Literature Study

The Mild-Slope Equation and its Numerical Implementation

Gemma van de Sande

TU Delft
December 8, 2011

Outline

(1) The MSc Project

Outline

(1) The MSc Project
(2) Geometry and Wave Motion

Outline

(1) The MSc Project
(2) Geometry and Wave Motion
(3) The Mild-Slope Equation

Outline

(1) The MSc Project
(2) Geometry and Wave Motion
(3) The Mild-Slope Equation

4 Numerical Implementation

Outline

(1) The MSc Project
(2) Geometry and Wave Motion
(3) The Mild-Slope Equation
4. Numerical Implementation
(5) Proposed Numerical Matrix Solver

Outline

(1) The MSc Project
(2) Geometry and Wave Motion
(3) The Mild-Slope Equation
4. Numerical Implementation
(5) Proposed Numerical Matrix Solver
(6) Numerical Experiments

Outline

(1) The MSc Project
(2) Geometry and Wave Motion
(3) The Mild-Slope Equation
4. Numerical Implementation
(5) Proposed Numerical Matrix Solver
(6) Numerical Experiments
(7) Research Objectives

Outline

(1) The MSc Project
(2) Geometry and Wave Motion
(3) The Mild-Slope Equation
(4) Numerical Implementation
(5) Proposed Numerical Matrix Solver
(6) Numerical Experiments
(7) Research Objectives

Svas̆ek Hydraulics

SVASEK
 hydraulics
 COASTAL, HARBOUR AND RIVER CONSULTANTS

- Founded in 1969 by Mr. J.N. Svas̆ek;

Svas̆ek Hydraulics

SVASEK
 HYDRAULICS
 COASTAL, HARBOUR AND RIVER CONSULTANTS

- Founded in 1969 by Mr. J.N. Svašek;
- Consultant in coastal, harbour and river engineering;

Svas̆ek Hydraulics

SVASEK
 hydrautics
 COASTAL, HARBOUR AND RIVER CONSULTANTS

- Founded in 1969 by Mr. J.N. Svašek;
- Consultant in coastal, harbour and river engineering;
- Specialised in numerical fluid dynamics;

Svas̆ek Hydraulics

SVASEK
 hydraulics
 COASTAL, HARBOUR AND RIVER CONSULTANTS

- Founded in 1969 by Mr. J.N. Svas̆ek;
- Consultant in coastal, harbour and river engineering;
- Specialised in numerical fluid dynamics;
- 17 employees.

MSc project

- HARES (HArbour RESonance).
- Determines wave penetration into harbours;
- Numerical implementation of the Mild-Slope equation with the finite element method.

MSc project

- HARES (HArbour RESonance).
- Determines wave penetration into harbours;
- Numerical implementation of the Mild-Slope equation with the finite element method.
- Non-linearity of the problem is treated with
- Outer iteration: Picard's method;
- Inner iteration: ILU-BiCGSTAB.

MSc project

- HARES (HArbour RESonance).
- Determines wave penetration into harbours;
- Numerical implementation of the Mild-Slope equation with the finite element method.
- Non-linearity of the problem is treated with
- Outer iteration: Picard's method;
- Inner iteration: ILU-BiCGSTAB.
- Improve the undesired long computational time.

Outline

(1) The MSc Project

(2) Geometry and Wave Motion
(3) The Mild-Slope Equation
(4) Numerical Implementation
(5) Proposed Numerical Matrix Solver
(6) Numerical Experiments
(7) Research Objectives

Geometry

h Water height
ζ Elevation of the free surface
a Absolute elevation, $a=|\zeta|$
H Wave height, $H=2 A$
k_{0} Wave number
ω Wave frequency
L Wave length, $L=2 \pi / k_{0}$
T Wave period, $T=2 \pi / \omega$

Wave motion

Assumptions on the wave motion

To model the wave motion the following assumptions are made [3].

Wave motion

Assumptions on the wave motion

To model the wave motion the following assumptions are made [3].

- Water is an ideal fluid, i.e. homogeneous, inviscid, irrotational and incompressible;

Wave motion

Assumptions on the wave motion

To model the wave motion the following assumptions are made [3].

- Water is an ideal fluid, i.e. homogeneous, inviscid, irrotational and incompressible;
- The pressure is constant and uniform at the free surface;

Wave motion

Assumptions on the wave motion

To model the wave motion the following assumptions are made [3].

- Water is an ideal fluid, i.e. homogeneous, inviscid, irrotational and incompressible;
- The pressure is constant and uniform at the free surface;
- The wave slope $\epsilon=\frac{2 \pi A}{L}$ is small;

Wave motion

Assumptions on the wave motion

To model the wave motion the following assumptions are made [3].

- Water is an ideal fluid, i.e. homogeneous, inviscid, irrotational and incompressible;
- The pressure is constant and uniform at the free surface;
- The wave slope $\epsilon=\frac{2 \pi A}{L}$ is small;
- The wave motion is time harmonic;

Wave motion

Assumptions on the wave motion

To model the wave motion the following assumptions are made [3].

- Water is an ideal fluid, i.e. homogeneous, inviscid, irrotational and incompressible;
- The pressure is constant and uniform at the free surface;
- The wave slope $\epsilon=\frac{2 \pi A}{L}$ is small;
- The wave motion is time harmonic;
- The changes in bottom topography are small;

Wave motion

Assumptions on the wave motion

To model the wave motion the following assumptions are made [3].

- Water is an ideal fluid, i.e. homogeneous, inviscid, irrotational and incompressible;
- The pressure is constant and uniform at the free surface;
- The wave slope $\epsilon=\frac{2 \pi A}{L}$ is small;
- The wave motion is time harmonic;
- The changes in bottom topography are small;
- The surface tension can be neglected;
- The Coriolis effect can be neglected.

Wave transforming effects

 Included in HARESThe following effects are included in HARES.

Wave transforming effects

 Included in HARESThe following effects are included in HARES.

- Diffraction;

Wave transforming effects

 Included in HARESThe following effects are included in HARES.

- Diffraction;
- Reflection;

Wave transforming effects

 Included in HARESThe following effects are included in HARES.

