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Abstract

The Material Point Method (MPM) is a numerical method primarily used in the simulation of large
deforming or multi-phase materials. An example of such a problem is a landslide or snow simulation.
The MPM uses Lagrangian particles (material points) to store the interested physical quantities. These
particles can move freely in the spatial domain. Each time step, these physical quantities are projected
on a background grid, which is necessary to evaluate these quantities at a future time step. Once all
necessary properties are projected, the acceleration on this grid can be updated using the conservation
of linear momentum. At last, this updated acceleration can be projected to the particles to compute
their updated velocity, position and other quantities.

The main problem addressed in this thesis arises in the projection of the particles to the background
grid. The use of linear basis functions in the classical MPM causes instabilities, which can be resolved
by using higher order B-splines. However, another problem arises when particles move between the
background cells. Since these particles move freely through the spatial domain, it is possible for some
cells to by nearly-empty. In this thesis, the use of Extended B-splines is explored to increase the stability
in these areas by deactivating unstable B-splines and extending stable ones.

Furthermore, higher dimensional B-splines are constructed by a tensor product of one dimensional
B-splines. The scalability can be a problem, as these B-splines cannot be refined locally. Therefore,
Truncated Hierarchical B-splines are introduced to locally refine a geometry. The effectiveness of this
technique in combination with the EB-splines is investigated.

The thesis shows that the use of EB-splines in the context of MPM increases the stability in the case
of nearly-empty cells, and can also improve the quality of the solution near the boundary. Furthermore,
in the neighborhood of high stress concentrations, the THB-splines have a similar accuracy as the
regular B-splines, while drastically reducing the computational costs. In combination with EB-splines,
THB-splines can be used to accurately refine a geometry in the presence of nearly-empty cells.

Before these techniques can widely be used in applications, the possibly of negative elements have
to be investigated when using EB-splines, as this is not guaranteed in the extension. Furthermore, the
use of THB-splines in the context of MPM has only been studied for a predefined refinement. In real
applications, the presence of stress concentrations is not known and a more adaptive local refinement
technique in the context of MPM has to be explored.
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1
Introduction

In solid mechanics, it is often required to determine the characteristics of materials, such as the defor-
mation of metal beam under an external load. However, it is not always feasible or even possible to
investigate the properties by performing experiments. In situations where a simple material is studied
without complex geometries, it is possible to express these characteristics by solving partial differential
equations analytically.

In many applications, it is impossible to solve the describing equations exactly and simulations are
necessary to approximate a solution. In these simulations, numerical techniques are used which try to
describe the characteristics of interest as accurate as possible. However, numerical simulations can be
incredibly challenging, and many techniques are developed to overcome these challenges. Therefore,
different methods may be suitable for different challenges.

(a) Typical example of a FEM mesh. (b) Example of an arbitrary scalar solution
computed using Finite Element Analysis.

Figure 1.1: Example of a typical FEM mesh and a scalar solution resulting from Finite Element Analysis.

A well-known numerical technique is the Finite Element Method, which uses a mesh to represent
the material, see figure 1.1a. By using this finite mesh, a solution for the problem at hand can be
approximated, see figure 1.1b. In the presence of an external load or other sources on the material,
the representing mesh will move and deform to describe the resulting changes. In the case of large and
complex 3D-geometries, these meshes can be difficult and time-consuming to generate. Furthermore,
in the case of large deformation, this mesh can become extremely distorted which leads to excessive
approximation errors and non-physical solutions. Ultimately, a new mesh has to be generated to continue
the computation. An example of a such a problem is a landslide or avalanche, where a composition
of various materials has large deformations which are difficult to simulate using methods such as the
FEM.

To avoid the time-consuming re-meshing, other methods can be used which avoid these challenges.
One approach to avoid the mesh distortion is to use a fixed mesh. Over time, the mesh does not move
and instead flow of the material through a cell is tracked. When the mesh moves with the material,
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solving and updated the material properties is straight-forward. However, if the mesh stays static, this
is not the case due to nonlinear convective terms.

In these mesh-based methods, the materials are sometimes hard to accurately describe, which also
prompted the development of mesh-free methods. In these types of methods, the material is not repre-
sented on a mesh, but is discretized by a cloud of particles. These particles hold the material properties
and can move freely in the spatial domain, avoiding the convective terms and naturally handling the
large deformations. However, the interaction between particles is not clearly defined and since the
particles are used to approximate the continuous fields, the gradient of these fields is not trivial. This
complicates solving the continuum equations.

To overcome the problems of both mesh-based and mesh-free methods, the Material Point Method
(MPM) was introduced by Sulsky et al. [31] as an extension of the Particle in Cell (PIC) method [15].
This method uses aspects of both methods. As this name suggest, the PIC method uses particles to
represent the material. These particles carry only a mass and position, but they are not used to solve the
problems equations. Instead, a fixed background mesh is used to discretize the continuous fields and the
material properties of the particles are projected on the mesh. Therefore, it uses the advantages of both
methods described, but does have its drawbacks. The PIC method suffers from excessive computational
dissipation as a result from transferring momentum between the grid and particles [8]. An improved
version of this method is the Fluid Implicit Particle (FLIP) method, introduced in [8]. This method is
further improved and adapted for solid mechanics by Sulsky et al., and eventually dubbed it the Material
Point Method. A discretization example for MPM of the same problem as figure 1.1 is displayed in
figure 1.2.

Figure 1.2: Example of the same domain as in figure 1.1 in the MPM context. The material points (particles)
represent a material defined on a unit circle. A background grid is generated for the MPM computations. Each time

step, the particle information is projected to the background grid.

The Material Point method itself does also have some challenges to overcome, primarily in the
projection of the particles to the background grid. The traditional MPM uses linear Lagrange basis
functions to interpolate the material properties between the particles and background mesh. These
basis functions have a discontinuous derivative. These derivatives are necessary in the computation of
the material stresses and when particles move between grid cells, these discontinuities cause unnatural
jumps in the stress field. This phenomenon is called the grid-crossing error.

To overcome this problem, various approaches have been suggested, and the approach used in this
thesis is the use of higher polynomial order B-splines instead of the linear basis functions. The higher
order B-splines are smoother, they have continuous derivatives which resolves the unnatural jumps in
the stress field. This does resolve the grid-crossing error, but still has a problem when cells are nearly-
empty. When a grid cell is almost empty, the mass of that cell will be small, while the force on the
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cell is still present. The resulting acceleration is therefore unnaturally large. These accelerations are
interpolated to the material points, giving them unnatural velocities. This causes instabilities in MPM
simulations and is a well-known issue which is dubbed the nearly-empty cell problem.

This problem becomes even more prominent when smaller grid sizes are used. A common approach
to reduce the approximation error in a numerical method, is to reduce the grid size, but this increases
the likelihood of cell to be nearly-empty as well. Therefore, it can be challenging to refine a grid,
especially near the edges of a material where the problem mostly occurs.

The goal of this thesis is to improve the stability of B-spline MPM simulations by reducing the
nearly-empty cell problem using Extended B-spline functions (EB-splines)[17, 16]. EB-splines are an
extension to the regular B-splines, where B-splines with a small support (nearly-empty) are deactivated
and nearby stable B-splines are extended to incorporate the deactivate B-splines support. This increases
the stability of the active B-splines.

Furthermore, Truncated Hierarchical B-splines (THB-splines)[14] are introduced as a local refine-
ment technique for B-splines to refine a background mesh of MPM. It does this by splitting B-splines
into multiple B-splines of a smaller support, which can increase the accuracy of the spline approxima-
tion. In combination with EB-splines, this thesis aims to refine the MPM solution near the edge of a
material, while avoiding the instabilities of the nearly-empty cell problem.

The outline of this thesis is as follows. In chapter 3, the Material Point Method is described in more
detail. After the MPM is outlined, the problems described above can be displayed in chapter 3.6. In
chapter 3.7, a brief overview is given of the various methods developed to overcome these problems. In
chapter 4, isogeometric analysis is introduced, which is a computational approach where the B-splines
and its extensions originate from. In chapter 5, the benchmark used in this thesis are explained and
the results of the MPM simulations are displayed and discussed. In chapter 6, the final conclusions and
recommendations are presented.



2
Physical model

2.1. Eulerian and Lagrangian specification
There are generally two specifications in continuum mechanics to describe the motion of a material.
One is using the Eulerian description and the other is the Lagrangian description. Both specification
should provide identical results, but the complexity of the equation varies depending on the chosen
specification.

In the Eulerian description, a control volume is fixed in the spatial domain and the material is
described as it moves through this control volume. In the Lagrangian description, a part of the material
(e.g., a particles) is chosen to be the control volume and this control volume is tracked as it moves
through the domain. One of the differences in these frameworks arises when the material derivative or
the total derivative of a field f inside a control volume,

df
dt =

∂f

∂t
+ v · ∇f, (2.1)

where v is the velocity vector and ∇f the gradient of f . The change of a quantity f is described by both
the partial derivative with respect to time and an advection term v · ∇f . In the Eulerian specification,
there is a change of the quantity f in the control volume as material is advected in and out of this volume.
Therefore, this term does not vanish in the Eulerian specification. In the Lagrangian specification, the
control volume moves with the material and therefore there is no material advection, thus the material
derivatives become

df
dt =

∂f

∂t
. (2.2)

2.2. Motion
In the Material Point Method, the Lagrangian specification is used to describe the material in motion.
In the following section, the equations of motions for these Lagrangian particles are defined.

Let t0 be the initial time and let the domain Ωt be the considered configuration of the domain at a
given time t. The reference domain at t0 is indicated by Ω0. A particle has an initial position indicated
by X ∈ Ω0. As the material deforms, the particle moves in the spatial domain. The deformed (Eulerian)
position x ∈ Ωt is then mapped by x = ϕ(X, t). The displacement of a particle can then be expressed
as

u(X, t) = x(X, t)− x(X, t0) = x(X, t)−X. (2.3)
The particle displacement is the joint result of the deformation and rigid body forces. Using the
formulation of this displacement, the particle velocity can be derived as

v(X, t) = ∂u
∂t

=
∂x(X, t)
∂t

, (2.4)

which is the Lagrangian specification of the velocity. Similarly, the expression for the material acceler-
ation is

a(X, t) = ∂v
∂t

=
∂2x(X, t)
∂t2

. (2.5)

4



2.3. Governing equations 5

The term deformation is already used in the section above. While the material is not advected in
the control volume, the volume does deform. The deformation of a control volume is the transformation
from the reference volume to the current volume and is defined as

F(X, t) = ∂x
∂X = 1 +

∂u
∂X = I +∇0u, (2.6)

where ∇0 indicates the gradient with respect to the reference framework. This expression for the defor-
mation is an important part in the Lagrangian specification and is required in numerical computation,
such as the Material Point Method.

2.3. Governing equations
In continuum mechanics, the motions of a continuum are described by the balance laws[29, 26], mainly
the conservation of mass, conservation of linear momentum, conservation of angular momentum and
conservation of energy. These balance equations are used in the Material Point Method to describe and
compute the evolution of the particle motion.

Firstly, the continuity equation or conservation of mass can be written in the Eulerian specification
as

dρ
dt = ρ∇ · v, (2.7)

which as stated before is guaranteed by the material point method, as each particle has a constant mass.
Secondly, the conservation of linear momentum is expressed as

ρ
dv
dt = ∇ · σ + ρb, (2.8)

where σ is the Cauchy-stress tensor and b the (external) body forces applied to the material. This
equation is primarily used in the basic MPM and is described in more detail in the next sections.

The conservation of angular momentum requires the stress tensor to be symmetric, which is a
requirement for the constitutive relation, see section A.

For completeness, there is also the conservation of energy. However, as the default MPM is used for
isothermal problems, the conservation of energy is not solved[3].

2.4. Constitutive equation
The previous section are general descriptions of the balance laws and are valid for all types of materials.
When solving the conservation of linear momentum for a specific type of model, an additional set
of equations is needed to describe the behavior of a material in more detail. Such sets of equations
are called constitutive relations. Sevaral types of equations can be required depending on the specific
problem or research field at hand, such as electro- or thermodynamic behavior. However, in this thesis,
we are mainly concerned with the deformation of solid. For this, an expression for the Cauchy stress σ
in the conservation of linear momentum is needed.

Depending on the type of material, different equations for this stress can be found in literature. In
this thesis, we limit ourselves only to hyperelastic material, which are a specific type of material where
the current state of the stress can be expressed by the deformation with respect to the reference state.
A linear extension of these materials is called Neo-Hookean materials and for an isotropic Neo-Hookean
material with large deformations, the constitutive relation can be expressed[37, 28] as

σ = λJ−1 log JI + J−1µ(FFT − I), (2.9)

where J = det F and λ, µ are the Lamé constants. These constants are defined by

λ =
νE

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
, (2.10)

with Young’s modulus E and Poison’s ration ν, which are material properties. λ and µ are also referred
to as the first and second Lamé constants, respectively.

The above constitutive relation can be simplified in the case of small deformations as

σ = λtr
(
1

2

(
F + FT

)
− I

)
I + 2µ

(
1

2

(
F + FT

)
− I

)
. (2.11)



2.5. Boundary and initial conditions 6

A more detail explanation and derivation of these constitutive models can be found in appendix A.
In the material point method, the constitutive model as a function of the deformation is used.

However, these models are often expressed in terms of the strain. The strain tensor ϵ is defined as

ϵ =
1

2

(
∇0u + (∇0u)T

)
= sym (∇0u) . (2.12)

Using this definition and equation 2.6, the linear model for small deformations can be expressed as

σ = λtr (ϵ) + 2µϵ, (2.13)

which is the well-known Hooke’s law constitutive model.

2.5. Boundary and initial conditions
Besides the constitutive model, the initial configuration of the material and the behavior at the edge
are required. Therefore, we must specify the initial and boundary conditions.

The initial conditions are imposed as

u(X, t0) = u0(X), (2.14)
v(X, t0) = v0(X), (2.15)
σ(X, t0) = σ0(X), (2.16)

where the right-hand side are problem specific functions describing the initial configuration of the
material.

The boundary of the domain Ω is indicated by Γ = ∂Ω. Both essential and natural boundary
conditions are possible to be present in a given problem. Therefore, let Γ = Γu∩Γt where Γu is the part
of the boundary containing essential boundary conditions and Γt the traction boundary conditions.

