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Svas̆ek Hydraulics

Founded in 1969 by Mr. J.N. Svas̆ek;

Consultant in coastal, harbour and river engineering;

Specialised in numerical fluid dynamics;

17 employees.
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MSc project

HARES (HArbour RESonance).

Determines wave penetration into harbours;
Numerical implementation of the Mild-Slope equation with the finite
element method.
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HARES (HArbour RESonance).

Determines wave penetration into harbours;
Numerical implementation of the Mild-Slope equation with the finite
element method.

Non-linearity of the problem is treated with

Outer iteration: Picard’s method ;
Inner iteration: ILU-BiCGSTAB.

Improve the undesired long computational time.
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Geometry

h Water height

ζ Elevation of the free surface

a Absolute elevation, a = |ζ|

H Wave height, H = 2A

k0 Wave number

ω Wave frequency

L Wave length, L = 2π/k0

T Wave period, T = 2π/ω
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Wave motion
Assumptions on the wave motion

To model the wave motion the following assumptions are made [3].
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Wave motion
Assumptions on the wave motion

To model the wave motion the following assumptions are made [3].

Water is an ideal fluid, i.e. homogeneous, inviscid, irrotational and
incompressible;

The pressure is constant and uniform at the free surface;

The wave slope ǫ = 2πA
L

is small;

The wave motion is time harmonic;

The changes in bottom topography are small;

The surface tension can be neglected;

The Coriolis effect can be neglected.
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Wave transforming effects
Included in HARES

The following effects are included in HARES.
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Wave transforming effects
Included in HARES

The following effects are included in HARES.

Diffraction;

Reflection;

Refraction;

Shoaling;

Wave breaking;

Bottom friction.
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Wave transforming effects
Dissipation of Wave Energy - Wave breaking

Definition

Wave breaking - The process that causes large amounts of wave energy to
be transformed into turbulent kinetic energy.
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Wave transforming effects
Dissipation of Wave Energy - Wave breaking

Definition

Wave breaking - The process that causes large amounts of wave energy to
be transformed into turbulent kinetic energy.

The energy dissipation due to wave breaking is described by the coefficient
Wb [1];

Wb =
2α

T
Qb

H2
m

4a2
.

With

α Adjustable constant;

Qb Fraction of breaking waves;

Hm Maximal possible wave height;

a Modulus of the free surface elevation, a = |ζ̃|.
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Wave transforming effects
Dissipation of Wave Energy - Bottom friction

Definition

Bottom friction - The momentum transfer of wave energy to the solid
earth by friction at the ocean bottom.
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Wave transforming effects
Dissipation of Wave Energy - Bottom friction

Definition

Bottom friction - The momentum transfer of wave energy to the solid
earth by friction at the ocean bottom.

The energy dissipation due to bottom friction is described by the
coefficient Wf [4, 22];

Wf =
8

3π
cf

aω3

sinh3(k0h)
.

With

cf Bottom friction coefficient.
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The Mild-Slope equation

The Mild-Slope equation, with energy dissipation included, is given by [4]

∇ ·

(

n0

k20
∇ζ̃

)

+

(

n0 −
iW

ω

)

ζ̃ = 0, (1)

with

W The energy dissipation term W = Wf +Wb;

n0 A constant n0 =
1
2

(

1 + 2k0h
sinh(2k0h)

)

;

∇ =
(

∂
∂x

, ∂
∂y

)T

.
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The Mild-Slope equation

The Mild-Slope equation, with energy dissipation included, is given by [4]

∇ ·

(

n0

k20
∇ζ̃

)

+

(

n0 −
iW

ω

)

ζ̃ = 0, (1)

Non-linearity:

Wζ̃ =

(

8

3π
cf

|ζ̃|ω3

sinh3(k0h)
+

2α

T
Qb

Hm2

4|ζ̃|2

)

ζ̃

Gemma van de Sande (TU Delft) Literature Study December 8, 2011 13 / 38



The Mild-Slope equation
Boundary conditions

There are two types of boundaries, i.e.

The open boundary with an incoming and an outgoing wave.