- Diffraction;
- Reflection;
- Refraction;

Wave transforming effects

 Included in HARESThe following effects are included in HARES.

- Diffraction;
- Reflection;
- Refraction;
- Shoaling;

Wave transforming effects

 Included in HARESThe following effects are included in HARES.

- Diffraction;
- Reflection;
- Refraction;
- Shoaling;
- Wave breaking;

Wave transforming effects

 Included in HARESThe following effects are included in HARES.

- Diffraction;
- Reflection;
- Refraction;
- Shoaling;
- Wave breaking;
- Bottom friction.

Wave transforming effects

Dissipation of Wave Energy - Wave breaking

Definition

Wave breaking - The process that causes large amounts of wave energy to be transformed into turbulent kinetic energy.

Wave transforming effects

Dissipation of Wave Energy - Wave breaking

Definition

Wave breaking - The process that causes large amounts of wave energy to be transformed into turbulent kinetic energy.

The energy dissipation due to wave breaking is described by the coefficient W_{b} [1];

$$
W_{b}=\frac{2 \alpha}{T} Q_{b} \frac{H_{m}^{2}}{4 a^{2}}
$$

With

$$
\begin{aligned}
\alpha & \text { Adjustable constant; } \\
Q_{b} & \text { Fraction of breaking waves; } \\
H_{m} & \text { Maximal possible wave height; } \\
a & \text { Modulus of the free surface elevation, } a=|\tilde{\zeta}|
\end{aligned}
$$

Wave transforming effects

Dissipation of Wave Energy - Bottom friction

Definition

Bottom friction - The momentum transfer of wave energy to the solid earth by friction at the ocean bottom.

Wave transforming effects

Dissipation of Wave Energy - Bottom friction

Definition

Bottom friction - The momentum transfer of wave energy to the solid earth by friction at the ocean bottom.

The energy dissipation due to bottom friction is described by the coefficient $W_{f}[4,22]$;

$$
W_{f}=\frac{8}{3 \pi} c_{f} \frac{a \omega^{3}}{\sinh ^{3}\left(k_{0} h\right)}
$$

With
c_{f} Bottom friction coefficient.

Outline

(1) The MSc Project

(2) Geometry and Wave Motion
(3) The Mild-Slope Equation
(4) Numerical Implementation
(5) Proposed Numerical Matrix Solver
(6) Numerical Experiments
(7) Research Objectives

The Mild-Slope equation

The Mild-Slope equation, with energy dissipation included, is given by [4]

$$
\begin{equation*}
\nabla \cdot\left(\frac{n_{0}}{k_{0}^{2}} \nabla \tilde{\zeta}\right)+\left(n_{0}-\frac{i W}{\omega}\right) \tilde{\zeta}=0 \tag{1}
\end{equation*}
$$

with
W The energy dissipation term $W=W_{f}+W_{b}$;
n_{0} A constant $n_{0}=\frac{1}{2}\left(1+\frac{2 k_{0} h}{\sinh \left(2 k_{0} h\right)}\right)$;
$\nabla=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)^{T}$.

The Mild-Slope equation

The Mild-Slope equation, with energy dissipation included, is given by [4]

$$
\begin{equation*}
\nabla \cdot\left(\frac{n_{0}}{k_{0}^{2}} \nabla \tilde{\zeta}\right)+\left(n_{0}-\frac{i W}{\omega}\right) \tilde{\zeta}=0 \tag{1}
\end{equation*}
$$

Non-linearity:

$$
W \tilde{\zeta}=\left(\frac{8}{3 \pi} c_{f} \frac{|\tilde{\zeta}| \omega^{3}}{\sinh ^{3}\left(k_{0} h\right)}+\frac{2 \alpha}{T} Q_{b} \frac{H_{m} 2}{4|\tilde{\zeta}|^{2}}\right) \tilde{\zeta}
$$

The Mild-Slope equation

There are two types of boundaries, i.e.

- The open boundary with an incoming and an outgoing wave.
- The closed boundary where partial reflection due to interaction with the boundary occurs.

The Mild-Slope equation

Boundary conditions

The condition for the open boundary $\left(\Gamma_{1}\right)$;

$$
\frac{\partial \tilde{\zeta}}{\partial n}=-p \tilde{\zeta}_{i n}\left(\boldsymbol{e}_{i n} \cdot \boldsymbol{n}\right)-p\left(\tilde{\zeta}-\tilde{\zeta}_{i n}\right)+\frac{1}{2 p}\left(\frac{\partial^{2} \tilde{\zeta}}{\partial s^{2}}+\frac{\partial^{2} \tilde{\zeta}_{i n}}{\partial s^{2}}\right)
$$

The Mild-Slope equation

Boundary conditions

The condition for the open boundary $\left(\Gamma_{1}\right)$;

$$
\frac{\partial \tilde{\zeta}}{\partial n}=-p \tilde{\zeta}_{i n}\left(\boldsymbol{e}_{i n} \cdot \boldsymbol{n}\right)-p\left(\tilde{\zeta}-\tilde{\zeta}_{i n}\right)+\frac{1}{2 p}\left(\frac{\partial^{2} \tilde{\zeta}}{\partial s^{2}}+\frac{\partial^{2} \tilde{\zeta}_{i n}}{\partial s^{2}}\right)
$$

The condition for the closed boundary $\left(\Gamma_{2}\right)$;

$$
\frac{\partial \tilde{\zeta}}{\partial n}=-\left(\frac{1-R}{1+R}\right)\left\{p \tilde{\zeta}-\frac{1}{2 p} \frac{\partial^{2} \tilde{\zeta}}{\partial s^{2}}\right\}
$$

The Mild-Slope equation

Boundary conditions

The condition for the open boundary $\left(\Gamma_{1}\right)$;

$$
\frac{\partial \tilde{\zeta}}{\partial n}=-p \tilde{\zeta}_{i n}\left(\boldsymbol{e}_{i n} \cdot \boldsymbol{n}\right)-p\left(\tilde{\zeta}-\tilde{\zeta}_{i n}\right)+\frac{1}{2 p}\left(\frac{\partial^{2} \tilde{\zeta}}{\partial s^{2}}+\frac{\partial^{2} \tilde{\zeta}_{i n}}{\partial s^{2}}\right)
$$

The condition for the closed boundary $\left(\Gamma_{2}\right)$;

$$
\frac{\partial \tilde{\zeta}}{\partial n}=-\left(\frac{1-R}{1+R}\right)\left\{p \tilde{\zeta}-\frac{1}{2 p} \frac{\partial^{2} \tilde{\zeta}}{\partial s^{2}}\right\}
$$

With
R the reflection coefficient, $0 \leq R \leq 1$;
p The modified wave number $p=i k_{0} \sqrt{1-\frac{i W}{\omega n_{0}}}$.

