more evenly across
the domain as the sizes of the pores are more homogeneous.

What this also implies is that, for large values ofλ, the core behaves as if it were “water-wet”. When “water-
wet”, oil predominantly resides in larger pores of the rock matrix and is relatively more mobile than if it resided
in the smaller pores[14]. Moreover, being “water-wet”, the water naturally imbibes into the smaller pores, and
when injected with water is also displaced[14]. This then in turn displaces the oil from the larger pores to-
wards the production well. This is clearly seen for the largest λ (yellow), where the water saturation front is
less sharp as the water imbibes ahead of the front as a function of the imbibition capillaries’ pressure rela-
tionship with respect to distance ( dPc

d x )[14]. On the other hand, this also implies that, for small values of λ, the
core behaves as if it were “oil-wet”. That is, there will be an opposite effect as some oil trails behind the front
because the threshold capillary pressure required for entry of water into the pores is much higher. This is
clearly seen for the smallest λ (blue) oil pressure which demonstrates a clear kink for the change in pressure.

Note that our interpretation of the behaviour follows analytically from the mathematical model construc-
tion. However, in reality this may not be what physically occcurs. Remember, the mathematical model is

8Note only 20/100 of the initial parameter samples where smaller that the true value9, and furthermore the smallest parameter was ≈ 0.4
whilst the largest was ≈ 30.
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just a representation of the physics, but it doesn’t necessarily capture the physical phenomena accurately as
a whole. So by construction, there is an inherent bias. As a result, this interpretation of the behaviour is a
perfect example of what “Model Form” uncertainty could originate from.

1.4. Chapter Summary
A background necessary to analyze the main effects which influence core flooding performance was given,
and a Pressure-Saturation Formulation of the two-phase fluid flow was constructed:

∇· (λw ·∇pc)=∇· ((λo +λw ) ·∇po)
(1.17a)

φ
∂Sw

∂t
=∇· (λw ·∇(

po −pc)) (1.17b)

with the following boundary and initial conditions:

po(t , x = L) = pr (1.17c)[−λo ·∇po −λw ·∇pw ]
(t ,x=0) = c (1.17d)

Sw (t , x = 0) = 1 (1.17e)

Sw (t = 0, x) = 0.29 and po(t = 0, x) = pr (1.17f)

This is then discretized by an Implicit Pressure Explicit Saturation (IMPES) scheme(1.15), which implicitly
recomputes (po)0 using the pressure equation as a function of (Sw )0. By conducting some preliminary inves-
tigations on the known constant properties, we were able to grasp the scale of the inherent nonlinearity of the
problem. Using the model G we then proceeded to show this nonlinearity, experimentally by contradiction,
as it failed to uphold the properties of a linear mapping. Subsequently, we then explained why the problem
is intractable and thus ill-conditioned. Finally, we investigated how the uncertainty of the unknown param-
eter λ disperses through the model. We identified why this may be the case through the construction of the
model, at the same time highlighting how the model biases our reasoning of how the physics actually work.



2
History Matching

Even today many phenomena that occur during water flooding are not fully understood, but we keep getting
closer. In the previous chapter 1, we saw the large number of properties that go into describing fluid flow in
a porous medium. Determining the values of each property and/or dynamic state variables is no easy feat
as each property must be estimated, either by direct measurements or must be indirectly solved for. That is,
often properties must be inferred from their effects on the observable dynamic state for which measurements
are available. However, as measurements maybe uncertain this introduces uncertainty in those geological
properties (or their parameters) which then directly translates into uncertainty in the forecasts of dynamic
state variables. As such, often only uncertain estimates of many properties can be given.

In practice, data is the result of multiple types of costly routine lab experiments, for example one such
type is Special Core Analysis (SCAL). These experiments yield varying types of data, such as oil pressure mea-
surements, water saturation snapshots, x-ray micro-tomographic scans, etc. This data is compared against
simulations run with different parameter values in order to find the estimate yielding the “best fit”. In the past
history matches were done manually; in other words, an engineer would select the values, run a simulation,
then check the quality of fit. This, process would be manually repeated to improve the fit, and as such were
extremely time-consuming.

Automatic or assisted history matching, however, uses an optimization algorithm which rapidly runs sev-
eral simulations while changing the parameter value to find the best fit. It follows from the No Free Lunch
Theorem (NFLT), that an arbitrary search algorithm may achieve superior results on some problems, but then
must pay with inferiority on other problems. No solution therefore offers a general “short cut”, and implies
that tailored solutions must be constructed. However, this has yielded over optimized solutions which are not
easily adaptable to various reservoir simulators, and so the current challenge is to find sub-optimal adapt-
able methods that yield reasonable results. All in all, this makes History matching a challenging and integral
aspect of the petroleum extraction industry.

In this chapter, we begin in the first section by defining the available data and observation functional,
as well as the general nonlinear model as a function of the dynamic state and uncertain static parameter(s),
and any necessary parameterizations there off. Thereafter, in the second section, the basic history matching
problem is formulated in the Bayesian framework and the cost function of the basic data assimilation scheme
is derived. Then in the third section we are lead to the formulation of the basic ensemble Kalman filter, and for
which we define it’s computational costs and some foreseeable issues. In the fourth section we analytically
show the effect of the parameterizations of the static parameters analysis. The chapter concludes with the
metrics that will be used to determine the effectiveness of subsequent ensemble methods as history matching
procedures.

17
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2.1. Data Assimilation Model
We begin by defining the model’s dynamic state ψ(x, t ), which is comprised of the dynamic variables Sw , po

each of which is a function of space and time:

ψ(x, ti ) =
[
~Sw i

~po i

]
∈Rnψ where nψ = 2Ng

Thereafter, the model has a set of static parameters α, which can be parameterized. Here we apply a ln-
parameterization to the Corey Parameter λ:

α= [
lnλ

] ∈Rnα , where nα = 1

Here we opt to ln-parameterize λ in order to force that λ ∈ [0,∞). In Section 2.4, we will investigate the effect
of this choice. Anecdotally, it is known that, spurious correlations in the data assimilation process yield λ< 0,
which then corrupt (and crash) subsequent simulations. In (2.10) we will augment the dynamic state with the
parameters states to form an ensemble member state:

Ψ(x, ti ) =Ψti =
[
ψ(x, ti )
α

]
=

 ~Sw i

~po i

lnλ

 ∈Rn , where n = nψ+nα.

Each type of state is initialized with it’s own “uncertainty”. In the case of the dynamic state ψ, each compo-
nent is perfectly known from their initial conditions. This means that we “draw” samples from a degenerate
deterministic distribution, in which the known initial conditions have probability 1. In the case of the static
state α, from Subsection 1.1.5, we reuse the λ∼Gamma (k,θ) and then apply the ln-parameterization.

Component Distribution Parameters

ψ=
[
~Sw

~po

]
Deterministic ψ0 =

[
~Sw 0

~po 0

]
=

[
0.29

pr = 105

]
α= [

lnλ
]

(log-)Gamma k = (λ0
g uess )2

σ2
λλ

,θ = λ0
g uess

σ2
λλ

Table 2.1: Initial Uncertainties in the Dynamic and Static States of the Data Assimilation Model

Alternatively, for the dynamic state we could assume the sampling distribution to be (degenerate) Normal
with mean equal to the initial conditions and variance 0. Similarly, for the static state we could directly have
sampled from a log-gamma distribution (also known as exp-gamma) instead of first sampling from a gamma
distribution and then applying the ln-parameterization. Technicalities aside, both formulations are equiva-
lent for sampling the initial state. We define the nonlinear model operator G to produce forecasts, which in
our case is the our simulator is discretized by the IMPES scheme (1.15). Typically, model operators have errors
represented by an additive stochastic term q(x, t ) ∼ N

(
0,Cqq

)
wherein the covariance is known. However,

we assume that the IMPES generates perfect forecasts which are devoid of forecast errors, i.e. q(x, t ) = 0 ∀x, t .

ψ(x, ti ) =G (ψ(x, ti−1),λ)+0 (2.1)

Equivalently, we could assume that the transition distribution is, as above, a degenerate deterministic dis-
tribution, or alternatively, a degenerate multivariate normal with variance equal to 0. In this thesis we will
generate synthetic data d ∈Rm from the same nonlinear physical model G :

dti =G (dti−1 ,λtr ue ) (2.2)

where λtr ue = 2.5 is the true Corey Parameter value which we wish to estimate. However, although data is
available at every time step, the observable data only measures the oil pressure in the first and last grid cell,
see Figure 1.3. i.e. m = 2. Thus we assume that these data observations, d , can be related to a simulated
realization,ψ, through the observation operator1, H :Rn →Rm :

H i [ψ,α] =
∫
Ω

∫ T

0
ψ(x)δψi δ(t − ti )δ(x −xi )d td x

1also known as measurement functional
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Given that in this thesis, we will only be measuring the oil pressure in the first grid cell and last grid cell at
every time step, this reduces the observation operator to :

H i [ψ,α] =
[

po(x1, ti )
po(xNg , ti )

]
∈Rm where m = 2

So at any one time, we have observations (measurements) at m locations of the true state ψtr ue =ψ(λtr ue )
these are stored in the data vector d ∈Rm .

Given the simplicity of the observations, we will allow the abuse of the observation operator notation: H i [ψ,α] =
H i [Ψ], as well as on multiple independent samples:

H
[(
Ψ1 . . . ΨN )]= [

H
[
Ψ1

]
. . . H

[
ΨN

]] ∈Rm×N

In addition, it is possible to reframe H as a matrix H ∈ Rm×n , in such a way that when applied to the abuse
above:

H
(
Ψ1 . . . ΨN )= [

HΨ1 . . . HΨN ]= [
H

[
Ψ1

]
. . . H

[
ΨN

]]
(2.3)

Typically a measurement error is a combination of the error in the data and the error of the observation oper-
ator. However, in this thesis, as we have assumed, our synthetic data to be “perfect”, i.e. error in the data is 0,
the measurement error is equivalent to the observation error. Regardless, below we show that measurement
error represent the error in the data and the observation operator. Given that, in general the data may not be
perfect, (aleatoric) errors during collection are not uncommon2, we define εd at a as the error in the data:

d = d tr ue +εd at a , εd at a ∼N
(
0,Cεd at aεd at a

)
In addition, there may also be (epistemic) error resulting from the observation operator H . We denote such
errors as εobser vati on :

H [ψtr ue ] = d tr ue +εobser vati on , εobser vati on ∼N
(
0,Cεobsεobs

)
thus we can say that the data is related to the true state so long as ε= εd at a −εobser vati on :

d =H [ψtr ue ]+εd at a −εobser vati on

and so we assume ε∼N (0,Cεε):

=⇒ d =H [ψtr ue ]+ε (2.4)

Thus, the random measurement error ε represents both the errors in the data and the observation operator,
and so defines the accuracy of the measurements. We define (2.4) as the Measurement Model, which relates
the data and the observed state.

2.1.1. Summary of Data Assimilation Model
Static and Dynamic states:

α= [
lnλ

]
, ψi =

[
~Sw i

~po i

]
(=ψ(ti )) (2.5a)

Nonlinear Physical Model:

ψ(x, ti ) =G (ψ(x, ti−1),λ) (2.5b)

Measurement Model:

dt =H [ψ(t ),α]+ε ε∼N (0,Cεε) (2.5c)

where the initial Static and Dynamic states are:

λ∼Gamma (k,θ), ψ0 =
[

~Sw 0 = 0.29
~po 0 = pr = 105

]
(2.5d)

where k = (λ0
g uess )2

σ2
λλ

,θ = λ0
g uess

σ2
λλ

2i.e. mistakes happen in the field.
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2.2. Bayesian Formulation
Below we formulate the basic history matching problem in the Bayesian framework, and derive the associated
cost function.

2.2.1. Sequentially
Using Bayes’ theorem the estimation problem can be written as:

f (ψ,α | d) ∝ f (ψ,α) f (d |ψ,α)

Given that in the dynamical model, the prior information of the initial states could be formulated into dis-
tributions. We take advantage of these priors f (ψ0) and f (α), and thus we replace f (ψ,α) with f (ψ,α,ψ0).
However, since we assume to know the exact initial dynamic state in so that the prior for f (ψ0) is considered
to be a degenerate deterministic distribution, then it marginalizes out immediately:

f (ψ,α,ψ0) = f (ψ,α) = f (ψ |α) f (α)

As such, in this thesis, we will ignore f (ψ0) and not explicitly condition on ψ0. Hence,

f (ψ,α | d) ∝ f (ψ |α) f (α) f (d |ψ,α)

Here the probability density function (or pdf) f (ψ |α,ψ0) is the prior density for the dynamic state.

2.2.2. Discrete Formulation (time-wise)
Here ψi =ψ(x, ti ) with ti−1 < ti < ti+1, i = 1, . . . ,K . We define the pdf for the model integration from ti−1 to ti

f (ψi |ψi−1,α)

which assumes the model is a first-order Markov process. The joint probability density function for the dy-
namic and static state is now:

f (ψ1, . . . ,ψK ,α) ∝ f (α)
K∏

i=1
f (ψi |ψi−1,α)

Now we assume d ∈ RM can be divided into subsets d j ∈ Rm j collected at times ti ( j ), with j = 1, . . . , J and
0 < i (1) < i (2) < . . . < i (J ) < K . The subset d j only depends on ψ(ti ( j )) =ψi ( j ) and for α. Furthermore, ε j and
t j are uncorrelated. Hence,

f (d |ψ,α) =
J∏

j=1
f (d j |ψi ( j ),α)

and so it follows from Bayes Theorem, the model is a first order Markov Process:

f (ψ1, . . . ,ψK ,α | d) ∝ f (α)
K∏

i=1
f (ψi |ψi−1,α)

J∏
i=1

f (d j |ψi ( j ),α)

Recall that in this thesis, we assume that m j = m = 2 and i = j : 0 < i , j ≤ J ,K , K = J . That is, we observe and
assimilate the same amount of data at every time step. Furthermore, we assumed that there is no model error
in the forecast. This reduces the model:

f (ψ1, . . . ,ψK ,α | d) ∝ f (α)
K∏

i=1
f (ψi |ψi−1,α) f (di |ψi ,α)

∝ f (α)
K∏

i=1
δ(ψi −G (ψi−1,α)) f (di |ψi ,α) (2.6)

∝ f (α)
K∏

i=1
f (di |ψi ,α)

Takingψ=ψ1, . . . ,ψK such that:

f (ψ,α | d) ∝ f (α)
K∏

i=1
f (ψi |ψi−1,α) f (di |ψi ,α)
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2.2.3. Likelihood and Cost Function formulation
We begin by recalling the initial sampling distribution of λ∼Gamma (k,θ):

f (λ) =λ
k−1e−

λ
θ

θkΓ(k)

then with parameterization lnλ, α∼ logGamma(k,θ)3:

f (α) =ekα−eα/θ

θkΓ(k)
= λk−1e−

λ
θ

θkΓ(k)

(
d

dλ
lnλ

)−1

(2.7)

Hence, the conditional joint density at data assimilation J for time step T :

f (ψ,α | d) ∝ f (α)
K=T∏
i=1

f (ψi |ψi−1,α)
J=T∏
j=1

f (d j |ψi ( j ),α)

∝
(
θkΓ(k)

)−1
exp

(
kα−eα/θ

) ·K=T∏
i=1

δ
(
ψi −G (ψi−1)

∣∣∣α)
· . . . (2.8)

·
J∏

j=1
(2π)−

m
2 det

(
Cεεi ( j )

)− 1
2

exp

(
−1

2

(
d j −H

[
ψi ( j ),α

])ᵀ
C−1
εεi ( j )

(
d j −H

[
ψi ( j ),α

]))
︸ ︷︷ ︸

L(ψ,α|d)

where L
(
ψ,α | d

)
is the likelihood. If we assume that the posterior is a member of the exponential family[16]

such that:

f (ψ,α | d) ∝exp

(
−1

2
J̃ [ψ,α]

)
then the cost function J̃ is

J̃ [ψ,α] =
J∑

j=1

∥∥∥d j −H
[
ψi ( j ),α

]∥∥∥2

C−1
εεi ( j )

+
J∑

j=1
lndet

(
Cεεi ( j )

)
+ . . . (2.9a)

+m J ln(2π)+2

[
lnΓ(k)+ eα

θ
−k(α− lnθ)

]
equivalently in terms of λ

J [ψ,λ] =
J∑

j=1

∥∥∥d j −H
[
ψi ( j ), lnλ

]∥∥∥2

C−1
εεi ( j )

+
J∑

j=1
lndet

(
Cεεi ( j )

)
+ . . . (2.9b)

+m J ln(2π)+2

[
lnΓ(k)+ λ

θ
−k ln

λ

θ

]
Given that the cost function J̃ is equal to the negative log likelihood (× 1

2 ), it is clear that the minimum
of J̃ is the maximum likelihood estimate (MLE) for ψ and α as defined by the conditional joint probability
density function in (2.8). Fortunately, the MLE is invariant under parameterization and hence minimizing J̃

is equivalent to minimizing J which also yields the maximum likelihood estimates of ψ and λ.

3This is also sometimes known as the ExpGamma distribution.
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2.3. Ensemble Kalman Filter
We finally formulate the basic Ensemble Kalman filter. Then we define it’s computational costs. We also
comment on some issues with the filter.

(Sw)n−1
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Figure 2.1: Ensemble Kalman Filter (EnKF) at nth Data Assimilation

2.3.1. Ensemble Formulation
This leads us to the Ensemble Kalman filter, where we define ensemble matrix A ∈ Rn×N to be composed of
an ensemble of model states ψ(x, ti ) ∈Rnψ , at a time ti . Furthermore, in the case when we use the Ensemble
Kalman filter to estimate parameters we augment the ensemble of states with the set of poorly known pa-
rameters α ∈ Rnψ . Thereby, our ensemble matrix A is a combination of dynamic variables ψ(x, ti ) and static
parameters α(ti ):

Ai = A(x, ti ) = [
Ψ1 · · · ΨN ]= (

ψ1(x, ti ) . . . ψN (x, ti )
α1(ti ) . . . αN (ti )

)
∈Rn×N (2.10)

where n = nψ+nα is the total dimension of the state vector and N is the number of realizations in the ensem-
ble. Note that the parametersα are expected to be constant in time. However, in order to distinguish between
the estimates at different update times, we allow the parameters to be dependent on time.
The ensemble covariance is defined as

Cψψ = (ψ−ψ)(ψ−ψ)ᵀ

whereψ is the ensemble mean, is regarded as the best-guess estimate, while the ensemble spread defines the
error variance. The covariance is determined by the smoothness of the ensemble members. The ensemble
mean is stored in each column of

Ā(x, ti ) = A(x, ti )1N

where 1N ∈RN×N where each element is 1
N . We can define the ensemble perturbation matrix as

A′(x, ti ) = A(x, ti )− Ā(x, ti )

= A(x, ti )(I −1N )

The ensemble covariance

C e
ψψ(x1, x2, ti ) = A′(x, ti )(A′(x, ti ))ᵀ

N −1
∈Rn×n

Given a vector of measurements d ∈ Rm , where m is the number of measurements, we define the N vectors
of perturbed observation as

d j = d +ε j , j = 1, . . . , N

which are stored in the columns of the matrix

D = (d1,d2, . . . ,dN ) ∈Rm×N

while the zero mean ensemble of perturbations are stored in the matrix

E = (ε1,ε2, . . . ,εN ) ∈Rm×N

from which we construct the ensemble representation of the measurement error covariance matrix

C e
εε =

1

N −1
EEᵀ ∈Rm×m
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The analysis equation can then be expressed in terms of the ensemble matrices:

Aa = A+H ᵀ[C e
εε]

(
H ᵀ[H [C e

εε]]+C e
εε

)−1 (D −H [A])

We define the ensemble of innovation vectors as

D ′ = D −H [A] , D ′ ∈Rm×N

Next the measurements of the ensemble perturbations is defined by S ∈Rm×N .

S =H [A′]

Then matrix C ∈Rm×m :

C = SSᵀ+ (N −1)Cεε

here we can use the full-rank, exact measurement error covariance matrix Cεε, or the low-rank representation
C e
εε. Using D ′,S,C ,C e

εε,C e
ψψ, the analysis can be expressed as

Aa = A+ A′Sᵀ (
SSᵀ+EEᵀ)−1 D ′

= A+ A(I −1N )SᵀC−1D ′

= A(I + (I −1N )SᵀC−1D ′)

where the matrix X ∈ RN×N is defined as X = I + (I −1N )SᵀC−1D ′. When we assume 1N Sᵀ ≡ 0 then clearly
X = I +SᵀC−1D ′.

= A(I +SᵀC−1D ′) (2.11)

= AX

2.3.2. Computational Costs
In this subsection we present the pseudo code of the Ensemble Kalman filter, as well as some computational
costs. In this thesis we ran simulations in tensorflow which would automatically run operations on a Nvidia
6GB Geforce GTX 1660 with Nvidia’s CuDNN libraries. Below we give the pseudo code for the EnKF update
before defining the EnKF as a Data Assimilation loop:

Algorithm 1: A Single Ensemble Kalman Update. See [21] for computational complexity.