The closed boundary where partial reflection due to interaction with
the boundary occurs.
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The Mild-Slope equation
Boundary conditions

The condition for the open boundary (Γ1);

∂ζ̃

∂n
= −pζ̃in (ein · n)− p(ζ̃ − ζ̃in) +

1

2p

(

∂2ζ̃

∂s2
+

∂2ζ̃in

∂s2

)

.
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1
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(
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.

The condition for the closed boundary (Γ2);

∂ζ̃

∂n
= −

(

1−R

1 +R

)

{

pζ̃ −
1

2p

∂2ζ̃

∂s2

}

.
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∂ζ̃

∂n
= −pζ̃in (ein · n)− p(ζ̃ − ζ̃in) +

1

2p

(

∂2ζ̃

∂s2
+

∂2ζ̃in

∂s2

)

.

The condition for the closed boundary (Γ2);

∂ζ̃

∂n
= −

(

1−R

1 +R

)

{

pζ̃ −
1

2p

∂2ζ̃

∂s2

}

.

With

R the reflection coefficient, 0 ≤ R ≤ 1;

p The modified wave number p = ik0

√

1− iW
ωn0

.
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Currently used Numerical Methods

Ritz-Galerkin Finite Element Method

Bi-CGSTAB

Incomplete LU factorization

Picard iteration
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Ritz-Galerkin Finite Element Method
Weak formulation

The weak formulation of the Mild-Slope equation is given by

∫

Ω

{(

n0 −
iW

ω

)

ζ̃η −
n0

k20
∇ζ̃ · ∇η

}

dΩ

−

∫

Γ2

n0

k20

(

1−R

1 +R

)

{

pζ̃η +
1

2p

∂ζ̃

∂s

∂η

∂s

}

dΓ

−

∫

Γ1

n0

k20

{

pζ̃η +
1

2p

∂ζ̃

∂s

∂η

∂s

}

dΓ

=

∫

Γ1

n0

k20

{

pζ̃in (ein · n) η − pζ̃inη −
1

2p

(

∂ζ̃in

∂s

∂η

∂s

)}

dΓ.
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Ritz-Galerkin Finite Element Method
Resulting matrix

The domain is divided into triangles, with piecewise linear basis functions.
This results in the following system

Ax = y,

A ∈ C
N×N , x ∈ C

N and y ∈ C
N . With

A = (−L−C + z1M) .
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Ax = y,

A ∈ C
N×N , x ∈ C

N and y ∈ C
N . With
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With
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Ritz-Galerkin Finite Element Method
Resulting matrix

The domain is divided into triangles, with piecewise linear basis functions.
This results in the following system

Ax = y,

A ∈ C
N×N , x ∈ C

N and y ∈ C
N . With

A = (−L−C + z1M) .

With

∫

Γ2

n0

k20

(

1−R

1 +R

)

{

pζ̃η +
1

2p

∂ζ̃

∂s

∂η

∂s

}

dΓ

+

∫

Γ1

n0

k20

{

pζ̃η +
1

2p

∂ζ̃

∂s

∂η

∂s

}

dΓ ⇒ C
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Ritz-Galerkin Finite Element Method
Resulting matrix

The domain is divided into triangles, with piecewise linear basis functions.
This results in the following system

Ax = y,

A ∈ C
N×N , x ∈ C

N and y ∈ C
N . With

A = (−L−C + z1M) .

With

∫

Ω
ζ̃η dΩ ⇒ M and z1 =

(

n0 −
iW

ω

)
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Ritz-Galerkin Finite Element Method
Resulting matrix

The domain is divided into triangles, with piecewise linear basis functions.
This results in the following system

Ax = y,

A ∈ C
N×N , x ∈ C

N and y ∈ C
N . With

A = (−L−C + z1M) .

With

∫

Γ1

n0

k20

{

pζ̃in (ein · n) η − pζ̃inη −
1

2p

(

∂ζ̃in

∂s

∂η

∂s

)}

dΓ ⇒ y
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Numerical Matrix Solver
Bi-CGSTAB

Bi-CGSTAB solves Ax = b with the residual r0 = b−Ax0.
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Bi-CGSTAB solves Ax = b with the residual r0 = b−Ax0.