Outline

(1) The MSc Project

(2) Geometry and Wave Motion
(3) The Mild-Slope Equation

4 Numerical Implementation
(5) Proposed Numerical Matrix Solver
(6) Numerical Experiments
(7) Research Objectives

Currently used Numerical Methods

- Ritz-Galerkin Finite Element Method
- Bi-CGSTAB
- Incomplete LU factorization
- Picard iteration

Ritz-Galerkin Finite Element Method

Weak formulation

The weak formulation of the Mild-Slope equation is given by

$$
\begin{aligned}
& \int_{\Omega}\left\{\left(n_{0}-\frac{i W}{\omega}\right) \tilde{\zeta} \eta-\frac{n_{0}}{k_{0}^{2}} \nabla \tilde{\zeta} \cdot \nabla \eta\right\} d \Omega \\
& -\int_{\Gamma_{2}} \frac{n_{0}}{k_{0}^{2}}\left(\frac{1-R}{1+R}\right)\left\{p \tilde{\zeta} \eta+\frac{1}{2 p} \frac{\partial \tilde{\zeta}}{\partial s} \frac{\partial \eta}{\partial s}\right\} d \Gamma \\
& -\int_{\Gamma_{1}} \frac{n_{0}}{k_{0}^{2}}\left\{p \tilde{\zeta} \eta+\frac{1}{2 p} \frac{\partial \tilde{\zeta}}{\partial s} \frac{\partial \eta}{\partial s}\right\} d \Gamma \\
& =\int_{\Gamma_{1}} \frac{n_{0}}{k_{0}^{2}}\left\{p \tilde{\zeta}_{\text {in }}\left(\boldsymbol{e}_{\text {in }} \cdot \boldsymbol{n}\right) \eta-p \tilde{\zeta}_{\text {in }} \eta-\frac{1}{2 p}\left(\frac{\partial \tilde{\zeta}_{\text {in }}}{\partial s} \frac{\partial \eta}{\partial s}\right)\right\} d \Gamma .
\end{aligned}
$$

Ritz-Galerkin Finite Element Method

Resulting matrix

The domain is divided into triangles, with piecewise linear basis functions. This results in the following system

$$
\boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}
$$

$\boldsymbol{A} \in \mathbb{C}^{N \times N}, \boldsymbol{x} \in \mathbb{C}^{N}$ and $\boldsymbol{y} \in \mathbb{C}^{N}$. With

$$
\boldsymbol{A}=\left(-\boldsymbol{L}-\boldsymbol{C}+z_{1} \boldsymbol{M}\right) .
$$

Ritz-Galerkin Finite Element Method

Resulting matrix

The domain is divided into triangles, with piecewise linear basis functions.
This results in the following system

$$
\boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}
$$

$\boldsymbol{A} \in \mathbb{C}^{N \times N}, \boldsymbol{x} \in \mathbb{C}^{N}$ and $\boldsymbol{y} \in \mathbb{C}^{N}$. With

$$
\boldsymbol{A}=\left(-\boldsymbol{L}-\boldsymbol{C}+z_{1} \boldsymbol{M}\right)
$$

With

$$
\int_{\Omega} \frac{n_{0}}{k_{0}^{2}} \nabla \tilde{\zeta} \cdot \nabla \eta d \Omega \quad \Rightarrow \quad \boldsymbol{L}
$$

Ritz-Galerkin Finite Element Method

Resulting matrix

The domain is divided into triangles, with piecewise linear basis functions. This results in the following system

$$
\boldsymbol{A x}=\boldsymbol{y}
$$

$\boldsymbol{A} \in \mathbb{C}^{N \times N}, \boldsymbol{x} \in \mathbb{C}^{N}$ and $\boldsymbol{y} \in \mathbb{C}^{N}$. With

$$
\boldsymbol{A}=\left(-\boldsymbol{L}-\boldsymbol{C}+z_{1} \boldsymbol{M}\right) .
$$

With

$$
\begin{aligned}
& \int_{\Gamma_{2}} \frac{n_{0}}{k_{0}^{2}}\left(\frac{1-R}{1+R}\right)\left\{p \tilde{\zeta} \eta+\frac{1}{2 p} \frac{\partial \tilde{\zeta}}{\partial s} \frac{\partial \eta}{\partial s}\right\} d \Gamma \\
& \quad+\int_{\Gamma_{1}} \frac{n_{0}}{k_{0}^{2}}\left\{p \tilde{\zeta} \eta+\frac{1}{2 p} \frac{\partial \tilde{\zeta}}{\partial s} \frac{\partial \eta}{\partial s}\right\} d \Gamma \Rightarrow C
\end{aligned}
$$

Ritz-Galerkin Finite Element Method

Resulting matrix

The domain is divided into triangles, with piecewise linear basis functions.
This results in the following system

$$
\boldsymbol{A x}=\boldsymbol{y}
$$

$\boldsymbol{A} \in \mathbb{C}^{N \times N}, \boldsymbol{x} \in \mathbb{C}^{N}$ and $\boldsymbol{y} \in \mathbb{C}^{N}$. With

$$
\boldsymbol{A}=\left(-\boldsymbol{L}-\boldsymbol{C}+z_{1} \boldsymbol{M}\right) .
$$