1 N :=Ensembles Size

2 1N := 1
N JN where JN is a N ×N matrix of ones

3 Pre Compute: I −1N /* O
(
N 2

)
*/

4 EnKF Update E(A, Dobs):
5 A′ = A(I −1N ) /* O

(
nN 2

)
*/

6 Observation Model:
7 S =H (A′) /* gather from nN to mN */
8 Generate Gaussian Noise:
9 E ∼N (0,Cεε)

10 Add Noise to Measurements:
11 D = Dobs +E /* O (mN ) */
12 Innovation Vectors:
13 D ′ = D −S /* O (mN ) */
14 Construct C:
15 C = SSᵀ+EEᵀ /* O

(
m2N

)
,O

(
m2

)
,O

(
m2N

)
*/

16 X = I +SᵀC−1D ′ /* O
(
N 2

)
,O

(
mN 2

)
,O

(
m3N

)
*/

17 Analyzed Ensemble:
18 Aa = AX /* O

(
nN 2

)
*/

19 return Aa

Immediately, it is clear that much of the problem is delightfully parallelizable. Lines 11 and 13 do not
require data from any other ensemble members. Meanwhile the remaining are composed of matrix multipli-
cations, or some sort of scatter and or gather operation, which can be done in parallel across compute nodes.
However, with larger ensemble sizes there may be an issue with loss of precision, due to the large number of
reducing operations involved.
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Algorithm 2: Ensemble Kalman Filter

1 N :=Ensembles Size
2 λ∼Gamma (k,θ)
3 α := lnλ

4 Aa =

 ~Sw 0 · · · ~Sw 0

~po 0 · · · ~po 0

α1 · · · αN


5 for i timesteps do
6 Forecast Step:

7 A =
[
G (Aa ;α)

α

]
/* O

(
χ(Ng )

)
*/

8 Load measurement data:
9 Dobs = [d1, . . . ,dN ] /* scatter from m to mN */

10 Analysis Step:
11 Aa = E (A,Dobs )
12 end

2.3.3. Foreseeable Issues
Probabilistic Issues:
When the prior ensemble is non-Gaussian, the analyzed ensemble will inherit some of the non-Gaussian
structures. It is also possible that the EnKF fails completely; e.g. if the weight on the prior is low and a multi-
modal probability density function[16].

1. The issue with non Gaussian initial conditions is that they propagate into the next state and eventually
become Gaussian provided that the nonlinearity of the physics is not too strong. This follows from the
Likelihood function (2.9). In this thesis, we overcome this issue by having a high sampling rate for the
data i.e. you can linearize almost anything if you are “fast” enough.

2. Another issue maybe non Gaussian posteriors; this could be an artifact from the initial sample, or an
inherent outcome of the nonlinear physics. Why is this a problem? Firstly consider a posterior which
is skewed to the point that a fat tail emerges, in which case the mean is drawn off towards the tail.
Evidently then a Gaussian assumption may be able to capture the first 2 moments, i.e. the mean and
variance, but fails to accurately represent the true density of an ensemble. This could result in a perma-
nent bias in the estimate developing. For example, in this thesis, we use the gamma distribution over
the normal distribution, wherein the mean of the gamma distribution is drawn towards the tail. Sec-
ondly, consider that the posterior maybe be multi-modal. For simplicity consider a posterior which is
bimodal with thin tails and symmetric around the mean. In such a situation the mean would be accu-
rately captured, but the probability of occurring would be vastly overestimated, whilst the probability
of either mode occurring is underestimated. On the other hand, it is possible the ensemble gets stuck in
the wrong mode and is unable to escape, falsely indicating a bias, and possibly resulting in degeneracy
as the ensemble estimates attempt to escape.

Numerical Issues:
If measurements are nearly dependent or the quantity of measurements, m À N , is just too large then it is
possible the required inversion of C (seen in (2.11)) will become numerically singular[17]. Hence, this implies
that there is a minimum measurement noise required to be numerically stable. On the other hand, in the case
of m ¿ N , the needed correlations to update the ensemble may not be present, and spurious correlation may
occur[17]. Alternatively, there may not be enough “information” in the data to provide an accurate estimate
of the parameter λ. We will investigate this case in upcoming Subsection 3.4.1.

Issues with Updating the Physics:
Finally, it is clear that the multiplicative update of the Ensemble Kalman filter does not ensure conservation
of mass in it’s ensemble members. In [25], it is shown that in the mean sense there is conservation of mass.
However, the example given does not augment the ensemble with static parameters. As a result it is unclear,
even in the mean sense that the Ensemble Kalman filter is conservative when jointly estimating the dynamic
state and static parameters. As a result we will further investigate a possible solution to this in Chapter 4.
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2.4. Ensemble State Parameterizations
In the fourth section we analytically show the effect of the parameterizations of the static parameters analysis.
Before progressing further, we first recall the ln-parameterization of the unknown parameter λ in the ensem-
ble state. Firstly, recall that lnλ was taken to ensure that filter corrections would yield positive estimates of λ.
Secondly, realize that the ln-parameterization is a variance-stabilizing transformation [9]. Thus by applying
the delta method[20] we can approximate the immediate effect of the parameterization on the initial sample.
Let λ be a random variable, with E [λ] = λg uess and Var[λ] = σ2

λλ
. Now given that α = lnλ, we take the 1st

order Taylor approximation:

lnλ≈ lnλg uess +
λ−λg uess

λg uess

Thus we find that

E [lnλ] = lnλg uess and Var
[
lnλg uess

]≈ σ2
λλ

λ2
g uess

(2.12)

So immediately we see that taking the initial ln variance is scaled by the square of the mean initial guess. In
the case λ> 1, the parameterized variance shrinks and may be far too small and lead to degeneracy. On the
otherhand, if λ< 1 the parameterized variance “blows up” as λ→ 0. 4

Thereafter, lnλ causes the multiplicative update of the EnKF to become a power update. As an illustrative
example consider the single element case where a is multiplicatively updated by 1+ε where in the EnKF ε is
computed from the ensemble correlations and the data but for now we assume that the updates are the same
regardless of the influence of the parameterization on the computation of the update (i.e. via the correlation
computation) and that ε→ 0. Applying the ln(a) parameterization we see that the update a(1+ ε) becomes
a1+ε. Now we wish to know for what values of a and ε is the update less potent, e.g. a(1+ε) > a1+ε? Thus taking
a = e we see that when ε> 0 then the update produced by the parameterization is greater than without, whilst
when ε < 0 the converse occurs. Simply, when a needs to be shrunk, ε < 0, the parameterized parameter is
shrunk less. Whilst when a needs to be enlarged, ε > 0, it grows more. Note that since the update of the
parameterized parameter is a power term, the size of a inherently affects the potency of the update. As such
taking a > e, in the case ε> 0 we see that the enlargement of the parameterized parameter scales with the size
of a, to the extent that for ε ∈ ( ε

p
1+ε = a,0) the parameterized parameter is able to shrink more than when

unparameterized. On the other hand for 0 < a < e the converse occurs, wherein for ε ∈ (−∞, ε
p

1+ε= a) both
the shrinkage and enlargement of the parameterized parameter is less potent than when unparameterized.

Granted, this illustrated example brings forth many combinations of the parameter a and the update ε,
which is a little difficult to wrap ones head around. So a general (but a bit misleading) rule of thumb is that the
ln(a) parameterization is gentler for sufficiently small updates of a, but steeper for sufficiently large updates
of a. This is important to note as if conducted recursively then the unparameterized a could yield a more
accurate final value.

However, returning to the EnKF the update is a N ×N matrix and A ∈ Rn×N . On an element level there is
a re-weighting and then a summation across the re-weighted ensemble elements:

AX =


... · · · ...
ψ1 · · · ψN

... · · · ...
α1 · · · αN




... · · · ...
x1 · · · xN
... · · · ...


We denote the last row as ~α. Then examining only the update of the first element in this row, i.e. the update
of α1:

〈~α, x1〉 =
N∑

i=1
αi x1,i

Now in the case of no parameterization, i.e. α=λ:

=
N∑

i=1
λi x1,i

4Furthermore, consider that we rewrote the Gamma(k,θ) sampling distribution in terms of only the initial guess (mean) λ0 and scale

θ, such that the shape k = λ0

θ
. Then given that Var[lnλ] =ψ(1)(k) =ψ(1)

(
λ0

θ

)
, where ψ(1) is the trigamma function. Later we use this

trigamma formulation to compute Var[lnλ] directly.
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However, with the ln(·) parameterization, i.e. α= lnλ:

〈~α, x1〉 =
N∑

i=1
ln(λi )x1,i =

N∑
i=1

ln
(
λ

x1,i

i

)= ln

(
N∏

i=1
λ

x1,i

i

)
Now assuming that xi j > 0, then it is clear by applying Jensen’s inequality:

ln

(
N∑

i=1
λi x1,i

)
> ln

(
N∏

i=1
λ

x1,i

i

)

This is an application of the arithmetic mean-geometric mean inequality which guarantees that the parame-
terized mean is bounded above by the unparameterized mean. On the other hand, when xi j ≤ 0 or a mixed
case where xi j ≤ 0 and xi k > 0 the inequality no longer holds. But, given an ensemble that encapsulates the
true λ value and the physical requirement that λ> 0, then this bound will eventually hold! Thereby, we know
that the skewness of the parameterization does not affect the ensemble mean but in fact improves it, though
this is not necessarily the case for the spread.

2.5. Performance Metrics
The chapter concludes with the metrics that will be used to determine the effectiveness of subsequent en-
semble methods as history matching procedures. Prior to running the twin experiments we define some
traditionally used performance metrics which we focus on: Bias, Spread, the mean squared error, and the
root mean squared error. We begin by defining the bias, given an estimator θ̂ of θtr ue :∥∥Bi as(θ̂)

∥∥2
2 =

∥∥E[
θ̂
]−θtr ue

∥∥2
2 =

∥∥θ̄−θtr ue
∥∥2

2

It is good to note that “with a few exceptions, implementing a simulation with a comfortably small bias is eas-
ier than with a comfortably small standard error”[20]. This quantifies any systematic errors incurred during
the estimation process.

Another measure of the performance is the ensemble spread, which is the square root of the averaged
variance of the ensemble, defined as

SPRE AD =
√
E
[∥∥θ̂−E[

θ̂
]∥∥2

2

]
=

√
tr(Var

[
θ̂
]
)

This quantifies any statistical dispersion which in effect quantifies the uncertainty of the estimate.
The Mean Squared Error, or MSE, is calculated as the average squared difference between the actual and

predicted values. Given that it is the second moment of the error, and thus incorporates both the variance of
the estimator and its bias.

MSE = E
[∥∥θtr ue −E

[
θ̂
]∥∥2

2

]
= tr(Var

[
θ̂
]
)+∥∥Bi as(θ̂,θtr ue ))

∥∥2

Typically, choices involve trade-off between bias and variance, and as such it represents a combined metric of
the two. Finally, the Root Mean Square Error, RMSE, is a measure of accuracy, to compare forecasting errors
of different models for a particular dataset and not between datasets, as it is scale-dependent:

RMSE =
√
E
[∥∥θtr ue −E

[
θ̂
]∥∥2

2

]
It is good to note that, the effect of each error on RMSE is proportional to the size of the squared error; thus
larger errors have a disproportionately large effect on RMSE. Consequently, RMSE is sensitive to outliers.
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2.6. Chapter Summary
In this chapter we began by stating that our dynamic state comprises of ψ = [Sw , po]ᵀ from our nonlinear
model G . This dynamic state is augmented by the static parametersα, to form an ensemble member state,Ψ.
However, the only available data, d , is of the oil pressure, po , located in the first and last control volume of the
domain. This data is related to forecasts via an observation operator H which is perturbed by a measurement
noise ε∼N

(
0,σpo = 14000

)
present. Thereafter, in the second section, the basic history matching problem is

formulated in the Bayesian framework and the cost function of the basic data assimilation scheme is derived
as:

J [ψ,λ] = 2

[
lnΓ(k)+ λ

θ
−k ln

λ

θ

]
+

J∑
j=1

[
m ln

(
2πdet

(
Cεεi ( j )

))
+

∥∥∥d j −H
[
ψi ( j ), lnλ

]∥∥∥2

C−1
εεi ( j )

]
Consequently, in the third section, we arrive to the formulation of the basic Ensemble Kalman filter, and are
able to highlight how parallelizable the filter is. At the same time, we bring up some of the foreseeable is-
sues: non Gaussian prior or posterior distributions which may cause the filter to fail, or the underlying Gaus-
sian assumption may poorly estimate the true posterior. Numerically, C−1 may cause stability issues should
there be too many measurements or the ensemble too accurate. On the other hand, too few measurements
may not have enough information to accurately estimate λ. Finally, the update may not reflect the underly-
ing physics and result in unphysical corrections. In the fourth section we showed analytically that although
the ln-parameterization improves the ln estimate in the mean, it may blow up or overly shrink the uncer-
tainty/variance of the estimate. The chapter concludes with the 4 metrics that will be used to determine the
effectiveness of subsequent ensemble methods as history matching procedures; bias, spread, MSE, RMSE.
The first two represent systematic error and statistical dispersion of the ensemble, whilst the 3rd combines
them. Finally the 4th is for accuracy and used to compare estimators on a shared dataset.





3
Effectiveness of EnKF for Parameter

Estimation

In chapter 1 we determined that due to the nonlinearity of the two-phase flow model,(1.17), parameter esti-
mation was intractable by direct methods. Thus, in chapter 2, we are forced to resort to numerical methods
such as the Ensemble Kalman filter (EnKF). In this chapter, we aim to determine the capability and effective-
ness of the EnKF as a data assimilation method, in order to estimate an uncertain static parameter α = lnλ.
In doing so, we endeavor to estimate unknown “true” λ. In our data assimilation model (2.5), we define our
nonlinear physical model and measurement model in which we start the EnKF from fixed initial conditions
for the dynamic state variables (Sw , po) and a fixed random sample of the unknown λ. The data d to be
passed to the EnKF is synthetically generated ahead by (2.2) given a to be estimated “true” λ. We define the
base twin experiment as; trying to estimate lnλ, where λtr ue = 2.5, given: an initial sample guess λg uess = 6.5,
the dynamic state variables (Sw , po) start from a fixed initial condition of Sw 0 = 0.29, po 0 = pr = 105, and the
number of control volumes(i.e. grid size) Ng = 50. Accompanying this, we generate synthetic data exactly for
the λtr ue = 2.5, which then yield measurements that only observe the oil pressure in the first and last grid cell
and have measurement (/additive white Gaussian) noise of σpo = 14000. From this base twin experiment we
construct different experiments by varying one of these “settings” to understand the EnKF when applied to
this nonlinear physical model.

Furthermore, we investigate if under the base filter settings the EnKF is capable of estimating λ. In the
first section, we apply the EnKF to datasets created with different values of λtr ue . In section 2, we investigate
the effect of the initial sample where, first we investigate the effect of the mean initial guess and then the
initial sample spread. In section 3, we investigate whether the EnKF is robust enough to filter the “true” λtr ue

when the fixed injection rate c is incorrectly set in the physical model (2.1). Having identified some effects of
the nonlinearity on the EnKF fitting, we then aim to understand in section 4, how some filter “settings” affect
the final estimate. Specifically we investigate: How does the ensemble size affect the final estimate? Does the
parameterization affect the accuracy? What is the effect of the measurement noise? Does the grid size of the
simulator, constructed with the IMPES scheme, (1.15), effect the final estimate?

29
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3.1. Analysis of EnKF Parameter Estimates
We start the EnKF from fixed initial conditions for the dynamic state variables (Sw , po) and a fixed random
sample of the unknown λ. We synthetically generate 4 datasets representing 4 values of λ each of which the
EnKF needs to be able to estimate. The first of the 4 datasets is generated using the parameter base test value
λbase = 2.5, then denoted as dbase . The remaining datasets 3 are generated using parameter values selected
from the initial sample of λs’. Specifically, we pick the smallest, λsmallest ≈ 0.3, and largest, λl ar g est ≈ 20, as
well as the value closest to the base test value, λclosest ≈ 2.47. Having then applied the EnKF to each dataset
then results in estimates ofλ. By examining the ensemble spread, statistical bias and root mean squared error
we can then determine whether the filter is capable of correctly estimating the parameter used to generate
the respective dataset and under what certainty and given what (ensemble) bias. Together these metrics
determine for which values of λ the EnKF is able to provide an accurate estimate given the nonlinearity of the
physical model.

In Figure 3.1, in the top subplot we see the ensemble spread of λ being fitted to each dataset. Here we see
using dbase the EnKF is able to reconstruct λbase , which in fact yields the smallest root mean squared error
and statistical bias, as seen in the lower row of subplots. Similarly, for dclosest applying the EnKF performs
well but renders a slightly less accurate result, under each metric. This could be the luck of the draw of
the measurement noise or the initial sample favors λbase . However, we can say that the overall behavior is
very similar to λbase but not enough to be mistaken for it. Concretely, the λbase value does not fall into the
ensemble spread of dclosest , but the dynamics are sufficiently similar that, provided a dataset generated from
a value smaller than λbase , a linear interpolation would be able to provide a sufficient estimate for λbase .

Figure 3.1: Synthetic datasets fitted by the EnKF where each dataset is generated using a different values of λ: (black) λbase , (cyan)
λcl osest [closest to base], (yellow) λl ar g est , (blue) λsmal lest , (red) True λ values

In the case of dl ar g est , generated by λl ar g est , we see an enormous increase in the ensemble spread. This
in part is due to the initial sample being very skewed against it, with the ensemble mean being far smaller.
On the other hand, we also notice that the ensemble spread stabilizes much faster, indicating that due to
the nonlinearity larger values of λl ar g est result in more uncertain predictions, i.e. larger spreads. Finally, in
the case of dsmallest , generated by λsmal lest , the ensemble spread is much tighter than when estimating for
larger values of λ. In this “lucky” sample the statistical bias continuously decreases almost monotonically.
In general however, it has been observed that an ensemble bias, when the value of λsmal lest is more than 1
standard deviation from the ensemble mean, is likely to form or the ensemble will become degenerate. Other
choices for λ’s sampling distribution and/or parameterization exist, for example a truncated normal distri-
bution and/or clippingλ outside the range of the initial guess, e.g. (0,10). However, ancillary experiments did
not produce reliable results when estimating the parameter, such as bias or filter failure, see appendix A.1.
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3.2. The effect of the initial sample
In this section we wish to better understand the effect of the initial mean guess and spread on estimating the
parameter λ. That is, firstly given a fixed initial spread how does the initial mean guess affect the accuracy
of the estimate? Secondly, given a fixed initial mean guess, does a tighter initial spread yield a more certain
estimate and thereby more accurate estimate? In either case would this differ given the value of the estimated
parameter λ? To address these, we begin by generating two synthetic datasets, dg uess and dbase generated
with λg uess and λbase respectively.

3.2.1. The effect of the initial mean guess
To answer the first question, we set a fixed initial sample spread,

p
Var[λ] = 3.2, and then sample 2 initial

ensembles for each initial mean guess, E [λ] = λbase and E [λ] = λg uess . Together with the 2 datasets, we
construct a 2 × 2 experimental setup where the effect of fitting the EnKF given an accurate or inaccurate
initial mean guess for 2 different parameter values is identified. In Figure 3.2, the top plot consists of the
parameter mean estimate surrounded by the 1 standard deviation spread, with the bottom row of plots being
the 3 metrics of interest: the statistical bias, the spread, and the root mean squared error. In the case of the
estimating λbase given an accurate initial mean guess of λbase , denoted as λbase |λbase , the true value λ= 2.5
should already be the ensemble mean. Granted due to the ensemble sample size and numerical sampling
size issues this is almost the case. Regardless we see that true value is always inside the ensemble spread and
the mean ensemble value remains at most 1/4 of the spread the true value.

Figure 3.2: The effect of 2 initial mean guesses on the EnKF fitting of 2 datasets.

In the case of λg uess , when the initial mean guess is accurate, i.e. λg uess |λg uess , and there we see a similar
oscillatory behavior but instead the mean estimate levels out and remains rather large. In additions, with
an inaccurate initial mean guess, i.e. λg uess |λbase , the ensemble is able to capture the true value within its
spread much faster. This could be a result of the parameterization but may also be caused by the nonlinearity
of the model. Recalling the physical interpretation of the Corey parameter λ relates the distribution index
of pore sizes within the rock matrix, with large values of λ representing a very narrow distribution. As such,
there is less variation between large values of λ which results in the EnKF update being less accurate as the
correlation between ensembles computed from each λ is less clear. In contrast, the case of an inaccurate
initial mean guess, i.e. λbase |λg uess , the spread shrinks too quickly and fails to encompass the true solution
initially. This is most likely due to the fixed initial conditions of the dynamic state (I.C. Sw , po), which have yet
to sufficiently have the parameter uncertainty propagate into them via the nonlinear model. If we consider
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the initial ensemble state from a correlation standpoint then it is clear that at the first data assimilation there
has been only a single forecast for the parameter uncertainty to propagate into ensemble state. With regard to
the ensemble spread, there is almost unnoticeable difference when given an initial sample with an accurate
or inaccurate mean guess. Indicating that there exists a minimum learnable lower bound on the spread.
Overall, the root mean squared error indicates that the quality of the final estimate is not determined by how
accurate your initial mean guess is but if there is sufficient data.

3.2.2. The effect of the initial sample spread
To answer the second question, we first return to Figure 3.1 where we reuse the λbase estimate. In addition,
we extract the initial sample and from this starting point in order to estimate λg uess with the EnKF using
dataset dg uess . Now recall that the spread on this initial sample was much larger than in the experiments of
Figure 3.2, which was Var[λ] = 27.5 versus Var[λ] = 3.2 in Figure 3.1. Hence, we can now compare estimates
of λbase |λg uess and λg uess |λg uess against the estimates of λbase and λg uess . Given that all these estimates
have an initial mean guess of E [λ] = λg uess , without having done too much we can compare the effect of the
initial spread on the final estimate. This reusing of experimental data allows for a clear consistent sequence
of experiments and results whilst also being resource efficient.

In Figure 3.3, we have the same plot layout as in Figure 3.2. Clearly, when estimating λg uess the initial
advantage of having smaller initial spread quickly vanishes. Thereafter, we re encounter the lower bound of
the spread. On the other hand, when estimating λbase , we see that the larger initial spread is able to capture
the true value within it the ensemble spread faster than when the initial spread is too small to capture the
true value to begin with. In effect with a smaller initial spread the EnKF has difficulty locating the true value.
This is observed in the statistical bias as the larger initial spread yields a smaller statistical bias, than a smaller
initial spread leading to a larger statistical bias. Regardless of the initial spread, the final ensemble spread is
the same when estimating a given λ.

Figure 3.3: The effect of 2 initial spreads guesses on the EnKF fitting of 2 datasets.

This highlights that in situations where very little is known about the feasible range or variance of an
unknown parameter, the EnKF is still able to identify up to a minimum degree of accuracy. Alternatively, the
EnKF is also able to overcome overconfident inaccurate guesses, in which both the initial spread and mean
guess fail to capture the unknown parameter. Overall, this spread lower bound we encounter renders the
effect of the initial spread meaningless on the final accuracy of the ensemble as it dominates the root mean
squared error.
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3.3. Robustness interlude: mis-specified injection rate
In the previous experiment we remarked that the EnKF was capable of identifying an unknown parameter up
to a minimum degree of accuracy. However, this is under the assumption that the rest of the model is entirely
correct. It is entirely feasible that the underlying model is mis-specified. Hence, as a check of robustness of
the EnKF, we mis-specify the value of a fixed parameter that we are able to control.

