Acceleration of the 2D Helmholtz model HARES

Gemma van de Sande

Delft University of Technology

May 23, 2012

Gemma van de Sande (DUT)

Acceleration of HARES

May 23, 2012 1 / 39

Outline

Introduction

- 2 Mild-Slope equation
- Initial implementation
- Proposed improvements
- 5 Numerical experiments
- 6 Conclusions & Recommendations

Future research

Outline

Introduction

- 2 Mild-Slope equation
- Initial implementation
- Proposed improvements
- 5 Numerical experiments
- 6 Conclusions & Recommendations

Future research

• HARES \rightarrow HArbour RESonance.

▲ @ ▶ ▲ Ξ

- HARES \rightarrow HArbour RESonance.
- Determines wave penetration into harbours.

- HARES \rightarrow HArbour RESonance.
- Determines wave penetration into harbours.
- Uses the non-linear Mild-Slope equation.

- HARES \rightarrow HArbour RESonance.
- Determines wave penetration into harbours.
- Uses the non-linear Mild-Slope equation.
- Developed by Svašek Hydraulics.
 - ◊ Consultant in coastal, harbour and river engineering.
 - Specialized in numerical fluid dynamics.

Figure: The harbour of Scheveningen

Gemma van de Sande (DUT)

Acceleration of HARES

May 23, 2012 5 / 39

PROBLEM

For large domains, when the number of unknowns is large, the computing time becomes undesirably lengthy.

PROBLEM

For large domains, when the number of unknowns is large, the computing time becomes undesirably lengthy.

TASK

Accelerate HARES, decrease the computing time.

Outline

Introduction

2 Mild-Slope equation

- 3 Initial implementation
- Proposed improvements
- 5 Numerical experiments
- 6 Conclusions & Recommendations

Future research

h(x,y) Water depth H Wave height $\label{eq:logistical} \begin{array}{l} L \mbox{ Wave length} \\ \zeta(x,y,t) \mbox{ Elevation of the free surface} \end{array}$

Objects in the domain
$$\implies$$
 $\begin{cases} - & \text{Diffraction} \\ - & \text{Reflection} \end{cases}$
Decreasing water depth \implies $\begin{cases} - & \text{Refraction} \\ - & \text{Shoaling} \end{cases}$

- Diffraction
- Reflection

 \Longrightarrow Linear Mild-Slope equation

- Refraction

Diffraction Reflection Refraction Shoaling

- $\left.\begin{array}{ll} & {\sf Wave \ breaking} \\ & {\sf Bottom \ friction} \end{array}\right\} \Longrightarrow {\sf Non-linear \ term \ in \ the \ Mild-Slope \ equation}$

- Diffraction
- Reflection
- Refraction
- Shoaling
- Wave breaking
- Bottom friction _

 \implies Non-linear Mild-Slope equation

• Water is an ideal fluid, i.e. homogeneous, inviscid, irrotational and incompressible flow.

- Water is an ideal fluid, i.e. homogeneous, inviscid, irrotational and incompressible flow.
- Pressure at the free surface is constant and uniform.

- Water is an ideal fluid, i.e. homogeneous, inviscid, irrotational and incompressible flow.
- Pressure at the free surface is constant and uniform.

• Wave slope
$$\epsilon_s = rac{2\pi A}{L}$$
 is small.

- Water is an ideal fluid, i.e. homogeneous, inviscid, irrotational and incompressible flow.
- Pressure at the free surface is constant and uniform.

• Wave slope
$$\epsilon_s = \frac{2\pi A}{L}$$
 is small.

• Wave motion is harmonic in time.

- Water is an ideal fluid, i.e. homogeneous, inviscid, irrotational and incompressible flow.
- Pressure at the free surface is constant and uniform.

• Wave slope
$$\epsilon_s = \frac{2\pi A}{L}$$
 is small.

- Wave motion is harmonic in time.
- Surface tension and Coriolis effect can be neglected.

- Water is an ideal fluid, i.e. homogeneous, inviscid, irrotational and incompressible flow.
- Pressure at the free surface is constant and uniform.

• Wave slope
$$\epsilon_s = \frac{2\pi A}{L}$$
 is small.

- Wave motion is harmonic in time.
- Surface tension and Coriolis effect can be neglected.
- Changes in bottom topography are small.