With

$$
\int_{\Omega} \tilde{\zeta} \eta d \Omega \quad \Rightarrow \quad \boldsymbol{M} \quad \text { and } \quad z_{1}=\left(n_{0}-\frac{i W}{\omega}\right)
$$

Ritz-Galerkin Finite Element Method

Resulting matrix

The domain is divided into triangles, with piecewise linear basis functions.
This results in the following system

$$
\boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}
$$

$\boldsymbol{A} \in \mathbb{C}^{N \times N}, \boldsymbol{x} \in \mathbb{C}^{N}$ and $\boldsymbol{y} \in \mathbb{C}^{N}$. With

$$
\boldsymbol{A}=\left(-\boldsymbol{L}-\boldsymbol{C}+z_{1} \boldsymbol{M}\right) .
$$

With

$$
\int_{\Gamma_{1}} \frac{n_{0}}{k_{0}^{2}}\left\{p \tilde{\zeta}_{i n}\left(\boldsymbol{e}_{i n} \cdot \boldsymbol{n}\right) \eta-p \tilde{\zeta}_{i n} \eta-\frac{1}{2 p}\left(\frac{\partial \tilde{\zeta}_{i n}}{\partial s} \frac{\partial \eta}{\partial s}\right)\right\} d \Gamma \quad \Rightarrow \quad \boldsymbol{y}
$$

Numerical Matrix Solver

Bi-CGSTAB

- Bi-CGSTAB solves $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ with the residual $\boldsymbol{r}_{0}=\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}_{0}$.

Numerical Matrix Solver

Bi-CGSTAB

- Bi-CGSTAB solves $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ with the residual $\boldsymbol{r}_{0}=\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}_{0}$.
- Proposed by H.A. van der Vorst in 1992.

Numerical Matrix Solver

Bi-CGSTAB

- Bi-CGSTAB solves $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ with the residual $\boldsymbol{r}_{0}=\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}_{0}$.
- Proposed by H.A. van der Vorst in 1992.
- Bi-CGSTAB is a Krylov subspace method, the Krylov subspace of dimension m is given by

$$
\mathcal{K}_{m}\left(\boldsymbol{A} ; \boldsymbol{r}_{0}\right)=\operatorname{span}\left\{\boldsymbol{r}_{0}, \boldsymbol{A} \boldsymbol{r}_{0}, \ldots, \boldsymbol{A}^{m-1} \boldsymbol{r}_{0}\right\}
$$

Numerical Matrix Solver

Bi-CGSTAB

- Bi-CGSTAB solves $\boldsymbol{A x}=\boldsymbol{b}$ with the residual $\boldsymbol{r}_{0}=\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}_{0}$.
- Proposed by H.A. van der Vorst in 1992.
- Bi-CGSTAB is a Krylov subspace method, the Krylov subspace of dimension m is given by

$$
\mathcal{K}_{m}\left(\boldsymbol{A} ; \boldsymbol{r}_{0}\right)=\operatorname{span}\left\{\boldsymbol{r}_{0}, \boldsymbol{A} \boldsymbol{r}_{0}, \ldots, \boldsymbol{A}^{m-1} \boldsymbol{r}_{0}\right\}
$$

- The residual of $\mathrm{Bi}-\mathrm{CGSTAB}$ can be written as

$$
\boldsymbol{r}_{i}^{B i-C G S T A B}=Q_{i}(\boldsymbol{A}) P_{i}(\boldsymbol{A}) \boldsymbol{r}_{0}
$$

with

$$
Q_{i}(\boldsymbol{A})=\left(I-\omega_{1} \boldsymbol{A}\right)\left(I-\omega_{2} \boldsymbol{A}\right) \ldots\left(I-\omega_{i} \boldsymbol{A}\right)
$$

Numerical Matrix Solver

Incomplete LU factorization

- Test performed in the literature study based on the incomplete LU factorization without fill-in (ILU(0)).

Numerical Matrix Solver

- Test performed in the literature study based on the incomplete LU factorization without fill-in (ILU(0)).
- ILU(0) is based on
- Matrices \boldsymbol{L} and \boldsymbol{U} have the same zero-pattern as \boldsymbol{A}, i.e. $u_{i, j}=l_{i, j}=0$ if $a_{i, j}=0$ and if $a_{i, j} \neq 0$ then $u_{i, j} \neq 0$ and $l_{i, j} \neq 0$.
- $l_{i, i}=1$ and $u_{i, i}$ is determined by the algorithm.

Numerical Matrix Solver

- Test performed in the literature study based on the incomplete LU factorization without fill-in (ILU(0)).
- $\operatorname{ILU}(0)$ is based on
- Matrices \boldsymbol{L} and \boldsymbol{U} have the same zero-pattern as \boldsymbol{A}, i.e.

$$
u_{i, j}=l_{i, j}=0 \text { if } a_{i, j}=0 \text { and if } a_{i, j} \neq 0 \text { then } u_{i, j} \neq 0 \text { and } l_{i, j} \neq 0 .
$$

- $l_{i, i}=1$ and $u_{i, i}$ is determined by the algorithm.
- Preconditioning is done by $\boldsymbol{L}^{-1} \boldsymbol{A} \boldsymbol{U}^{-1} \boldsymbol{y}=\boldsymbol{L}^{-1} \boldsymbol{b}$ with $\boldsymbol{y}=\boldsymbol{U} \boldsymbol{x}$.

Numerical Matrix Solver

- Test performed in the literature study based on the incomplete LU factorization without fill-in (ILU(0)).
- $\operatorname{ILU}(0)$ is based on
- Matrices \boldsymbol{L} and \boldsymbol{U} have the same zero-pattern as \boldsymbol{A}, i.e.

$$
u_{i, j}=l_{i, j}=0 \text { if } a_{i, j}=0 \text { and if } a_{i, j} \neq 0 \text { then } u_{i, j} \neq 0 \text { and } l_{i, j} \neq 0 .
$$

- $l_{i, i}=1$ and $u_{i, i}$ is determined by the algorithm.
- Preconditioning is done by $\boldsymbol{L}^{-1} \boldsymbol{A} \boldsymbol{U}^{-1} \boldsymbol{y}=\boldsymbol{L}^{-1} \boldsymbol{b}$ with $\boldsymbol{y}=\boldsymbol{U} \boldsymbol{x}$.
- The LU decomposition proposed by A. van der Ploeg [16] is used in HARES.