In this case, we start with the base experimental setup and add to the injection rate of the water phase a
small fixed offset δc when applying the EnKF to estimate λ. We pick the injection rate specifically because it
introduces additional epistemic uncertainty in the form of a model bias. This specific kind of model bias can
easily be calibrated in a lab environment.

In contrast, choosing a parameter related to the rock, for example the absolute permeability K , would
introduce a kind of model uncertainty that in a lab environment be considered part of the underlying irre-
ducible aleatoric uncertainty of this model or in a larger problem an additional estimation objective. That
is, specifically choosing a controllable parameter, like the injection rate, allows us to understand whether the
EnKF is capable of estimating λ given the additional epistemic model bias caused by the additional δc? What
effects does this have: would a corresponding fixed ensemble bias develop given a fixed offset? Otherwise,
would the spread increase to incorporate the additional uncertainty?

Before proceeding to the experiment results, we recall the inlet Dirichlet and Neumann boundary condi-
tions, i.e. (1.8b)&(1.8c), with injection rate c, which applied together at x = 0 reduce the total darcy velocity
to:

c =−λw ·∇(pw )

Had we replaced this at the inlet directly in (1.3a):

ϕ
∂Sw

∂t
=∇· (λw ·∇pw )=ϕ∂Sw

∂t
=∇· (c)

=⇒ Sw =
∫
ϕ−1∇· (c)d t

thus it is clear that Sw at the inlet is entirely determined by c. So when we assume a fixed offset is added to
the injection rate, c +δc = ĉ:

ˆSw =
∫
ϕ−1∇· (c +δc)d t =

∫
ϕ−1∇· (c)d t +

∫
ϕ−1∇· (δc)d t

=⇒ ˆSw = Sw +δSw

Alternatively, we could use pw = po −pc :

c =−λw ·∇(po −pc )

Then assuming there exists an λw−1 s.t.

−(λw )−1c =∇(po −pc )

po |x=0 ≈ pc (Sw |x=0)−
∫ (

λw (Sw |x=0)
)−1 cd x

Recalling that pc and λw are parameterized in terms of Sw which we just saw is in terms of c at x = 0. So when
returning to the case of c +δc = ĉ, we can take a first order Taylor expansion in terms of Sw +δSw for effects
caused by c +δc:

po(c +δc) ≡po(Sw +δSw ) ≈ pc (Sw +δSw )−
∫

(λw )−1(Sw +δSw )(c +δc)d x

po(c)+O (δc ) ≡po |Sw +O
(
δSw )

≈pc |Sw +O
(
δpc Sw )−∫ [

(λw )−1 |Sw +O
(
δ(λw )−1 Sw )]

(c +δc)d x

≈
[

pc |Sw −
∫

(λw )−1 |Sw c d x

]
︸ ︷︷ ︸

po (Sw )

+
[
O

(
δpc Sw )−∫

O
(
δλw Sw )

c d x −
∫ [

(λw )−1 |Sw +O
(
δλw Sw )]

δc d x

]

Now clearly, there are effects that are directly related to the fixed offset δc, but there are also implicit effects
through Sw . Propagating these into the data assimilation model, from the cost function in (2.9b) we consider
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a single data assimilation. Herein, we only consider the inlet oil pressure, po
0 , (i.e. exclude po

Ng
):

∥∥∥d j −H
[
ψi ( j ), lnλ

]∥∥∥2

C−1
εεi ( j )

=
∥∥∥d j (po |x=0)− (po +O (δc ) |i ( j )

x=0

∥∥∥2

C−1
εεi ( j )

Applying the triangle inequality, we can bound the cost function from above:∥∥∥d j −H
[
ψi ( j ), lnλ

]∥∥∥2

C−1
εεi ( j )

≤
∥∥∥d j (po |x=0)−po |i ( j )

x=0

∥∥∥2

C−1
εεi ( j )

+
∥∥∥(O (δc ))i ( j )

∥∥∥2

C−1
εεi ( j )

So it is clear that any offset implies the accuracy incurs an error at each data assimilation! However, it is not
clear whether this will simply induce a bias or a larger spread. In general it does however highlight the ne-
cessity of having to ensure that all uncertainties are accounted for in the formulation of the data assimilation
model or data collection needs to be well calibrated in order to then get an accurate fitting.

To start we run the base experiment as seen in Figure 3.4. Next, we rerun the EnKF with a small fixed
positive offset of δc = 2E − 3cm/s (i.e. +4%) in the injection rate c. We see very clearly that the EnKF be-
gins by underestimating the parameter with a very tight spread. Subsequently, it experiences massive filter
divergence where the spread widens and the mean estimate starts to explode past the initial mean guess. As
we begin to near breakthrough the estimate and spread start to shrink rapidly but just before breakthrough
levels out with a small spread and a fixed ensemble bias which does not improve. It is interesting to note,
although not clear from the statistical bias, that initially the bias is negative before flipping and becoming
positive. Investigating the dynamic states we see that the offset causes the oil pressure to trail ahead below
and to counter this the EnKF tries to pull back, in doing so dragging down the unknown parameter λ. This
causes an over correction by the EnKF, where the “oil-wet” behavior requires the water pressure to be high to
displace the oil. This implies the oil pressure remains higher which reduces the mismatch between the data
and ensemble. However, since the truth has more “water-wet”-like behavior from the larger true value of λ,
the water phase slips through the domain with greater ease. Whilst, the ensemble being “oil-wet”-like holds
the wave front back causing the volume behind the front to fill to a greater extent and with the injection rate
positive offset at a higher rate. So when the parameter estimate begins to increase, there is a cascade of built
up water phase which floods into the remaining volumes as it becomes more “water-wet”. As we get closer
to breakthrough the production side oil pressure data point begins to inflate (a little), whilst up till now the
majority of the update came from the injection side oil pressure data point.

Figure 3.4: Comparing the effect of incorrect injection rate in the EnKF for the λ estimate of the base experiment
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In contrast, running the EnKF with the equivalent negative offset, δc =−2E−3cm/s (i.e. −4%), we see that
the EnKF overestimates λ above the initial mean guess. Recalling Figure 1.6, we know that the oil pressure is
more tolerant of high values of λ even though they lead below the true oil pressure. However, the negative
offset slows down the front thereby increasing the oil pressure thus pumps up the parameter estimate even
further. Interestingly, what we see is that an offset in the injection rate introduces an ensemble bias relative to
the size of the offset, which clearly here are roughly of the same order. Moreover, we observe that transitioning
towards breakthrough enforces this ensemble bias to be positive, regardless of the sign of the offset. Post
breakthrough this positive ensemble bias forcing reduces, and the ensemble bias decreases. In the spread we
see that the offset introduces additional unaccounted epistemic source of uncertainty and thereby increases
the minimum spread lower bound. For this reason, we see that both offsets are about the same amount larger
than without an offset.

Overall, in this case the accuracy of the estimate is dominated by the ensemble bias. As such, the positive
offset yields a slightly smaller root mean squared error as it has a slightly smaller ensemble bias. This high-
lights the necessity of accounting for all sources of epistemic model uncertainty as they can yield an ensemble
bias.
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3.4. Effects of the EnKF Filter Settings
Having identified some affects of the nonlinearity on the EnKF fitting, we wish to understand how some filter
“settings” may affect the final estimate? For example, how does the ensemble size affect the final estimate?
Does the parameterization affect the accuracy? What is the effect of the measurement noise? Does the grid
size of the physical model effect the final estimate?

3.4.1. The effect of the Ensemble Size
Hence, we wish to understand whether the ensemble size affects the uncertainty of the final estimate? Simply,
we rerun the base experiment starting with a very small ensemble size of N = 25 and then again for increasing
ensemble sizes up to N = 400. Furthermore, in order to overcome the effect of a “lucky draw” we rerun each
experiment for 8 different seeds where if an experiment fails to produce a valid estimate (i.e. one without any
NaNs) we rerun the experiment without updating the seed. This simple rerunning can be considered a “burn-
in” of generator samples, see [20] for more details. Then by observing the mean squared error (where each
seed MSE have been averaged together) vs the number of ensemble members we can determine whether an
increase in ensemble members improves the estimate as well if a minimum number of ensemble members is
required to achieve a reliable estimate.

In Figure 3.5 we investigate the effect on only the unknown parameter λ and not the entire ensemble.
We make the distinction between the MSE with and without the ln parameterization of the parameter which
uses the same fit but computes the MSE with and without the parameterization. In general, we observe that
smaller ensemble sizes yield a slightly smaller mean squared error on average, but the “luck of the draw”
plays a large role as seen by the error bars. Whilst ensembles larger than 100 tend to level out and be quite
consistent. More generally, there does seem to be a slight bias to the initial sample for all the sample sizes as
there is a consistent offset which does not match the variance exactly at time 0. This is similarly true for the
parameterized lnλ which has shrunk as expected from(2.12). Thereafter, we see that the unparameterized λ
always has a larger MSE, though this difference shrinks as more data is assimilated and the fit gets better. In
fact, this difference can be roughly approximated by (2.12) where we use the current mean ensemble estimate
which continues to improve as we get closer to the true value of λ. Finally we see that at the final timestep
i = 800 both the unparameterized and parameterized MSE have reduced the bias sufficiently to be equivalent
to the variance. That is, we hit again a lower bound but at least we know that the parameterization of λ has
nothing to do with it.

Figure 3.5: Comparing the effect of the Ensemble size and the parameterization on the λ estimate of the base experiment

Given that we start the simulation from a fixed exact initial condition for the dynamic state, Sw , po , where
other than the initial uncertainty ofλ the only other source of uncertainty is that of the measurements. Hence,
by comparing the uncertainty of the augmented state against only the parameter λ we can discern if in fact
the true uncertainty is reduced and not simply displaced. Here we do not make a distinction between λ and
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parameterized lnλ as testing showed that the magnitude of the dynamic state variables dominate enough to
drown out the λwhether it is parameterized or not. This is also true for the initial λ sample uncertainty which
yields MSE estimates of <O

(
10−5

)
, as such we instead of starting at time step i = 0 we start at time step i = 1.

Instead of comparing the effect of the parameterization, we compare the effect of computing the MSE
with the truth Ψtr ue against computing the MSE with truth perturbed by the measurement noise, i.e. noisy
truth, which we define as:

Ψnoisy truth =Ψtr uth +Hᵀε

In the real world it is never the case that we have perfect data, instead we have some noisy measurements
from which we wish to estimate. Here we wish to know if uncertainty in these measurements, here noisy
truth, influence whether we can detect error in our estimate. To be clear, the twin experiments are run as
described above, only the computation of the MSE makes a distinction betweenΨnoisy truth,Ψtr uth .

In Figure 3.6, we observe at i = 1 the noisy truth simply adds to the forward uncertainty caused by λ.
Examining the scale of the uncertainty, it is clear that uncertainty in the oil pressure dominates. Since λ

is the only source of uncertainty, then the uncertainty in the oil pressure is determined by λ. Hence, the
nonlinearity of a model can imply small changes in one component which can propagate into large changes
in another.

Figure 3.6: Comparing the effect of the Ensemble size and the MSE data on the augmented ensemble estimate of the base experiment

Furthermore, we observe that, when computing the MSE against noisy truth that it is not possible to
overcome the measurement noise, which is self evident when we consider the MSE decomposition.

For example, consider the case X where X ∗ is the true state of X such that:

E
[∥∥X −X ∗∥∥2

2

]
= E

[∥∥X − X̄
∥∥2

2

]
+∥∥X̄ −X ∗∥∥2

2

Now assume that instead we use a noisy true state, X ∗+ε, which has includes measurement error ε∼N
(
0,σ2

)
:

E
[∥∥X − (X ∗+ε)

∥∥2
2

]
= E

[∥∥X −X ∗∥∥2
2

]
−2E

[〈X −X ∗,ε〉]+E[‖0−ε‖2
2

]
The error ε is assumed to be independently and identically distributed, where independence includes from
X . From the expectation of independent random variables, E [(X −X ∗)ᵀε] = E [(X −X ∗)ᵀ]E [ε]:

= E
[∥∥X −X ∗∥∥2

2

]
−2〈E[

X −X ∗]
,E [ε]〉+E[‖0−ε‖2

2

]
= E

[∥∥X −X ∗∥∥2
2

]
−2〈E[

X −X ∗]
,0〉+σ2

=⇒ E
[∥∥X − (X ∗+ε)

∥∥2
2

]
= E

[∥∥X −X ∗∥∥2
2

]
+σ2
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where σ2 is now part of the irreducible error. And so we see that measuring the MSE in an estimate against
the true state, e.g. data without measurement noise, is bounded above by the MSE computed against a noisy
true state, e.g. data with measurement noise:

=⇒ E
[∥∥X −X ∗∥∥2

2

]
≤ E

[∥∥X − (X ∗+ε)
∥∥2

2

]
= E

[∥∥X −X ∗∥∥2
2

]
+σ2 (3.1)

Hence, the uncertainty in the noisy true state is σ2 = ∑n
i=1σ

2
i where σ2

i = σ2
po for the first and last control

volume of the oil pressure component and σ2
i = 0 elsewhere. This implies that σ2 = mσ2

po = 2(140002) which
is the same magnitude as the MSE computed with the noisy true state. Naturally the case computing the
MSE against the truth doesn’t suffer this problem, but it still encounters a lower bound. It is interesting to
see how the EnKF is able to derive an update from noisy measurement data and approximate the truth. That
is, when we compute the MSE using a noisy true state X ∗+ ε we see that the variance drowns out the actual
variance and bias of the updated state. Where as, the MSE computed against the true state X ∗, we see that
the uncertainty of the noisy measurements data used in the filter update does not affect the estimate. Later
in (3.10) we will see that the measurement uncertainty in the EnKF can only reduce the uncertainty in the
estimate.

Regarding the lower bound encountered when computing the MSE against the truth, this is the Cramér-
Rao bound:

Theorem 3.4.1 (Cramér-Rao bound[30]). First we introduce a relation among symmetric positive definite ma-
trices. Let A and B be symmetric positive definite matrices. Then, we say A ≥ B exactly, when A−B is a symmetric
and positive semidefinite matrix. Let x be a vector and x̂ be an unbiased estimate for x, where z is an obser-
vation of x. Let ∇x lnL(x | z) be the gradient and ∇2

x lnL(x | z) be the Hessian of the likelihood function with
respect to x.

Cov(x̂, x) ≥(
E
[
[∇x lnL(x | z)] [∇x lnL(x | z)]ᵀ

])−1

=−(
E
[∇2

x lnL(x | z)
])−1

Notice that there are two equivalent expressions for this lower bound - one involving only the first derivative
and the other involving the second derivative of the likelihood function.

To illustrate this bound consider, the Cramér-Rao Lower bound for a linear Gaussian model, z = H x +w
with observation matrix H and noise v ∼N (0,C ) with C =σ2Im×m . Here the Gaussian model for z ∈Rm with
v ∈Rm and H ∈Rm×n , x ∈Rn is defined as:

p(z) = 1

(2π)m/2 detC
1
2

exp

[
−1

2
(z −H x)ᵀC−1(z −H x)

]
then computing the Hessian of the likelihood with respect to x:

∇2
x lnL(x | z) =−HᵀC−1H

then to compute the expectation we further simplify and assume that m = 2 and n = 3 such that:

H =
[

1 0 0
0 0 1

]
, and C =

[
σ2 0
0 σ2

]

−E[∇2
x lnL(x | z)

]= E[
HᵀC−1H

]= E
 1

σ2 0 0
0 0 0
0 0 1

σ2

= 2

σ2

then using Theorem 3.4.1, the CRLB:

=⇒ Var[x] ≥ σ2

2
or for more general m:

=⇒ Var[x] ≥−(
E
[
HᵀC−1H

])−1 = σ2

m

However, here m may refer only to data at a single time step. Suppose we extended the linear system to
include for all J sequential data assimilations at once. Then the Gaussian model for z ∈Rm J with v ∈Rm J and
H ∈Rm J×n J , x ∈Rn J is defined as:

p(z) = 1

(2π)m J/2 detC
1
2

exp

[
−1

2
(z−Hx)ᵀC−1(z−Hx)

]
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Thus by the same steps:

Var[x] ≥−(
E
[
HᵀC−1H

])−1 =−
(

J∑
i=1

E
[
HᵀC−1H

])−1

=⇒ Var[x] ≥ σ2

mT

If we assume our problem to be sufficiently linear then we can similarly apply the same principles to our
problem, wherein we have a data assimilation occurring at every timestep, e.g. J = T , and find that:

=⇒ Var[Ψ] ≥
(

J=T∑
j=1

E
[

HᵀC−1
εεi ( j )

H
])−1

=
σ2

po

mT
(3.2)

to be our Cramér-Rao Lower bound. However, the updated ensemble will still inherit many of the non-
Gaussian properties from the forecast ensemble. That is, the EnKF “is approximate in the sense that it does
not properly take into account non-Gaussian contributions in the prior for Ψ. In other words, it does not
solve the Bayesian update equation for non-Gaussian pdfs. On the other hand, it is not a pure resampling of
a Gaussian posterior distribution. Only the updates are linear and these are added to the prior non-Gaussian
ensemble.”[16] Thus as a result of the nonlinearity, this linear bound neglects to incorporate higher order
terms and may be overcome or fail to reach the bound as a result of bias from non-Gaussian contributions.

Notice, in Figure 3.6, with each data assimilation the ensemble estimate continues to improve past this
bound. However, not monotonically, as during the breakthrough transition the uncertainty of the ensemble
increases rather than decreases past the injection flood uncertainty. This is most likely from the nonlinearity
of the model as the ensemble members breakthrough at slightly different times.

To verify this, in Figure 3.7, we plot the MSE (computed against the truth) at every timestep for each en-
semble size. We make a distinction between the MSE of the augmented and observed ensemble. Clearly,
the convergence is not monotonic and is affected by the nonlinearity of the model. Most notably, the break-
through transition wherein the effect of the ensemble size is present but very minor across the augmented en-
semble. Small ensemble sizes slightly under estimate the MSE of the augmented ensemble as non-Gaussian
contributions dominate and impose the nonlinear bias. Whereas larger ensemble sizes, although still af-
fected, are better able to capture the uncertainty and thus avoid being dominated by the nonlinear bias.

Figure 3.7: Comparing the effect of the Ensemble size and the MSE data on the observed & augmented ensemble estimates of the base
experiment

Consider the observed ensemble when the MSE at T = 1 is just under σ2
po = σ2

po /(m × (T = 1)). For the

following 20 timesteps, the MSE follows almost exactly the bound described in (3.2), i.e. σ2
po /(mT ). There-

after, as the flood front develops and the nonlinearity of the model becomes more pronounced, i.e. less and
less linear, the nonlinear bias from non-Gaussian contributions begin to dominate. In [16], it is shown that
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as N →∞ the EnKF will converge to the Kalman Filter (KF), see [26]. That is the ensemble error statistics are
an approximation of the true error statistics, which in the limit, as N →∞, they converge to. The EnKF then
reduces to the KF which is the best linear unbiased estimator (BLUE) in the minimum mean-square-error
sense. As such if the problem is sufficiently linear, then as N → ∞ the EnKF should also result in the best
linear unbiased estimator and provide the minimum mean squared error.

Notice in Figure 3.7 that the minima pre-breakthrough of the augmented and observed ensembles do
not occur simultaneously, regardless of the ensemble size. This would indicate that changes in uncertainties
at the observable points of the ensemble take time to propagate to the rest of the augmented ensemble, as
non-Gaussian contributions.

Thus, if we were to assume that sufficient; linearity, ensemble size, and minimal non-Gaussian contri-
butions, it is possible that the augmented ensemble also attains the lower bound. In reality we cannot force
linearity, or enforce non-Gaussian contributions, or endlessly remeasure data to minimize the effect of “lucky
draws”. Hence, there must exist a relation that determines the achievable lower bound uncertainty. However,
this lies outside the scope of this thesis. As a result, when it comes to determining the optimal ensemble
size, we can only suggest that in order to sufficiently capture the model uncertainty the number of ensembles
need be large enough. Evidently, the optimal choice is to have an infinitely large ensemble, however, this is
not computationally feasible.

3.4.2. The effect of the Measurement Noise
Statistically this lower bound evidently is determined by the Cramér-Rao lower bound, but this lacks a phys-
ical interpretation. That is, does there exist an ensemble physics justification for a lower bound uncertainty
on the estimate? Furthermore, what is the effect of the uncertainty in the measurement data? What does this
imply physically? Finally, does less uncertain data improve the certainty of the final estimate?

As such, in order to better understand this bound we take a closer inspection at the covariance weighted
updated that occurs in the EnKF. In doing so we are able to re-frame the elements of the sample covariance
matrix as energy norms. Thereby providing a link establishing a link between statistical concepts and the
physics. Furthermore, in this formalism we clearly see that the measurement noise is in effect an additional
random noise potential, which proportionally shifts the accuracy of the estimate. By rerunning the base
experiment with different measurement noise uncertainties, starting with a very small measurement noise
σpo = 14 and then increasing up to σpo = 1.4E6, we can observe the effect of the measurement noise on the
final estimate.

So to begin we recall our 2 very crucial points: Firstly, from statistical point of view the lower bound
estimate is determined by the Cramér-Rao lower bound. Briefly, the uncertainty of the ensemble is bounded
below by the uncertainty of the measurements, which in itself is somewhat informative but unclear. Hence
at this juncture, it is useful to introduce the notion of Fisher information[30]:

Definition 3.4.1. Fisher Information Matrix[30] Using the same notation as the Cramér-Rao Bound definition,
the information matrix I (x) for the sample is defined by:

I (x) =−E[∇2
x lnL(x | z)

]
= E[

[∇x lnL(x | z)] [∇x lnL(x | z)]ᵀ
]

which summarizes the amount of information in the observation.1

Furthermore, it can be shown that the Maximum Likelihood Estimate achieves this Cramér-Rao lower
bound, at which point the smallest asymptotic variance of any unbiased estimator is said to be asymptoti-
cally optimal. Using this, we restate the Cramér-Rao bound [30] as

Cov(x̂, x) ≥I−1(x) (3.3)

Contextualizing this with respect to our problem, we realize that the variance/spread of the parameter esti-
mate is limited by how informative the measurable oil pressure is, and that the inverse of the error covariance
matrix is exactly the inverse Fisher information matrix where the log likelihood is with respect to (λ)2.