The essential boundary conditions are then defined by

u(X, t) = ub(t),X ∈ Γu (2.17)

and the traction boundary conditions are

σ(X, t) · n = τ (t),X ∈ Γt (2.18)

where n is the outward unit normal vector.

2.6. Weak formulation
The conservation of linear momentum in equation 2.8 is a strong formulation. In many numerical
methods, such as the Finite Elements Method, a weak formulation of the partial differential equation
is used. The resulting weak solution only holds with respect to specific test functions.

Let Ω be the domain of the problem and let W be the test function space of sufficiently smooth
functions which are zero on the boundary where essential boundary conditions are imposed. The weak
formulation of equation 2.8 can be derived by multiplying by a test function ϕ ∈ W and integrating
over the domain Ω, which results in

∫
Ω

ϕρ
dv
dt dΩ =

∫
Ω

ϕ (∇ · σ + ρb) dΩ

=

∫
Ω

ϕ∇ · σdΩ+

∫
Ω

ϕρbdΩ

=

∫
Ω

∇ · (ϕσ) dΩ−
∫
Ω

∇ϕ · σdΩ+

∫
Ω

ϕρbdΩ

=

∫
Γ

ϕn · σdΓ−
∫
Ω

∇ϕ · σdΩ+

∫
Ω

ϕρbdΩ

where the last step is acquired by using the divergence theorem[35] and where Γ = ∂Ω indicates
the boundary of Ω. Let a = dv

dt be the acceleration and let V be the trial space of sufficiently smooth
function which respect the boundary conditions. Then the weak formulation of the problem is



2.6. Weak formulation 7

Find a ∈ V :

∫
Ω

ϕρadΩ =

∫
Γ

ϕn · σdΓ−
∫
Ω

∇ϕ · σdΩ+

∫
Ω

ϕρbdΩ, ∀ϕ ∈ W (2.19)



3
Material Point Method

In the previous section, the physical model is outlined with its necessary equations. These equations
will be used in this section to describe the Material Point Method (MPM) in detail.

The Material Point Method is a numerical method introduced by Sulsky [31] and is an extension of
the Particle in Cell (PIC) method [15].

The PIC method is primarily used in fluid mechanics. It uses Lagrangian particles, which carry only
mass and position. To discretize the continuous fields, an Eulerian background mesh is used. Therefore,
it can use the advantages of both a Lagrangian and Eulerian based method. However, this method
suffers from excessive computational dissipation as a result from transferring momentum between the
grid and particles. [8]

An improved version of this method is the Fluid Implicit Particle (FLIP) method, introduced in [8].
This method is further improved and adapted for solid mechanics by Sulsky, and eventually named it
the Material Point Method.

The MPM uses material points (or particles) which hold all physical properties of the problems
material, such as mass, velocity and stress. These particles can move freely through the domain, but
they are not directly used to solve the conservation of linear momentum.

Instead, a background grid is used to solve this equation. At the start of a time step, all physical
quantities stored in the particles is mapped to the nodes of the background grid, figure 3.1a. Using the
mapped physical quantities at the nodes, the weak formulation of equation 2.19 is solved similar to the
Finite Element Method (FEM), figure 3.1b.

After the updated physical quantities are computed at the nodes, the particles are updated using
the inverse mapping and the background grid is reset to its original state, figure 3.1c.

This is a distinction with FEM, where the nodes represent the material, which results in inaccuracies
if large deformations of the cells are considered. Since the MPM has freely moving particles and a static
background grid, this problem never occurs.

3.1. Space discretization
Similar as in FEM, the weak formulation of equation 2.19 is solved on the background grid of MPM.
For simplicity, this grid usually is a structured (regular) grid, but this is not required, e.g., [22].

On this background grid, let ϕi ∈ W be a set of ni linear independent basis function which span a
subspace W h ⊂ W . A similar trial subspace V h ⊂ V can be defined. This reduces the problem to a
ni-dimensional problem and the weak formulation becomes

Find ah ∈ V h :

∫
Ω

ϕiρahdΩ =

∫
Γ

ϕin · σdΓ−
∫
Ω

∇ϕi · σdΩ+

∫
Ω

ϕiρbdΩ, ∀ϕi ∈ W h (3.1)

We can approximate the acceleration by a linear combination of these basis functions, namely

a(X, t) ≈ ah(X, t) =
ni∑
i=1

ϕi(X)ai(t), (3.2)

8
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(a) Project the particles to the grid (b) Update the grid to the next time step.

(c) Project the updated quantities back to the particles (d) Reset the background grid to its original state.

Figure 3.1: Illustration of the MPM procedure during a single time step.

where ah denotes the approximation of a.
Substituting this approximation into the weak formulation equation, this results in

ni∑
j=1

aj
∫
Ω

ϕiρϕjdΩ =

∫
Γ

ϕin · σdΓ−
∫
Ω

∇ϕi · σdΩ+

∫
Ω

ϕiρbdΩ. (3.3)

To solve this equation for all aj , we define the matrix elements for M as

Mi,j =

∫
Ω

ϕiρϕjdΩ (3.4)

and the vector elements Ftract,Fint,Fext as

Ftract
i =

∮
Γ

ϕin · σdΓ (3.5)

Fint
i = −

∫
Ω

∇ϕi · σdΩ (3.6)

Fext
i =

∫
Ω

ϕiρbdΩ, (3.7)

Note that for a d-dimensional problem, equation 3.3 is a set of d equation, one for each dimension.
This also mean that each vector element Fi consists of d elements for each dimension and so does aj .

In matrix form, equation 3.3 is written as

Ma = Ftract + Fint + Fext, (3.8)

where a is the acceleration vector containing the coefficients aj . Once the matrices and vectors are
assembled, the acceleration vector can be computed using linear algebra.
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In many application, the mass matrix is lumped to reduce the computational cost of the MPM
simulations. A lumped mass matrix is a diagonal matrix where the diagonal elements are the row sums
of the mass matrix of equation 3.4. Since the matrix is diagonal, the acceleration in equation 3.8 can
be calculated directly without solving the system of equations.

However, this lumping procedure induces additional inaccuracies as is observed in [22]. To avoid
these inaccuracies and to better investigate the effects of the stabilizing methods introduced in this
thesis, mass lumping will not be used.

3.2. Integration points
In the regular FEM approach, the integrals of the matrix and vector elements of equation 3.3 can be
assembled directly at each time step, as the values are known at the nodes. MPM uses a mapping of
the particles in the domain to the nodes of the background grid, and an additional step is necessary.

First, the material points (particles) need to be defined. Let {Pp} be a set of np particles, each with
a position Xp ∈ Ω, a mass mp and a volume Vp. In the classical MPM, each particle does have a volume
Vp, but particles do not have a domain Ωp ⊂ Ω. In extended MPM versions such as GIMP or CPDI,
these domains are introduced, see section 3.7, but they will not be used in this thesis. The deformation
of the particle volume is tracked by the matrix F and is initially set to the identity matrix I.

By defining in the material points this way, we will treat the material points as integration points,
where the volume Vp is used as weight, thus∫

Ω

f(x)dΩ =

np∑
p=1

Vpfp. (3.9)

Substituting this equation into equation 3.3, the weak formulation becomes the following summation

ni∑
j=1

[
np∑
p=1

Vpρpϕi(Xp)ϕj(Xp)

]
ahj =

∫
Γ

ϕn · σdΓ−
np∑
p=1

Vp∇ϕi · σp

∣∣∣∣
Xp

+

np∑
p=1

ϕi(Xp)Vpρpb(Xp). (3.10)

Using mp = ρpVp, each matrix element from the previous section can be written as a particle sum;

Mi,j =

np∑
p=1

ϕi(Xp)ϕj(Xp)mp (3.11)

Ftract
i =

∮
Γ

ϕn · σdΓ (3.12)

Fint
i = −

np∑
p=1

Vp∇ϕi(Xp) · σ(Xp), (3.13)

Fext
i =

np∑
p=1

ϕi(Xp)mpb(Xp) (3.14)

3.3. Imposing boundary conditions
In this thesis, two types of boundary conditions are used, traction or natural boundary conditions and
Dirichlet or essential boundary condition. If a problem imposes any of these boundary conditions, they
must be imposed. However, this is not always obvious as to how they are treated.

3.3.1. Natural boundary condition
The traction boundary conditions or natural boundary conditions are imposed implicitly by the weak
formulation in equation 3.12,

Ftract
i =

∮
Γ

ϕn · σdΓ. (3.15)

In the case of homogeneous traction, i.e., τ = n · σ = 0, this term vanishes. However, this is not
always the case and if non-homogeneous boundary conditions τ(t), this term is not always clear.
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For a 1D-problem with Ω = [x0, x1], this problem reduces to

F tract
i = ϕiτ |x1

x0
= ϕi(x1)τ(x1, t)− ϕi(x0)τ(x0, t), (3.16)

where the boundary conditions τ(x0, t) and τ(x1, t) are known.
For a 2D-problem, this integral becomes more complex. In this thesis, a 2D background grid is

generated by a tensor product, and the test function is written as

ϕi,j(x, y) = ϕi(x)ϕj(y). (3.17)

For a simple boundary condition, where a rectangular domain is given by Ω = [x0, x1] × [y0, y1], the
traction term becomes

F tract
i =

∮
Γ

ϕi,jn · σtdΓ

=

∫ x1

x0

ϕi(x)ϕj(y0)τ (x, y0, t)dx

+

∫ y1

y0

ϕi(x1)ϕj(y0)τ (x1, y, t)dy

+

∫ x0

x1

ϕi(x)ϕj(y1)τ (x, y1, t)dx

+

∫ y0

y1

ϕi(x0)ϕj(y)τ (x0, y, t)dy.

Figure 3.2: Example of boundary and interior particles on a unit square.

In general, the boundary is does not coincide with any background grid. Instead, a set of boundary
particles is generated together with the interior material points. These particles are mass-less and only
carry the necessary boundary information to correctly represent the boundary Γ = ∂Ω. The traction
boundary term can then be expressed as

Ftract
i =

∫
Γ

ϕi(X)τ (X, t)dΓ

=

nbp∑
p=1

ϕi(Xp)τ (Xp, t)Lp, (3.18)
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where Lp is the length of the line segment of boundary particle p and nbp the number of boundary
particles. In general, the number of boundary particles per line segment should be larger than the
number of particles per cell[9].

In this thesis, the analytic solution of each problem is known and therefore the exact location of
these boundary particles and the traction is known.

3.3.2. Essential boundary condition
For the Dirichlet or essential boundary conditions, it is not obvious how they can be imposed on the
background grid, especially since the material points in MPM can move freely in the domain. Various
methods can be used to impose them, and we make a distinction between grid-conforming boundary
conditions, where the boundary coincides with the background grid and non-conforming boundary
conditions where the boundary is located arbitrarily with respect to the background grid.

In the case of conforming boundary conditions, a similar approach as in FEM can be used. Suppose
the numbering of degrees of freedom (nodes) of the background grid are rearranged such that first we
have the interior not-prescribed nodes and the prescribed nodes afterwards. In this case, the matrix
representation of equation 3.8 can be rewritten as[35][

Mii Mib

Mbi Mbb

] [
ai
ab

]
=

[
Fi

Fb

]
(3.19)

where the subscript i consists of all the nodes with non-prescribed unknowns, and b the prescribed
boundary nodes. Since the Dirichlet boundary conditions are known, we know ab and the equation can
be reduced to

Miiai = Fi −Mibab. (3.20)
This approach is relatively simple and many MPM application choose the background grid in such

a way that this method can be utilized.
However, this method cannot be used for arbitrary background grids or moving boundaries where

the conformity is not guaranteed. In this thesis, the penalty method is employed to impose the Dirichlet
condition weakly on the boundary. If u = g on Γ be the boundary condition, a penalty condition is
generated to replace this boundary condition. Let ϵ > 0, then the penalty condition is given[1, 4] by

∂u

∂n
= ϵ−1(u− g) on Γ. (3.21)

This penalty is then used in the weak formulation directly and the solution satisfies the boundary
condition as ϵ → 0. However, choosing the right penalty constant ϵ is not obvious, as a small value of
ϵ leads to an ill-conditions problem and is thus depended on the grid size[25, 21].

3.4. Basis functions
In the classic Material Point method, linear Lagrange basis function are used similar as in the finite
element method. For each cell of the background grid, the Lagrange basis functions are defined by

lj(x) =
∏

0≤m≤km ̸=j

x− xm
xj − xm

(3.22)

where ξi are the nodes associated with the cell. For a 1-dimensional grid, with nodes {0, 1, 2, 3, 4, 5},
two basis function ϕ1, ϕ2 are displayed in figure 3.3.

These functions are also used for the mapping of the particle information to the nodes. To map the
values to the nodal points of the background grid,

fi(t) =

np∑
p=1

ϕi(X)fp(t), (3.23)

and similarly, to map the information back to the particles

fp(t) =

ni∑
i=1

ϕi(X)fi(t). (3.24)
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Figure 3.3: Example of two linear Lagrange basis function ϕ1, ϕ2 for a node set {0, 1, 2, 3, 4, 5}.

Note that the Lagrange basis function are differentiable, and the derivative at the background nodes
can be computed using

∇fi(t) =
np∑
p=1

∇ϕi(X)fp(t), (3.25)

3.5. The MPM Algorithm
There are a few variations of the traditional MPM of Sulsky et al.[31, 33], which all satisfy the conser-
vation of mass and momentum. These variations are all different in the order of calculation the stress,
thus the constitutive relation. Traditionally, the algorithm updates the stress after the nodal velocities
are calculated, which Bardenhagen[3] referred to as the Update Stress Last. Other variations are the
Update Stress First (USF) and the Modified Update Stress Last (MUSL). First, the USL algorithm is
explained.