Picard iteration

The following algorithm is used for the Picard iteration:
$W^{0}=0$; initial value for the dissipation term
for $\quad i=1,2, \ldots$
Solve \boldsymbol{x}^{i} from $\boldsymbol{A}\left(W^{i-1}\right) \boldsymbol{x}^{i}=\boldsymbol{b}$
$W^{i}=W\left(\boldsymbol{x}^{i}\right)$
end

Outline

(1) The MSc Project

(2) Geometry and Wave Motion
(3) The Mild-Slope Equation
(4) Numerical Implementation
(5) Proposed Numerical Matrix Solver
(6) Numerical Experiments
(7) Research Objectives

Proposed Numerical Matrix Solver IDR(s)

- IDR is proposed by P. Sonneveld in 1980;

Proposed Numerical Matrix Solver IDR(s)

- IDR is proposed by P. Sonneveld in 1980;
- Krylov subspace method;

Proposed Numerical Matrix Solver IDR(s)

- IDR is proposed by P. Sonneveld in 1980;
- Krylov subspace method;
- Generate residuals \boldsymbol{r}_{n} that are in the subspace \mathcal{G}_{j} with decreasing dimension;

$$
\mathcal{G}_{j}=\left(\boldsymbol{I}-\omega_{j} \boldsymbol{A}\right)\left(\mathcal{G}_{j-1} \cap \boldsymbol{P}^{\perp}\right),
$$

with $\mathcal{G}_{0}=\mathcal{K}^{N}\left(\boldsymbol{A} ; \boldsymbol{v}_{0}\right)$ and $\boldsymbol{P} \in \mathbb{C}^{N \times s}$.

Proposed Numerical Matrix Solver IDR(s)

- IDR is proposed by P. Sonneveld in 1980;
- Krylov subspace method;
- Generate residuals \boldsymbol{r}_{n} that are in the subspace \mathcal{G}_{j} with decreasing dimension;

$$
\mathcal{G}_{j}=\left(\boldsymbol{I}-\omega_{j} \boldsymbol{A}\right)\left(\mathcal{G}_{j-1} \cap \boldsymbol{P}^{\perp}\right),
$$

with $\mathcal{G}_{0}=\mathcal{K}^{N}\left(\boldsymbol{A} ; \boldsymbol{v}_{0}\right)$ and $\boldsymbol{P} \in \mathbb{C}^{N \times s}$.

- Based on the IDR theorem [13], which states that
(i) $\mathcal{G}_{j} \subset \mathcal{G}_{j-1}$ for all $\mathcal{G}_{j-1} \neq\{\mathbf{0}\}, j>0$,
(ii) $\mathcal{G}_{j}=\{\mathbf{0}\}$ for some $j \leq N$

Proposed Numerical Matrix Solver IDR(s)

- IDR is proposed by P. Sonneveld in 1980;
- Krylov subspace method;
- Generate residuals \boldsymbol{r}_{n} that are in the subspace \mathcal{G}_{j} with decreasing dimension;

$$
\mathcal{G}_{j}=\left(\boldsymbol{I}-\omega_{j} \boldsymbol{A}\right)\left(\mathcal{G}_{j-1} \cap \boldsymbol{P}^{\perp}\right),
$$

with $\mathcal{G}_{0}=\mathcal{K}^{N}\left(\boldsymbol{A} ; \boldsymbol{v}_{0}\right)$ and $\boldsymbol{P} \in \mathbb{C}^{N \times s}$.

- Based on the IDR theorem [13], which states that
(i) $\mathcal{G}_{j} \subset \mathcal{G}_{j-1}$ for all $\mathcal{G}_{j-1} \neq\{\mathbf{0}\}, j>0$,
(ii) $\mathcal{G}_{j}=\{\mathbf{0}\}$ for some $j \leq N$
- Residuals are obtained by

$$
\boldsymbol{r}_{n+1}=\left(\boldsymbol{I}-\omega_{j+1} \boldsymbol{A}\right) \boldsymbol{v}_{n} \quad \text { with } \quad \boldsymbol{v}_{n} \in \mathcal{G}_{j} \cap \boldsymbol{P}^{\perp}
$$

Proposed Numerical Matrix Solver IDR(s)

- IDR is proposed by P. Sonneveld in 1980;
- Krylov subspace method;
- Generate residuals \boldsymbol{r}_{n} that are in the subspace \mathcal{G}_{j} with decreasing dimension;

$$
\mathcal{G}_{j}=\left(\boldsymbol{I}-\omega_{j} \boldsymbol{A}\right)\left(\mathcal{G}_{j-1} \cap \boldsymbol{P}^{\perp}\right),
$$

with $\mathcal{G}_{0}=\mathcal{K}^{N}\left(\boldsymbol{A} ; \boldsymbol{v}_{0}\right)$ and $\boldsymbol{P} \in \mathbb{C}^{N \times s}$.

- Based on the IDR theorem [13], which states that
(i) $\mathcal{G}_{j} \subset \mathcal{G}_{j-1}$ for all $\mathcal{G}_{j-1} \neq\{\mathbf{0}\}, j>0$,
(ii) $\mathcal{G}_{j}=\{\mathbf{0}\}$ for some $j \leq N$
- Residuals are obtained by

$$
\boldsymbol{r}_{n+1}=\left(\boldsymbol{I}-\omega_{j+1} \boldsymbol{A}\right) \boldsymbol{v}_{n} \quad \text { with } \quad \boldsymbol{v}_{n} \in \mathcal{G}_{j} \cap \boldsymbol{P}^{\perp}
$$

- Requires at most $N+\frac{N}{s}$ matrix-vector multiplications.

Proposed Numerical Matrix Solver IDR(s)

Freedom in the $\operatorname{IDR}(s)$ algorithm

Proposed Numerical Matrix Solver IDR(s)

Freedom in the $\operatorname{IDR}(s)$ algorithm

- Choosing P.