Cov
(
Ψa ,Ψtr ue

)≤I (λ) =−E[∇2
λ lnL(Ψ | d ;λ)

]
1There is a certain utility to the Fisher Information, in that it allows practitioners to set unknown values to have an initial information
I = 0 instead of an initial spread =∞.

2Not lnλ as po is computed using λ.
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In fact, the Fisher information matrix is the negative expected hessian of the log likelihood. Hence, it mea-
sures the sensitivity of the observed model output at each measurement, i.e. (po)n , with respect to the un-
known parameter (λ)n . However, from a physical point of view the relevance is still not entirely clear with
respect to what occurs in the fitting process to the physical system. That is until a closer inspection of the
observed sample covariance matrix is taken, which becomes my second point.

We first examine the inner produce of the innovation S with itself:

〈S,S〉 = 〈H A(I −1N ), H A(I −1N )〉
= 〈H A(I −1N )(I −1N ), H A〉
= 〈H A(I −1N −1N +1N ), H A〉 where 1N 1N = 1N

We realize the term H A1N = H Ā is the observed ensemble component-wise (arithmetic) mean:

= 〈H A, H A〉−〈H A1N , H A1N 〉
Secondly, recall < Y , Z >= tr(Y Z ᵀ) where Y , Z ∈Rp×q .

tr
(
SSᵀ)= tr

(
H A(H A)ᵀ

)− tr
(
H Ā(H Ā)ᵀ

)
Thirdly, realize that the resulting diagonal elements are the observable energy norms, ‖HΨi‖2 of each en-
semble member Ψi ∈ [Ψ0, . . . ,ΨN ] = A and matrix observation operator H ∈ Rm×n from (2.3). Thus the
tr(H A(H A)ᵀ) represents the total observable energy across the ensemble. Whilst for the tr

(
H Ā(H Ā)ᵀ

)
all

diagonal elements are the observable (arithmetic) mean energy norm,
∥∥HΨ̄

∥∥
2, where Ψ̄ = 1

N

∑N
i=1Ψi . The

resulting trace then represents the total observable mean energy across the ensemble which is just N times
the observable mean energy norm:

tr
(
SSᵀ)= N∑

i=1
‖HΨi‖2 −N

∥∥HΨ̄
∥∥

2 (3.4)

This now very clearly highlights the connection between statistical uncertainty and physics defined concepts,
i.e. the amount of energy across the observed ensemble. In that now we clearly see that observed sample
covariance is the difference between the current total observed energy in the ensemble and N times the
observed average energy in the ensemble.

Now let us assume that the ensemble is exact in every column. That is, every ensemble member reflects
the true dynamic state and true parameter value, i.e. Ψi =Ψtr ue = [Sw

tr ue , po
tr ue ,λtr ue ]ᵀ. Evidently, the ob-

served ensemble energy is equal to N times the observed ensemble average energy, and thus the variance
of the observed ensemble is singular. Alternatively, in the context of Fisher information, the total observed
information is infinite, which is to say everything that is learnable from the observation has bean learnt.

Now, let us relax this assumption and let only observed average energy be equal to the true observed en-
ergy, i.e. Ψ̄ = Ψtr ue . Specifically, the ensemble mean is exactly the true solution and what’s left to discern
is if the variance can remain nonsingular when at an energetic minima equal to 0. Clearly it can, in fact the

bounds of ensemble values are [0,
√

N
∥∥HΨ̄

∥∥
2]. Thus, energetically speaking, it is entirely possible to have an

ensemble with an energy norm equivalent to the true observable energy and yet have an ensemble not equal
to the true observable state. Notice that this energy shrinkage targets the entire ensemble and not ensemble
members individually. Although, later we will see that the observation operator H in fact weights this ensem-
ble by what is in fact observable. Regardless, the ensemble based shrinkage violates mass conservation laws
of the individual ensemble members.

On a different note, recall that the error covariance matrix is the inverse of the Fisher information matrix
and in so if the ensemble uncertainty decreases, the amount of information about the ensemble increases.
As such realize that the ensemble energy shrinkage implies that the information content about the true state
increases!

Subsequently, within this framework the sample measurement noise covariance is in effect an additional
random noise potential:

tr
(
EEᵀ)uσ2

po tr(I ) = mσ2
po

then adding tr(SSᵀ) :

tr
(
SSᵀ+EEᵀ)u N∑

i=1
‖HΨi‖2 −N

∥∥HΨ̄
∥∥

2 +mσ2
po
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Now how does this actually relate to the entire ensemble and the fitting/analysis update of the EnKF? Well
firstly, let us distinguish the forecast covariance C e

ΨΨ
f from the analyzed covariance C e

ΨΨ
a such that:

C e
ΨΨ

f = A(I −1N )(I −1N )ᵀAᵀ = A(I −1N )Aᵀ (3.5)

then from our analysis update (2.11) we can compute3:

C e
ΨΨ

a = [
I − A(I −1N )SᵀC−1H

]
C e
ΨΨ

f

= A Aᵀ− Ā Āᵀ− A′SᵀC−1S A′ᵀ where A′ = A(I −1N ) (3.6)

Immediately we see that the analyzed covariance is a scaling of the forecast covariance. More importantly,
the actual measurement data has no effect on the analyzed covariance, rather it is the uncertainty of the
measurements that can shrink the analyzed ensemble covariance.

Evidently the trace of the forecast ensemble covariance:

tr
(
C e
ΨΨ

f
)
=

N∑
i=1

‖Ψi‖2 −N
∥∥Ψ̄∥∥

2 =
N∑

i=1

(‖Ψi‖2 −
∥∥Ψ̄∥∥

2

)
Then by the reverse triangle inequality we know that

tr
(
C e
ΨΨ

f
)
≤

N∑
i=1

(∥∥Ψi − Ψ̄
∥∥

2

)= Var[Ψ] (3.7)

So the energy in the ensemble is smaller or equal to the ensemble variance, which is odd because this entails
that there are ensemble members that deduct energetically whilst by construction we know that mass is still
conserved. Therefore, the negative component must be caused by the momentum4of the forward propaga-
tion of the ensemble uncertainty. Moving on to the case of the trace of the analyzed ensemble covariance, we
recall that < Y , Z >= tr(Y Z ᵀ) where Y , Z ∈Rp×q :

tr
(
C e
ΨΨ

a)= 〈A, A〉−〈Ā, Ā〉−〈A(I −1N ), A(I −1N )〉SᵀC−1S

= 〈A, A〉−〈Ā, Ā〉−〈A(I −1N ), A(I −1N )〉SᵀC−1S

= [〈A, A〉−〈Ā, Ā〉]− [〈A, A〉SᵀC−1S −2〈A, Ā〉SᵀC−1S +〈Ā, Ā〉SᵀC−1S

]
So first and foremost, we see that forecast ensemble covariance is additively (not multiplicatively) updated

and that the update is the projection, Π ∈ RN×N , given the observable ensemble innovation where the nor-
malizing factor is perturbed by the measurement error sample covariance:

=⇒Π= SᵀC−1S = Sᵀ(SSᵀ+EEᵀ)−1S

Recall that 1N = 1N 1N and S1N ≡ 0 ≡ 1N Sᵀ, and so the projections on averages dropout.

tr
(
C e
ΨΨ

a)= [〈A, A〉−〈Ā, Ā〉]−〈A, A〉SᵀC−1S

= 〈A(I −SᵀC−1S), A〉−〈Ā, Ā〉
= 〈A(I −Π), A〉−〈Ā, Ā〉 (3.8)

Now let us assume that EEᵀ = 0, i.e. the measurements are perfect with no uncertainty, and make the heinous
assumption that Sᵀ(SSᵀ)−1S = I 5then

= 〈A(I −Sᵀ(SSᵀ)−1,S)A〉−〈Ā, Ā〉
= 〈0, A〉−〈Ā, Ā〉
=−〈Ā, Ā〉

This is weird but valid. A negative variance? Impossible. Barbaric. But is it negative or simply non-negative?
Consider what the variance of an ensemble is and what we are trying to do it. Statistically, the variance is
how far the ensemble members are from the ensemble mean and what we want to do is shrink that variance,

3for a treatment in terms of the Kalman Gain consult [16].
4The mass of the momentum is the probabilistic mass of ensemble members, not the physical mass of the fluids! So this interpretation

follows in by Newton’s third law of motion
5Applying the Moore-Penrose inverse here is equally valid. This assumption shows that the projection is idempotent only when there is

no measurement noise! Granted, the noise does not “de-center” the projection.
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ideally to 0 (a perfect forecast). Remember we want the mean to converge to the true value and the variance to
shrink around it. So here EEᵀ means that the ensemble is scaled w.r.t. measurement noise, which allows the
ensemble mean to center itself towards the truth. Mathematically, firstly by definition of the inner product on
real matrices tr(AᵀA) ≥ 0 where equality is only when A = 0. Secondly, for random variables on the real line
the Var[·] ≥ 0 by definition. Evidently either Ā = 0 or A = 0 and so reusing 1N = 1N 1N by way of 〈Ā, Ā〉 = 〈A, Ā〉:

−〈Ā, Ā〉 =−1

2

[〈Ā, A〉+〈Ā, A〉]+ 1

2
[〈A, A〉−〈A, A〉]

= 1

2
〈A− Ā, A〉− 1

2
〈Ā+ A, A〉− 1

2
〈A− Ā, Ā〉+ 1

2
〈Ā, A− Ā〉

= 1

2
〈A− Ā, A− Ā〉− 1

2
〈Ā+ A, A〉+ 1

2
〈Ā, A〉− 1

2
〈Ā, Ā〉

= 1

2
〈A− Ā, A− Ā〉− 1

2

[〈A, A〉+〈Ā, Ā〉]
Then if A = 0 by defintion Ā = A1N = 0, nonetheless we see that:

= 1

2
〈Ā, Ā〉− 1

2

[〈Ā, Ā〉]= 0

However, if Ā = 0 then :

= 1

2
〈A, A〉− 1

2
[〈A, A〉+0] = 0

Returning to (3.8), we can define the complementary projection P = 1 −Π. Then we assume there exists
P 1/2 = (I −SᵀC−1S)1/2:

=⇒ tr
(
C e
ΨΨ

a)= ∥∥∥AP
1
2

∥∥∥
2
−N

∥∥Ψ̄∥∥
2

If we take P 1/2 =
[

p
1
2
1 , . . . , p

1
2
N

]ᵀ
∈RN×N . We find that (AP

1
2 )i , j =∑N

k=1Ψi ,k p
1
2
k, j whereΨk = [Ψ1,k , . . . ,Ψn,k ]. For

simplicity we denote this rescaled ensemble to have ensemble members; AP
1
2 = [

Ψ̃1, . . . ,Ψ̃ j , . . . ,Ψ̃N
] ∈Rn×N .

Returning to the trace:

=⇒ tr
(
C e
ΨΨ

a)= N∑
j=1

∥∥Ψ̃ j
∥∥

2 −N
∥∥Ψ̄∥∥

2 (3.9)

So in essence, energetically, we rescale the ensemble energy with respect to the observation ensemble mean
energy and a random energy potential, which must be present in order for the ensemble to be able to locate
the true mean. Note however, this random energy potential is dependent on the measurement noise sample
which as N →∞ =⇒ EEᵀ → σ2

po I . As such consider the case where the measurement noise drowns out the

observed ensemble covariance C = SSᵀ+EEᵀ ≈ EEᵀ, and assume that EEᵀ =σ2
po I s.t. C−1 =σ−2

po I . Then,

=⇒ P 1/2 =σ−1
po (σ2

po I −SᵀS)1/2

Hence, when C ≈ EEᵀ,

tr
(
C e
ΨΨ

a)
u

∥∥∥A(I −σ−2
po SᵀS)

1
2

∥∥∥
2
−N

∥∥Ψ̄∥∥
2 (3.10)

then as σ2
po →∞:

tr
(
C e
ΨΨ

a)
u

∥∥∥A(I −0)
1
2

∥∥∥
2
−N

∥∥Ψ̄∥∥
2

=
N∑

i=1
‖Ψi‖2 −N

∥∥Ψ̄∥∥
2

which we know from (3.7) is bounded above:

tr
(
C e
ΨΨ

a)= N∑
i=1

‖Ψi‖2 −N
∥∥Ψ̄∥∥

2 ≤ Var[Ψ]

Clearly, it the final spread is determined by the measurement noise. Wherein, the spread of the measurement
noise, i.e. σpo , determines the rate of shrinkage, and if too large the estimate will no longer improve, nor can
it get worse!
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In Figure 3.8, this is what exactly occurs as we increase the measurement noise from σpo = 14 to σpo = 1.4E6.
We see that relatively σpo = 1.4E6 is 105 times larger than σpo = 14, and as a result the final spread is also 105

times smaller with σpo = 14 than with σpo = 1.4E6. This is true for all σpo in between as well. However, for
larger σpo the estimate does not improve at all as the measurement noise dominates.

Figure 3.8: Comparing the effect of the measurement noise in the EnKF for the λ estimate of the base experiment

Originally, we began only with epistemic parametric uncertainty in λwhich propagated into the dynamic
states through the nonlinear model which was assumed to have no epistemic model uncertainty. Given noisy
measurements, uncertain estimates for the augmented state Ψ are made, including λ. Although this ana-
lyzed λ estimate is more certain, it still has uncertainty. Whether the remaining irreducible uncertainty is the
residual parametric uncertainty yet to be estimated or if uncertainty from the noisy measurements is “flow-
ing back” into λ, is not clear. As a result, the remaining irreducible uncertainty is called aleatoric. The figure
above clearly indicates however, that noisy measurements are one of the major reasons for the underlying
irreducible uncertainty. In terms of Fisher information, noisier measurements have a lower information con-
tent than accurate measurements. As a result for a good estimate unbiased and precise measurements are
needed.

3.4.3. The effect of the Grid Refinement
One way to improve the accuracy of the synthetic data and ensemble forecast is to increase the number of
grid points/control volumes (or refine the mesh) of the nonlinear physical model. That is, we know from
numerical analysis [5, 28] as we refine the grid the discretization error of the forecast decreases. Note the
caveats of this being: the increased computational cost, dominating round off errors given a fine enough
grid, and in hyperbolic problems the solver stability (e.g. CFL).

In-spite of these caveats, we wish to understand whether refining the grid, thereby increasing the ensem-
ble forecast and synthetic data’s accuracy, improves the final estimate? Does this have physical implications?
Does this result in a lower mean squared error? Does this affect the information content of the ensemble?

Given how we discretized our spatial domain, see Figure 1.3, we know that as the grid is refined the ex-

trapolation error of the Dirichlet boundary condition gets smaller with order O
( dNg

2

)
. However, refining the

mesh increases the state size, n = nψ+nα where nα = 1 and nψ = Ng +Ng , and as such is computationally
costly, recall that a single forecast from the IMPES was defined to be O

(
χ(Ng )

)
. As a result we run an exper-

iment, in which we fix the grid size of the ensemble forecasts to the base setting of Ng = 50, but then refine
the synthetic dataset grid size. This is done to understand the effect of discretization errors of the synthetic
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data on the spread of the estimate. That is, as the grid of the synthetic data is refined there is an O
( dNg

2

)
introduced in the location of the measurements. Given, the data is measured from the first and last control

volume, the center of the control volumes changes by O
( dNg

2

)
. In equation (3.3) we saw that the Cramér-Rao

lower bound is the inverse of the Fisher information. This also implies that no other unbiased estimate can
be more efficient than one that reaches this bound.

Definition 3.4.2 (Relative Efficiency[30]). Let Âa and Âb be two estimates of an unknown parameter A. We
say that the estimate Âa is more efficient relative to Âb if

Var
[

Âa
]≤ Var

[
Âb

]
.

In Figure 3.9, initially we observe very little difference between estimates given data from a synthetic
dataset generated with a very coarse mesh and a very fine mesh. However, by the end of the data assimilation,

the experimental results clearly indicate O
( dNg

2

)
trend that actually decreases at same rate as the uncertainty.

Thus, indicating the impact of numerical error in the ensemble estimate. With respect to the informativeness
of the grid, this would indicate that pre breakthrough synthetic data produced with finer meshes is as infor-
mative and efficient as coarse meshes. Whilst post breakthrough synthetic data produced by finer meshes is

O
( dNg

2

)
more efficient and informative that coarse meshes.

Figure 3.9: Comparing the effect of the grid refinement of the synthetic dataset on the variance of observed ensemble covariance at
Timesteps : [1,100,400,800]

However, ideally, we want to investigate whether the grid size of the forecasts impacts the quality of the
EnKF estimate directly. Naturally, the trace of the full state covariance matrix will increase as the mesh size in-
creases, rendering it meaningless. We could take the determinant of the covariance matrix, which is geomet-
rically akin to computing the volume of the covariance ellipsoid. However, as the dimensionality increases,
i.e. mesh is refined, the more difficult the determinant is to compute as the full state covariance gets larger
and more self correlated. Recall that the degrees of freedom in the system is only 1 as only the parameter λ is
unknown and the dynamic state is entirely dependent on it. This implies that the observed covariance matrix
should only have a single eigenvalue and as a result should be singular. Thus, if we only consider the trace,
the singularity will be hidden in the summation.



46 3. Effectiveness of EnKF for Parameter Estimation

As a result, we should instead turn to the condition number[21]:

κ2(C ) = σmax(C )

σmin(C )
= λmax(C )

λmin(C )
≥ 1

whereλ1(C ) ≥λ2(C ) ≥ . . .λm(C ) > 0[30]. Matrices with small condition numbers are said to be well-condition,
and κ2 refers to the 2-norm condition of a matrix C which measures the elongation of the hyper-ellipsoid[21]
{C x : ‖x‖2 = 1}. In the 2-norm, orthogonal matrices are perfectly conditioned, then κ2 = 1, see[21]. However,
since there is only one degree of freedom, i.e. λ, the observed covariance matrix should become increasingly
ill-conditioned as the parameter is estimate is improved.

Thus, we construct a twin experiment, in which using the finest mesh to generate the synthetic data
(Ng = 150), we increase the grid size of the ensemble state, Ng ∈ [25,50,75,100,125,(150)], and compute the
observed covariance matrix condition number, κ2(HᵀC e

ΨΨH). In Figure 3.10, we observe that as the grid size
increases, the problem becomes increasingly ill-conditioned. This follows as the ensemble state becomes
increasingly correlated as the grid size increases. Hence, it is expected that the observed covariance matrix
becomes ill-conditioned as the ensemble state grid is refined. However, this does have consequences, recall
that if the condition number of a matrix is 10d , then small errors (including the errors in the data and in the
round-off) in the computation are magnified by the factor 10d , [30]. Thus if we are dealing with finite pre-
cision arithmetic accurate up to d decimals, then small errors in time can wipe out the overall quality of the
computations[30].

Figure 3.10: Comparing the effect of the grid refinement of the ensemble forecast on the condition number of the observed ensemble
covariance given grid sizes Ng : [25, 50, 75, 100, 125, (150)]

To recap, if you refine the mesh of the synthetic dataset you can further reduce the uncertainty even

though you incur a O
( dNg

2

)
error due to the measurement location error. That is, although ensemble fore-

casts with coarse grids are just as informative as ensemble forecasts with fine grids, synthetic data with a
finer grid is more informative than a coarse grid. This leads to the possibility of the EnKF being used with
coarse forecasts to estimate the parameter then re-forecasted with a refined mesh to minimize discretiza-
tion errors. However, the finer grids implies the observed ensemble covariance matrix becomes increasingly
ill-conditioned. This in turn could magnify small spurious errors.
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3.5. Chapter Summary
In this chapter we investigated if under the base filter settings the EnKF is capable of estimating λ.
In the first section, we found that the EnKF was able to assimilate each of the datasets created with differ-
ent λtr ue . That is, for each dataset/λtr ue , the ensemble was able to capture λtr ue within its spread, as well
as accurately match to the mean estimate, E [λ] ≈ λtr ue . However, for datasets using larger λtr ue the final
ensemble spread would end larger than datasets with smaller λtr ue . This did mean that for extremely small
values of λtr ue there was a chance of an ensemble bias developing.
In section 2, we investigated the effect of the initial sample wherein we would change the initial mean or ini-
tial spread. Here, we used 2 datasets constructed from 2 different values of λtr ue , λbase = 2.5 and λg uess = 6.5.
This allowed for a 2x2 experimental setup when testing the sample, e.g. estimating λbase given initial mean
λg uess (i.e. λbase |λg uess ). Firstly, when testing the effect of the initial mean, we saw no discernible difference
in the final accuracy when estimating for a givenλ. Moreover, we noted the existence of a spread lower bound
dependent on λ. Note however, with a poor initial guess it may take more data for the ensemble to capture
the true value of λ.

Secondly, when testing the effect of the initial spread, we needed only half the 2x2 experiment setup, i.e.
our initial mean E

[
λ0

] = λg uess , but then tested each dataset with a large and small variance. Similarly, we
found no discernible difference in the final accuracy. As such, in situations where very little is known about
variance of an unknown parameter, the EnKF is still able to identify up to a minimum degree of accuracy.
Overall, this spread lower bound we encounter, rendered the effect of the initial spread meaningless on the
final accuracy of the ensemble as it dominates the root mean squared error. That is, the EnKF is also able to
overcome overconfident inaccurate guesses, in which both the initial spread and mean guess fail to capture
the unknown parameter.

In section 3, we investigated whether the EnKF was robust enough to filter the “true” λtr ue when the fixed
injection rate c is incorrectly set (±4%) in the simulator (1.15). We found that the EnKF would utterly fail,
developing large ensemble biases. In effect, this mis specification of a fixed variable is an additional source
of epistemic model uncertainty. This highlights the necessity of accounting for all sources of uncertainty in
order for the Ensemble Kalman filter to be successful.