3.5.1. Preliminaries
Before the MPM algorithm is explained, a few more expressions must be determined. First, the par-
ticle volume Vp changes as the particle deforms. The relation between the particle volume and the
deformation gradient Fp of the particle at a time t is given by

V t
p = detF t

pV
0
p (3.26)

where V 0
p is the initial volume. Since the conservation of mass is satisfied in the material point method,

the relations
m0

p = ρ0pV
0
p = mt

p = ρtpV
t
p = V 0

p det Ft
p =

mp

V t
p

(3.27)

thus the density is given by

ρtp =
ρ0p

det Ft
p

. (3.28)

For the deformation tensor, we know that

∂F
∂t

=
∂

∂t

[
∂x
∂X

]
=
∂v
∂X =

∂v
∂x

∂x
∂X = LF

where the velocity gradient is defined as L = ∂v
∂x . Using the time integration) this equation becomes

Ft+∆t
p − Ft

p

∆t
= Lt+∆t

p Ft
p ⇒ Ft+∆t

p = (I +∆tLt+∆t
p )Ft

p (3.29)
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and the velocity gradient can be computed by projected the velocity of the nodes at the updated time
t+∆t as

Lt+∆t
p = ∇vt+∆t

p =

ni∑
i=1

∇ϕi(Xp)vt+∆t
i . (3.30)

Here, it is assumed that the stress is updated last, thus the velocity gradient at time t+∆t is already
computed beforehand.

3.5.2. Update Stress Last
At the start of a simulation, np particles are initialized, each with a position xp, velocity vp, stress σp,
volume Vp and density ρp. The background grid with ni nodes is initialized with its shape function ϕi,
with each particle inside the background grid. Originally, MPM uses linear Lagrange polynomials for
ϕi, but this is not a requirement for MPM as we will see in section 4.

Algorithm 1: MPM scheme: Update Stress Last (USL)[31]
Result: MPM result at time tend

1 Initialize particles and background grid.
2 Set t = 0;
3 while t < tend do
4 Particles to Mesh
5 Calculate the mass matrix elements mt

ij for each node i
6 Calculate the force elements fti for each node i

7 Calculate the linear momentum pt
i =

np∑
p=1

ϕI(xt
p)(mv)tp at each note i

8 Calculate the nodal velocity: vt = (M t)−1pt

9 Calculate the nodal acceleration: at = (M t)−1ft
10 Update New nodal velocity: vt+∆t

i = vt
i + ati∆t

11 Mesh to Particles

12 Calculate the new particle velocity gradient: Lt+∆t
p =

nn∑
I=1

∇ϕi(Xt
p)vt+∆t

i

13 And the particle deformation: Ft+∆t
p =

(
I +∆tLt+∆t

p

)
Ft
p

14 New particle velocity: vt+∆t
p = vt

p +
nn∑
I=1

ϕI(xt
p)atI

15 New particle position: xt+∆t
p = xt

p +
nn∑
I=1

ϕI(xt
p)vt+∆t

I

16 Update particle stress σt+∆t
p using constitutive equation 2.9 or 2.11

17 Update particle volume: V t+∆t
p = det

(
Ft+∆t
p

)
V 0
p and density ρt+∆t

p =
(
det Ft+∆t

p

)−1
ρ0p

18 Advance time t←− t+∆t

19 end

3.5.3. Modified Update Stress Last
Shortly after the introduction of the USL MPM method, a modified version was introduced[33], which
was later dubbed the Modified Update Stress Last (MUSL) method. The major difference between the
two methods is the way the incremental strain ∆ϵt+∆t

p is calculated from the nodal velocities vt+∆t
I , line

12 of Algorithm 1
In the USL method, the next time step velocity was calculated directly from the acceleration. How-

ever, in the modified version, there is a remapping of the velocity. First, the new particle velocities are
calculated, and using the new particle velocity, the nodal velocity is recalculated as

(mv)t+∆t
i =

np∑
p=1

ϕi(xt
p)(mv)t+∆t

p (3.31)

3.5.4. Update Stress First
There is a possibility to change to order of calculating in Algorithm 1, which is called the Update Stress
First (USF) method[3]. As the name implies, in this variation the stresses are updated at the start of
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each time step, instead of the end. The force at the nodes is then calculated using σt+∆t
p instead. Note

that this procedure is mathematically speaking fairly similar to the MUSL, as the MUSL updates the
stress at the end of a time step, while the USF updates the stress at the beginning of the next time
step. The only difference is the use of the shape functions ϕi, where MUSL uses the particle positions
of the current time step (ϕi(xt

p)) and USF the particle positions of the next time step, thus ϕi(xt+∆t
p )

As both methods use the same formulation, they both conserve mass en momentum. However, the
difference is present in the conservation of energy[3].

3.6. Problems in MPM
Although the material point method uses the power of both mesh-based and mesh-free methods, the
MPM has its own shortcomings.

3.6.1. Grid-crossing error
In the standard MPM algorithm, linear Lagrange basis function ϕI or tent functions are used, e.g. figure
3.3. For the internal force calculation (equation 3.13), ∇ϕI is used which is discontinuous at the cell
boundaries as displayed in figure 3.4. If particles in a cell cross these boundaries to another cell, there
is a gradient jump resulting in unexpected behavior of the internal forces and stresses, which will be
illustrated in the example below. This phenomenon is referred to as grid-crossing or the cell-crossing
error.

Figure 3.4: Example of the derivative of a linear Lagrange basis function ϕ2 for a node set {0, 1, 2, 3, 4, 5}.

3.6.2. Example: 1D vibrating bar
To illustrate the grid-crossing error, a 1-dimensional vibrating bar of length L is considered[3, 34, 22].
This bar is fixed at both ends and a velocity v0 is prescribed at t = 0.

Ignoring any friction or damping forces, the partial differential equations for the 1-dimensional
vibrating bar is

∂2u

∂t2
=
E

ρ

∂2u

∂x2
, (3.32)

which is subject to the following initial and boundary conditions

u(0, t) = u(L, t) = 0

u(x, 0) = 0

∂u

∂t
(x, 0) = v0 sin

(πx
L

)
.
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This equation can be solved analytically using separation of variables and combined with the boundary
conditions and initial condition, the solution becomes

u(x, t) =
v0
ω

sin(ωt) sin
(πx
L

)
with ω =

π
√

E
ρ

L
. (3.33)

Since there is an analytic solution for this equation, the numerical results from the MPM calculation
will be compared to this solution.

Using these equations, the problem can be solved using MPM with B-splines, see section 4 and
the linear constitutive model for small deformations is used, equation 2.11. For this, the following
parameters are used

ρ = 1kg ·m−3

E = 50Pa
L = 1m

∆t = 10−5s

v0 = 0.1m · s−1

Note that this indeed holds the CFL conditions

∆t ≤
√
ρ

E
∆x. (3.34)

To illustrate the effect of the grid crossing error, specific values are chosen for the space discretization.
The domain [0, L] is divided into 25 and 50 equally sized cells. The same domain [0, L] is populated
with uniformly distributed particles such that each cell initially has 4 particles inside it.

The result of the Cauchy stress σ at t = 0.5s using 25 cells is displayed in figure 3.5 using B-splines of
degree 1 and 2. Note that linear B-splines and linear Lagrange basis function are identical, see chapter
4 for more detail.

Although both figures calculate the stress accurately, the stress using linear basis functions have
distinct steps. This is a direct result of the use of shape functions ϕi. Since linear basis function are
used in figure 3.5a, its derivative ∇ϕi used in the stress calculations is constant but discontinuous at
the nodes. This effect disappears when smoother (C1 or higher) basis function. This thesis primarily
uses quadratic B-splines which has continuous derivatives, as is displayed in figure 3.5b.

The discontinuous derivatives of the B-splines compute the stress accurately if the particles do not
move to other cells. Since the derivatives are constant, a particle moving from one cell to its neighbor
causes the stress to jump to another value. This is displayed in figure 3.6 where the cells are smaller and
the vibrating particles move between cells. This is mitigated by using quadratic B-splines as displayed
in figure 3.6b where the stress is still calculated accurately.

3.6.3. Nearly-empty cells
Another problem with the MPM is the so called nearly-empty cell problem. Since material points can
move freely through space and are independent of the background grid, it is possible that cells (generally
near the boundary) are empty.

If a cell is empty, there will be a node xi without mass. If node xi is included in the calculations, the
mass matrix becomes singular, and acceleration cannot be computed in equation 3.8. However, since
there are no material points inside the cell, the cell does not contribute to the solution and the node
can be ignored.

Since particles can move freely through the spatial domain and the background grid can be chosen
arbitrarily, it is possible for a cell to be (or become) nearly-empty, meaning that cell has significantly
less particles inside than the other cells. This causes the mass at specific nodes to be significantly
smaller and the matrix M to be ill-conditioned. An example of such a matrix where a cell has only one
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(a) 25 cells, initially with 4 particles per cell, p = 1 (b) 25 cells, initially with 4 particles per cell, p = 2

Figure 3.5: Stress at t = 0.5s using ∆t = 10−5 using B-splines of degree 1 and 2. The bar is split into 50 equal sized
cells.

(a) 50 cells, initially with 4 particles per cell, p = 1 (b) 50 cells, initially with 4 particles per cell, p = 2

Figure 3.6: Stress along the vibrating bar at t = 0.5s using ∆t = 10−5 using B-splines of degree 1 and 2. The bar is
split into 50 equal sized cells.
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particle on the edge is

M =



. . . . . . . . . ∅

. . . 0.35 0.14 0.01

. . . 0.14 0.33 0.09 6.5 · 10−12

0.01 0.09 0.05 6.5 · 10−12

∅ 6.5 · 10−12 6.5 · 10−12 1.1 · 10−21


, (3.35)

which causes significant errors in the acceleration, eq. 3.8, and stresses.
A commonly used method to resolve this issue is the use of a cut-off technique[10], where nodes are

ignored if the mass entry is smaller than a chosen tolerance, i.e.

vt+∆t
I =

{
(mv)t+∆t

I

mt
I

if mt
I > tol

0 else
(3.36)

However, the tolerance is experimentally chosen and is highly dependent on the problem, grid and
particles.

3.6.4. Example: Dynamic traction at the boundary
To illustrate the effect of nearly-empty cells, another benchmark is used. In this benchmark, a horizontal
bar of length L is fixed at one end, and a forcing function is applied on the right side of the bar[2, 30,
37]. A sine forcing function is chosen as

q(x, t) = δ(x− L)H(t)τ sin
(x
t

)
. (3.37)

This results in the following stress profile[30]

σ(x, t) =



0 if x ∈ [0, L− x)
−τ sin(ω(t+ x)) if t ∈ [L− x, L+ x)

−τ(sin(ω(t+ x)) + sin(ω(t− x))) if t ∈ [L+ x, 3L− x)
−τ sin(ω(t− x)) if t ∈ [3L− x, 3L+ x)

0 if t ∈ [3L+ x, 4L)

(3.38)

where ω = π
L . The traction boundary condition is then expressed as σt(x, t) = δ(x − L)σ(x, t). The

displacement is given[30] by

u(x, t) =



0 if x ∈ [0, L− x)
α(1 + cos(ω(t+ x)) if t ∈ [L− x, L+ x)

α(cos(ω(t+ x))− sin(ω(t− x))) if t ∈ [L+ x, 3L− x)
α(−1− cos(ω(t− x))) if t ∈ [3L− x, 3L+ x)

0 if t ∈ [3L+ x, 4L)

(3.39)

A graphical interpretation of this problem is displayed in figure 3.7.
Since the force q(x, t) applied on the right-hand side of the bar causes the bar to expand (or contract)

and the background grid remains fixed, it is not directly known where the traction boundary condition
is applied. However, from the analytic solution, we know that the length of the bar at a given time is
expressed as

L(t) = L+ u(L, t), (3.40)

and the traction boundary condition can use equation 3.16, resulting in

f tract
i (t) =

∫
Γ

ϕin · σdΓ = ϕi(L+ u(L, t))σ(L, t), (3.41)
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(a) Horizontal bar of length L with fixed left end and a forcing
function q(x, t) applied on the right-hand side.

(b) Solution of the stress at t = 0.5s, using quadratic
B-splines, 80 cells, and 4 particles per cell.

Figure 3.7: Illustration of the dynamic traction boundary condition (left) and the stress of this benchmark at t = 0.5s.

which implies that the initial background grid must be chosen sufficiently large. Therefore, we calculate
that the maximum extension of the bar occurs at t = 1s, and the background grid domain is chosen to
be [0, L+ u(L, 1)]. However, at the start of the simulation, particles only populate the domain [0, L].

Using the equation for the external force and construction of the domain, the solution can be
computing, which is displayed in figure 3.7b for quadratic B-splines. The domain is divided in ni = 80
cells, with approximately 4 particles per cell, meaning that there are np = 4 · ni particles, distributed
uniformly withing [0, L].

For this configuration, the most right cell still has particles inside it, and the impact of the nearly-
empty cell is less noticeable. However, if ni = 160 is chosen, the right cell is empty at the start of
the simulation and will eventually be filled when the bar expands. For the quadratic B-splines, this
happens between time t = 0.2356s and t = 0.2358s. The Cauchy stress σ and displacement u at these
time steps are displayed in figure 3.8. This problem is run using both the USL and MUSL algorithm,
with comparable results.

The proposed method to reduce this effect is the use of EB-splines, see section 4.5. To illustrate
the effect EB-splines have on the solution, the exact same simulation is done using B-splines. However,
at time t = 0.2356s, the calculations are executed using EB-splines. The result after this time step is
displayed in figure 3.9, which indeed resolves the empty cell problem.

Comparable results can be obtained if the problematic right particle is removed or moved slightly
left, making the right cell empty again. In that case, regular B-splines compute the solution accurately,
illustrating the effect of nearly-empty cells.

3.7. MPM extensions
Various methods have been developed to overcome these problems. A couple of the most used extensions
and improvements are listed below.

3.7.1. GIMP and CPDI
The generalized interpolation material point (GIMP)[2] and the Convected Particle Domain Interpola-
tion (CDPI)[28] are methods introduced to resolve the grid crossing error. Instead of using particles
only, each particle has a particle domain which is tracked throughout the simulation. In GIMP, there
are still gaps between particle domains resulting in inaccuracies, which CDPI resolves by connecting
the particle domains. However, this removes part of the power of MPM being that it must calculate
the mesh.