Proposed by H.A. van der Vorst in 1992.

Bi-CGSTAB is a Krylov subspace method, the Krylov subspace of
dimension m is given by

Km(A; r0) = span{r0,Ar0, . . . ,A
m−1r0}.
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Numerical Matrix Solver
Bi-CGSTAB

Bi-CGSTAB solves Ax = b with the residual r0 = b−Ax0.

Proposed by H.A. van der Vorst in 1992.

Bi-CGSTAB is a Krylov subspace method, the Krylov subspace of
dimension m is given by

Km(A; r0) = span{r0,Ar0, . . . ,A
m−1r0}.

The residual of Bi-CGSTAB can be written as

rBi−CGSTAB
i = Qi(A)Pi(A)r0,

with
Qi(A) = (I − ω1A)(I − ω2A) . . . (I − ωiA).
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Numerical Matrix Solver
Incomplete LU factorization

Test performed in the literature study based on the incomplete LU
factorization without fill-in (ILU(0)).
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ILU(0) is based on

Matrices L and U have the same zero-pattern as A, i.e.
ui,j = li,j = 0 if ai,j = 0 and if ai,j 6= 0 then ui,j 6= 0 and li,j 6= 0.
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Numerical Matrix Solver
Incomplete LU factorization

Test performed in the literature study based on the incomplete LU
factorization without fill-in (ILU(0)).

ILU(0) is based on

Matrices L and U have the same zero-pattern as A, i.e.
ui,j = li,j = 0 if ai,j = 0 and if ai,j 6= 0 then ui,j 6= 0 and li,j 6= 0.
li,i = 1 and ui,i is determined by the algorithm.

Preconditioning is done by L−1AU−1y = L−1b with y = Ux.

The LU decomposition proposed by A. van der Ploeg [16] is used in
HARES.
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Picard iteration

The following algorithm is used for the Picard iteration:

W 0 = 0 ; initial value for the dissipation term

for i = 1, 2, . . .
Solve xi from A(W i−1)xi = b

W i = W (xi)
end
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Proposed Numerical Matrix Solver
IDR(s)

IDR is proposed by P. Sonneveld in 1980;
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Generate residuals rn that are in the subspace Gj with decreasing
dimension;

Gj = (I − ωjA)
(

Gj−1 ∩ P⊥
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with G0 = KN (A;v0) and P ∈ C
N×s.
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Proposed Numerical Matrix Solver
IDR(s)

IDR is proposed by P. Sonneveld in 1980;

Krylov subspace method;

Generate residuals rn that are in the subspace Gj with decreasing
dimension;

Gj = (I − ωjA)
(

Gj−1 ∩ P⊥

)

,

with G0 = KN (A;v0) and P ∈ C
N×s.

Based on the IDR theorem [13], which states that
(i) Gj ⊂ Gj−1 for all Gj−1 6= {0}, j > 0,
(ii) Gj = {0} for some j ≤ N

Residuals are obtained by

rn+1 = (I − ωj+1A)vn with vn ∈ Gj ∩ P⊥.

Requires at most N + N
s
matrix-vector multiplications.

Gemma van de Sande (TU Delft) Literature Study December 8, 2011 24 / 38



Proposed Numerical Matrix Solver
IDR(s)

Freedom in the IDR(s) algorithm
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Proposed Numerical Matrix Solver
IDR(s)

Freedom in the IDR(s) algorithm

Choosing P .

Gj = (I − ωjA)
(

Gj−1 ∩ P⊥

)

Currently orthogonalized random vectors are used.

Gemma van de Sande (TU Delft) Literature Study December 8, 2011 25 / 38



Proposed Numerical Matrix Solver
IDR(s)

Freedom in the IDR(s) algorithm

Choosing P .

Gj = (I − ωjA)
(

Gj−1 ∩ P⊥

)

Choosing ωj.

Gemma van de Sande (TU Delft) Literature Study December 8, 2011 25 / 38



Proposed Numerical Matrix Solver
IDR(s)

Freedom in the IDR(s) algorithm

Choosing P .