In section 4, we investigated the effects of some of the EnKF settings; Ensemble size, Measurement noise,
and Grid refinement. For each setting we create an experiment where we assimilate the base dataset for
different values of that setting. In addition, we then reran each experiment using 8 different random seeds
and averaged the end result to overcome “lucky draw” effects.

When investigating the Ensemble size, in the case of a linear Gaussian model, we showed that the Cramér-

Rao lower bound should be
σ2

po

mT . Testing our problem for 25 ≤ N ≤ 400, we initially found that this bound is
followed closely however, as the model nonlinearity increases the ensemble deviates from this bound for
any ensemble size. Larger ensemble sizes are better able to capture the true uncertainty and avoid being
dominated by the nonlinear bias, but with diminishing returns.

Then in the case of the measurement noise, 14 ≤σpo ≤ 1400000, we found that as we decreased the mea-
surement noise we decreased the Cramér-Rao lower bound. i.e. the more accurate the measurements are the
more accurate the estimate can be. In addition, we also show that the trace of the sample covariance matrix is
the mean energy norm of the ensemble, where likewise the trace of the observable sample covariance matrix
is observable (arithmetic) mean energy norm of the ensemble.

Finally, in the case of the grid refinement, 25 ≤ Ng ≤ 150, we found that given what is observable, us-
ing synthetic data with a finer grid is more efficient and informative than a coarse grid, even though you

incur a O
( dNg

2

)
from measurement location error. Albeit, pre-breakthrough a finer grid is just as efficient

and informative as a coarse grid. If we consider refining grid for the ensemble state, we find that fine grids
are increasingly ill-conditioned, which follows as there is only one degree of freedom, i.e. λ. However, this
ill-conditioning implies that fine grids are more susceptible to spurious numerical errors.

All in all, we have seen that the EnKF can efficiently estimateλ. Although, the EnKF does suffer from many
failings; mass conservation in ensemble state is not conserved, small unaccounted errors can compound and
might cause filter divergence and ensemble bias. However, there is the possibility of the EnKF being used
with coarse forecasts to estimate the parameter then re-forecasting with a refined mesh. In the next chapter
we investigate whether this is a viable in the context of history matching.





4
Confirmation Step

In the previous chapter we saw that the EnKF could efficiently provide an accurate parameter estimate of λ.
However, the EnKF often produces unphysical results given that during the data assimilation no constraints
regarding the physics are directly imposed. For example, mass conservation is not taken into account and
the analyzed state may be physically inconsistent. Although the EnKF has been shown to guarantee mass
conservation in the mean sense1. Whether this is sufficient in practice is unclear, it does follow by the law of
large numbers, in the long run the ensemble will converge to the mean, and unless there is an external bias,
the mean is the true value. However, any roulette player knows that just because an event has very seldomly
occurred before does not imply it is less likely to occur again. So, in a finite time horizon, it is not necessarily
the case that the mean is the truth. Furthermore, in the physical domain, one should always remember that
even the flap of an Amazonian butterfly’s wing can cause tornadoes in Kansas[36]. That is, due to the non-
linearity of systems, even small unlikely changes in a system’s state can cause large changes in the outcome.
In the last chapter this was clear in Section 3.3, in which a 4% change in the injection rate caused the filter to
fail. In addition to the connection we uncovered in the last chapter between the ensemble uncertainty and
the energy in the system, wherein it became clear that mass conservation is violated by the data assimilation,
we now introduce a confirmation step! Thus, we will term the EnKF with a confirmation step as the EnKC.

This will allow for mass conservation between time steps to be retained by the dynamic state, which also
implies we are able to retain a little bit of the non-linearity of the physics. In this chapter we will be investigat-
ing the potential of this method for history matching by comparing the EnKF against the EnKC. To reiterate,
the EnKC uses the EnKF to assimilate data and then re-forecasts (i.e. the confirmation step) the ensemble
between data assimilations but with the new parameter estimate:
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Figure 4.1: Ensemble Kalman Filter with Confirmation Step (EnKC) at nth Data Assimilation

However, it is not clear how this will affect the parameter estimate. Does this reduce the uncertainty of the
parameter estimate or does it introduce a bias? Will the confirmation step introduce more of the nonlinearity
present in the physics? How is the fitting process affected? Is it more informative? How does it compare with
the EnKF without a confirmation step? Are there any computational implications? Does it handle a reduced
dataset well?

1The example shown in [25] does not augment the state with a static parameter.

49
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In order to investigate the above, we first review some of the computational aspects of the EnKC. Then,
we run the base twin experiment with a confirmation step to verify if it is indeed capable of providing a
parameter estimate, which we compare against the EnKF. We also check for a final ensemble bias and spread,
as well as any other peculiarities that might arise from the nonlinear forecast. Thereafter, we compute the
difference between the observable energy norms before and after the confirmation step. This will tell us if
energy is conserved across the observed ensemble and how this affects the fitting. Moreover, by extending
our information formalism, we can quantify how informative the confirmation step is compared to without.
Thus, comparing the EnKF fit against the EnKC we review what the confirmation step implies for the final
parameter estimate.

Thereafter, we investigate whether the EnKC is capable given a reduced dataset. By running the base
experiment with subsampled data, i.e. oil pressure data is only assimilated every [1,2,4,8,16,50,100] fore-
casts/timesteps, we then can investigate if it is still capable of providing a parameter estimate, and reason-
able water saturation profile by examining the bias and spread. In addition, by examining the traces of the
observed confirmed EnKC ensemble covariances we can observe the informativeness of oil pressure data
assimilations. Similarly, we also investigate the case with an augmented dataset, in which water saturation
snapshots are added to the base experiment’s oil pressure dataset. We conclude with a chapter summary.

4.1. Computational Aspects of EnKC
First, we briefly review some of the computational aspects of the EnKC. Since the first step is simply to
run the EnKF, the EnKC inherits all the Numerical issues discussed in Section 2.3. However, by reforecast-
ing/confirming the ensemble we allow for conservation of mass within each ensemble member. This implies
that each ensemble member is a possible truth, and not simply a fitting. Evidently, this does imply that the
simulator needs to be called twice as often, i.e. an additional computational cost of O

(
χ(Ng )

)
, whilst also re-

quiring the prior ensemble to be retained in memory. On the other hand, in the EnKF update, there is no need
to update the entire ensemble state as only αa needs to be passed to the Confirmation step. Recall however,
this does reintroduce more of the inherent nonlinearity into the ensemble, thus reinforcing non-gaussian
posteriors.

Algorithm 3: Ensemble Kalman Filter with Confirmation (EnKC)

1 N :=Ensembles Size
2 λ∼Gamma (k,θ)
3 α := lnλ

4 Ac =

 ~Sw 0

~po 0

α


5 for i timesteps do
6 Forecast Step:

7 A =
[
G (Ac ;α)

α

]
/* O

(
χ(Ng )

)
*/

8 Load measurement data:
9 Dobs = [d1, . . . ,dN ] /* scatter from m to mN */

10 Analysis Step:
11 αa = E (A,Dobs )
12 /* wherein the update step αa =αX only costs O

(
N 2

)
*/

13 Confirm Step:

14 Ac =
[
G (Ac ;αa)

αa

]
/* O

(
χ(Ng )

)
*/

15 end

Note however, in the previous chapter it was remarked that during the parameter estimation, a coarse
grid could be used for the parameter estimation procedure and a fine grid used for the confirmed history
match. As such, reducing the computational cost of the additional confirmation step without compromising
the parameter estimation and history matching procedures.
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4.2. The effects of Confirmation step on the Base Experiment
Below in Figure 4.2 we run the base experiment for the EnKC and then repeat with the EnKF to compare the
effect of the confirmation step. We see that the addition of the confirmation step yields a smaller statisti-
cal bias but a larger spread. Granted in both cases the bias is well within the spread and thus not relevant.
However, the larger spread is interesting and consistent with what we would expect. That is, by applying a
confirmation step, i.e. re-forecasting the dynamic state with the filter fitted parameters, we in effect apply a
one-step smoothener on the parameter λ which implicitly updates the dynamic state forecast.

Figure 4.2: Base Experiment Estimate of λ with EnKF (blue), and EnKC (orange)

In Figure 4.3 we examine these effects on the dynamic state variables Sw , po and additionally we include
the initial forecast and intermediary analysis of the EnKC. What we clearly see is that the confirmation step
acts as a one-step smoothener on the analyzed ensemble whereby any abrupt updates are smoothened out
by the confirming forecast. This is most noticeable prior breakthrough wherein the parameter uncertainty
continues to infiltrate the dynamic state variables, Sw , po . In the case of the water saturation, Sw , as the filter
slows down the uncertainty propagation caused by the parameter, the rate oscillates smoothly rather than
jagged over corrections. This does then cause the water saturation spread of the EnKC to lag behind the EnKF.

However, in terms of the oil pressure EnKC does very well during the Injection Flood formation, but as we
get closer to breakthrough the Bias becomes more volatile and a layer between the EnKF and EnKC spreads
starts to form. Then during breakthrough, the additional confirmation step does suffer some mild divergence
in the oil pressure. This could be caused by the compounding of forecast errors from the initial uncertainty in
the parameter. Alternatively, the available data becomes less and less relevant to the fitting of λ. Fortunately,
this only slows the rate at which the water saturation is fitted, and after some time the divergent episode of
the oil pressure is partially recovered.

Unfortunately, it is not clear why exactly the filter diverges during breakthrough. Whether the compound-
ing forecast errors or the uninformativeness of the data are the dominating cause or even an issue is not clear.
Alternatively, this divergence could be inherent to the problem, and a result of a critical point situated on the
saturation wave front crossing the boundary. This would imply that the EnKC successfully predicted the un-
certainty of a physically driven event that the EnKF would over-correct for.
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Figure 4.3: Base Experiment Estimate of Sw , po with EnKF (blue), and EnKC (Forecast: brown, Analysis: olive, Confirmation: orange)
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4.3. Comparing the Analyzed and Confirmed Ensembles
Now to compare the effect of the Confirmation step we first return to (3.9) and recall we found that the co-
variance of the analyzed ensemble C e

ΨΨ
a was:

tr
(
C e
ΨΨ

a)=〈A fa P a , A fa 〉−〈Ā fa , Ā fa 〉
given a forecast A fa to be analyzed. Then without loss of generality we assume the covariance of the con-
firmed ensemble C e

ΨΨ
c is of similar form:

tr
(
C e
ΨΨ

c)=〈A fc P c , A fc 〉−〈Ā fc , Ā fc 〉
where similarly a forecast A fc is to be analyzed but then also confirmed. Now then taking the difference, and

then assume that A fc − A fa = δA s.t. Ā fc − Ā fa = δ̄A:

tr
(
C e
ΨΨ

c)− tr
(
C e
ΨΨ

a)=〈(A fa +δA)P c , A fa +δA〉−〈A fa P a , A fa 〉
−〈Ā fa + δ̄A, Ā fa + δ̄A〉−〈Ā fa , Ā fa 〉

=〈A fa (P c −P a), A fa 〉+2〈A fa P c ,δA〉+〈δAP c ,δA〉
−2〈Ā fa , δ̄A〉−〈δ̄A, δ̄A〉

If we now assume that both the confirmed and analyzed covariances are derived from the same initial fore-
cast, i.e. A fc = A fa =⇒ δA = 0 =⇒ δ̄A = 0, then the resulting ensemble of α is the same, i.e. αc = αa . So
equivalently, we can state the following:

tr
(
C e
ΨΨ

c)− tr
(
C e
ΨΨ

a)= tr
(
C e
ψψ

c
)
− tr

(
C e
ψψ

a
)

then denoting ψ f
i = [ ~Sw f

i , ~po f
i ]ᵀ ∈R2Ng , and assume [ψ f ] =

[
ψ

f
1 , . . . ,ψ f

N

]
:

=〈[ψ f ](P c −P a), [ψ f ]〉
where then [ψ f ](P c −P a) = δψ is the difference in the analyzed ensemble and the confirmed ensemble.

=〈δψ, [ψ f ]〉 (4.1)

We also can interpret it energetically as the difference in traces represents the difference in ensemble energies
of the dynamic state variables, Sw , po , from each update. Reusing our initial assumptions:

tr
(
C e
ψψ

c
)
− tr

(
C e
ψψ

a
)
=

N∑
j=1

∥∥∥∥(
[ψ f ]P c 1

2

)
j

∥∥∥∥
2
−

∥∥∥∥(
[ψ f ]P a 1

2

)
j

∥∥∥∥
2

(4.2)

Notice that this energetic variation is the amount of dispersion incurred to the dynamic state variables by
the EnKF analysis. That is, given the same point of origin an analyzed ensemble should be equivalent to
a confirmed ensemble, but due to the nonlinearity of the model physics the uncertainty propagates at a
nonlinear rate which the EnKF’s Gaussian Assumed Update cannot account for accurately.

In Figure 4.4, we plot the trace of the observed ensemble covariance for the Analyzed and Confirmed ensem-
bles of the EnKC, as well as the EnKF ensemble for later comparison. As remarked in Figure 4.3 the confirma-
tion step is a one-step smoothener on the analyzed ensemble. This is now supported by the resulting trace
trajectory results in smooth transitions, whilst the analyzed ensemble alone is far more jagged. On the other
hand, this smoothening creates an artificial lag, which accumulates with each confirmation step. This is most
notable post-breakthrough where the confirmed ensemble has a consistently larger trace above the analyzed
ensemble.
If we compare against the EnKF we see that, without the lag of the confirmation step, it is better able to take
advantage of the available information and minimize the uncertainty in the first 160 timesteps (data assimi-
lations/forecasts). However, this could be a sign of severe overfitting to the data as thereafter the uncertainty
increases almost reaching the measurement noise level. Only at breakthrough does it cross the measurement
noise threshold only to after sharply decrease again. Whilst the EnKC (analyzed and confirmed ensembles)
needs time to correct course before decreasing linearly.
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Figure 4.4: Traces of the observed Analyzed and Confirmed EnKC ensemble covariances. (For comparison the trace of the observed EnKF
ensemble covariance)

Next, we instead compute the sample covariance matrices from the perspective of the posterior states. That
is we denoteΨa as the analyzed ensemble, whilstΨc is the confirmed ensemble:

C e
ΨΨ

a =Ψa(I −1N )(I −1N )Ψaᵀ

C e
ΨΨ

c =Ψc (I −1N )(I −1N )Ψcᵀ

where we assume that αc =αa , then denoting dynamic state variables ψ∗ = [Sw∗, po∗]ᵀ

=⇒ C e
ΨΨ

c −C e
ΨΨ

a =
[
ψcψcᵀ−ψaψaᵀ (ψc −ψa)αaᵀ

αa(ψc −ψa)ᵀ 0

]
−

[
ψ̄c (ψ̄c )ᵀ− ψ̄a(ψ̄a)ᵀ (ψ̄c − ψ̄a)αaᵀ

αa(ψ̄c − ψ̄a)ᵀ 0

]
Then the resulting trace is only in terms of the dynamic state variables po ,Sw :

tr
(
C e
ΨΨ

c −C e
ΨΨ

a)= tr
(
ψcψcᵀ−ψaψaᵀ− ψ̄c (ψ̄c )ᵀ+ ψ̄a(ψ̄a)ᵀ

)
= 〈ψc ,ψc〉−〈ψa ,ψa〉−〈ψ̄c ,ψ̄c〉+〈ψ̄a ,ψ̄a〉

On a side note, realize that because of αc = αa , then the trace of (augmented) ensemble covariances are
equivalent to the dynamic state covariances:

tr
(
C e
ΨΨ

c −C e
ΨΨ

a)= tr
(
C e
ψψ

c −C e
ψψ

a
)

Now let ψc −ψa = δψ s.t. ψ̄c − ψ̄a = δ̄ψ
= 〈ψa +δψ,ψa +δψ〉−〈ψa ,ψa〉−〈ψ̄a + δ̄ψ,ψ̄a + δ̄ψ〉+〈ψ̄a ,ψ̄a〉
...

= 2
[〈δψ,ψa〉−〈δ̄ψ,ψ̄a〉]+〈δψ,δψ〉−〈δ̄ψ, δ̄ψ〉

where ψ1N = ψ̄ and δψ1N = δ̄ψ
= 2〈δψ,ψa〉(I−1N ) +〈δψ,δψ〉(I−1N ) (4.3)

Taking instead
p

2(I −1N ) as the vector space, then clearly we see it is a quadratic form:

= 1

2
〈δψ,δψ〉p2(I−1N ) −〈δψ,−ψa〉p2(I−1N )

which is the potential energy in each estimate, and implies that the mean deviation of the analyzed ensemble
is half the difference between confirmed and analyzed mean deviations:

1

2
δψ(1N − I ) =ψa(I −1N ) (4.4)

=⇒ψc (I −1N ) =ψa(1N − I ) (4.5)
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Unfortunately (I − 1N ) is singular, with no inverse the problem cannot be solved by direct inversion alone.
However, notice that ψc is the (I − 1N ) has rank N − 1 also implies there are N − 1 degrees of freedom for
residuals2. Thus we have shown that a relation between the residuals r∗ = ψ∗(I − 1N ) of the analysis and
confirm ensembles exists. For now we will alternatively consider δψ as a differential δa with respect to ψa

and in so we can apply the dot product rule to the left-hand term :

=⇒ tr
(
C e
ψψ

c −C e
ψψ

a
)
=

N∑
i=1

δa
∥∥ψa

i

∥∥
(I−1N ) +

∥∥δaψ
a
i

∥∥
(I−1N ) (4.6)

This again gives us a relation of the energy potential between the analyzed and confirmed dynamic state vari-
ables, only this time over the vector space of residuals (mean deviations) and with respect to ψa . Optimally,
we want the residuals to vanish (i.e. = 0), and so long as the data does encompass the truth then estimation
will be perfect. So as ψa → ψ̄a ⇐⇒ r a → 0 the left hand term in (4.6) does “disappear”, regardless of what
occurs to ψc . However, the right-hand term will not, in fact it may continue to grow. That is, if the analysis
produces the true parameter value given a forecast from an uncertain initial ensemble with uncertain
dynamic states, then the confirmed ensemble will have propagated that initial uncertainty of the dynamic
states. Ensemble divergence will then occur in the dynamic state variables of the confirmed ensemble. On
the other hand, suppose that the confirmed ensemble is “perfect” but the analyzed ensemble is not3, then
from (4.3) we simply retain the analyzed covariance which is bounded below by the measurement noise.

In Figure 4.5 we plot the Energy potentials (i.e. difference between traces of the observed ensemble covari-
ances) between Analyzed and Confirmed Ensembles of the EnKC. Given that the energy potential can be
positive or negative, we take the ‖·‖2

2 to stay within the positive reals. However, in (4.1) we notice that it
is only the 2 < δψ,ψa >(I−1N ) can turn negative whilst the < δψ,δψ >(I−1N ) always remains positive. Re-
call that the ensemble is always positive in the dynamic state variables, and that the static parameter is the
same between the analyzed and confirmed ensembles. As such any change in sign in the potential is a re-
sult of the difference between the confirmed and analyzed ensemble, wherein by definition the confirmed
ensemble conserves mass, thus any changes indicate the analyzed ensemble has either gained or lost mass.
Specifically, when the potential is positive then EΩ

[
ψc −ψa

] > 0 =⇒ EΩ
[
ψc

] > EΩ [
ψa

]
. Hence, we can say

the analyzed ensemble has lost “mass” due to the analysis step. Whereas when the potential is negative,
EΩ

[
ψc −ψa

] < 0 =⇒ EΩ
[
ψc

] < EΩ
[
ψa

]
, the analyzed ensemble has artificially gained “mass”. Only when

EΩ
[
ψc −ψa

]= 0 =⇒ EΩ
[
ψc

]= EΩ [
ψa

]
has mass been conserved across the entire domain.

Figure 4.5: Energy Potentials between the Analyzed and Confirmed Ensemble, as well as the EnKC and EnKF Total Ensemble Energies

2This follows as there is only 1 degree of freedom, i.e. λ.
3for example consider that during the first data assimilation we fit perfectly the parameter and as such the uncertainty does not have the

chance to propagate into the dynamic state variables of the confirmed ensemble.
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Note however, that under this interpretation mass may still fluctuation across the domain unnaturally even
though it is “conserved”. Then again this isn’t an issue for the confirmed ensemble as this only occurs in the
analyzed ensemble. That being said, it is now clear why 2 < δψ,ψa >(I−1N ) is the oscillatory component and
can turn negative. What is interesting is that < δψ,δψ>(I−1N ) retains the extrema of the EnKC and EnKF and
thus may be optimized.

Now given that the trace is a linear mapping, the prior and posterior formulations of the energy potential
between the analyzed and confirmed states should be equal:

tr
(
C e
ΨΨ

c)− tr
(
C e
ΨΨ

a)= tr
(
C e
ΨΨ

c −C e
ΨΨ

a)
⇐⇒ tr

(
C e
ψψ

c
)
− tr

(
C e
ψψ

a
)
= tr

(
C e
ψψ

c −C e
ψψ

a
)

Now we take the prior formulation from (4.1) and the posterior formulation from (4.3):

〈ψ f ,δψ〉 = 2〈δψ,ψa〉(I−1N ) +〈δψ,δψ〉(I−1N ) (4.7)

=⇒ 0 = 〈ψ f ,δψ〉−2〈δψ,ψa〉(I−1N ) −〈δψ,δψ〉(I−1N ) (4.8)

Clearly, we see that it is not possible to directly reconcile the two formulations within vector space of residuals.
However, if we are able to minimize δψ on the space of residuals then the two formulations both converge to
0! This could lead to a further minimization in order to improve the estimate further. Notice that if we take
the left hand side of (4.7):

〈ψ f ,δψ〉 = 〈ψ f ,ψc −ψa + (ψa −ψa)1N 〉 = 〈ψ f ,ψc −ψa1N +ψa(1N − I )〉
we can then apply (4.5):

= 〈ψ f ,ψc −ψa1N 〉+〈ψ f ,ψc〉(I−1N )

where if we reuse that ψ̄c − ψ̄a = δ̄ψ and assume that δ̄ψ→ 0:

= 2〈ψ f ,ψc〉(I−1N ) +〈ψ f , δ̄ψ〉
= 2〈ψ f ,ψc〉(I−1N )

Returning this to (4.8) we find another quadratic form within the space of residuals:

〈ψ f ,ψc〉(I−1N ) = 〈δψ,ψa〉(I−1N ) +
1

2
〈δψ,δψ〉(I−1N ) (4.9)

Notice that 〈ψ f ,ψc〉(I−1N ) is the cross-covariance between the ensemble forecast and the confirmed en-
semble and that minimizing this is equivalent to minimizing the error brought by the uncertain parameter.
Recall, that we assumed the model forecasts are assumed to be deterministic with no stochastic uncertainty,
and so any uncertainty between forecasts is a result of the uncertain parameter. Examining the right hand
terms, we see that the right most term 〈δψ,δψ〉(I−1N ) is the Forecast Error Covariance between the analysis
and confirmation. Meanwhile, recall that the analysis can be rewritten in terms of the data and forecast,
we thus assume the remaining term is composed of the additional contribution in terms of the data and
confirmed ensemble. However, given that developing a further minimization is outside the scope of this
thesis, this was not further investigated. Nonetheless, in appendix C, an attempt was made to reconcile these
additional contributions in the Data Error Covariance, and together with the Forecast Error Covariance a
Confirmed Online EnKC-Maximization algorithm (EnKCMC) proposed.