3.7.2. Dual-Domain MPM
This method, introduced in [39], introduces a modified gradient technique to resolve the grid crossing
error as well as creating a MPM variation for unstructured grids. In this method, the particle properties
are first mapped to the nodal points and afterwards interpolated creating a continuous stress field.
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(a) Stress before the empty cell problem (b) Displacement before the empty cell problem

(c) Stress after the empty cell problem (d) Displacement after the empty cell problem

Figure 3.8: Example of the impact of the nearly empty cell problem on both the stress and the displacement.
Quadratic B-splines are uses, with ni = 160.

(a) Stress after using EB-splines (b) Displacement after using EB-splines

Figure 3.9: Until t = 0.2356s, the exact same B-splines were used with similar results as in figure 3.8a and 3.8c.
However, since the next time step suffers from the empty cell problem, only this step is computed using the EB-splines

instead of B-splines, resolving the problem.
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3.7.3. Quadrature points
Particles are used for the quadrature points during the integration step. Particles can however position
arbitrarily, and are therefore not necessarily position at optimal locations, making convergence difficult
and calculations inaccurate.

The improved MPM method[32] resolves this problem by using moving least squares and a similar
method using Taylor is also introduces in [38].

3.7.4. BSMPM
Another method is the B-spline MPM, which uses B-splines as shape functions. Where the first order
B-splines have similar shapes as the linear Lagrange basis function, including the same grid crossing
error, higher order B-splines resolves this problem. The use of B-splines in MPM will be explained in
more detail.



4
Isogeometric Analysis

The use of B-splines or basis splines are not a new concept, but is widely used in approximations in
computational mathematics, especially in the context of Computer Aided Design (CAD).

In many mathematical benchmarks, the geometries of these domains are simple, such as a circle or
a rectangle in 2 dimensions, or a sphere or cube in 3 dimensions. In engineering applications however,
these geometries become more complex and are often created using Computer Aided Design (CAD).
The CAD model describes the geometry of a given problem by various methods. One of the tools used
to describe these geometries is by a linear combination of B-splines and a set of control points.

It is often required to solve a partial differential equation on this geometry. While this is sometimes
possible to solve analytically, this is generally not possible, and a numerical method is required. Finite
Element Method is a powerful numerical method for solving these Partial Differential Equations[35] on
a specified domain.

Usually, a CAD geometry is not readily available to use in FEM, but a mesh must be approxi-
mated from this geometry. This is both time consuming and generates new challenges. These mesh
approximations can lead to undesirable inaccuracies.

Isogeometric Analysis (IGA)[19] tries to overcome this mesh approximation, by adapting to tech-
niques used in CAD directly into the numerical method. One of these tools are the Non-Uniform
Rational B-Splines (NURBS), which are built from B-Splines. In the next section, a similar approach
is considered, where B-splines are used as test function in the Material Point Method.

4.1. B-splines
B-splines or basis splines are piecewise polynomials which are defined recursively by a knot vector Ξ.
Any spline of order p on a given set of knot can be expressed as a linear combination of B-splines of order
p. The B-splines are then the basis of the spline function space V , hence the name. Before defining the
B-splines, a few terms such as knot vectors, must be explained.

4.1.1. Terminology
Knot vector

Let Ω ⊆ R be the considered 1 dimensional domain. Let Ξ be a set of n + p + 1 non-decreasing
number, ξ0 ≤ ξ1 ≤ · · · ≤ ξn+p+1, ξi ∈ Ω, where n is the number of B-splines and p the polynomial
order. The numbers ξi are called the knots of the knot vector Ξ = [ξ1, ξ2, . . . , ξn+p+1] and divide the
parametric domain [ξ0, ξn+p+1] in sub-domains [ξi, ξi+1) called knot spans, which do not necessarily
exists if ξi appear multiple times.

Knot multiplicity
Unlike the Lagrange polynomials, a knot ξ can appear multiple times in the same knot vector. If a

knot appears k times, i.e., ξi = ξi+1 = · · · = ξi+k−1, then ξi has a multiplicity of k. In fact, the shape
of B-splines can be modified by changing the multiplicity of knots, see knot insertion.

Open knot vector

22
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A knot vector is called open if the first and last knot appear at least p+1 times. In this thesis, only
open knot vectors are used.

Uniform knot vector
A knot vector is called uniform if ξi+1− ξi = const, ∀ξ ∈ Ξ. An open uniform knot vector is an open

knot vector, where the interior knots are equidistant, i.e.,
ξi = ξi+1 if 0 ≤ i ≤ p− 1

ξi+1 − ξi = const if p ≤ i ≤ n
ξi = ξi+1 if n+ 1 ≤ i ≤ n+ p

4.1.2. Definition
A B-spline Bi,p(ξ) is defined recursively using the Cox-de Boor recursion formula[7]. Here, the indices
indicate the ith B-spline of polynomial degree p and let Ξ be a knot vector of size n+ p+ 1

For p = 0, we use

Bi,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 other
. (4.1)

and using this formulation, we get the basis functions for p > 0 using the Cox-de Boor recursion formula

Bi,p(ξ) =
ξ − ξi

ξi+p − ξi
Bi,p−1(ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Bi+1,p−1(ξ). (4.2)

Using this recursive formula, the parametric derivative can be derived

dBi,p

dξ (ξ) =
p

ξi+p − ξi
Bi,p−1(ξ)−

p

ξi+p+1 − ξi+1
Bi+1,p−1(ξ). (4.3)

Higher order derivatives can be derived in a similar fashion, but this does not mean that Bi,p(ξ) is
p − 1 continuously differentiable, but only p − k times, where k is the multiplicity of the knot (except
when p = 0).

Non-negative partition of unity
The basis functions have some important properties. Regardless of the polynomial order and the

knot vector Ξ, we know that B-splines satisfy the partition of unity:
n∑

i=1

Bi,p(ξ) = 1, ∀ξ (4.4)

Moreover, the basis functions Bi,p are non-negative. When B-splines are used as the shape functions
ϕI in MPM, this guaranties that mass element MIJ in eq. 3.11 using the basis function will not be
negative and satisfy the conservation of mass.

Support
The support of a function f : X → Y is defined as sub-domain where the function is non-negative,

thus
supp(f) = {x ∈ X : f(x) ̸= 0} ⊆ X. (4.5)

For each B-spline Bi,p(ξ), this support can be expressed in terms of the knots spans [ξi, ξi+1), namely

supp(Bi,p(ξ)) = [ξi, ξi+p+1) ⊆ Ω. (4.6)

Example
An example of these B-spline basis functions is given in figure 4.1. Note that the linear B-spline basis
function (p = 1) coincide with the linear Lagrange basis function, typically used in FEM.

In combination with a set of control points, these basis functions generate B-spline curves, defined
as

C(ξ) =

n∑
i=1

Bi,p(ξ)Ci, (4.7)
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(a) Ξ = [0, 0, 0.25, 0.5, 0.75, 1, 1], p = 1 (b) Ξ = [0, 0, 0.25, 0.5, 0.75, 1, 1], p = 2

Figure 4.1: B-spline basis functions with a polynomial order p = 1 and p = 2, generated by eq. 4.2

where Bi,p(ξ) are the B-spline basis functions defined on the parametric domain ξ and Ci the control
points. Generating a B-spline surface is possible by tensor products e.g.

S(ξ, η) =

n∑
i=1

m∑
j=1

Bi,p(ξ)Mj,q(ν)Ci,j . (4.8)

4.2. Refinements
Refinements of the B-splines are not performed in the traditional mesh refinements sense, but by refining
the B-spline functions. Generally, there are two techniques, in the form of h-refinements (knot insertions)
and p-refinements (order elevation).

The latter is displayed in figure 4.1, where splines of order (polynomial degree) 1 and 2 are displayed.
In general, the B-splines have p − 1 continuous derivatives in the absence of repeated knots, which is
the reason the grid-crossing error is reduced in figure 3.5b,3.6b.

Note that this also increases the support of the B-splines function, meaning a B-spline becomes less
”local”. Furthermore, this also increases the number of non-negative B-splines in the ith-knot span by
Bi−p,p, . . . , Bi,p.

Knot insertion manipulates the set of B-splines by inserting additional elements inside the knot vector
Ξ (at the correct index such that the vector remains non-decreasing). The procedure of generating B-
splines is identical, except that there are now n+ 1 B-splines. However, if these B-splines are used for
interpolation, the control points {C1, C2, . . . , Cn} must be updated. If ξ̄ ∈ [ξk, ξk+1) is inserted, the
new set of control points is created by[19]

C̄i = (1− α)Ci−1 + αiCi (4.9)

αi =


1 i ≤ k − p

ξ̄−ξi
ξi+p−ξi

k − p+ 1 ≤ i ≤ k
0 k + 1 ≤ i ≤ n+ p+ 2

. (4.10)

or in matrix notation[23]

C̄i =

n∑
j=0

Si,jCj (4.11)

Si,i−1 = 1− αi (4.12)
Si,i = αi, (4.13)

where Si,j are the matrix elements of the so-called subdivision matrix S. If multiple knots {ξ1, ξ2, . . . , ξn}
are inserted, the combined matrix S can be calculated by multiplying the subdivision matrix of each
knot;

S = SnSn−1 . . . S2S1. (4.14)
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These subdivision matrices are not directly required for the generation of the B-splines, but they are
used in the construction of truncated hierarchical B-splines (THB-splines).

4.3. Hierarchical B-splines
While the above describe knot insertion technique can be considered a ”local” refinement technique for
univariate B-splines (1 dimensional), this is not the case when using the tensor products to describe
surfaces or volumes, as illustrated in figure 4.2a for 2 dimensions. In the case of large domains with
various refinements, this can become computationally intensive. Therefore, a local refinement technique
is desirable, as illustrated in figure 4.2b.

(a) Knot insertion B-spline (not local) (b) Locally refined B-spline

Figure 4.2: Illustrating of bivariate knot-insertion (non-local) and the motivation for a desirable local refinement
technique.

Since local refinements are desirable, various techniques are developed in the context of Isogeometric
Analysis, such as T-splines[11], LR B-spline[20] and hierarchical B-splines[36]. In this thesis, we will
focus on the use of hierarchical B-splines (HB-splines) and its extensions, the truncated hierarchical
B-splines (THB-splines).

The concept of hierarchical B-splines was first introduced by Forsey[12, 13], where finer local patches
of the parent surface are added to create the refinements. This principle is used to create an adaptive
local refinement technique in IGA[36].

The HB-splines use a nested set of domains where Ω0 is the original domain or ground level and
l ∈ N the number of nested domains. Let there be l n-variate B-spline spaces {N i}i=0,1,...,l−1 which are
nested, thus

N 0 ⊂ N 1 ⊂ · · · ⊂ N l−1, (4.15)

and a sequence of l n-dimensional bounded sets {Ωi}i=0,1,...,l−1 which are nested too,

Ωl−1 ⊆ Ωl−2 ⊆ · · · ⊆ Ω0 (4.16)

and let Ωl = ∅. The boundary ∂Ωi lies on the knot line of N i or N i+1. An example of this nested
domain structure in 2 dimensions is displayed in figure 4.3a
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(a) Three levels of nested domains Ω0,Ω1,Ω2

(b) Three levels of a hierarchical domain, as a result from
the nested domains Ω0,Ω1,Ω2

Figure 4.3: Nested and hierarchical domains example

Note that the spline spaces are nested, N i ⊂ N i+1, thus the polynomial degree pk of the B-spline
in each dimension k must hold pik ≤ p

i+1
k .

The definition for the support, eq. 4.5, of a B-spline Bl
i at level l is slightly altered to

supp(Bl
i) = {x ∈ Ω0 : f(x) ̸= 0}. (4.17)

The hierarchical B-spline basis H = HN−1 is defined recursively[36, 14] by

H0 = {f ∈ N 0 : supp(f) ̸= ∅}
Hl = Hl

A ∪Hl
B for l = 1, . . . , N − 1

Hl
A = {f ∈ Hl−1 : supp(f) ̸⊆ Ωl}
Hl

B = {f ∈ N l : supp ⊆ Ωl}

This recursive process activates B-splines of level l inside a domain Ωl (Hl
B) and deactivate B-splines

of the previous level l − 1 which support lies inside Ωl (Hl
A).

An example of this process for an univariable HB-spline is shown in figure 4.4a, where Ω0 = [0, 8],
Ω1 = [5, 8] and Ξ = {0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 8} with p = 2.

(a) B-splines at level l = 0 (above) and l = 1 (middle),
where the black dots indicate the knots. The solid and

dashed splines indicate the active and deactivated
B-splines. The resulting hierarchical B-splines are shown in

the bottom figure.

(b) Activate truncated B-splines at level l = 0 (above) and
l = 1 (middle), where the black dots indicate the knots.

The dashed line indicates the spline before truncation. The
resulting hierarchical splines are shown in the bottom

figure.

Figure 4.4: Construction of hierarchical B-splines (a) and truncated hierarchical B-splines (b) using Ω0 = [0, 8],
Ω1 = [5, 8] and Ξ = {0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 8}
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4.4. THB-splines
One property of the B-splines is the positive partition of unity;Bi,p(ξ) ≥ 0

n∑
i=0

Bi,p(ξ) = 1, ∀ξ ∈ [ξ1, ξn+p+1]
.

However, this property is lost in the case of hierarchical B-splines. Since B-splines of various levels are
combined, the sum over them is not necessarily one. This is also illustrated in the bottom plot of figure
4.4a, where

n∑
i=0

Bi,p(ξ) > 1 when ξ ∈ (6, 7).

Although, it is stated in [36] that the partition of unity can be acquired by using weights (scaling),
a truncated basis of the HB-splines is introduced[14] which guaranteed this property. Furthermore,
the linear independence of (scaled) hierarchical B-splines is not guaranteed but can be acquired by
identifying and removing overlapping linear dependent HB-splines[23]. The truncated hierarchical B-
splines (THB-splines) are linear independent. Another improvement of the THB-splines is the decrease
of the overlapping B-splines of distinct levels, increasing the stability properties.