The non-linear Mild-Slope equation is given by

$$\nabla \cdot \left(\frac{n_0}{k_0^2} \nabla \tilde{\zeta}\right) + \left(n_0 - \frac{iW}{\omega}\right) \tilde{\zeta} = 0.$$

With

 $\begin{array}{l} n_0(x,y) \mbox{ Parameter } n_0 \in [\frac{1}{2},1] \\ k_0(x,y) \mbox{ Wave number} \\ \tilde{\zeta}(x,y) \mbox{ Elevation of the free surface} \\ W(x,y,\tilde{\zeta}) \mbox{ Dissipation of wave energy} \end{array}$

 ω Wave frequency

$$i = \sqrt{-1}$$
$$\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)^T$$

The non-linear Mild-Slope equation is given by

$$\nabla \cdot \left(\frac{n_0}{k_0^2} \nabla \tilde{\zeta}\right) + \left(n_0 - \frac{iW}{\omega}\right) \tilde{\zeta} = 0.$$

Non-linearity

$$W(x, y, \tilde{\zeta})\tilde{\zeta} = \left(\mathcal{A}|\tilde{\zeta}| + \frac{\mathcal{B}}{|\tilde{\zeta}|^2}\right)\tilde{\zeta}$$

We make the distinction between two types of boundaries, i.e.

- The *open boundary* with an incoming wave from the exterior and an outgoing wave from the interior.
- The *closed boundary* where (partial) reflection occurs.

We make the distinction between two types of boundaries, i.e.

- The *open boundary* with an incoming wave from the exterior and an outgoing wave from the interior.
- The *closed boundary* where (partial) reflection occurs.

Non-linear Mild-Slope equation Boundary conditions

The condition for the open boundary is given by

$$\frac{\partial \tilde{\zeta}}{\partial n} = -i \left\{ \hat{p}(\tilde{\zeta} - \tilde{\zeta}_{in}) + \frac{1}{2\hat{p}} \left(\frac{\partial^2 \tilde{\zeta}}{\partial s^2} - \frac{\partial^2 \tilde{\zeta}_{in}}{\partial s^2} \right) - \hat{p}(\boldsymbol{e}_{in} \cdot \boldsymbol{n}) \tilde{\zeta}_{in} \right\}.$$

The condition for the open boundary is given by

$$\frac{\partial \tilde{\zeta}}{\partial n} = -i \left\{ \hat{p}(\tilde{\zeta} - \tilde{\zeta}_{in}) + \frac{1}{2\hat{p}} \left(\frac{\partial^2 \tilde{\zeta}}{\partial s^2} - \frac{\partial^2 \tilde{\zeta}_{in}}{\partial s^2} \right) - \hat{p}(\boldsymbol{e}_{in} \cdot \boldsymbol{n}) \tilde{\zeta}_{in} \right\}.$$

The condition for the *closed boundary* is given by

$$\frac{\partial \tilde{\zeta}}{\partial n} = -i \left(\frac{1-R}{1+R} \right) \left\{ \hat{p} \tilde{\zeta} + \frac{1}{2\hat{p}} \frac{\partial^2 \tilde{\zeta}}{\partial s^2} \right\}.$$

The condition for the open boundary is given by

$$\frac{\partial \tilde{\zeta}}{\partial n} = -i \left\{ \hat{p}(\tilde{\zeta} - \tilde{\zeta}_{in}) + \frac{1}{2\hat{p}} \left(\frac{\partial^2 \tilde{\zeta}}{\partial s^2} - \frac{\partial^2 \tilde{\zeta}_{in}}{\partial s^2} \right) - \hat{p}(\boldsymbol{e}_{in} \cdot \boldsymbol{n}) \tilde{\zeta}_{in} \right\}.$$

The condition for the *closed boundary* is given by

$$\frac{\partial \tilde{\zeta}}{\partial n} = -i \left(\frac{1-R}{1+R} \right) \left\{ \hat{p} \tilde{\zeta} + \frac{1}{2\hat{p}} \frac{\partial^2 \tilde{\zeta}}{\partial s^2} \right\}.$$

With

$$\hat{p}(x,y,\tilde{\zeta})$$
 Modified wave number R Reflection coefficient $\tilde{\zeta}_{in}$ Incoming wave $i = \sqrt{-1}$

Gemma van de Sande (DUT)

Acceleration of HARES

Outline

Introduction

- 2 Mild-Slope equation
- Initial implementation
 - 4 Proposed improvements
 - 5 Numerical experiments
 - 6 Conclusions & Recommendations

Future research

HARES consist of three parts, i.e.