We have shown through twin experiments that the confirmation step acts as a one-step smoother on the
dynamic state variables. Analytically we show that the difference in trace between the analyzed and con-
firmed ensemble covariances is the amount of dispersion incurred to the dynamic state variables by the EnKF
analysis. In addition, by analytically decomposing the trace we show which components cause the mass to
“fluctuate” unnaturally across the domain as a result of the analysis, and why the EnKF may fail to be mass
conservative across the domain. Finally, we show that there is a quadratic form in terms of Forecast Error
Covariance between the analysis and confirmation, plus an additional data contribution equal to the cross-
covariance between the ensemble forecast and confirmed ensemble, which is equivalent to uncertainty from
the uncertain parameter. As previously stated, it is still not fully understood what the additional data contri-
bution is, but it lies outside the scope of this thesis. In the next section we will investigate the effect that data
has on the history matching and parameter estimation procedures
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4.4. Data Effects on the EnKC
In the previous section we noted that the effects of the data on the parameter estimation and history matching
were still unclear. Thus, in this section, we investigate whether the EnKC is still capable given a reduced oil
pressure dataset or if enhancing the dataset with water saturation snapshots is beneficial.

In the case of a reduced dataset, we run the base experiment with subsampled data, i.e. oil pressure
data is only assimilated every [1,2,4,8,16,50,100,400] forecasts (or timesteps). We then can investigate if the
EnKC is still capable of providing a parameter estimate and physically reasonable water saturation profile,
through examining the bias and spread of the ensemble but also of the propagated uncertainty of the initial
ensemble (i.e. no data). In addition, by examining the traces of the observed covariances we determine the
informativeness of oil pressure data assimilations.

Thereafter, in the case of an enhanced dataset, the oil pressure dataset is extended at certain instances
to include a water saturation snapshot of the entire spatial domain. Again, by observing the bias and spread
of the parameter estimate and water saturation profile we determine the effects of additional snapshots. In
addition, by examining the traces of the observed covariances of the confirmed ensemble we determine the
informativeness of each water saturation snapshot.

4.4.1. Reduced Dataset: Oil Pressure
What we intend to determine is how the quantity and timing of oil pressure data effects the parameter
estimate, as well as the history match of the water saturation profile. We run the base experiment with
reduced (sub-sampled) datasets. To clarify, the base setting used in the rest of the thesis is 1, i.e. for every
forecast there is oil pressure data to be assimilated. Whilst a reduced dataset j implies that only after the j th
forecast is there data available for assimilation. Alternatively put, out of 800 forecasts, there are respectively
J = T

j − 1 data assimilations in total. Below we investigate the cases when data is only assimilated every
j ∈ [1,2,4,8,16,50,100,400], which can be seen as J ∈ [799,399,199,99,49,15,7,1] data assimilations in total.

In Figure 4.6 we have the parameter λ estimate plot and metrics. Evidently, the λ estimate only improves
with each data assimilation. Given that fewer data assimilations occur, the estimate of λ does not improve.
That is, the spread and bias only change during data assimilation. Interestingly, this does not imply that data
always improves the estimate! In fact, there is some slight filter divergence between the flood front formation
(T ≈ 100) and prior to breakthrough (T ≈ 400). Moreover, the peaks of the divergence seem to coincide for
numerous datasets [16,50,100]. In the case of dataset of 16 forecasts per data assimilation ( f pd), we observe
that the peak is between time step 160 and 176, which seems to coincide with the minima of 〈δψ,δψ〉(I−1N )
in Figure 4.5 (which occurs at 163).

Figure 4.6: Comparing the effect of reducing the oil pressure dataset in the EnKC for the λ estimate of the base experiment.
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Keep in mind that the EnKC is a one-step smoothener, and thus the enlarged spread is a result of the next
data assimilation and not the data assimilation at the start of the divergence in the spread. For example,
take 100 f pd , the data at 100 and 300 time steps cause the reduction in spread, but the data near 200 time
steps is the cause of the divergence in spread. Then comparing this point of divergence (for 100 f pd) with
the original ensemble sample (i.e. no data), the parameter estimate is worse in every way, resulting a larger
spread and bias. This shows that incorrectly timed data can produce a worse estimate than no data at all.
This can be no clearer than when comparing both 50 f pd and 100 f pd against 400 f pd which has only 1
(well timed) data assimilation for the entire simulation and does not seem affect by this spread divergence.

On the other hand, notice that if the rate of data assimilation is high enough, e.g. 8 f pd , then this filter
divergence is negligible or even nonexistent. This reinforces the idea, put forward in Subsection 2.3.3, that
if you sample “fast” enough then you can avoid filter divergence caused by the nonlinearity of the physics.
On the other hand, one could argue that this results in overfitting to the data and under-represents the true
uncertainty in the physics.

From Figure 4.7 we very clearly see that the case with “no data” provides an uncertainty upper bound to
the spread, as the initial parametric uncertainty of λ dominates the water saturation profile. That is, given
fewer corrections of the parameter estimate of λ, the initial uncertainty continues to propagate the ensemble
further apart, resulting in larger spreads respectively. Due to the Confirmation step these spreads are irrecov-
erable, interestingly however, there is a negligible difference in the final spread for 50 ≤ f pd ≤ 400. This in-
dicates that although just one data assimilation can be as good as multiple poorly placed data assimilations,
there is a minimum sampling rate required to further improve the history match.

Figure 4.7: Comparing the effect of reducing the oil pressure dataset in the EnKC for the Sw profile history match of the base experiment.

On a side note, we would also like to mention the misleading “water-wet” behavior of the water saturation
profile. That is, although the band is computed from the spread of the ensemble, it may not represent the
inherent skewness in the ensemble. As a result, the profile may appear to be far more “water-wet” than any
confirmed ensemble member is, let alone the true profile. For example in the cases with the little data (50 or
100), an unaware practitioner may mistakenly conclude the core to be very “water-wet”. Should a practitioner
midway through an experiment want to use data that exploits the exact moment of breakthrough, they will
undershoot the true moment given their mistaken “water-wet” belief.
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In Figure 4.8, we have the trace of the observed ensemble covariance for the EnKC, wherein again the case
with “no data” provides an upper bound. Note here, we assume that we are able to observe the ensemble at
every timestep in-spite the actual availability of the data. As remarked above, more available data results in a
tighter spread. As the covariance trace is lower, thus the total information in the ensemble is greater.

Figure 4.8: Traces of the observed EnKC ensemble covariances given reduced po datasets with increasing time between data assimila-
tions

However, not all data is equally as informative, whereby some are in fact mis-informative. Such as, in 100 f pd
where the first data assimilation causes the ensemble to be less informative than the forecast with “no
data”. On the other hand, notice the case of 400 f pd , where one well-timed data assimilation has a massive
“perceived” impact on the informativeness of the ensemble. To such an extent that at end time 400 f pd
appears to be nearly as informative as 2 f pd ! However, from Figure 4.7, we know this is not the case with
respect to Sw , and so this trace does not allow us to perceive this informational skewness.

Having seen how a single of data point can have a very large impact on the informativeness of the ensemble,
we now endeavor to understand the effect of the timing of a single data assimilation. Are some points in time
more informative than others?

In Figure 4.9 below, we run the base experiment using a dataset consisting of a single of data point at different
timesteps, i.e. [100,200,300,400,500,600,700], which we compare against the case with “no data”. Clearly
data points occurring between 400 and 500 time steps are most informative. This happens during break-
through which coincides with the critical points on the wave front passing through the observable domain
(po(Ω1), po(ΩNg )). As such, the further away a critical point is from an observable location the less informa-
tive a data point will appear to be. This clearly seems to be the case at 100, during the flood front formation
near the inlet of the core, which renders the ensemble more uncertain than with “no data”.

Figure 4.9: Traces of the observed EnKC ensemble covariances given po datasets containing a single data point assimilated at different
points in time.
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Notice, this relation is not symmetric about the “optimal” time step, observe the case at 700 which is far more
certain than with a data point at 200. This has several crucial implications for technicians: First, if you sample
whilst the flood front is forming or approaching the middle of the core, then you are more likely to introduce
uncertainty than reduce it. Secondly, it is effective to reduce the uncertainty after break through but as you
move further away from break through the less informative data is. As a result, estimation of the time of
breakthrough is critical, as it is here when data is the most informative time, wherein it is better to be a little
late than too early.
In our investigations of the effect of reduced oil pressure data we found timing the observation of the flood
front to be critical, i.e. breakthrough point. Although locating alternative spatial measurement locations was
not investigated, ancillary experiments show that the inlet oil pressure is far more informative than the end oil
pressure, see appendix A.2, and similarly to the timing, the closer data is measured to the source of distortion
the more accurate the parameter estimate is.

4.4.2. Enhanced Dataset: Water Saturation Snapshots
Next, we intend to determine how the quantity and timing of water saturation snapshots effects the param-
eter estimate, as well as the history match of the water saturation profile. We begin by running the case
with no additional snapshots, denoted as []. We denote each scenario by a list with the iterations at which
a snapshot is taken, i.e. snapshots at [k, l , . . .] for 1 ≤ k, l ≤ T . In order to determine whether the timing of
a snapshot impacts the final result, we investigate if a single water saturation snapshot is better placed at
[100], [400], or [700]. Then we increase the number of snapshots in the base experiment to determine how
the number of snapshots used impacts the final result. Here we take, [200,400,600], [100,300,500,700], and
[100,200,300,400,500,600,700]. Notice that we will also be able to infer if the timing between snapshots has
an impact.
In Figure 4.10 it is clear that each snapshot causes a sharp increase in the accuracy of the λ estimate. Fortu-
nately, there is no filter divergence, given that we have supplemented the base dataset with oil pressure data
available for every forecast, as it is possible that the po data is not sufficiently informative to prevent filter
divergence. Thus, adding a snapshot only improves the estimate. We observe that when only a single snap-
shot is available, the earlier the better for an accurate parameter estimate. This follows as the compounding
of forecast errors from the confirmation step is not possible. However, there is very little difference between
100 and 400, compared to 700 which suggests that snapshots after breakthrough are far less effective.

Figure 4.10: Comparing the effect of datasets augmented with Sw snapshots in the EnKC for the λ estimate of the base experiment.
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One would assume that more snapshots imply a more accurate parameter estimate, but this is not strictly the
case. Firstly, the reduction from each subsequent available snapshot is smaller than previous, which is seen
from the step-like convergence in [100,200,300,400,500,600,700]. Both [200,400,600] and [100,300,500,700]
are able to attain nearly the same accuracy with just (under and over) half as many snapshots. Hence, more
snapshots do not strictly imply a more accurate estimate for λ.
Now, it is interesting to observe the effect of snapshots on the water saturation profile given the compound-
ing of forecast errors from the confirmation step. In Figure 4.11, pre-breakthrough, as soon as a snapshot is
used the propagation of the initial parametric uncertainty stops, only then does the oil pressure start to fit
the water saturation profile towards the truth. Without such a snapshot we would have needed to wait for
breakthrough to occur. At which point, the compounding of forecast errors would be irrecoverable without
forgoing mass conservation (i.e. no confirmation step). For example, observe the difference in accuracy be-
tween using a single snapshot at either 100 and/or 700. It is clear that the earlier the first snapshot is used,
the greater the final accuracy of the water saturation profile history match. Snapshots that occur after are
much less informative, and have an almost negligible effect on the water saturation history match. Mean-
while, snapshots that occur during breakthrough also have very little effect unlike po data. This is due to the
measurement functional including the water saturation which observes the entire water saturation profile,
and as a result all the critical points of the water saturation profile. Thus, post breakthrough, snapshots also
seem to have very little effect on the final accuracy, as the critical point on the flood front has vanished.

Figure 4.11: Comparing the effect of datasets augmented with Sw snapshots in the EnKC for the Sw profile history match of the base
experiment.

Up till now it seems when snapshots are assimilated the uncertainty in ensemble “vanishes”. In order to
better understand what happens to the uncertainty, in Figure 4.8, we have the trace of the observed ensem-
ble covariance for the EnKC. We observe that in fact the snapshots introduce uncertainty into the ensemble,
whereby the first snapshot introduces the most uncertainty. This implies that the analyzed λ estimates which
then used in the confirmation step causes the large increase in the uncertainty in the oil pressure. This could
indicate that correction that incurs as a result of the analyzedλ disrupts the physics. For example, consider an
ensemble with a λ forecasting “water-wet” core, then introducing a snapshot produces an analyzed λ which
forecasts a more “oil-wet” core. That is, the core requires the oil pressure to be much higher in order for the
water flood to proceed, evidently the inverse scenario can occur. As a result, jumps in the oil pressure uncer-
tainty occur, and with it the entire ensemble. It could be the case that if a larger confirmation window were
to be used then such large corrections would not occur. Note however, this phenomenon is purely a result of
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the mathematical construction of the nonlinear physical model. The couplings in the model determine how
such corrections occur.

Figure 4.12: Traces of the observed EnKC ensemble covariances given datasets augmented with Sw snapshots

Hence, in our investigations of the effect of snapshot data we found timing to be critical. Although, multi-
ple snapshots yield better estimates, the earlier the snapshot data is assimilated the better the final estimate
is. Note that, the planning of the optimal schedule of snapshots is not investigated. However, ancillary ex-
periments show promise wrapping the genetic algorithm around the current framework to find the optimal
schedule of snapshots. Albeit this approach being exceedingly parallel, it is also exceedingly computationally
expensive, as in order to gauge the effectiveness of a schedule the entire data assimilation needs to be run for
each set of snapshots.
Although the effects of data with the confirmed ensemble are not fully understood, we can underscore the
importance of timing, location and type of data has on the parameter estimation and history match. Specifi-
cally, in the case of the oil pressure data observing the point of breakthrough was critical to a good estimate.
Whilst in the case of water saturation snapshots, the earlier snapshot data is applied the better the estimate.
In neither case was having lots of data crucial, although it typically did not hurt, as was the case with snap-
shots albeit with diminishing additional returns. However, although snapshots did improve estimates, they
cause large jumps in uncertainty. Furthermore, oil pressure data assimilated as the flood front passed into
the middle of the core actually increased the uncertainty. These highlight the need for additional predictor-
corrector methods to control such corrections and deviation. One such method could be the implementation
of a Maximization step. This lies outside the scope of this thesis, see appendix [? ] for an attempt. Nonethe-
less, the relationship between uncertainty and data still needs to be further developed, see appendix [? ] for
an attempt at further developing.
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4.5. Chapter Summary
In chapter 4, we investigated whether EnKF with a Confirmation step (EnKC) was an adequate application to
deal with the conservation of mass issues of the EnKF, whilst at the same time still able to solve the history
matching problem. In the first section, we compared the parameter estimate when using the EnKC compared
to when just using the EnKF. We saw that although EnKC was able to estimate the parameter accurately, it
proved to be less accurate and less efficient than the EnKF. In that, by only fitting the parameter and then
using a confirmation step, we continue to accumulate the parameter uncertainty into the dynamic state. This
in turn would feedback into the parameter estimate. Initially, this meant that the uncertainty in dynamic state
and static parameter was as good as the EnKF. However, this compounding of parametric uncertainty in the
confirmed forecasts (i.e. as forecast errors) implies that the EnKC will always under-perform against the EnKF.
Furthermore, during breakthrough the EnKC experienced filter divergence in the oil pressure which further
hindered the history match. On the other hand, the confirmation step reintroduced the non-linearity of the
physics, and consequently represents a more accurate portrayal of the physics. Herein, we are presented with
this trade-off between an efficient and “accurate” data assimilation technique via the EnKF, or an additional
confirmation step, respecting the non-linearity of the physics which results in a larger spread in return for
mass conservation within ensemble members. All in all, in the case of the base experiment, the EnKC is a
viable history matching procedure.

In the second section, we compared the analyzed and confirmed ensembles of the EnKC. Using what
was found in Section 3.4, we analytically examined the traces of the observed analyzed and confirmed EnKC
ensemble covariances and found that the difference in these traces represented the amount of dispersion in-
curred to the dynamic state variables by the EnKF analysis. From the results of the base experiment we con-
firmed this, and realized that the confirmation step acts as a single step smoother on the analyzed ensemble.
We then examined this in the context of Energy Potentials between the analyzed and confirmed ensembles
and by analytically decomposing this difference we show which terms cause the mass to “fluctuate” unnat-
urally across the domain as a result of the EnKF analysis. Hence, answering why EnKF may fail to be mass
conservative across the domain. Finally, we show that there is a quadratic form in terms of a Forecast Error
covariance between the analysis and confirmation plus an additional data contribution, this is equal to the
cross-covariance between the ensemble forecast and confirmed ensemble which is equivalent to uncertainty
from the uncertain parameter. However, the additional data contribution is still not fully understood, and
constructing a further minimization lies outside the scope of this thesis. Although, in appendix C an attempt
was made.

In the third section, we examined the effects of data on the parameter estimation and history matching
procedure. Specifically, in the first subsection, we investigated whether the EnKC could effectively provide a
parameter estimate and history match given a reduced oil pressure data set. As expected, we found that with
less data available, the greater the uncertainty in the final data assimilation, for both parameter estimate and
history match. Poorly timed data caused filter divergence, whilst well timed data could outperform multiple
data assimilations. In the case of the parameter estimate, data assimilated as the profile front approached in
the middle of the core caused filter divergence, unless the data sampling rate was sufficiently high. That is, if
you sample data “fast” enough then you can avoid filter divergence caused by the nonlinearity of the physics,
but then again this might just be overfitting. In terms of the Sw history match, we observed that the “no-data”
case served as an upper bound on the uncertainty, and although even a little data improved the history match
but to really minimize the uncertainty a minimum data sampling rate was required. Interestingly, although
more data typically implied greater accuracy, we found that the timing of the data was most critical. Observ-
ing the covariance trace, we clearly saw how each data assimilation could introduce or remove uncertainty
in the ensemble. Meanwhile, we also witnessed how a single data point can outperform far larger data sets.
Specifically, data assimilated at the point of breakthrough had the greatest reduction of the uncertainty in the
history match. Given the effectiveness of well-placed data, we further investigated the timing of a single data
assimilation and found that the point of breakthrough produced the smallest uncertainty. Whilst assimilating
data as the flood front is forming can actually cause filter divergence and produce a worse estimate than no
data at all.

Subsequently, in the second subsection, we investigated the effect of augmenting the data set with water
saturation snapshots. Again, we found timing to be critical, the earlier the better as each snapshot mitigates
the compounding of forecast errors. Wherein the closer we got to breakthrough the less effective snapshots
were at reducing the uncertainty in both the parameter estimate and the Sw history matching. In the case
of the parameter estimation multiple data snapshots were shown to be effective in reducing the uncertainty.
Whilst for the Sw history matching, a single early snapshot could outperform 3 snapshots and be nearly as
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good 4 or 7 snapshots. However, the uncertainty does not simply “vanish” instead large jumps in the oil
pressure occur as the large corrections inλ cause discontinuities in the physical state that are then accounted
for in the confirmed oil pressure. Observing the covariance trace, we clearly saw how each snapshot results
in a large jump in the observable uncertainty of the ensemble, whereby the first snapshot introduces the
greatest amount of uncertainty.



5
Conclusions and Recommendations

5.1. Conclusion
As technology has advanced, oil analysis has become more important as predictions regarding well output is
probably the most cost-effective technique on the market today, especially in the field of secondary extrac-
tion. The research objective of this thesis was to develop a tool that can quantify the uncertainty of a core
flood model and a parameter estimation routine. Based on the results of this study, it is concluded that the
Ensemble Kalman Filter is capable of estimating the Corey parameter λ and with an additional confirmation
step can be effective in history matching. As mathematical modeling is increasingly relied upon, this could
be a good first choice amongst those techniques available due to its flexibility and relative robustness which
allows it to be applied to many classes of geophysical problems with ease. Although some issues still need to
be ironed out and the filter developed further. The most important achievement here, is that the developed
model has shown that it is possible to estimate the Corey Parameter and minimize its uncertainty as well as
the parametric uncertainties propagated into the model’s water saturation and oil pressure.

A successful parameter estimation and history matching procedure for core flooding requires a model
that accurately incorporates the features and physical phenomena which influence the physics be derived. It
should be obvious that history matching is heavily dependent on the quality of present parameters used and
the past historical data it is matched with: the more accurate the initial knowledge the more accurate the out-
come. The physics of two-phase flow in porous media is influenced by geophysical features and phenomena
(e.g. kr∗, pc ), as well as constraints, parameterizations, and other conditions on the dynamic variables (e.g.
Sw , po) and are then used to construct a mathematical model. An implicit (oil) pressure and explicit (water)
saturation (IMPES) scheme is then discretized in order to produce predictions that can be used in a history
matching procedure, with the aim of estimating the parameter that produces the prediction matching closest
to the measured data. Although, estimatingλ is intractable and consequently ill-conditioned which therefore
implies it is an ill-posed problem.