4.4.1. THB-splines construction
The construction of the truncated bases for the hierarchical B-splines makes use of the fact that lower-
level B-splines are linear combinations of the higher levels, thus

τ =
∑

f∈N l+1

cl+1
f (τ)f. (4.18)

The truncation of τ with respect to N l+1 and Ωl+1 is then defined as[14]

truncl+1τ =
∑

f∈N l+1,suppf ̸⊆Ωl+1

cl+1
f (τ)f (4.19)

and Hl
A in the hierarchical B-spline procedure is updated by only adding the truncation trunclf, f ∈ H

instead of f . The truncated version of the recursive HB-spline is then defined as

T 0 = {f ∈ N 0 : supp(f) ̸= ∅}
T l = T l

A ∪ T l
B for l = 1, . . . , N − 1

T l
A = {trunclτ : τ ∈ T l−1 ∧ supp(τ) ̸⊆ Ωl}
T l
B = {f ∈ N l : supp(f) ⊆ Ωl}

An example of this process for an univariable THB-spline is shown in figure 4.4a, where Ω0 = [0, 8],
Ω1 = [5, 8] and Ξ = {0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 8} with p = 2.

4.4.2. Computing the truncation coefficients
Since the B-spline function spaces are nested, it holds that for the knot vectors of level i hold Ξi ⊂ Ξi+1.
The knot vector Ξi+1 of level i+ 1 can be created by inserting multiple knots into knot vector Ξi. The
elements resulting subdivision matrix S can then be used in eq.4.18. Let ηD be the set of deactivated
B-splines of level l + 1, then the truncation of a B-spline Bi can be written as

truncl+1Bl
i =

∑
Bl+1

j ∈ηD

SijB
l+1
j . (4.20)

4.5. Univariate Extended B-splines
Up until this point, only B-splines with a stable basis have been considered. However, if a (part of
the) domain is trimmed, some of the B-spline supports can lie outside the trimmed domain Av ⊂ Ω.
This in turn can mean the support inside the trimmed domain can be small, significantly impacting the
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stability (as is the case in the nearly-empty cell problem). Hollig et al. [17, 16] specified the formulation
of a n-dimensional EB-spline procedure, but in this section only a univariate (1-dimensional) EB-spline
is described. In the next section, is procedure is extended to a bivariate EB-spline.

To classify the splines, the Greville abscissae of a B-spline i is used, defined by the associated knot
vector as

ξ̄i =
1

p

i+p∑
j=i

ξj , (4.21)

and using this definition, three types of B-splines can exist;

• Stable: ξ̄i ∈ Av

• Degenerated or boundary: ξ̄i ̸∈ Av and supp(Bi) ∩Av ̸= ∅
• Exterior: supp(Bi) ̸⊆ Av

The objective of extending B-splines is to establish stability inside a trimmed basis, by adding polyno-
mial segments of degenerate ones to stable B-splines and deactivating the degenerate B-splines. This
effectively removing the problematic unstable splines by adding the stable part of the degenerate spline
to neighboring stable splines. This approach was first introduced for uniform knots[17] and later gener-
alized to non-uniform knots[16].

First, we take a trimmed domain Av ⊆ Ω ∈ R and refer to the trimmed knot span t as [ξt, ξt+1)
(which has degenerate B-splines). Next, the closest stable knot span s is identified, where all non-zero
B-splines are stable. We write the extended polynomial segment Bsi of this stable knot span s for spline
i in terms of the trimmed knot span t as

Bsi (ξ) =
t∑

j=t−p

Bj,p(ξ)ei,j , ξ ∈ [ξt, ξt+1], (4.22)

and use the extension coefficients ei,j to extend the stable B-splines Bi,p with degenerated B-splines
Bj,p;

Be
i,p = Bi,p +

∑
j∈Ji

ei,jBj,p (4.23)

where Ji contains all indices of degenerated B-splines related to Be
i,p.

In some application, in particular in finite element applications with homogeneous boundary con-
ditions, the test functions have to vanish at the boundary to satisfy the boundary conditions. In the
context of EB-splines, an additional weight function w is introduced[17]. Let w be a positive function
which describes the domain and let ξi be the center of an inner grid cell of supp(Bi). Then, the Weighted
Extended B-splines (WEB-splines) are defined as

Bwe
i,p =

w

w(ξi)

Bi,p +
∑
j∈Ji

ei,jBj,p

 . (4.24)

In this thesis, this weight function is not required and henceforth use w = 1. Therefore, we will only
use the EB-splines.

To compute the extension coefficients ei,j , spline interpolation cannot be used, since the chosen
anchors or abscissae are not guaranteed the be inside the trimmed knot span t. Therefore, quasi-
interpolation is used, in this case using the de Boor-Fix functional[6],

ei,j = λj,p(Bsi ) =
1

p!

p∑
k=0

(−1)kψ(p−k)
j,p (µj)Bsi

(k)(µj), µj ∈ [ξj , ξj+p+1], (4.25)

where ψj,p are the Newton polynomials defined as

ψj,p(ξ) =

p∏
m=1

(ξ − ξj+m) =

p∑
k=0

βkξ
k (4.26)
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(a) Ξ = [0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 8], p = 1 (b) Ξ = [0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 8], p = 2

Figure 4.5: EB-spline basis functions with a polynomial order p = 1 and p = 2, where the domain in trimmed as
t = 6.3, generated by eq. 4.23. The interior and exterior anchors are displayed by black and white dots.

As explained in [23, 24], the polynomial segment Bsi can be expressed by a Taylor expansion as

Bsi (ξ) =
p∑

k=0

B
(k)
i,p

k!
(ξ − ξ̃)k =

p∑
k=0

αk(ξ − ξ̃)k (4.27)

=

p∑
k=0

α̃kξ
k with α̃k =

p∑
m=k

(
m

k

)
B

(k)
i,p

k!
(−ξ̃)m−k. (4.28)

Using these coefficients α̃k and the coefficients βk from the Newton polynomials ψj,p, the extension
coefficients can be written as

ei,j =
1

p!

p∑
k=0

(−1)k(p− k)!βp−kk!α̃k (4.29)

and a one variable example is given in figure 4.5.

4.6. Bivariate EB-splines
In the univariate case, determining which splines are stable, degenerate or exterior is straight forward,
and the corresponding extended splines is computed afterwards using the indices from equation 4.22.
Since there are at-most 2 positions where trimmings arise, the position for the closest stable knot span
is left or right of the trimming.

In a n-variate settings, the closest stable knot span is less clear. To produce a similar extension for
n-variate B-splines, the classification of B-splines is slightly altered. The next section refers to bivariate
tensor B-splines, where grid cells are rectangles, but the procedure is identical for 3-dimensional B-
splines (cubes) or higher dimensional B-splines.

Let Bi(ξ, ν) = ϕvi(ξ)ψwi(µ) be the bivariate B-spline, which is tensor product of the univariate
B-splines ϕvi(ξ) and ψwi

(µ). The associated knot vectors are indicated by Ξξ and Ξµ respectively. The
classification of the splines, we use similar terminology as in [16].

The knot vector Ξξ,Ξµ can have repeating knots. However, a grid cell is defined by two consecutive
knots in each parametric direction which are not equal, thus the set C of grid cells is defined as

Cξ×µ =

{
[ξi, ξi+1]× [µj , µj+1] :

ξi < ξi+1 where ξi, ξi+1 ∈ Ξξ,
µj < µj+1 where µj , µj+1 ∈ Ξµ

}
(4.30)

We can approximate a function on a bounded domain D ⊂ Ω0 by a linear combination of relevant
B-splines Bk, k ∈ K. However, this set of relevant B-splines can contain degenerate B-splines, which
have a small support inside D. The classification of as relevant B-spline Bk is then similar as the
univariate case, but now using the grid cells.

The grid cells ci ∈ Cξ×µ is classified as

• Interior grid cell: ci ⊂ D
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• Boundary grid cell: ci ∩D ̸= ∅ and ci ∩ (Ω\D) ̸= ∅
• Exterior grid cell: ci ∩D = ∅

and using this classification of the grid cells, a B-spline Bi is then classified by

• Stable Bi: supp(Bi) contains at least one interior grid cell
• Degenerated Bi: supp(Bi) contains no interior grid cells, but does contain boundary cells
• Exterior Bi: supp(Bi) contains only exterior grid cells

and we let J be the index set of degenerate B-splines. The indexset of interior B-splines is then I = K\J .
In the process of computing the extended B-splines using equation 4.23, a set Ji of all degenerate

B-splines associated with Bi must be determined.
For a degenerate B-spline Bj , j ∈ J , the closest interior grid cell Qj to the supp(Bj) must be

determined. In Hollig[16] this is done by the Housdorff-metric. Note that in the case of rectangular
grid cells and supports, this is identical to the Euclidean metric of its centers.

The related inner splines to Bj are then

Ij = {i ∈ I : Qj ⊂ supp(Bi)} (4.31)

and the ”reversed” set Ji is then defined similar to equation 4.22 as

Ji = {j ∈ J : i ∈ Ij} (4.32)

An example of this process is displayed in figure 4.6.
At last, the bivariate extension coefficients need to be determined. Similar as the bivariate B-splines,

the extension coefficients are a tensor product of their univariate coefficients.
Let the tensor product B-spline be written as Bi(ξ, µ) = ϕvi(ξ)ψwi

(µ) and Bj(ξ, µ) = ϕvj (ξ)ϕwj
(µ),

then the extension coefficients can be written as

ei,j = evi,vj
ewi,wj

(4.33)

4.7. Identifying boundary cells
In the previous section, a definition for the interior and boundary grid cells is given. However, in MPM
simulations, the domain D is not clearly defined. Instead, the same boundary particles are used as they
were introduced in section 3.3 and the weight function w is set to w = 1.

Let {pinti } be the set of interior particles and {pbdi } the set of boundary particles and {pi} =
{pinti } ∩ {pbdi } with np = |{pi}| The grid cells ci ∈ Cξ×µ is classified as

• Interior grid cell: ci ∩ {pinti } ̸= ∅ and ci ∩ {pbdi } = ∅
• Boundary grid cell: ci ∩ {pbdi } ̸= ∅
• Exterior grid cell: ci ∩ {pi} = ∅

Using the same example as the previous section, the boundary grid cells are identified using boundary
particles in figure 4.7. A large enough number of boundary particles must be chosen to get an accurate
representation of the domain D.

4.8. Extending THB-splines
Although EB-splines is a powerful method to create a stable basis of a trimmed domain, it is possible
that the closest stable knot span to the trimmed knot span is far away. This is especially the case if a
coarse knot vector and/or B-splines with a high polynomial order are chosen. This distance between the
center of the stable knot span and the trimmed edge is indicated by the extrapolation length de, which
is displayed in figure 4.8a and 4.8c. If a higher polynomial order or a coarser knot vector is chosen, the
extrapolation length de can become larger, depending on the trimming.

On the other hand, if a (truncated) hierarchical refinement technique is used near the edge of a
trimmed surface, more stability issues can arise as the support is smaller. However, these hierarchical
B-spline can reduce the extrapolation length, as displayed in figure 4.8b and 4.8d.
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Figure 4.6: Example of the classification process for Ω = [0, 2]× [0, 2] with D a circle with center (1, 1) and r = 0.5.
First, the interior (green), boundary (blue) and exterior (red) grid cells are identified. Next, the stable (black dot),

degenerate (white dot) and exterior (green dot) are identified. An example of a sup(Bj) is indicated by the gray square.
For this spline Bj , the closest interior grid cell Qj is indicated by the black square. At last, the index set of related inner

splines Ij of Qj is then determined using equation 4.31 and is displayed by the yellow dots.



4.8. Extending THB-splines 32

Figure 4.7: Example of the grid cell identification process for Ω = [0, 2]× [0, 2] with D a circle with center (1, 1) and
r = 0.5 using boundary particles. First, the interior (green), boundary (blue) and exterior (red) grid cells are identified.

A grid cell is identified as boundary cell if it contains a boundary particle. If a grid cell only contains non-boundary
particles, then it’s an interior cell. The remaining cells must be exterior grid cells.
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(a) p = 1 (b) p = 1

(c) p = 2 (d) p = 2

(e) p = 4 (f) p = 4

Figure 4.8: Illustration of the extrapolation lengths using different polynomial order B-splines, where an open uniform
knot vector is used. The trimmed domain of Av = [0, t] is used, and the extrapolation length de to the nearest stable
knot span is indicated. The top figures only display unrefined B-splines, with a knot span of length 1. On the bottom,

truncated hierarchical B-splines are displayed using two levels, with a knot span of length 1 and 1
2

. The black and white
dots indicate the Greville abscissae.
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A natural result is the combination of both (truncated) hierarchical B-splines and the EB-splines,
which is proposed in [23]. Here, a criterion is used to combine both techniques, namely

de < cehξ, (4.34)

where de is the extrapolation length and hξ the average knot span size of the non-refined grid. ce is a
user-defined parameter, which this paper proposed to be ce = p

2 .
During the process of finding the appropriate level of refinement such that criterion 4.34 is satisfied,

the highest refinement level lmax is determined. The extended B-spline is only applied to this finest
refinement level lmax, and the affected B-splines are activated directly. After this, lower-level B-splines
are activated or deactivated according to the previously activated higher level B-splines.

In the case of truncated hierarchical B-splines, the partition of unity is already satisfied by using
the subdivision matrices and the splines of the finest refinement level are unaffected, meaning that
the EB-splines are applicable directly. However, in the case of scaled hierarchical B-spline, EB-splines
must employed with more caution. If specific hierarchical B-splines are scaled, we have to make sure
that these scaled B-splines are not used in the EB-procedure or that the scaling is incorporated in the
extension.

Since both techniques retain the properties of B-splines, they can directly be used together[14]. In
the case of THB-splines, the generation of extended B-splines must be altered slightly. Equation 4.23
can then be written as

τ l,ei,p = τ li,p +
∑
j∈Ji

ei,jτ
l
j,p (4.35)

and the truncation at a level l + 1 can be obtained using the truncation equation 4.20 with the
subdivision matrix Sl,l+1 from l to l + 1

truncl+1τ l,ei,p =
∑

Bl+1
k ∈ηD

Sl,l+1
ik Bl+1

k +
∑
j∈Ji

ei,j

 ∑
Bl+1

k ∈ηD

Sl,l+1
jk Bl+1

k

 (4.36)



5
Results

5.1. Error analysis
In this chapter, various benchmarks are used to verify the effectiveness of EB- and THB-spline in the
context of MPM. To do this, an error estimate must be defined to compare exact values to the approx-
imations. In MPM, the physical quantities such as stress and particle displacement are approximated
using B-spline basis function, while the exact values of these quantities can be expressed explicitly in
these benchmarks. To compare the error between them, the L2-norm is used.