Proposed Numerical Matrix Solver IDR(s)

Freedom in the $\operatorname{IDR}(s)$ algorithm

- Choosing \boldsymbol{P}.

$$
\mathcal{G}_{j}=\left(\boldsymbol{I}-\omega_{j} \boldsymbol{A}\right)\left(\mathcal{G}_{j-1} \cap \boldsymbol{P}^{\perp}\right)
$$

Currently orthogonalized random vectors are used.

Proposed Numerical Matrix Solver IDR(s)

Freedom in the $\operatorname{IDR}(s)$ algorithm

- Choosing \boldsymbol{P}.

$$
\mathcal{G}_{j}=\left(\boldsymbol{I}-\omega_{j} \boldsymbol{A}\right)\left(\mathcal{G}_{j-1} \cap \boldsymbol{P}^{\perp}\right)
$$

- Choosing ω_{j}.

Proposed Numerical Matrix Solver $\operatorname{lDR}(s)$

Freedom in the $\operatorname{IDR}(s)$ algorithm

- Choosing \boldsymbol{P}.

$$
\mathcal{G}_{j}=\left(\boldsymbol{I}-\omega_{j} \boldsymbol{A}\right)\left(\mathcal{G}_{j-1} \cap \boldsymbol{P}^{\perp}\right)
$$

- Choosing ω_{j}. For each residual in \mathcal{G}_{j} the same ω_{j} is needed, currently based on a strategy proposed by Sleijpen and Van der Vorst. [11]

Proposed Numerical Matrix Solver IDR(s)

Freedom in the $\operatorname{IDR}(s)$ algorithm

- Choosing \boldsymbol{P}.
- Choosing ω_{j}.
- Building \mathcal{G}_{0}.

Proposed Numerical Matrix Solver IDR(s)

Freedom in the $\operatorname{IDR}(s)$ algorithm

- Choosing \boldsymbol{P}.
- Choosing ω_{j}.
- Building \mathcal{G}_{0}.
(i) Can be done using a simple Krylov method;

Proposed Numerical Matrix Solver IDR(s)

Freedom in the $\operatorname{IDR}(s)$ algorithm

- Choosing \boldsymbol{P}.
- Choosing ω_{j}.
- Building \mathcal{G}_{0}.
(i) Can be done using a simple Krylov method;
(ii) Can be chosen freely as long as \mathcal{G}_{0} is the complete Krylov subspace \mathcal{K}^{N}.

Proposed Numerical Matrix Solver

Shifted Laplace preconditioner

- The shifted Laplace preconditioner [6], used in our experiments, is given by

$$
\boldsymbol{K}=\left(-\boldsymbol{L}-\boldsymbol{C}-i\left|z_{1}\right| \boldsymbol{M}\right),
$$

with $z_{1}=\left(n_{0}-\frac{i W}{\omega}\right)$.

Proposed Numerical Matrix Solver

Shifted Laplace preconditioner

- The shifted Laplace preconditioner [6], used in our experiments, is given by

$$
\boldsymbol{K}=\left(-\boldsymbol{L}-\boldsymbol{C}-i\left|z_{1}\right| \boldsymbol{M}\right),
$$

with $z_{1}=\left(n_{0}-\frac{i W}{\omega}\right)$.

- The matrix \boldsymbol{K} is approximated with the incomplete LU factorization.

Proposed Numerical Matrix Solver

Shifted Laplace preconditioner

- The shifted Laplace preconditioner [6], used in our experiments, is given by

$$
\boldsymbol{K}=\left(-\boldsymbol{L}-\boldsymbol{C}-i\left|z_{1}\right| \boldsymbol{M}\right),
$$

with $z_{1}=\left(n_{0}-\frac{i W}{\omega}\right)$.

- The matrix \boldsymbol{K} is approximated with the incomplete LU factorization.
- The preconditioned system is given by

$$
\left(-\boldsymbol{L}-\boldsymbol{C}-i\left|z_{1}\right| \boldsymbol{M}\right)^{-1}\left(-\boldsymbol{L}-\boldsymbol{C}+z_{1} \boldsymbol{M}\right) \boldsymbol{a}=\left(-\boldsymbol{L}-\boldsymbol{C}-i\left|z_{1}\right| \boldsymbol{M}\right)^{-1} \boldsymbol{f}
$$

Proposed Numerical Matrix Solver

Shifted Laplace preconditioner

- The shifted Laplace preconditioner [6], used in our experiments, is given by

$$
\boldsymbol{K}=\left(-\boldsymbol{L}-\boldsymbol{C}-i\left|z_{1}\right| \boldsymbol{M}\right),
$$

with $z_{1}=\left(n_{0}-\frac{i W}{\omega}\right)$.

- The matrix \boldsymbol{K} is approximated with the incomplete LU factorization.
- The preconditioned system is given by

$$
\left(-\boldsymbol{L}-\boldsymbol{C}-i\left|z_{1}\right| \boldsymbol{M}\right)^{-1}\left(-\boldsymbol{L}-\boldsymbol{C}+z_{1} \boldsymbol{M}\right) \boldsymbol{a}=\left(-\boldsymbol{L}-\boldsymbol{C}-i\left|z_{1}\right| \boldsymbol{M}\right)^{-1} \boldsymbol{f}
$$

If L and C are symmetric positive semidefinite real matrices and \boldsymbol{M} symmetric positive definite real matrix, that the eigenvalues of the preconditioned system lie inside or on a circle. [19]

Outline

(1) The MSc Project

(2) Geometry and Wave Motion
(3) The Mild-Slope Equation
(4) Numerical Implementation
(5) Proposed Numerical Matrix Solver
(6) Numerical Experiments
(7) Research Objectives

Numerical Experiments

Problem dimension \& used matrix-solvers

The following test problem is considered:

Numerical Experiments

Problem dimension \& used matrix-solvers

The following test problem is considered:

- Harbour of Scheveningen;

Numerical Experiments

Problem dimension \& used matrix-solvers

The following test problem is considered:

- Harbour of Scheveningen;
- 126.504 internal triangular elements;
- 2.213 boundary line segments;
- 63.253 unknowns;

Numerical Experiments

Problem dimension \& used matrix-solvers

The following test problem is considered:

- Harbour of Scheveningen;
- 126.504 internal triangular elements;
- 2.213 boundary line segments;
- 63.253 unknowns;
- 25 outer iterations.