Traditionally, this would require technicians to manually calibrate λ to match simulations to data which
was a time-consuming task. As a result, much research has been invested in automated history matching
procedures, wherein Monte Carlo-like approaches show the potential to be accurate and time efficient in es-
timating unknown parameters and history matching. These methods are known to be easy, flexible and are
able to incorporate all available measurable numerical data. However, such approaches are typically limited
to small-scale problems and are prone to incur enormous computational costs, as they marginalize over in-
creasing number of components in a problem as well as a sufficiently large number of samples/ensembles,
Nsamples >O

(
106

)
. In addition, many history matching methods only operate on batched datasets and can-

not assimilate data points iteratively, implying that there is the problem of continuous real-time model up-
dating.

In order to overcome the obstacles above, we implemented the sub-optimal Kalman filtering method;
the ensemble Kalman filter (EnKF). The EnKF employed was able to estimate the unknown parameter λ ac-
curately and computationally efficiently. However, the EnKF assumes Gaussian measurement noise, and as
a result we foresaw that estimating λ would yield physically infeasible estimates which extend outside the
parameter’s domain λ > 0. To solve this, we implemented an ln-parameterization to λ which we showed to
improve convergence in the mean at the possible expense of the uncertainty.
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Using the base twin experiment, the final accuracy of the parameter estimate produced by the EnKF was
unaffected by the initial mean guess and/or spread of the unknown parameter. Only the true value to be
estimated was affected by the final accuracy of the estimate.

As a robustness check we introduced an unaccounted fixed offset δc = 4% in the injection rate, as typ-
ically this would be a fixed known laboratory setting. What resulted was unphysical EnKF estimates which
compounded and caused filter divergence and ensemble bias. In addition, we showed that there would be a
‖O (δc )‖2

C−1
εεi ( j )

error. Hence, for a successful data assimilation using the EnKF, all uncertainties must be incor-

porated into the data assimilation model, otherwise unphysical errors will compound.
Therefore, for the EnKF to successfully estimate the parameter, all sources of epistemic uncertainty must

be accounted for.
Through twin experiments, we showed that the parameter uncertainty was bound below by the Cramér-

Rao Lower bound. In the case of a linear model, given data d ∈ Rm the variance must be greater than
σpo

m ,

then including T additional observations, the variance must be greater than
σpo

mT . As a result, the CRLB is
determined by the number of measurements, the uncertainty from the measurement noise or inversely the
Fisher informativeness of the unknown parameter. Thus, we showed, as measurements became more cer-
tain the uncertainty of the acheivable λ estimate decreased, I.e. σpo → 0 =⇒ Var[λ] → 0. However, the
nonlinearity model induced a bias dominating which would cause the ensemble error to overcome or fail to
reach this bound. We found larger ensemble sizes could better capture the true uncertainty and as a result
were less prone to being dominated by the nonlinear bias, albeit with diminishing returns. In addition, in

spite of measurement location error of O
( dNg

2

)
, we showed that estimating with synthetic datasets with finer

grids sizes were more informative and efficient estimators than with a coarser grids. This implies that the
EnKF could be used with coarse forecasts to estimate the parameter then re-forecasted with a refined mesh.
However, increasing the grid of the ensemble state was shown to increase the condition number, i.e. more
ill-conditioned. Although this was expected, as there is only one degree of freedom (i.e. λ), it also implies that
the risk of introducing spurious numerical errors increases.

We also found analytically that the shrinkage in the EnKF update violated the mass conservation of indi-
vidual ensemble members at each data assimilation in addition to the aforementioned nonlinearity.

In order to tackle the problem of mass conservation between data assimilations, we introduced the same
confirmed ensemble Kalman filter (EnKC), or an additional ‘confirmation’ step at the end of each data assim-
ilation. This re-forecasts the dynamic state with the more certain parameter estimates, and so allows for a
conserved ‘fitted’ forecast. This ‘fitted’ forecast acts as a one-step smoothener with respect to the parameter
estimate. However, it is not computationally efficient as the EnKF as it doubles the forecast’s computational
costs and, forecast errors continue to compound as the dynamic state is never corrected. Still, the confirma-
tion step is needed in order to produce a physically realistic history match.

Using a smoothener, the confirmed ensemble Kalman filter (EnKC)further improves the EnKF’s ability to
handle nonlinearity although it yields a smaller statistical bias.

By analytically showing that the trace of the sample covariance matrix is the mean energy norm of the
ensemble, which we use to study the difference in traces of the observed analyzed and confirmed EnKC en-
semble covariances and found this difference represented the amount of dispersion incurred to the dynamic
state variables by the EnKF analysis. In addition, by analytically decomposing the trace we show which com-
ponents cause the mass to “fluctuate” unnaturally across the domain as a result of the analysis, and why the
EnKF may fail to be mass conservative across the domain. Furthermore, given that we know the ensemble
energy is equivalent to the uncertainty in the observable state, and this is defined by the uncertainty in the
parameter estimate then inversely indicates the informativeness on the estimate. Both the EnKC and EnKF
can estimate unknown parameters. However, the EnKC does not perform as well as the EnKF when estimat-
ing the unknown parameter or minimizing the uncertainty in the history matching procedure, and as a result
is not as informative. On the other hand, the history matches provided by the EnKC respect the nonlinearity
of the physics, whilst the EnKF only does so in the mean sense. Finally, we show that there is a quadratic
form in terms of Forecast Error Covariance between the analysis and confirmation, plus an additional data
contribution equal to the cross-covariance between the ensemble forecast and confirmed ensemble, which
is equivalent to uncertainty from the uncertain parameter.

Quantity, timing, location and type of data affected the parameter estimate and history match produced
by the EnKC greatly. Typically, less data implies more uncertainty in the final parameter estimate and history
match. However, a single well-timed and placed point of data could nearly outperform a dataset of 400 data
points. That is, the timing of data was found to be absolutely critical! Whereby we showed that oil pressure
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data measured nearer to the time of breakthrough produced the best history matches. Whereas oil pressure
data measured whilst the flood front approached the middle of the core would lead to filter divergence. Aug-
menting datasets with water saturation snapshots proved to be effective in improving the λ estimate and
history match for the water saturation but would introduce uncertainty in the oil pressure. Herein the earlier
the snapshot the greater the benefit, where-after each subsequent snapshot contributed diminishing returns
to the history matching. Specifically, a single snapshot at the 100th iteration was more informative than snap-
shots occurring at the [200, 400, 600] iterations. This clearly underscores the importance of timing, location
and type of data.
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5.2. Recommendations
Below are a series of recommendations:

• To deduce if this study can be used for multiple parameters it would be interesting to study a variety
of parameters to estimate the phenomena of parameterization in depth. We have only investigated
the case wherein only one parameter is uncertain. However, in real world applications there are of-
ten multiple parameters that are uncertain. Moreover, many of the couplings that describe physical
phenomena are often derived through statistical means.

• To see what the effects are on the uncertainty given such a coupling is removed. It could be interesting
to study the Brooks-Corey Model for relative permeabilities and capillary pressure which under certain
conditions may accurately represent reality. One such condition is the assumption that the Corey pa-
rameter for relative permeabilities and capillary pressure are the same, where in reality the values that
best represent the two phenomena may be distinct, i.e. λkr 6= λpc . Moreover, whether the EnK(F/C) is
still capable of estimating either/both parameters and provide an adequate history match. Preliminary
experiments indicate this is the case (see appendix A.3). However, why this is the case, what are the
effects of the missing constraint, and why they occur is very unclear.

• To understand some phenomena that may be the result of the simulator, EnK(F/C), or the combina-
tion thereof, for example, the explicit effects of the IMPES formulation, it would be interesting to com-
pare against the simultaneous solution (SS) method, which is much more stable albeit computationally
costly. Moreover, it would increase the size of the dynamic state in exchange for correlations between
all the components of the model explicitly. Perhaps one simulator is better at capturing the true cor-
relations during certain periods of the core flooding, but thereafter suffers from filter divergence. It
would thus be interesting to investigate if there is a way to combine the two simulators, running the
“best” simulator(/expert) for the time it delivers the “least regrettable” results. However, this is a very
“meta” approach, and without fully understanding the effects of the EnKF may still suffer from it.

• To study the effects of generated “randomness” and “lucky draws” which are ever present, and typically
solved with increased ensemble sizes and/or repeated experiments, it would be interesting to apply
confidence regions and other common statistical techniques, as more samples could always be gen-
erated if a certain confidence is needed. However, as the Gamma distributed sampling distribution
is incomplete when computing quantiles, a more workable sampling distribution would need to be
selected.

• To implement quasi monte Carlo sampling techniques. Certain techniques are constructed on the
bases that the total number of samples generated ensure that the space on which the monte Carlo
integration is integrated guarantees the variation to be bounded. Thereby, minimizing the variation
caused by “generated” randomness.

• To study the whole coupled uncertain forecast and analyzed ensembles in terms of a thermodynamic
system, in which the “temperature” is the probability of an ensemble occurring. Here one would for-
mulate the goal as reaching an adiabatic net state where the total uncertainty across the ensemble is
ergodic. Such a formulation would reinforce the energy information formulation and would allow tech-
nicians more familiar with thermodynamics greater intuition for information-theoretic concepts of un-
certainty. The beginnings of such a study can be seen in appendix B in which the Bayesian framework
is extended with information-theoretic concepts and a broader measure of information, i.e. Kullback-
Leibler divergence but were found to be beyond the scope of the present thesis, although the prelimi-
nary investigation shows promise.

• To study Lyapunov exponents as a measure of the rate of dispersion of ensemble members. This could
be used to calibrate; simulators (e.g. grid refinement), or the number of forecasts possible before data
is needed to prevent filter divergence. That is, Lyapunov exponents can be used to construct a forecast
window. In addition, given that we used the confirmation step as a “smoother” with respect to the static
parameters, it would be interesting to investigate how Lyapunov exponents could be used to minimize
the propagation of forecasting errors. On the other hand, even with the confirmation step, estimates
would still suffer from the effects of the EnKF fitting of the ensemble given observable correlations. As
the dimensionality of the ensemble increases, either through more uncertain static parameters or a
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larger dynamic state (e.g. via grid refinement), the chance of spurious correlations or filter degeneracy
increases.

• To study whether Model reduction can be applied to EnKC, and whether this would improve the pa-
rameter estimate, history match, and/or prevent spurious correlation or filter degeneracy. One such
method of interest is proper orthogonal decomposition. For example, applying it to the physical dy-
namic state, the problem can be reduced with respect to unknown static parameter(s) of interest. This
reduced problem is in effect solved in an orthogonal subspace. In doing so, we would be able to avoid
spurious spatial correlations whilst also avoiding filter degeneracy. However, to construct such an or-
thogonal subspace several “snapshots” may be needed at different time instances, i.e. a trailing window,
to ensure that the variance of the resulting de-correlated components is maximized, i.e. the decompo-
sition is well calibrated. However, such reductions are often limited to removing first order correlations
and may not address the effects of the confirmation step on the parameter estimate.

• To extend the EnKC into the Expectation-Maximization framework in order to improve the parameter
estimate is of great interest. In appendix C, an attempt was to build on the work of [11], but with a twist.
Specifically, replacing the EnKS smoothed state with the EnKC confirmed state, in order to estimate
the covariance matrix of the forecast error and “re-measurement” error. That is, by then augmenting
the data assimilation model, as in [16, pg.142], with the confirmed state (which now has an additive
sampled forecast error) as a prediction of measurements given the analyzed unknown parameter, we
re-analyze the unknown parameter of the forecast. Preliminary investigations show the method to be
very effective, however the justification and theoretical build up is incomplete, see appendices B, C.
Specifically, how to cast the confirmed state as “measurement predictions” with Gaussian errors using
the EM covariance result, and similarly the “re-measurement” data errors.

Evidently such techniques would isolate the effects caused by the EnKF and allow clearer investigation into
the nonlinear model effects. Nonlinear system identification is of much interest with many different ap-
proaches being investigated, we encourage the reader to be curious.





A
Appendix

A.1. Effects of Initial Parameter Sampling Distribution and Parameteriza-
tion of Static components of Ensemble State

Using the EnKF under the base experiment, we show the effect of using a clipped parameterization cl i p(λ),
as well as the effect of a Truncated Normal initial sampling distribution for λ with the lnλ parameterization
or with a clipped parameterization cl i p(λ):

Figure A.1: α= cl i p(λ), where cl i p applies maxλ= 10 and minλ= 0
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Figure A.2: λ∼TruncatedNormal(λg uess ,σ2
λλ

)

Figure A.3: α= cl i p(λ) and λ∼TruncatedNormal(λg uess ,σ2
λλ

), where cl i p applies maxλ= 10 and minλ= 0
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A.2. Effects of Location of Oil Pressure Data
Using the EnKC under the base experiment (i.e. assuming data at every forecast), we show the effect of placing
the oil pressure sensor at different locations:

Figure A.4: History Match for Sw and po
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Figure A.5: λ Estimate

Figure A.6: Trace covariance for po
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A.3. Splitting λ into λkr and λpc

Using the EnKC under the base experiment (i.e. assuming that λ= λkr = λpc ), we attempt the simultaneous
parameter estimation proceedure of (λkr ,λpc ), and provide a history match for Sw :

Figure A.7: Estimating λkr assuming base settings for λ

Figure A.8: Estimating λpc assuming base settings for λ
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Figure A.9: History Match for Sw whilst estimating both λpc ,λkr

Figure A.10: Trace covariance for po



B
Information Energy

In the preceeding chapters we have defined the concept of information as the inverse of uncertainty, but this
Fisher formulation is a frequentist’s conclusion and so is only reactive of observations. As such, the current
information formulation is incomplete. Is there a more constructed link between the ensemble energy and
information? If so, can we then concretely define how informative improving the parameter estimate is to the
dynamic state uncertainty? Moreover, how does the data come into play in this framework? Is there a more
concrete construction between the ensemble uncertainty and the data?

Keeping in line with the EnKF’s Bayesian formulation to estimate our unknown parameter λ, we must
be proactive given that we update our uncertain beliefs with incoming data. That being said in order to
differentiate between prior and posterior distributions, or analyzed and confirmed ensemble, we must define
some kind of measure of similarity. In this chapter, we begin by defining the Kullback-Leibler (KL) Divergence
wherein the fisher information defines the Hessian of KL-divergence between two distributions. Thereafter,
we show that minimizing the KL-Divergence is equivalent to minimizing the maximum likelihood estimate.
Given this broader notion of information we show that there is a connection to the ensemble energy as a
function of the static parameters. In order to build some intuition for this broader notion of information we
follow Särkkä’s interpretation of an “Energy Function”, for an unknown α, as the unnormalized negative log-
posterior[37]. We derive the energetic effect of the parameterization on this “energy function”. There after,
we apply the base experiment results when using the EnKF, and in order to overcome the increasingly high
dimensionality of data, we make some approximations/heuristics.
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B.1. Information Interpretation:
This must also be able to incorporate our fisher formulation and be consistent with the likelihood. Only then
can quantify how informative the confirmation step is compared to without. In order to do this, we first take
the following preliminary steps:

1. We begin by defining the Kullback-Leibler (KL) Divergence, wherein the Fisher Information Matrix de-
fines the local curvature in distribution space for which KL-divergence is the metric.

2. In addition, we realize that maximizing the likelihood is equivalent to minimizing KL-Divergence.

By combining the following steps we are able to establish a link between the energy across the ensemble and
the informativeness of the ensemble.

B.1.1. Kullback-Leibler divergence and its’ Hessian, the Fisher information
Having defined our likelihood function we now must define some kind of measure of similarity between sets
of ensembles. That is, a directed ‘distance’ between any two distributions in which information is used as the
measure. Only then can we determine what ensembles are most similar to each other, or the true posterior
distribution. One such measure, is the Kullback-Leibler divergence:

Definition B.1.1 (Kullback-Leibler information[39]). Suppose P and Q are two probability measures with den-
sities p and q with respect to a common measure ν. The Kullback-Leibler (KL) information of Q from P is
defined by

DK L [P ||Q] =
∫

log
p(y)

q(y)
p(y)dν(y)

In case of parametric families, where Y ∼ Pϑ and Pϑ¿ ν for all ϑ with densities fY (· |ϑ), we write

DK L
[
ϑ ||ϑ∗]= Eϑ [

log
fY (Y |ϑ)

fY (Y |ϑ∗)

]
, ϑ,ϑ∗ ∈Ω

This is the KL information of ϑ∗ from ϑ based on the data Y .

Given this, what exactly is the connection between Fisher Information Matrix and KL-divergence? It turns
out, Fisher Information Matrix I (ϑ) defines the Hessian of KL-divergence between two distributions f (y |ϑ)
and f (y |ϑ∗), with respect to ϑ∗, evaluated at ϑ∗ =ϑ.

KL-divergence can be decomposed into entropy and cross-entropy term, i.e.:

DK L
[

f (y |ϑ) || f (y |ϑ∗)
]= E f (y |ϑ)

[
log f (y |ϑ)

]−E f (y |ϑ)
[
log f (y |ϑ∗)

]
The first derivative with respect to ϑ∗:

∇ϑ∗DK L
[

f (y |ϑ) || f (y |ϑ∗)
]=∇ϑ∗ E f (y |ϑ)

[
log f (y |ϑ)

]−∇ϑ∗ E f (y |ϑ)
[
log f (y |ϑ∗)

]
=−E f (y |ϑ)

[∇ϑ∗ log f (y |ϑ∗)
]

=−
∫

∇ϑ∗ log f (y |ϑ∗) f (y |ϑ)d y

The second derivative with respect to ϑ∗:

∇2
ϑ∗DK L

[
f (y |ϑ) || f (y |ϑ∗)

]=−
∫

∇2
ϑ∗ log f (y |ϑ∗) f (y |ϑ)d y

Thus, the Hessian with respect to ϑ∗ evaluated at ϑ∗ =ϑ is:

HDK L[ f (y |ϑ)|| f (y |ϑ∗)] =−
∫

∇2
ϑ∗ log f (y |ϑ∗)

∣∣
ϑ∗=ϑ f (y |ϑ)d y

=−E f (y |ϑ)
[∇2

ϑ∗ log f (y |ϑ∗)
∣∣
ϑ∗=ϑ

]
=I (ϑ)

More generally, I (ϑ) defines the local curvature in distribution space for which DK L
[

f (y |ϑ) || f (y |ϑ∗)
]

is
the metric.
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B.1.2. MLE minimizes the KL-divergence
Now to show that the MLE minimizes the KL-divergence, we take independent and identically distributed
(i.i.d) data from f (y |ϑ∗):

ϑ̂=argmax
ϑ

N∏
i=1

f (yi |ϑ) = argmax
ϑ

N∑
i=1

log f (yi |ϑ)

=argmax
ϑ

1

N

N∑
i=1

log f (yi |ϑ)− 1

N

N∑
i=1

log f (yi |ϑ∗)

=argmax
ϑ

1

N

N∑
i=1

log
f (yi |ϑ)

f (yi |ϑ∗)

then by the law of large numbers

=argmin
ϑ

∫
log

f (yi |ϑ∗)

f (yi |ϑ)
f (yi |ϑ∗)d y

=⇒ ϑ̂=argmin
ϑ

DK L
[

f (yi |ϑ∗) || f (yi |ϑ)
]

where the integral term is the KL-Divergence. Hence, it is clear that maximizing the MLE is equivalent to
minimizing the Kullback-Leibler Divergence. [32]

In order to verify this is indeed what occurs, we will compute the KL-Divergence between the data with
noisy measurements and the observed ensemble state which we assume to be Gaussian. This assumption
implies we can use the closed form of the KL-Divergence between 2 multivariate normal distributions:

DK L [N0 ||N1] = 1

2

[
tr

(
Σ−1

1 Σ0
)+ (µ1 −µ0)ᵀΣ−1

1 (µ1 −µ0)−k + ln
detΣ0

detΣ1

]
here k is the dimension of the observed data, i.e. k = m or k = Ng +m. The inversion of Σ1 implies we are
only able to compute the reverse KL-Divergence:

DK L
[
Ne ||Nψ

]= 1

2

[
tr

(
C−1
εε SSᵀ)+ (dobs −H ψ̄)ᵀC−1

εε (dobs −H ψ̄)−k + ln
detCεε

detSSᵀ

]
Note that in the case that µ1 =µ0:

DK L [N0 ||N1] = 1

2

[
tr

(
Σ−1

1 Σ0
)−k + ln

detΣ1

detΣ0

]
.

Hence, d̄ = E [d ] = E [dobs +ε] = dobs , and so we see when comparing Sample Measurements against Asymp-
totic Measurements:

DK L [Ne ||Nd ] = 1

2

[
tr

(
C−1
εε EEᵀ)−k + ln

detCεε

detEEᵀ

]
then assuming that EEᵀ →Cεε as the ensemble size N →∞:

= 1

2
[k −k + ln1] = 0

In Figure B.1, we plot the Kullback-Leibler Divergence between the data with noisy measurements and the
results of the EnKF and EnKC, before and after the confirmation step.
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Figure B.1: Kullback-Divergence between the data with noisy measurements and the observed ensemble state which we assume to be
Gaussian.

B.2. The Energy Connection
In what follows, we want to incorporate the information theoretic Kullback-Divergence into our Bayesian
formulation in order to define energetic components that can then be used to refine the estimate.

Suppose p(d | α) is the true intractable distribution of the observed data, onto which we apply Bayes
Theorem:

p(d |α) = p(d ,ψ |α)

p(ψ | d ,α)

=⇒ ln p(d |α) = ln p(d ,ψ |α)− ln p(ψ | d ,α)

Now suppose there is a tractable approximation q(ψ) ≈ p(ψ | d ,α′):

ln p(d |α) = ln p(d ,ψ |α)− ln p(ψ | d ,α)+ ln q(ψ)− ln q(ψ)

=
(
ln

p(d ,ψ |α)

q(ψ)

)
+

(
− ln

p(ψ | d ,α)

q(ψ)

)
Since expectation with respect to p are assumed to be intractable we take the expectation with respect to
q(ψ):

Eq
[
ln p(d |α)

]= (∫
q(ψ) ln

p(d ,ψ |α)

q(ψ)
dψ

)
+

(
−

∫
q(ψ) ln

p(ψ | d ,α)

q(ψ)
dψ

)
Here since the loglikelihood p(d |α) is independent of ψ and

∫
q(ψ)dψ = 1 we have Eq

[
p(d |α)

] = p(d |α).
Whilst on the RHS the right hand term is DK L

[
q(ψ) || p(ψ | d ,α)

]
, and the left hand term we denote evidence

lower bound as L (q,α):

ln p(d |α) =L (q,α)+DK L
[
q(ψ) || p(ψ | d ,α)

]
Firstly, notice that the KL-Divergence is not symmetric, and so the right hand term is in fact the reverse KL-
Divergence1. If one were to minimize this reverse KL, q will lock on to one of multiple possible modes. As
a result q will typically under-estimate the support of p. That is, DK L

[
q || p

]
is infinite if p = 0 and q > 0.