Gj = (I − ωjA)
(

Gj−1 ∩ P⊥

)

Choosing ωj. For each residual in Gj the same ωj is needed, currently
based on a strategy proposed by Sleijpen and Van der Vorst. [11]
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Proposed Numerical Matrix Solver
IDR(s)

Freedom in the IDR(s) algorithm

Choosing P .

Choosing ωj.

Building G0.

(i) Can be done using a simple Krylov method;
(ii) Can be chosen freely as long as G0 is the complete Krylov subspace

KN .
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Proposed Numerical Matrix Solver
Shifted Laplace preconditioner

The shifted Laplace preconditioner [6], used in our experiments, is
given by

K = (−L−C − i|z1|M),

with z1 =
(

n0 −
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ω
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given by

K = (−L−C − i|z1|M),

with z1 =
(

n0 −
iW
ω

)

.

The matrix K is approximated with the incomplete LU factorization.

The preconditioned system is given by

(−L−C− i|z1|M )−1(−L−C+ z1M)a = (−L−C− i|z1|M)−1f .

If L and C are symmetric positive semidefinite real matrices and M

symmetric positive definite real matrix, that the eigenvalues of the
preconditioned system lie inside or on a circle. [19]
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Numerical Experiments
Problem dimension & used matrix-solvers

The following test problem is considered:
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The following test problem is considered:

Harbour of Scheveningen;

126.504 internal triangular elements;

2.213 boundary line segments;

63.253 unknowns;

25 outer iterations.

With the numerical methods and preconditioners:

Bi-CGSTAB, CG-S, IDR(2), IDR(4);

ILU(0), ILU(0)-Shifted Laplace.
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Numerical Experiments
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Numerical Experiments
Computational time

Numerical method

Bi-CGSTAB CG-S IDR(2) IDR(4)

ILU(0) 3.0192 · 103 4.1053 · 103 1.2303 · 103 1.2863 · 103

ILU(0)-SL 1.8525 · 103 2.6634 · 103 0.7361 · 103 0.9741 · 103

Table: CPU time until the whole process is completed.
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Bi-CGSTAB CG-S IDR(2) IDR(4)

ILU(0) 3.0192 · 103 4.1053 · 103 1.2303 · 103 1.2863 · 103

ILU(0)-SL 1.8525 · 103 2.6634 · 103 0.7361 · 103 0.9741 · 103

Table: CPU time until the whole process is completed.

Using IDR(s) preconditioned with the incomplete LU factorization of the
shifted Laplace matrix speeds the computational time up with a factor
three.
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Research objectives
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The non-linear part;

(i) Currently just 25 outer iterations;

(ii) Implementing a stopping criterion;

(iii) Total error.
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Theoretical research:

Spectral analysis for preconditioner of the Mild-Slope equation;

(i) Analysis in [19] not identical for Mild-Slope equation;

(ii) Determine an optimal shift when possible;

(iii) How should we approximate the shifted Laplace preconditioner.
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Research objectives

Improvement of HARES :

The non-linear part;

Testing the numerical methods on several test problems;

Implementation into FORTRAN.

Theoretical research:

Spectral analysis for preconditioner of the Mild-Slope equation;

Choosing the coefficients ωj based on Ritz-values;

When the spectrum is a circle we might be able to determine the
Ritz-values such that the polynomial

Qj(A) = (I − ω1A) . . . (I − ωjA),

has a minimal maximum on the spectrum.
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Research objectives

Improvement of HARES :

The non-linear part;

Testing the numerical methods on several test problems;

Implementation into FORTRAN.

Theoretical research:

Spectral analysis for preconditioner of the Mild-Slope equation;

Choosing the coefficients ωj based on Ritz-values;

Can smartly building G0 lead to convergence speed up.
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Questions

QUESTIONS?

Gemma van de Sande (TU Delft) Literature Study December 8, 2011 33 / 38



Figure diffraction & reflection

Figure: The harbour of Scheveningen. The effects of diffraction - reflection visible
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Figure refraction & shoaling

(a) Refraction (b) Shoaling
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