For two real-values functions f, g defined on Ω, the difference in the L2-norm using the inner product
is defined as

||f − g||2 =
√
⟨f − g, f − g⟩ =

√∫
Ω

(f − g)2dΩ. (5.1)

In MPM, the particles are used as integration points and the physical quantities are only known at
these positions, thus the expression becomes

||fexact − fmpm||2 =

√∫
Ω

(fexact − fmpm)2dΩ =

√√√√ np∑
p=1

Vp(fexact(Xp)− fp)2. (5.2)

Note that this error norm is similar to the RMS-error if all particles have identical volumes with a
total volume of 1.

5.2. Quasi 2D dynamic traction at the boundary
In this section, the performance of extended B-splines and B-splines in MPM are compared. For this,
the dynamic traction at the boundary is used, as described in section 3.6.4. However, since this thesis
will focus primarily on domains in the 2-dimensional setting, this problem is extended.

Let D = [0, L] × [0,H] be the material domain, where the same traction force is applied at the
right-hand side, thus at x = L(t). This force is applied homogeneous along the edge. The traction force
has to be modified slightly,

Ftract
i =

∮
Γ

ϕin · σdΓ

=

∫ H

0

ϕi,p(L(t))ϕj(y)

[
σ(L(t), t)

0

]
dy

=

[
ϕi,p(L(t))σ(L(t), t)

0

] ∫ H

0

ϕi,p(y)dy

=

[
ϕi,p(L(t))σ(L(t), t)

0

]
ξi+p+1 − ξi
p+ 1

n∑
j=i

ϕj,p+1(ξ).

35
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In the last step, an expression for the integration of a B-spline is used, which is derived in appendix C.
To avoid the nearly-empty cell problem as much as possible, a background grid is chosen such that no

empty cells exist. For this benchmark, the maximum extension will be at t = 1s, and u(L, t) ≈ 0.0064m.
Therefore, an appropriate background grid is chosen to be Ω = [0, 1.15] × [0, 1]. To get an accurate
representation of the influence of EB-splines compared to B-splines, the difference between the two
methods is minimized. For this benchmark, the extension is only employed in the x-direction, i.e.,

2-dimensional B-splines: ϕij(x, y) = ϕi(x)ϕj(y) (5.3)
Quasi 2-dimensional EB-splines: ϕeij(x, y) = ϕei (x)ϕj(y) (5.4)

For the Dirichlet boundary condition on the left-hand side, x = 0, the penalty-based approach is used.
While the boundary coincides with the knotline for regular B-splines, this is less clear for EB-splines
where degenerate B-splines are deactivated while stable splines are extended. Since the performance of
B-splines and EB-splines is compared, the same boundary imposing method is used.

To compare the difference in performance, the exact solutions for the stress (eq. 3.38) and displace-
ment (eq. 3.39) are used. Therefore, they will be no interaction in the y-direction, thus let Poisson
ration ν = 0. The other quantities are

L = 1m

H = 0.25m

ν = 0

ρ = 100kg ·m−3

E = 100N ·m−2

∆t = 10−4s

5.2.1. Convergence
Although higher polynomial order B-splines results attempts to increase the order of the quadrature
error, if the L2-error is calculated using polynomial order p = 1, 2, 3, this is not the case, as displayed in
figure 5.1. Initially the error reduces linearly and quadratically for p = 1, 2 respectively, and one might
expect the error of p = 3 with a similar rate. This is not the case, as the error reduces quadratically as
well.

This follows from the fact that the material points are used as integration points, resulting in type
of midpoint rule[30]. Although the midpoint rule itself is third-order, the stress calculations are still
second order, resulting in the same order of error for p = 2 and p = 3.

Note that the error for the linear B-splines eventually increases because of the grid-crossing error.

Figure 5.1: L2-error of the 1D dynamic traction boundary condition at time t = 0.5s for 1D.

In the 2D-benchmark, a similar convergence rate can be observed, both in the B-spline and EB-spline
MPM,
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(a) B-splines (b) EB-splines

Figure 5.2: L2-error of the 2-dimensional dynamic traction benchmark when using B-splines and EB-splines in MPM
and 42 particles per cell.

(a) B-splines (b) EB-splines

Figure 5.3: L2-error of the 2-dimensional dynamic traction benchmark when using B-splines and EB-splines in MPM
and 82 particles per cell.

(a) B-splines (b) EB-splines

Figure 5.4: L2-error of the 2-dimensional dynamic traction benchmark when using B-splines and EB-splines in MPM
and 162 particles per cell.

5.2.2. Nearly-empty cell problem
In the previous section, it was shown that the BS-MPM and the extension have a similar performance,
where the background grid was chosen to be [0, 1.15] × [0, 1]. One of the characteristics of MPM is
that the background grid is independent of the material considered (if the material is contained in the
background grid). Therefore, by choosing a different grid, a similar approximation for the displacement
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and stress would be expected. Let the new background grid be

Ω = [−0.25, 1.25]× [−0.25, 1.25], h = 0.09375m (5.5)

and keep all other parameters identical to the previous section. The L2-error of this problem over time
is displayed in figure 5.5

(a) L2-error of the displacement (b) L2-error of σxx

Figure 5.5: L2-error of the 2-dimensional dynamic traction benchmark when using B-splines and EB-splines in MPM
and 42 particles per cell.

5.2.3. Discussion
The dynamic traction at the boundary benchmark is performed in both the 1- and 2-dimensional
setting. The 1-dimensional benchmark is a well-known benchmark in MPM and the L2-error has a
similar convergence rate as the literature [30].

In the 2-dimensional setting, the same benchmark is performed with a Poisson number ν = 0. Since
there is no interaction between the strain in x and y direction, the displacement in the x-direction
should be identical to the 1-dimensional case. The following L2-error convergence is of the same order
as in the 1-dimensional case, for both B-spline and EB-splines.

Furthermore, the magnitude is the error for B-splines and EB-splines is comparable in figures 5.2,
5.3 and 5.4. In the procedure of extending the B-splines, some splines are deactivated, resulting in less
degrees of freedom. The resulting error is therefore slightly higher for a large mesh size (meaning a less
degrees of freedom). For a smaller mesh size, this effect becomes less noticeable.

These results are obtained by choosing an ideal background grid for the problem at hand. This is
not always the case, as the background grid is independent of the material in MPM. This can result in
nearly-empty cells. An example of this phenomenon can be seen in figure 5.5 using B-splines where a
less-ideal background grid is chosen. This results in a nearly-empty cell around 4s, and the L2-error for
both stress and displacements increases drastically.

Since EB-splines extend stable B-splines to incorporate the degenerate (small support) B-splines,
each spline in the computation has a large support. This results in no more nearly empty cells, and
thus a more stable MPM method.
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5.3. Semi-clamped plate benchmark
The dynamic traction at the boundary benchmark from the previous section did show that the B-spline
and EB-spline based MPM perform similar when the background grid is chosen to avoid nearly-empty
cells. However, since the benchmark is a quasi-2D benchmark, the extension to EB-splines is not fully
explored.

Therefore, another benchmark is constructed using the Method of Manufacturing solutions (MMS).
This is a well-known method in numerical mathematics where the exact solution is assumed, and the
applied forces, initial conditions and boundary conditions are derived from the exact solution. This is
because many ”simple” 2D-problems are already too complex to easily obtain an explicit solution.

In this benchmark, a plane is considered with Ω0 = [0, L] × [0,H]. The assumed displacement in
this benchmark is

u(x, y, t) =
[
ue(1− e−ωxt) · x ·

(
y
H

)2
ue(1− e−ωyt) · y ·

(
x
L

)2
]
. (5.6)

For simplicity, the problem is assumed to be symmetric along its diagonal and let L = H and ω = ωx =
ωy, thus the displacement becomes

u(x, y, t) = ue
L2

(1− e−ωt)

[
x · y2
x2 · y

]
. (5.7)

Since this displacement solution must satisfy the conservation of linear momentum in equation 2.8,
a body force is derived in appendix B as

b = − ue
L2
ω2e−ωt

[
xy2

x2y

]
+
ue
L

2λ+ 4µ

ρ0
(1− e−ωt)

[
x
y

]
. (5.8)

While all constitutive relation for the stress σ can be used in the MMS and the resulting body force
should always match the displacement solution. However, for a somewhat physically representative
benchmark, the approximation for small deformations is used for simplicity, eq. 2.11. The initial
conditions for the displacement, velocity and stress can directly be obtained from the exact solutions
at t = 0, see appendix equations B.6-B.8.

For the boundary conditions, the boundary is split into 4 parts consistent with the 4 edges of the
initial rectangular domain. For the bottom (y = 0) and left (x = 0) boundary, a Dirichlet boundary
condition is imposed, where the exact value can be obtained from the exact solution equation 5.6. To
impose this condition in the MPM computation, the penalty method is used.

On the top (y = H) and right (x = L) boundary, a traction boundary condition is imposed. The
exact traction can then be obtained from the exact stress and the normal vector, which are derived in
appendix B. The resulting boundary force vector becomes

Fboundary
i =

∫
Fleft∩Fbottom

ϕiϵ
−1(uh − u)dΓ +

∫
Ftop∩Fright

ϕin · σdΓ (5.9)

The parameters for this benchmark are set to

E = 1000N ·m−2

ρ = 1000kg ·m−3

ν = 0.3

ue = 0.01

L = H = 1m

∆t = 10−3s

ω =

√
E
ρ

L

Using these parameters, the results of this benchmark are displayed in figure 5.6. Note that the
magnitudes of the displacement and stress are symmetric along the diagonal, but the individual com-
ponents are not, but are mirrored along the diagonal. For example, consider the exact displacement in
equation 5.6 at a point (x̂, ŷ). We find that the ux(x̂, ŷ, t) = uy(ŷ, x̂, t). A similar observation can be
made for the stress components, i.e., σxx(x̂, ŷ, t) = σyy(ŷ, x̂, t).
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(a) ux (b) σxx

Figure 5.6: Visualization of the x-displacement and Cauchy stress component σxx in the plane when t → ∞.

5.3.1. Error analysis
The above-described problem is solved using 42 particles per cell using 3 different background grids.
The background grid consists of square cells, with a size h = 0.1m, 0.05m, 0, 025m. The L2-error of
the solution over time is displayed in figure 5.7 using both B-splines and EB-spline based MPM. To
obtain a better understanding of the behavior of the two methods, the σxx solution at the end of the
simulation is displayed in figure 5.8.

5.3.2. Discussion
In this section, the semi-clamped plated benchmark is employed. The problem is computed using both
B-spline and EB-spline MPM, which perform comparable. However, since the top and right edge of the
material plane move outwards, the error near the edge becomes more prominent, especially when a low
number of particles is considered, which can be seen in figure 5.7, where the error in the stress is lower
when using EB-spline MPM compared to B-spline MPM. For a larger number of particles, this effect
becomes less noticeable.

An explanation for this can be seen in figure 5.8 where the error stress oscillations near the edge
are displayed. This effect causes non-physical waves to propagate into the material, causing additional
errors. This effect is smaller for EB-splines compared to B-spline MPM, which explains the slightly
lower error in the displacement and stress.

In this benchmark, the THB-spline based MPM can be used to solve the problem. However, local
refinement techniques would not significantly impact the quality of the solution. As displayed in figure
5.6, the problem has no local stress concentrations. Refining the background grid near the top-right
corner would reduce the error in that area. However, the other regions have an error of a similar order,
which will dominate compared to the refined region. Therefore, the benchmark is slightly altered in the
next section to investigate the performance of THB-splines.
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(a) L2-error of the x-displacement ux over time using
B-splines (b) L2-error of the x-displacement over time using EB-splines

(c) L2-error of the Cauchy stress σxx over time using B-splines
(d) L2-error of the Cauchy stress σxx over time using

EB-splines

Figure 5.7: L2-error of the x-displacement ux and the Cauchy stress σxx over time using 22particles per cell. Note, the
vertical axis in the left and right figures use a different scale.

5.4. Semi-clamped plate benchmark with localized stress concen-
tration

In the previous section, the semi-clamped plate benchmark was introduced, with a quadratic displace-
ment and stress in the domain [0, L]× [0,H]. Therefore, the stress concentrations are not particularly
local and the use of a local refinement technique such as THB-splines is not effective. The benchmark
is slightly altered, to create a more local stress concentration;

u(x, y, t) = ue
L2

(1− e−ωt)

[
x5 · y10
x10 · y5

]
. (5.10)
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(a) B-spline MPM (b) EB-spline MPM

Figure 5.8: Solution for σxx near the edge of the material domain at time t = 3.0s using h = 0.1m.

For a more realistic example, for the constitutive model, the Neo-Hookean model is used

σ = λJ−1 log JI + J−1µ(FFT − I), (5.11)

and the same MMS approach is used for the derivation of the body force and the initial and boundary
conditions as in the previous benchmark, see appendix B. The long-time solution for this problem is
computed and displayed in figure 5.9.

Here, we see again that while the magnitude of the solution is symmetric along the diagonal, the
individual components are not. We find for a point (x̂, ŷ) for the displacement ux(x̂, ŷ, t) = uy ŷ, x̂, t. A
similar observation can be made for the stress components.

(a) ux (b) σxx

Figure 5.9: Magnitude of the displacement and σxx at a time t → ∞.

5.4.1. THB-splines
To quantify the behavior of THB-splines in combination with EB-splines, the semi-clamped plate bench-
mark is used. The background grid for the MPM computations is refined in the top-right corner using
2 refinement levels;

Ω0 = [0, L+ ue]× [0,H + ue] (5.12)

Ω1 =

[
1

2
L,L+ ue

]
×
[
1

2
H,H + ue

]
(5.13)

Ω1 =

[
4

5
L,L+ ue

]
×
[
4

5
H,H + ue

]
, (5.14)

which can be visualized in figure 4.3b.
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ndof
B-spline

ndof
EB-spline

np
2ppc

np
4ppc

np
8ppc

h=0.1m 144 100 400 1600 6400
h=0.05m 484 400 1600 6400 25600
h=0.025m 1764 1600 6400 25600 102400
THB, l=1 219 165 700 2800 12864
THB, l=2 267 205 892 3568 15280

Table 5.1: Active degrees of freedom (ndof) and number of particles (np) for each simulation, displayed in figures 5.11,
5.12 and 5.13. Degenerate B-splines are deactivated in the EB-spline process, resulting in less degrees of freedom. The

first 3 rows display the simulations without truncated hierarchical B-splines, and the last to rows the use of
(E)THB-splines with 1 and 2 refinement levels.