Numerical Experiments

Problem dimension \& used matrix-solvers

The following test problem is considered:

- Harbour of Scheveningen;
- 126.504 internal triangular elements;
- 2.213 boundary line segments;
- 63.253 unknowns;
- 25 outer iterations.

With the numerical methods and preconditioners:

Numerical Experiments

Problem dimension \& used matrix-solvers

The following test problem is considered:

- Harbour of Scheveningen;
- 126.504 internal triangular elements;
- 2.213 boundary line segments;
- 63.253 unknowns;
- 25 outer iterations.

With the numerical methods and preconditioners:

- Bi-CGSTAB,

Numerical Experiments

Problem dimension \& used matrix-solvers

The following test problem is considered:

- Harbour of Scheveningen;
- 126.504 internal triangular elements;
- 2.213 boundary line segments;
- 63.253 unknowns;
- 25 outer iterations.

With the numerical methods and preconditioners:

- Bi-CGSTAB, CG-S,

Numerical Experiments

Problem dimension \& used matrix-solvers

The following test problem is considered:

- Harbour of Scheveningen;
- 126.504 internal triangular elements;
- 2.213 boundary line segments;
- 63.253 unknowns;
- 25 outer iterations.

With the numerical methods and preconditioners:

- Bi-CGSTAB, CG-S, IDR(2),

Numerical Experiments

Problem dimension \& used matrix-solvers

The following test problem is considered:

- Harbour of Scheveningen;
- 126.504 internal triangular elements;
- 2.213 boundary line segments;
- 63.253 unknowns;
- 25 outer iterations.

With the numerical methods and preconditioners:

- Bi-CGSTAB, CG-S, IDR(2), IDR(4);

Numerical Experiments

Problem dimension \& used matrix-solvers

The following test problem is considered:

- Harbour of Scheveningen;
- 126.504 internal triangular elements;
- 2.213 boundary line segments;
- 63.253 unknowns;
- 25 outer iterations.

With the numerical methods and preconditioners:

- Bi-CGSTAB, CG-S, IDR(2), IDR(4);
- ILU(0),

Numerical Experiments

Problem dimension \& used matrix-solvers

The following test problem is considered:

- Harbour of Scheveningen;
- 126.504 internal triangular elements;
- 2.213 boundary line segments;
- 63.253 unknowns;
- 25 outer iterations.

With the numerical methods and preconditioners:

- Bi-CGSTAB, CG-S, IDR(2), IDR(4);
- ILU(0), ILU(0)-Shifted Laplace.

Numerical Experiments

Number of matrix-vector products

(c) Number of matvecs for the ILU(0) preconditioned system

(d) Number of matvecs for the ILU(0)shifted laplace preconditioned system

Numerical Experiments

Computational time

	Numerical method			
	Bi-CGSTAB	CG-S	IDR(2)	IDR(4)
ILU(0)	$3.0192 \cdot 10^{3}$	$4.1053 \cdot 10^{3}$	$1.2303 \cdot 10^{3}$	$1.2863 \cdot 10^{3}$
ILU(0)-SL	$1.8525 \cdot 10^{3}$	$2.6634 \cdot 10^{3}$	$0.7361 \cdot 10^{3}$	$0.9741 \cdot 10^{3}$

Table: CPU time until the whole process is completed.

Numerical Experiments

Computational time

	Numerical method			
	Bi-CGSTAB	CG-S	$\operatorname{IDR}(2)$	$\operatorname{IDR}(4)$
ILU(0)	$3.0192 \cdot 10^{3}$	$4.1053 \cdot 10^{3}$	$1.2303 \cdot 10^{3}$	$1.2863 \cdot 10^{3}$
ILU(0)-SL	$1.8525 \cdot 10^{3}$	$2.6634 \cdot 10^{3}$	$0.7361 \cdot 10^{3}$	$0.9741 \cdot 10^{3}$

Table: CPU time until the whole process is completed.

Using $\operatorname{IDR}(s)$ preconditioned with the incomplete LU factorization of the shifted Laplace matrix speeds the computational time up with a factor three.

Outline

(1) The MSc Project

(2) Geometry and Wave Motion
(3) The Mild-Slope Equation
(4) Numerical Implementation
(5) Proposed Numerical Matrix Solver
(6) Numerical Experiments
(7) Research Objectives

Research objectives

Improvement of HARES :

Research objectives

Improvement of HARES :

- The non-linear part;

Research objectives

Improvement of HARES:

- The non-linear part;
(i) Currently just 25 outer iterations;

Research objectives

Improvement of HARES:

- The non-linear part;
(i) Currently just 25 outer iterations;
(ii) Implementing a stopping criterion;

Research objectives

Improvement of HARES:

- The non-linear part;
(i) Currently just 25 outer iterations;
(ii) Implementing a stopping criterion;
(iii) Total error.

Research objectives

Improvement of HARES :

- The non-linear part;
- Testing the numerical methods on several test problems;

Research objectives

Improvement of HARES :

- The non-linear part;
- Testing the numerical methods on several test problems;
- Implementation into FORTRAN.

Research objectives

Improvement of HARES :

- The non-linear part;
- Testing the numerical methods on several test problems;
- Implementation into FORTRAN.

Theoretical research:

Research objectives

Improvement of HARES :

- The non-linear part;
- Testing the numerical methods on several test problems;
- Implementation into FORTRAN.

Theoretical research:

- Spectral analysis for preconditioner of the Mild-Slope equation;

Research objectives

Improvement of HARES :

- The non-linear part;
- Testing the numerical methods on several test problems;
- Implementation into FORTRAN.