1also known as an I-projection or information projection
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Hence, if p = 0 we must ensure q = 0. Thus the reverse KL is known to be zero forcing for q[32]. Secondly,
the KL divergence is always non-negative, and so we see that L (q,α) is a lower bound of the log-likelihood,
and thus is known as the Evidence Lower BOund (ELBO)[11]. This in turn can be interpreted as an energy
functional[27], and thus is also known as the “Free-Energy” or “Helmholtz Energy”. That is, if we separate
L (q,α) into 2 terms:∫

q(ψ) ln
p(d ,ψ |α)

q(ψ)
dψ=

∫
q(ψ) ln p(d ,ψ |α)dψ−

∫
q(ψ) ln q(ψ)dψ

=⇒ L (q,α) = Eq
[
ln p(d ,ψ |α)

]︸ ︷︷ ︸
Internal Energy Term

−Eq
[
ln q(ψ)

]︸ ︷︷ ︸
Entropy Term

(B.1)

Clearly the right term, is the entropy of q . This entropy term can be interpreted as a measure of spontaneous
change of the ensemble given the data, in which changes requires work done (i.e. energy). Alternatively, this
spontaneous change can be considered a measure of the inherent irreducible uncertainty (i.e. aleatoric) or
the amount of missing information. Whilst the left term, is the internal energy in the ensemble state and
data, which is composed partially of kinetic energy and potential energy. Notice that if we continue following
our Gaussian assumption, in that we expect the mean to be the truth, then by taking the trace2 of these
expectations we recover the same energetic interpretations from subsection 3.4.2, only now with respect to
the tractable approximation q . However, if q is approximately exact, i.e.

q(ψ)u p(ψ|d ,α′) = p(d |α) = p(ψ,d |α),

then (B.1) is equivalent to the total energy in the mean state which by the LLN is the true state. Evidently, q is
not trivial to deduce, but crucial as different forms of q may yield different results.

2In following the Gaussian assumption, optimizing for the trace implies minimizing the variance in favor for the mean. We could have
chosen an alternative criteria in our experimental design. For example the determinant, which would have maximized all sources of
fisher information (including cross terms) and thus taken into account free energy as well as the mean energy.
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B.3. Computing the “Energy” of a parameter
So we have shown that within this broader notion of information there is a connection to the energy, at least
in the Bayesian probabilistic sense. Is this even useful? In that, can the energy of the parameter even be
computed? Evidently it is a function of α, but is there a closed form or just an approximation? Is there one
that flows naturally from the EnKF? What kind of approximation does it yield?

In order to answer these questions, we first go to Särkkä [37], where they define the unnormalized negative
log-posterior as an “Energy Function”:

Definition B.3.1 (Energy function [37]).

φT (α) =− log p(d1:T |α)− log p(α) (B.2)

where φT (α) is the energy after time step T .

This leads to the following remark:

Remark. The definition of the energy function thus implies that the posterior probability density of α is:

p(α | d1:T ) ∝ exp(−φT (α)) (B.3)

Now if we could marginalize (2.8) over the dynamic state ψ to get a marginal posterior in terms of α:

p(α | d1:T ) =
∫

p(ψ1:T ,α | d1:T )dψ1:T

then we could easily compute the total energy in (B.3). Unfortunately, computation of this high-dimensional
integral is hard thus becomes even harder as we obtain more measurements.

In which case only an approximation based on recursion is possible:

Theorem B.3.1 (Recursion for energy function[37]). The energy function defined in (B.2) can be evaluated
recursively as follows:

• Start from ψ0 =− log p(α)

• At each step k = 1,2, . . . ,T compute the following:

φk (α) =φk−1(α)− log p(dk | dk−1,α)

Särkkä builds on this for nonlinear gaussian models, which having gone through the derivations in his
appendix, are applicable to our model which does not have model noise Q:

Theorem B.3.2 (Gaussian filtering based energy function[37]). The recursion for the energy function is given
as

φk (α) =φk−1(α)+ 1

2
log(|2π|detCk (α))+ 1

2
V ᵀ

k (α)C−1
k (α)Vk (α) (B.4)

where the terms Vk (α) and Ck (α) are terms given by the Kalman/Gaussian filter with the parameters fixed to α.

Thus if we fix α and run the above algorithm from φ0(α) = − log p(α) at k = 0 to the step k = T , then we
can compute the full energy function φT (α). Notice in (B.4); the right most term 1

2 V ᵀ
k (α)C−1

k (α)Vk (α) is the

data-fit, the middle term 1
2 log(|2π|detCk (α)) is the complexity of the data.

Remark. However, the EnKF operates on an ensemble, and to achieve the same estimate we assume: Vk (α) =
D(αtr ue )−H

(
Āk (α)

)
and Ck (α) = Sk (α)Sᵀ

k (α)+Ek Eᵀ
k .

Now we can clarify what is meant by the data-fit and the complexity. Firstly, the complexity doesn’t just
define the volume of the covariance matrix of observed ensemble and measurements, i.e. Sk Sᵀ

k +Ek Eᵀ
k , but

the total feasible ensemble energy which includes the free-energy between ensemble members and the added
noise potential of the measurements.

Then, to compute the “energy” of each ensemble member’s α and decouple the “energy” of other ensem-
ble members we only use the diagonal of the data-fit:

φk (α) =φk−1(α)+ 1

2
log(|2π|detCk (α))+ 1

2
V ᵀ

k (α)C−1
k (α)Vk (α))

Furthermore, the original formulation assumes α to be fixed, whilst in our case we have augmented the state
to include α, so there is an energy mismatch due to updating α(k−1) → α(k) from each data assimilation,
and eventually the covariance will become degenerate as the accuracy of the parameter exceeds computer
precision. As a result we realize that the data-fit highlights that minimizing C may in fact lead to the data-fit
blowing up as ‖Vk‖C−1 does not converge sufficiently fast enough.



C
Expectation-Maximization

The original intent was to provide a supplementary procedure to λ, whilst further investigating the physical
implications. Unfortunately, this would have required the explicit computation of the gradient with respect

to the parameter. That is, dψ
dα , or alternatively dSw

dλ and d po

dλ , are not always computable in practice, unless the
intention is to explicitly fit the ensemble to a model or approximation.

In what follows is an attempt at implementing an online Expectation-Maximization algorithm by building
onto the work of [11], but instead using the EnKC as the E-step. Then in the M-step, we instead maximize
the error statistics using the results of EnKC, from which we then construct an augmented data assimilation
model to re-analyse the data and estimate the unknown parameter λ.

Recall, in equation (4.9) we showed that there exists a quadratic form that when minimized, minimizes
the cross-covariance between the ensemble forecast and confirmation. Moreover, given that the model is
assumed to be deterministic, we know that this uncertainty originates from the parameter uncertainty. Fur-
thermore, (4.9) is in terms of the Forecast Error Covariance between the analyzed and confirmed ensembles,
plus an additional data contribution term. Here we will assume that the Data Error Covariance encompasses
this additional data contribution term:

〈ψ f ,ψc〉(I−1N ) = 〈δψ,ψa〉(I−1N )︸ ︷︷ ︸
∼R(λ)

+1

2
〈δψ,δψ〉(I−1N )︸ ︷︷ ︸

∼Q(λ)

(C.1)

As it is not possible to compute ∂ψ
∂λ , it is not possible to minimize this directly. Therefore, in what follows we

construct an expectation-maximization algorithm using the EnKC as the E-step and maximizing ϑ = {Q,R}
in the M-step. As a result, we then construct an augmented data assimilation model, where the confirmed
ensemble is perturbed by q ∼ N (0,Q) and taken to be model predicted measurements, whilst the data is
now assumed have measurement noise ν ∼ N (0,R). Finally, using this augmented data assimilation model
we recompute the estimate for λ.

C.0.1. MAP estimates
The maximum a posteriori (MAP) estimate is obtained by determining the location of the maximum of the
posterior distribution and using it as the point estimate:

α̂M AP = argmax
α

[
p(α | d1:T )

]
The MAP estimate can be equivalently computed as the minimum of the error function defined in (B.2):

α̂M AP = argmin
α

[
φT (α)

]
which is usually numerically more stable and easier to compute. It is also possible to use a Laplace approxi-
mation which uses the second derivative (Hessian) of the energy function to form a Gaussian approximation
to the posterior distribution:

p(α | d1:T )uN
(
α | α̂M AP , [H(α̂M AP )]−1)

83
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where H(α̂M AP ) is the Hessian matrix evaluated at the MAP estimate. However, to implement the Laplace
approximation, we need to have a method to compute (or approximate) the second order derivatives of the
energy function. This implies that the derivatives of the dynamic states Sw , po with respect to α, or via the

chain rule λ, would need to be known. Unfortunately, dψ
dα , or alternatively dSw

dλ and d po

dλ , are not always com-
putable. Hence, we will take several intermediary steps of using the EM algorithm to maximize Q,R, and then
estimate λ using the augmented data assimilation model.

C.1. EM-algorithm
The expectation-maximization (EM) algorithm is a method to iteratively find an ML estimate of the parame-
ters when the direct optimization of the posterior distribution (or equivalently, energy function) is not feasi-
ble. However, we show how it can also be easily modified for computation of MAP estimates.

The EM algorithm is based on the result that even when we cannot evaluate the marginal likelihood as
such, we are still often able to compute a lower bound for it as follows.

Definition C.1.1 (Expectation Maximization algorithm). Given an initial guessα0, the i -th iteration of the EM
algorithm encompasses

Expectation (E) - step: Maximize the Free Energy as a function of q given a set of parameters αi−1:

qi−1 = argmax
q

L (q,αi−1)

The optimal density is :

qi−1(ψ0: j ) = p(ψ0: j | d0: j ;αi−1)

Maximization (M) - step: Maximize the Free Energy w.r.t. α given a fixed qi−1:

αi = argmax
α

L (qi−1,α)

As long as we find an αi that increases the ELBO in the maximization step (this family of methods are
called generalized EM algorithms ) and a function qi−1 that increases the ELBO in the expectation step (called
as incremental EM algorithms), the convergence is guaranteed.

C.1.1. Derivation of the Batch EM-Algorithm
In this subsection we follow Coccuci et al.’s derivation of the Batch EM-algorithm, see [11]. The aim of the
traditional batch EM algorithm applied to a hidden Markov model is to iteratively find the statistical parame-
ters ϑ that maximize the complete likelihood function f (d1:K ;ϑ), given a batch of observations distributed in
a time interval, d1:K = {d1, . . . ,dK }.

Using the Markov property of the state, and that observations only depend on the current state, the joint
probability density in a time interval 0 : K results in

f (Ψ0:K ,d1:K ;ϑ) = f (Ψ0;ϑ)
K∏

k=1
f (Ψk |Ψk−1;ϑ)

K∏
k=1

f (dk |Ψk ;ϑ)

= f (Ψ0;ϑ)
K∏

k=1
f (Ψk ,dk |Ψk−1;ϑ). (C.2)

Using the product form of the joint density, in (C.2), the resulting evidence lower bound, ELBO, function for
hidden Markov models is

L ( f (Ψ0:K | d1:K ;ϑi−1),ϑ) =
K∑

k=1

∫
f (Ψk−1:k | d1:K ;ϑi−1) log f (Ψk ,dk |Ψk−1;ϑ)dΨk−1:k +C

,
K∑

k=1
E

[
log f (Ψk ,dk |Ψk−1) | d1:K ;ϑi−1

]+C (C.3)

where all the constant terms w.r.t. ϑ are included in C and dropped from L in what follows. Furthermore,
note that

E
[
g (Ψk ,Ψk−1) | d1:K ;ϑ

]= ∫
g (Ψk−1,Ψk ) f (Ψ0:K | d1:K ;ϑ)dΨk−1:k

=
∫

g (Ψk−1,Ψk ) f (Ψk−1,Ψk | d1:K ;ϑ)dΨk−1:k .
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In the general case, the parameters that maximize the ELBO, (C.3), in a hidden Markov model in the max-
imization step need to be determined numerically. However, if f (Ψk ,dk |Ψk−1) belongs to an exponential
family (condition satisfied when both observational and model errors belong to the exponential family), it is
possible to derive an analytical expression for the parameters that maximize the ELBO. The joint density of
state and observation given the previous state required in (C.2) is in this case expressed as

f (Ψk ,dk |Ψk−1;ϑ) = h(Ψk ,dk )exp[Φ(ϑ) · s(Ψk−1,Ψk ,dk )− A(ϑ)] (C.4)

where s(Ψk−1,Ψk ,dk ) is the natural sufficient statistic, Φ(ϑ) is called the natural parameter and h and A are
well-defined functions.
The gradient of the ELBO w.r.t. ϑ by introducing (C.4) into (C.3) is

∇ϑL [ f (Ψ0:K | y1:K ;ϑi−1),ϑ] =∇ϑΦ(ϑ) ·
K∑

k=1
E [s(Ψk−1,Ψk ,dk ) | d1:k ;ϑi−1]−K∇ϑA(ϑ) (C.5)

Assuming the expression in (C.5) has one root, corresponding to the maximum of L , the resulting E-step of
the ith iteration becomes

Si−1 = 1

K

K∑
k=1

E [s(ΨK−1,ΨK ,dK )] (C.6)

while the M-step is

ϑi = ϑ̂(Si−1) (C.7)

where we define ϑ̂(Si−1) as the solution for ϑ of the equation:

∇ϑΦ(ϑ) ·Si−1 −∇ϑA(ϑ) = 0 (C.8)

The critical value for ϑwhich sets this gradient to zero, will indeed maximize the ELBO. This is due to proper-
ties of the Hessian of the likelihood of exponential families.

C.1.2. Derivation of the Online EM-Algorithm
Again, in this subsection we follow Coccuci et al.’s derivation of the Online EM-algorithm, see [11].

The major drawback of batch EM is that for each new observation, and a given value of the parameters ϑ,
the ELBO has to be recomputed using the whole sequence of observations from 1 to K . Our goal is to update
the parameter with each new observation. Thus, in what follows the EM iteration index i is dropped and will
be replaced with the index corresponding to the assimilation cycle. With this notation, SK is an analogue for
the quantity in (C.6) but which is indexed by the last observation taken into account. We will approximate
SK (from(C.6) in terms of SK−1 and the information provided by observation dK . If new observations are
received sequentially, the value of K is in principle changing with time. Therefore, this leads to a recursive
formula valid for every k ∈ {1, . . . ,L}, meaning we can write an approximation of Sk in terms of Sk−1 and a
term involving observation dk with k ranging from 1 to K .

We begin by writing:

SK = 1

K

(
K−1∑
k=1

∫
s(Ψk−1,Ψk ,dk ) f (Ψk−1,Ψk | d1:K ;ϑK−1)dΨk−1:k +

∫
s(Ψk−1,Ψk | d1:K ;ϑK−1)dΨK−1:K

)
(C.9)

We can recognize that the first K −1 terms in (C.9) correspond to (K −1)SK−1 but incorporating information
of the newly available observation dK , so that the posterior density corresponds to smoothing. We make
the approximation that dk does not significantly influence the previous state estimates but only provides
information to the last term, which corresponds to the sufficient statistics at K . This results in:

S̃K = (1−γK )S̃K−1 +γK

∫
s(Ψk−1,ΨK ,dK ) f (Ψk−1,ΨK | d1:K ;ϑK−1)dΨK−1:K (C.10)

= (1−γK )S̃K−1 +γK E [s(ΨK−1,ΨK ,dK ) | d1:K ;ϑK−1] , (C.11)

where we introducedγk ∈ (0,1) as a step-size (instead of 1
K ). In essence, (C.11) is a form of exponential moving

average, where γk controls the memory of the statistics, determining the importance of the old statistics
relative to the contribution of the current observation. The initialization parameter S̃0 has to be provided as
a first guess. In the Gaussian case, it coincides with the first guess for the parameter ϑ0.
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C.1.3. Explicit Implementation
Below we explicitly illustrate how the previous subsection is used to compute to estimate the Forecast Error
Covariance Q and Data Error Covariance R, which in the previous section would be ϑ= {Q,R}. Here we begin
by assuming that Q̃0 = 0Ng ×Ng and R̃0 = Cεε. Then at an arbitrary kth data assimilation, with data dk , we
run the EnKC to estimate the analyzed dynamic state ψa , and confirmed dynamic state ψc . Then using (C.8)
we compute the proposal E [Q], E [R] using the root for the gradient of the ELBO for the exponential family
representation of a multivariate Gaussian density.

In the case of the covariance of the multivariate Gaussian, Si−1 =Σ= (x −µ)(x −µ)ᵀ:

E [Q] = (ψa −ψc )(ψa −ψc )ᵀ

E [R] = (d −ψc )(d −ψc )ᵀ

Then using (C.11) we compute

Q̃K = (1−γK )Q̃K−1 +γK E [Q]

R̃K = (1−γK )R̃K−1 +γK E [R]

We also assume γk = 0.6 and as far has not been changed.

C.2. Using the Confirmed Ensemble for Model Predicted Measurements
Now in order to for this to be useful we need to some use these Error Statistics to compute (re)estimate λ.
As a result, we will define an augmented data assimilation model in which the confirmed ensemble will be
perturbed and used a predicted measurements, and the data will be (re)measured using the data error ν
instead of the measurement error ε. Recall that the original data assimilation model, (2.5), with Static and
Dynamic states:

α= [
lnλ

]
, ψi =

[
~Sw i

~po i

]
(=ψ(ti )) (C.12a)

Nonlinear Physical Model:

ψ(x, ti ) =G (ψ(x, ti−1),λ) (C.12b)

Measurement Model:

dt =H [ψ(t ),α]+ε ε∼N (0,Cεε) (C.12c)

where the initial Static and Dynamic states are:

λ∼Gamma (k,θ), ψ0 =
[

~Sw 0 = 0.29
~po 0 = pr = 105

]
(C.12d)

where k = (λ0
g uess )2

σ2
λλ

,θ = λ0
g uess

σ2
λλ

. Then we introduced a Confirmation step which was stated to be a one-step

smoothened forecast:

ψc (x, ti ) =G (ψ(x, ti−1),λa) (C.12e)

C.2.1. The augmented Data assimilation model
We now can define the error prediction-correction model. In order to do this, we assume that the unknown
parameter λ is forecasted, which in fact results in the analyzed parameter λa . Then the confirmation step
is the deterministic forecast using this forecasted parameter, however the model predicted data has model
uncertainty q ∼N

(
0,Q̃

)
and the maximization measurement model has data error ν∼N

(
0, R̃

)
:

Parameter Forecast:

λa =λ+λ′

Nonlinear Model taking into account the incorrect forecast:

H [ψ∗(x, ti )] =H [G (ψ(x, ti−1),λa)+q] (C.13)

=H [ψc (x, ti )+q]
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Maximization Measurement Model taking into account that we corrected for affected by uncertain λ to get
λa :

dt =Ĥ [ψ(t ),α,H [ψ∗(x, t )]]+ν (C.14)

wherein the Maximization Observation Operator Ĥ :Rn+m →Rm for each ensemble member. In this way we
are able to provide the variance minimized estimate for lnλ (which was an issue see Section 2.4).

C.2.2. How is this actually implemented
And just like in [16, pg142], we can treat ψ∗(x, ti ) as the prediction of the measurements given λa . Augment-
ing further the ensemble state to include these prediction of the measurements, now we apply the variance
minimizing solution found in [16, pg.144].

We augment the system:

Ψ=
 ψ

α

H [ψ∗] =H [ψc +q]


We define the Maximization Measurement Observer:

Ĥ i [ψ,α,H [ψ∗]] =
[

po c (x1, ti )+q(po(x1, ti ))
po c (xNg , ti )+q(po(xNg , ti ))

]
∈Rm where m = 2

Then it follows from the general EnK framework:

Ŝ :=H [ψ∗](I −1N )

d := dobs +ν
Ê := [ν1, . . . ,νN ] ∈Rm×N

As such:

αcm =α f
(
I + Ŝᵀ (

ŜŜᵀ+ Ê Êᵀ)−1
(
d −ψ f

))
Hereafter, another confirmation step can optionally be run. When and why to do this is yet to be investigated
rigorously.
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C.3. The 2 Online EM methods: EnKCM and EnKCMC
In order to ensure that energy is conserved and the first order markov property still holds in the E-step analysis
we re-confirm the augmented data assimilation mode. Thereby we create a distinction between the EnKCM
and EnKCMC:
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Figure C.1: Confirmed Ensemble Kalman Filter with One-Step Maximization (EnKCM) at nth Data Assimilation
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Figure C.2: ReConfirmed Ensemble Kalman Filter with One-Step Maximization (EnKCMC) at nth Data Assimilation

In the figures below we run under the base experiment settings, some preliminary tests that show promise.

Figure C.3: Comparing the fit of λ estimate

Note that EnKFP and EnKCP refer to EnKF-Potential and EnKC-Potential, which simply means that Q,R
are computed but not used. e.g. EnKF=EnKFP, only we also compute Q,R for demonstration purposes.
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Figure C.4: Trace of Q, R, C e
ψψ

Figure C.4 shows the trace of the following covariances:

Forecast Error, Q continues to decrease, i.e. forecasts look more and more like each other.

Data Error, R continues to decrease, i.e. forecast look more and more like the data.

Ensemble, C e
ψψ remains constant at a fixed level(just above 102), i.e. ensemble members actually do look like each

other, but there is an initial uncertainty that cannot be removed.
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