When refining the background grid, the number of particles must be considered. In the previous
simulation, a distribution is used where the number of particles per grid cell is used as a representation.
However, if this same strategy is used in THB-splines, the refinement level must be considered. If the
ground level Ω0 is used for the reference cell size, with for example 8 particles per grid cell, this would
mean that for grid cells of Ω2, there is only 1 particle per cell which can cause stability issues, see figure
5.10a. In this thesis, this distribution is referred to as the uniform particle distribution on Ω0. Note
that for a quadratic bivariate B-spline without repeating knots, the support consists of 3× 3 grid cells.

(a) Uniform particle distribution in a hierarchical grid based
on Ω0

(b) Uniform particle distribution in a hierarchical grid based
on each subdomain Ωl

Figure 5.10: Uniform particle distribution in a hierarchical grid based on domains Ω0 − Ω2 of equation 5.12-5.14

On the other hand, the particles can be distributed with a similar strategy of uniform particle
distribution based on the highest-level domain at a given location. This means that each grid cell of a
given domain Ωl has the same number of particles, uniformly distributed, but the initial particles are
not uniformly distributed in Ω0, see figure 5.10b. In this thesis, this distribution will be referred to as
the nonuniform particle distribution on Ω0.

5.4.2. Error analysis
To compare the two approaches, the benchmark is computed for 3000 time steps using ∆t = 10−3s
using square grid cells, i.e., hx = hy and the index is omitted. For the cell size of Ω0, h0 = 0.1m is
used. Therefore, the sizes on the refined levels are h1 = 0.05m and h2 = 0.025m. In figure 5.7, the
L2-error of the displacement and σxx are displayed when using regular B-splines on the finest grid size
h2 and THB-splines using only one refinement level Ω1 and using both refinement levels Ω1 and Ω2.
The results for 42 and 82 particles per cells are displayed in figures 5.12 and 5.13.

5.4.3. Discussion
In this section, a 2D-benchmark with a more local stress concentration is employed. The process of
solving the solution comparable to the benchmark in the previous section, but in this benchmark, the
THB-spline MPM is included in the computations. The location of the stress concentration is known
inside the domain (the top-right corner), and this is refined on 2 levels using the THB-splines. The
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(a) L2-error of the displacement over time using B-splines (b) L2-error of the displacement over time using EB-splines

(c) L2-error of σxx over time using B-splines (d) L2-error of σxx over time using EB-splines

Figure 5.11: L2-error of the displacement and σxx over time using 22particles per cell. Note, the vertical axis in the
left and right figures use a different scale.

L2-error in the displacement ux and Cauchy stress σxx is displayed in figures 5.11,5.12 and 5.13. Note
that the y-axis for B-spline and EB-spline are different.

EB-splines
For 22, it can be observed that while the error in the displacement is of a comparable magnitude in
both B-spline and EB-spline based MPM, this is not the case for the Cauchy stress. Here, the EB-spline
based MPM has a factor 2 lower stress error. Using 42 particles per cell, this is not the case anymore
and the L2-error are similar for h = 0.1m. For smaller meshes, EB-spline perform better than B-splines.
For the 82 particles per cell, it can be observed that error in the stress in B-spline MPM is lower than
the EB-spline MPM in the case for h = 0.1m. For smaller meshes, both methods are of a similar
magnitude.

In MPM, the quality of the solution is dependent on both the number of particles and the degrees
of freedom of the background grid. By reducing the mesh size h, the degrees of freedom increase
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(a) L2-error of the displacement over time using B-splines (b) L2-error of the displacement over time using EB-splines

(c) L2-error of σxx over time using B-splines (d) L2-error of σxx over time using EB-splines

Figure 5.12: L2-error of the displacement and σxx over time using 42particles per cell.

and the error is reduced. By increasing the number of particles, the projection of the scalar and vector
quantities is more accurate resulting in a reduced error. In table 5.1, the degrees of freedom and number
of particles are displayed.

In the process of stabilizing B-splines by deactivating degenerate splines, the degrees of freedom are
reduced. This is relatively more the case for smaller mesh sizes. In figure 5.11, only 22 particles per
cell are used in the computations. This small number of particles has an impact of on the accuracy
and the effect of using EB-splines to reduce the error near the boundary is noticeable. This effect
is observed in the previous benchmark as well, see figure 5.8. However, as the number of particles
increases, the physical quantities are interpolated more accurate, and the effect of the low degrees of
freedom dominates. The difference in degrees of freedom between B-spline and EB-splines for h = 0.1m
is significant (144 vs 100), and reduces for h = 0.05m (444 vs 400) and h = 0.025m (1764 vs 1600),
resulting in a less noticeable effect for smaller grid sizes.
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(a) L2-error of the displacement over time using B-splines (b) L2-error of the displacement over time using EB-splines

(c) L2-error of σxx over time using B-splines (d) L2-error of σxx over time using EB-splines

Figure 5.13: L2-error of the displacement and σxx over time using 82particles per cell.

THB-splines
However, in real application, it is desired to reduce the number of particles as much as possible, since
large amount of particles increases the memory and computational cost. This is also the case when a
large number of degrees of freedoms are desired. Therefore, THB-splines are also used to refine the
top-right corner of the problem.

It can be observed that in all figures, the L2-error of THB-spline MPM with 1 refinement level is
comparable to B-spline MPM with h = 0.05m. With only 1 refinement, the top-right corner of the
THB-grid coincides with the B-spline grid of h = 0.05m. The same holds for the particles in this part
of the domain. For THB-spline MPM with 2 refinement levels, this observation can be made when
comparing to its B-spline counterpart with h = 0.025m.

This does indicate that the solution does benefit from local refinement in this part of the domain.
Both THB-splines and B-splines perform similar when the same configuration in the top-right corner
is used. THB-splines are more complex to implement and does increase the computational time at a
degree of freedom. However, courser grid sizes can be used in other parts of the domain resulting in
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much less degrees of freedom needed to obtain the solution. This can be observed in table 5.1.

5.4.4. Stress oscillations
In each result, there are stress oscillations present in the L2-error. This is a nonphysical behavior that
must be explained in the following section.

Unlike the oscillations from figure 3.6, these oscillations are not a result of the grid crossing error.
The grid-crossing error is induced by the discontinuous jumps of linear basis functions and quadratic
basis functions reduces this effect. Smaller grid-sizes result in more particles crossing the grid boundaries,
which should increase the number of jumps. However, the opposite is observed as higher degrees of
freedom increases the oscillations frequency and reducing the amplitude.

The stress oscillations are a result of inaccurate approximations of the boundary conditions, which
affects the top-right corner the most. The effect of the inaccuracies at the boundary particles is displayed
in figure 5.14, where the L2-error in the stress is computed using 5.1 using subdomains of Ω0.

Figure 5.14: L2-error over time in different subdomains of Ω0, using equation 5.1 using B-splines with h = 0.1. It can
be observed that stress inaccuracies are dominated by the particles near the boundary. Stress oscillations over time are

mainly present in the boundary particles.

To increase the quality of the solution near the edge, one might suggest increasing the β = ϵ−1

parameter of the Dirichlet boundary condition. However, as is displayed in figure 5.15a, varying this
value has no effect on the oscillations. A similar observation can be made by reducing the time step ∆t
in figure 5.15b.
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(a) L2-error over time using different values β = ϵ−1 to
approximate the Dirichlet boundary conditions.

(b) L2-error over time using different time steps ∆t.

Figure 5.15: L2-error over time using B-splines, 4 particles per cell and h = 0.1m. Changing the value of β and the
time step ∆t has no significant effect on the stress oscillations.

To increase the accuracy of the solution at the boundary, the number of particles can increase and
the degrees of freedom. In figures 5.11, 5.12 and 5.13, it is observed that both the number of particles
and degrees of freedom reduce the overall error. By increasing the number of particles, the magnitude
of the error reduces, and therefore the amplitude of the oscillations. However, the relative amplitude
compared to the error magnitude is unaffected.

On the other hand, increasing the degrees of freedom reduces the amplitude of the oscillations by
increasing the frequency. Therefore, the oscillations are less observable for h = 0.05m and h = 0.025m.
Furthermore, this explains the difference between the oscillations in B-splines and EB-splines, as EB-
splines has fewer degrees of freedom, see table 5.1.

In short, this effect is a result of inaccurate boundary conditions, and can be reduces by increasing the
degrees of freedom. This behavior is not observed in other benchmarks, where other error contributions
dominate. In the semi-clamped plate benchmark, this effect is amplified as the stress gradient is largest
at the top-right corner boundary.



6
Conclusion

The Material Point Method is a numerical technique used to simulate solid, liquids and other continuum
material. It uses material points or particles, which can move freely in space and are independent of the
computational background grid. It is therefore a well-known method when simulating large deformations
and multi-phase interactions.

This independence between the particles and background grid causes instabilities such as grid-
crossing and the nearly-empty cells. The grid-crossing error is a direct result of the linear interpolation
basis function and a C1 or smoother basis function can eliminate this problem. A possible solution for
this problem originates from Isogeometric analysis, where quadratic B-spline basis functions are used
to overcome this problem. However, these basis functions do not resolve the nearly-empty cell problem,
and the primary focus of this thesis is to increase the stability of B-spline MPM by eliminating this
problem.

Apart from the fact that the background grid must be chosen sufficiently large to contain the
material, it is independent of the material and particles. The particles can move freely during the
simulation, making it possible for them to enter or leave grid cells and potentially leaving cell empty or
nearly-empty. This leaves some B-splines with a very small support, causing the approximations to be
unstable. This phenomenon also results in small mass entries at these degrees of freedom, causing the
mass matrix to be ill-conditioned.

6.1. EB-splines
This thesis explores the use of Extended B-splines (EB-splines) to resolve the nearly-empty cell problem,
by extending the support of stable B-splines to incorporate the small support of the unstable B-splines
and deactivating them. This approach guarantees that only stable B-splines are active in MPM sim-
ulations, which eliminates the nearly-empty cell problem. A 1- and 2-dimensional benchmark with a
dynamic traction boundary condition is used to verify this behavior.

Two conclusions can be drawn from this benchmark. At first, an ideal background grid is chosen
such that no nearly-empty cell problem arises. The two-spline approximation perform similar in the
context of MPM, with a similar magnitude and convergence rate in the L2-error. There are slight
variations in the error, which can be explained by the slight difference in active degrees of freedom and
the particles being non-ideal integration point. This is the behavior that is desired of these methods
when no nearly-empty cell problems are present.

Secondly, a background grid is chosen were nearly-empty cell problem are present. This causes
significant errors in the stress en displacement computations when using B-splines. Because of these
errors, the particles move with nonphysical speeds through the domain that, after a couple of time
steps, the boundary particles leave the expected domain and causes the program to stop prematurely.
This problem is not present when using EB-splines, where the behavior is similar to simulations where
other background grids are used. This makes the EB-spline MPM method a more reliable and stable
method.

However, there is still a drawback to the use of EB-splines opposed to B-splines. B-spline functions
form a partition of unity, which guarantees a positive mass matrix. By using EB-splines, this is not the
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case. The diagonal mass element will always be positive, but the off-diagonal entries can be negative
when the mass is concentrated near the edge. While the mass matrix will not be singular, it is possible
in theory that the lumped mass matrix often used in MPM applications becomes singular. Further
research has to be done to determine if this can indeed be a problem is some cases and if it can be
resolved.

6.2. THB-splines
The problem of nearly-empty cells can be eliminated by using extended B-splines and this opens the
door to locally refine the background grid near the edge. Normally, this would increase the likeliness of
nearly-empty cell, since the cells are smaller but not by using the extended B-splines. Therefore, this
thesis explores the use of Truncated Hierarchical B-splines (THB-splines) to locally refine the MPM
background grid.

The Method of Manufacturing Solutions is used to create a new artificial benchmark, the semi-
clamped plate benchmark with localized stress concentrations, where local refinement can be used near
the edge. Using the technique, the exact solution is explicitly known, and an accurate error study can
be performed.

This benchmark is solved using both regular B-splines and THB-splines, with and without the
extension. To accurately compare the various methods, the number of particles and the cell size h on
the finest level (near the edge) are compared. Indeed, the L2-error in these simulations are of the same
order, with the ETHB-spline MPM performing slightly better compared to THB-splines MPM.

The main difference is in the degrees of freedom and the number of particles. While the L2-error
in these runs are similar, the degrees of freedom by using two refinement THB-splines significantly
lower compared to the regular B-splines (267 and 1764 respectively). Within the THB-spline approach,
the number of particles can be chosen to be uniformly distributed or altered slightly according to the
refinement levels. This results in a similar approximation result while simultaneously using significantly
less particles, see table 5.1.

Therefore, the use of THB-splines is a very powerful extension to the existing B-spline Material
Point Method when stress concentrations are present in the problem. By refining the interested domain
locally, the degrees of freedom are significantly lower than by refining the B-spline background grid
globally. By distributing the particles efficiently over the refinement levels, the number of particles can
be reduced as well. Both observations are desirable effect from a computational point since less particles
and less degrees of freedom reduce the memory cost and the computational time.

In this thesis, the refinement levels used in the benchmark are chosen statically since the exact
solution is known and therefore the locations of the stress concentrations. In real problem, this is
not the case and refinement levels have to be chosen dynamically or adaptively when concentrations
disappear. For an advanced and accurate approximation, this is desirable. Further research has to be
done to investigate the performance of these techniques in a MPM setting.
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A
Hyperelastic material

To completely specify the behavior of a material, additional equations are required. These equations
are called constitutive equations. Modeling a specific or specific type of material requires the use of a
constitutive model [29]. Generally, these equations encompass all properties of the material, such as
thermodynamics, but in this thesis, we are only interested in the stress response of a material.