Theoretical research:

- Spectral analysis for preconditioner of the Mild-Slope equation;
(i) Analysis in [19] not identical for Mild-Slope equation;

Research objectives

Improvement of HARES :

- The non-linear part;
- Testing the numerical methods on several test problems;
- Implementation into FORTRAN.

Theoretical research:

- Spectral analysis for preconditioner of the Mild-Slope equation;
(i) Analysis in [19] not identical for Mild-Slope equation;
(ii) Determine an optimal shift when possible;

Research objectives

Improvement of HARES :

- The non-linear part;
- Testing the numerical methods on several test problems;
- Implementation into FORTRAN.

Theoretical research:

- Spectral analysis for preconditioner of the Mild-Slope equation;
(i) Analysis in [19] not identical for Mild-Slope equation;
(ii) Determine an optimal shift when possible;
(iii) How should we approximate the shifted Laplace preconditioner.

Research objectives

Improvement of HARES :

- The non-linear part;
- Testing the numerical methods on several test problems;
- Implementation into FORTRAN.

Theoretical research:

- Spectral analysis for preconditioner of the Mild-Slope equation;
- Choosing the coefficients ω_{j} based on Ritz-values;

Research objectives

Improvement of HARES:

- The non-linear part;
- Testing the numerical methods on several test problems;
- Implementation into FORTRAN.

Theoretical research:

- Spectral analysis for preconditioner of the Mild-Slope equation;
- Choosing the coefficients ω_{j} based on Ritz-values;

When the spectrum is a circle we might be able to determine the Ritz-values such that the polynomial

$$
Q_{j}(\boldsymbol{A})=\left(\boldsymbol{I}-\omega_{1} \boldsymbol{A}\right) \ldots\left(\boldsymbol{I}-\omega_{j} \boldsymbol{A}\right)
$$

has a minimal maximum on the spectrum.

Research objectives

Improvement of HARES :

- The non-linear part;
- Testing the numerical methods on several test problems;
- Implementation into FORTRAN.

Theoretical research:

- Spectral analysis for preconditioner of the Mild-Slope equation;
- Choosing the coefficients ω_{j} based on Ritz-values;
- Can smartly building \mathcal{G}_{0} lead to convergence speed up.

Questions

QUESTIONS?

Figure diffraction \& reflection

Figure: The harbour of Scheveningen. The effects of diffraction - reflection visible

Figure refraction \& shoaling

(a) Refraction

(Plummer et al., 2001)
(b) Shoaling

Bibliography I

J．A．Battjes and J．P．F．M．Janssen．Energy loss and set－up due to breaking of random waves．
Proc．16th Int．Conf．on Coastal Engineering， 1978.
J．C．W．Berkhoff．Mathematical models for simple harmonic linear water wave models；wave refraction and diffraction．
PhD thesis，Technical University of Delft， 1976.
U．S．Army Coastal Engineering Research Center．Shore Protection Manual．
U．S．Government Printing Office，Washington D．C．， 1984.

M．W．Dingemans．Water wave propagation over uneven bottoms，Part 1 －Linear Wave Propagation． World Scientific，first edition， 1997.

B．J．O．Eikema and B．C．van Prooijen．HARES－numerical model for the determination of wave penetration in harbour basins．
Svasek－rapport t．b．v．validatie HARES， 2005.
Y．A．Erlangga，C．Vuik，and C．W．Oosterlee．On a class of preconditioners for solving the helmholtz equation． Applied Numerical Mathematics，50：409－425， 2004.

R．Fletcher．Conjugate gradient methods for indefinite systems．
Lecture Notes in Math，506：73－89， 1976.
C．C．Mei．The Applied Dynamics of Ocean Surface Waves．
World Scientific，second edition， 1989.
J．A．Meijerink and H．A．van der Vorst．An iterative solution method for linear systems of which the coefficient matrix is a symmetric m－matrix．
Math．of Comput．，31：148－162， 1977.

Bibliography II

Y．Saad．Iterative Methods for Sparse Linear Systems．
SIAM，second edition， 2003.
G．L．G．Sleijpen and H．A．van der Vorst．Maintaining convergence properties of BiCGstab methods in finite precision arithmetic．
Numerical Algorithms，10：203－223， 1995.
P．Sonneveld．CGS，a fast lanczos－type solver for non symmetric systems．
SIAM J．Sci．Statist．Comput．，20：36－52， 1989.
P．Sonneveld and M．B．van Gijzen． $\operatorname{IDR}(s)$ ：A family of simple and fast algorithms for solving large nonsymmetric systems of linear equations．
SIAM J．Sci．Comput．，31（2）：1035－1062， 2008.
R．M．Sorensen．Basic Coastal Engineering．
Chapman and Hall，second edition， 1997.
H．N．Southgate．Review of wave breaking in shallow water．
Society for Underwater Technology，Wave Kinematics and Environmental Forces，Volume 29， 1993.
A．van der Ploeg．Preconditioning for sparse matrices with applications．
PhD thesis，Rijksuniversiteit Groningen， 1994.
H．A．van der Vorst．Bi－CGSTAB：A fast and smoothly converging variant of BI－CG for the solution of nonsymmetric linear systems．
SIAM J．Sci．Statist．Comput．，Volume 13：631－644， 1992.
H．A．van der Vorst．Iterative Krylov Methods for Large Linear Systems．
Cambridge University Press，first edition， 2003.

Bibliography III

```
M.B. van Gijzen, Y.A. Erlangga, and C. Vuik. Spectral analysis of the discrete helmholtz operator preconditioned with a shifted laplacian.
SIAM J. Sci. Comput., 29(5), 2007.
M.B. van Gijzen and P. Sonneveld. An elegant \(\operatorname{IDR}(s)\) variant that efficiently exploits bi-orthogonality properties. Technical Report 10-16, Department of Applied Mathematical Analysis, 2010.
J. van Kan, A. Segal, and F. Vermolen. Numerical methods in Scientific Computing. VSSD, improved edition, 2008.
P.J. Visser. A mathematical model of uniform longshore currents and the comparison with laboratory data. Communications on hydraulics 84-2, 1984.
O.C. Zienkewicz. Finite element method in Engineering Science.
MC Graw-Hill, 1971.
```