For simplicity, only simple elastic materials or Cauchy elastic materials are considered. In these
materials, the current state of the stress solely depends on its deformation with respect to an arbitrary
reference configuration[27], and we can write

σ = G(F). (A.1)

However, this does not necessarily mean that the work done by the stress is independent of the defor-
mation path and therefore cannot express the work as a function of the deformation.

Hyperelastic or Green elastic materials are a special case of these materials where the work can be
expressed by a scalar function dependent on the deformation. This function is called the strain-energy
density function W (F).

A.1. Strain-energy density function
A constitutive relation can be derived from the strain-energy density function. This relationship should
describe the material and should not be dependent of the coordinate system and rigid body motions.
Therefore, constructing the constitutive relation by de deformation F directly is not ideal.

Instead, the right Cauchy-Green deformation tensor was introduced as

C = FT F, (A.2)

which makes C a rotation independent tensor. This is desirable as the pure rotation of a material is a
rigid body motion and should not contribute to the material strain.

For isotropic hyperelastic materials, the strain-energy density function can then be expressed in
terms of principle invariants of C[27]. Since this is a rank 2 tensor, the invariants can be expressed as

I1 = tr(C) = λ1 + λ2 + λ3

I2 =
1

2

(
(tr(C)2 − tr

(
C2

))
= λ1λ2 + λ1λ3 + λ2λ3

I3 = detC = λ1λ2λ3

Using these invariants, we write the strain-energy density function[18] as

W (I1, I2, I3) = W̃ (I1, I2, I3) +Wvol(J) (A.3)

where J = detF =
√
I3. The second term is a pure volume term and is a direct result of the pressure-

volume response. For incompressible materials, we have J = 1 and Wvol(J) = 0.

54



A.2. Neo-Hookean constitutive equation 55

For isotropic compressible hyperelastic materials, various models are proposed for the density func-
tion and verified to experimental data. In this thesis, we use the Neo-Hookean material model, which
is an extension of the isotropic linear law for large deformations[5]. For this type of materials, the
strain-energy density functions can be approximated by

W̃ (I1, I2, I3) =
µ

2
(I1 − 3− 2 ln J) (A.4)

Wvol(J) =
λ

2
(ln J)2 (A.5)

A.2. Neo-Hookean constitutive equation
From this energy density function, the Cauchy stress σ can be computing using the relation[5]

σ = J−1FSFT , (A.6)

where S is the second Piola–Kirchhoff stress (PK2). This stress can be derived from

S = 2
∂W (C)

∂C (A.7)

= 2

(
∂W

∂I1

∂I1
∂C +

∂W

∂I2

∂I2
∂C +

∂W

∂I3

∂I3
∂C

)
where the derivatives of the principal invariants can be expressed[27, 5] as

∂I1
∂C = I and ∂I2

∂C = I1I− CT and ∂I3
∂C = I3C−T (A.8)

Using equation A.3, A.4 and A.5, the PK2 stress can be computed for an isotropic hyperelastic
material as

S = 2
∂W

∂I1
I + 2

(
I1I− CT

) ∂W
∂I2

+ 2I3
∂W

∂I3
C−T

= 2
(µ
2

)
I + 2I3

(
− µ

2I3
+
λ log J
2I3

)
C−T

= µ
(
I− C−T

)
+ λ log JC−T

and since the right Cauchy-Green stress tensor is symmetric, the PK2 stress is becomes

S = µ(I− C−1) + λ log JC−1. (A.9)

Using equation A.6, the Cauchy stress[37, 28] in terms of the deformation becomes

σ = J−1FSFT

= J−1F
[
µ(I− C−1) + λ log JC−1

]
FT

= J−1F
[
µ(I− F−1F−T ) + λ log JF−1F−T

]
FT

= λJ−1 log JI + J−1µ(FFT − I) (A.10)

And the nominal stress P (required in the total Lagrangian framework) is derived from the PK2 stress
as

P = SFT (A.11)
=

[
λ log JF−1F−T + µ(I− F−1F−T )

]
FT

= λ log JF−1 + µF−1
(
FFT − I

)
(A.12)
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A.3. Small strain approximation
The nominal stress P and Cauchy stress σ derived in the previous section are nonlinear, which makes
algebraic derivation complex. Therefore, the constitutive is linearized for small strains. The strain is
defined as

ϵ = sym (∇0u) = 1

2

(
∇0u + (∇0u)T

)
(A.13)

Let δ > 0, and assume ∇0u = δ, then the deformation tensor becomes

F = I + δ. (A.14)

Some expressions required in computing the nominal stress P follow

FFT = (I + δ) (I + δ)
T

= I + δ + δT +O(δ2)
≈ I + 2ϵ

J = det(F) = det(I + δ) = 1 + tr(δ) +O(δ2)
≈ 1 + tr(δ) = 1 + tr(ϵ)

where the last expression comes from the fact that tr(A) = tr(AT ).
Recall that the power series of the natural logarithm is

log(1− x) = −
∞∑
1

xn

n!
= −x+O(x2)

thus

log J ≈ log(1 + tr(ϵ)) ≈ tr(ϵ).

To approximate the inverse deformation tensor F−1, recall that for a matrix A holds

I + Ak = (I + A)(I −A−A2 − · · · − Ak),

thus
(I + A)−1 = I−A +O(A2). (A.15)

The linearized constitutive model for a Neo-Hookean material with small strains ϵ can be approximated
as

P = λ log JF−1 + µF−1
(
FFT − I

)
≈ λtr(ϵ)

(
I + δ +O(δ2)

)
+ µ

(
I + δ +O(δ2)

)
(2ϵ)

= λtr(ϵ)I + 2µϵ+O(δ2)
≈ λtr(ϵ)I + 2µϵ (A.16)

= λtr
(
1

2

(
F + FT

)
− I

)
I + 2µ

(
1

2

(
F + FT

)
− I

)
(A.17)

where equation A.16 is the well-known Hooke’s Law for linear elastic materials.
The Cauchy-stress σ is then derived from P as

σ = J−1FP

≈ λ

J
tr(ϵ)F +

2µ

J
Fϵ (A.18)

=
λ

J
tr
(
1

2

(
F + FT

)
− I

)
F +

2µ

J
F
(
1

2

(
F + FT

)
− I

)
(A.19)

which is used in MPM application[37].
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A.4. Total and updated Lagrangian framework
For simple 1-dimensional cases, it is possible to determine an analytic solution from a given boundary
value problem. However, for higher dimensional problems, this task becomes increasingly complex or
impossible. Therefore, the method of manufacturing solutions (MMS) is often used in code verification
procedures. Before this method can be used, a distinction between the updated and total Lagrangian
framework will be made.

In finite element analysis, both the updated and total Lagrangian framework is used. The total
Lagrangian framework uses the reference frame or the initial material to compute the internal strains and
stresses, while the updated Lagrangian framework uses the current reference frame. The conservation
of linear momentum for these frameworks can then be written respectively as[5]

∂ρ0v
∂t
−∇0 · P− ρ0b = 0, (A.20)

∂ρv
∂t
−∇ · σ − ρb = 0. (A.21)

The 0-subscript indicates the initial framework. Since the framework is different, the stress computation
varies as well. Here, the updated Lagrangian framework uses the Cauchy stress σ while the total
Lagrangian framework uses the nominal stress P with respect to the initial reference frame. While both
frameworks can be used in FEA, the Material Point method is only defined in the updated Lagrangian
framework.

For the method of manufacturing solutions, it is useful to use the total Lagrangian framework, since
only the initial material configuration is known.



B
Method of manufacturing solutions

For this problem, a Neo-Hookean material model is assumed which in the total Lagrangian framework
is defined by equation A.17 in combination with the conservation of linear momentum equation A.20:

ρ0
∂2u
∂t2
−∇0 · P− ρ0b = 0,

P = λtr
(
1

2

(
F + FT

)
− I

)
I + 2µ

(
1

2

(
F + FT

)
− I

)
.

Note that while the small strain approximation is used here, the regular Neo-Hookean constitutive
model of equation A.12 can be used analogous, e.g., in [28].

For this problem, a material plane of length L and height H is considered, with the bottom left
corner of the plane at the origin. It is assumed that a force is present which ”pulls” the top right corner
of the plane along the diagonal. This results in a displacement vector of

u(x, y, t) =
[
ue(1− e−ωxt) · x ·

(
y
H

)2
ue(1− e−ωyt) · y ·

(
x
L

)2
]

(B.1)

where x and y are the position on the initial plane. For simplicity, it is assumed that L = H and
ωx = ωy = ω, simplifying the displacement as

u(x, y, t) = ue
L2

(1− e−ωt)

[
xy2

yx2

]
= T (t)

[
xy2

yx2

]
, (B.2)

where T (t) = ue

L2 (1− e−ωt). This results in a displacement gradient of

∇0u = T (t)

[
y2 2xy
2xy x2

]
(B.3)

and since the displacement gradient is symmetric, this results in

ϵ =
1

2

(
∇0u + (∇0u)T

)
=

1

2

(
F + FT

)
− I = ∇0u, (B.4)

which results in a nominal stress

P = T (t)

[
λx2 + (λ+ 2µ)y2 4µxy

4µxy (λ+ 2µ)x2 + λy2

]
(B.5)

and

∇0 · P = (2λ+ 4µ)T (t)

[
x
y

]
.
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The body force which is required by the conservation of linear momentum is then expressed as

b =
∂2u
∂t2
− 1

ρ0
∇0 · P

= − ue
L2
ω2e−ωt

[
xy2

x2y

]
+
ue
L

2λ+ 4µ

ρ0
(1− e−ωt)

[
x
y

]
.

The initial conditions of this problem can then be expressed by

u0(x, y) = u(x, y, t = 0) =
ue
L2

[
x · y2
x2 · y

]
(B.6)

v0(x, y) = v(x, y, t = 0) =
∂u
∂t

∣∣∣∣
t=0

= 0 (B.7)

σ(x, y) = σ(x, y, t = 0) = J−1PF|t=0 (B.8)

For the boundary conditions, the boundary is split into 4 segments (the 4 edges of the domain). On the
left boundary Γleft (x = 0) and the bottom boundary Γbottom (y = 0), Dirichlet boundary conditions
are applied using the penalty method, using equation 5.6 for the exact value at the boundary. For the
top boundary Γtop (y = H) and the right boundary Γright (x = L), a Neumann boundary conditions is
imposed. The force vector imposing the boundary conditions can then be expressed as

Fboundary
i = FDirichlet

i + Ftract
i

=

∫
Fleft∩Fbottom

ϕiϵ
−1(uh − u)dΓ +

∫
Ftop∩Fright

ϕin · σdΓ (B.9)

Here, the exact solution for u and σ are known. Because of the nature of this problem, the boundary
does move and the normal vector n is not clearly defined. However, since the exact displacement is
known, the normal vector can be expressed. The position at a time t given its initial position (x, y) can
be expressed as

x̃(x, y, t) =
[
x+ ue(1− e−ωxt) · x ·

(
y
H

)2
y + ue(1− e−ωyt) · y ·

(
x
L

)2
]

(B.10)

Bottom boundary, y = 0

To get the parametric representation of the boundary at the bottom, let y = 0 and x(p) = Lp, p ∈
[0, 1], thus

x̃(p, t) = x̃(Lp, 0, t) =
[
Lp
0

]
, (B.11)

which result in a tangent function
dx̃
dp (p, t) =

[
L
0

]
(B.12)

and rotating this vector π
2 and dividing by its length, the outward unit normal vector is given by

n̂ =

[
0
−1

]
(B.13)

Left: x = 0

Let x = 0 and y(p) = Hp, resulting in

x̃(p, t) = x̃(0,Hp, t) =
[

0
Hp,

]
(B.14)

resulting in a tangent and unit normal vector of

dx̃
dp (p, t) =

[
0
H

]
and n̂ =

[
−1
0

]
(B.15)
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Right: x = L
The parametric representation of the boundary at the righthand side, let x = L and y(p) = Hp,

resulting in
x̃(p, t) = x̃(L,Hp, t) =

[
L+ ue(1− e−ωxt) · L · p2
Hp+ ue(1− e−ωyt) ·Hp

]
(B.16)

and the tangent vector
dx̃
dp (p, t) =

[
2ueL(1− e−ωxt)p

H + ueH(1− e−ωyt)

]
(B.17)

and the normal vector
n(p, t) =

[
H + ueH(1− e−ωyt)
−2ueL(1− e−ωxt)p

]
(B.18)

and the unit normal vector
n̂(p, t) = n(p, t)

|n(p, t)| (B.19)

Assuming H = L and ωx = ωy and let T (t) = ue(1− e−ωxt), we get

n(p, t) = L

[
1 + T (t)
−2T (t)p

]
(B.20)

and
n̂(p, t) = 1√

1 + 2T (t) + (4p2 + 1)T 2(t)

[
1 + T (t)
−2T (t)p

]
(B.21)

Top: (y = H)

The parametric representation of the boundary at the righthand side, let y = H and x(p) = Lp,
resulting in

x̃(p, t) = x̃(Lp,H, t) =
[
Lp+ ueL(1− e−ωxt)p
H + ueH(1− e−ωyt)p2

]
(B.22)

and the resulting outward unit vector is obtained

n̂(p, t) = 1√
1 + 2T (t) + (4p2 + 1)T 2(t)

[
−2T (t)p
1 + T (t)

]
. (B.23)



C
Spline integration

A spline can be written as a linear combination of n B-splines

S(ξ) =

n∑
i=1

αiBi,p(ξ). (C.1)

The integration of a spline can be obtained using the expression for the derivative, equation 4.3, and
the derivation follows from De Boor[7] as

ξ∫
−ξ0

n∑
i=1

αiBi,p(ξ̃)dξ̃ =
n∑

i=1

 i∑
j=1

αj
ξj+p+1 − ξj

p+ 1

Bi,p+1(ξ)

thus, the integration of a B-spline Bi,p is obtained by setting the control points to αi = 1 and
αj = 0, j ̸= i, which results in the integral of a B-spline as

ξ∫
−ξ0

Bi,p(ξ̃)dξ̃ =
ξi+p+1 − ξi
p+ 1

n∑
j=i

Bj,p+1(ξ).
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