- Outer loop to deal with the non-linearity of the equation.
 - $\rightarrow\,$ Non-linear Mild-Slope equation is linearised.
- **②** Spatial discretization of the linearised Mild-Slope equation.
 - ightarrow Results in a system of equations $S \zeta = b$.
- ${f 0}$ Inner loop to determine the solution of $S\zeta=b.$

The current programme has the following implementation:

- Outer loop: Picard iteration.
- Spatial discretization: Ritz-Galerkin finite element method.
- Inner loop: ILU(0) Bi-CGSTAB.

Using Picard iteration the non-linear Mild-Slope equation is linearised with the following steps:

Using Picard iteration the non-linear Mild-Slope equation is linearised with the following steps:

• Use the previous iterative solution $\tilde{\zeta}^k$ to compute a value for $W(x,y,\tilde{\zeta})$ and $\hat{p}(x,y,\tilde{\zeta})$.

Using Picard iteration the non-linear Mild-Slope equation is linearised with the following steps:

- Use the previous iterative solution $\tilde{\zeta}^k$ to compute a value for $W(x,y,\tilde{\zeta})$ and $\hat{p}(x,y,\tilde{\zeta})$.
- 2 Determine the next iterative solution $\tilde{\zeta}^{k+1}$.

Using Picard iteration the non-linear Mild-Slope equation is linearised with the following steps:

- Use the previous iterative solution $\tilde{\zeta}^k$ to compute a value for $W(x,y,\tilde{\zeta})$ and $\hat{p}(x,y,\tilde{\zeta})$.
- 2 Determine the next iterative solution $\tilde{\zeta}^{k+1}$.
- Sepeat steps 1 & 2 until convergence is reached.

Using Picard iteration the non-linear Mild-Slope equation is linearised with the following steps:

- Use the previous iterative solution $\tilde{\zeta}^k$ to compute a value for $W(x,y,\tilde{\zeta})$ and $\hat{p}(x,y,\tilde{\zeta})$.
- 2 Determine the next iterative solution $\tilde{\zeta}^{k+1}$.
- Sepeat steps 1 & 2 until convergence is reached.

The current programme repeats steps 1 & 2 25 times without knowing whether convergence has been reached.

Divide the domain into linear triangular elements.

- Two types of elements:
 - ◊ Internal elements.
 - ◊ Boundary elements.
- Number of nodes N = Number of unknowns.

- Divide the domain into linear triangular elements.
- Oerive the weak formulation of the PDE.

Multiply the PDE by a test function $\eta(x,y),$ integrate it over the domain Ω and apply the boundary conditions.

The Ritz-Galerkin finite element method consist of the following steps:

- Divide the domain into linear triangular elements.
- ② Derive the weak formulation of the PDE.
- Solution by a linear combination of basis functions.

$$\tilde{\zeta}(x,y) \approx \sum_{j=1}^{N} \zeta_j \psi_j(x,y),$$

- $\psi_j(x,y)$ piecewise linear basis function.
- N unknown coefficients ζ_j .

- Divide the domain into linear triangular elements.
- ② Derive the weak formulation of the PDE.
- S Approximate the solution by a linear combination of basis functions.
- Replace the test function by each of the basis function separately.

 $\eta(x,y) \to \psi_m(x,y)$

- Divide the domain into linear triangular elements.
- Oerive the weak formulation of the PDE.
- S Approximate the solution by a linear combination of basis functions.
- Replace the test function by each of the basis function separately.
- Determine the element matrix S^e and element vector b^e for each element, with $S^e \in \mathbb{C}^{3 \times 3}$ and $b^e \in \mathbb{C}^3$.

- Divide the domain into linear triangular elements.
- Oerive the weak formulation of the PDE.
- S Approximate the solution by a linear combination of basis functions.
- Replace the test function by each of the basis function separately.
- Determine the element matrix S^e and element vector b^e for each element, with $S^e \in \mathbb{C}^{3 \times 3}$ and $b^e \in \mathbb{C}^3$.
- Solution the global matrix S and global vector b, with $S \in \mathbb{C}^{N \times N}$ and $b \in \mathbb{C}^N$.

 $oldsymbol{S}^e
ightarrow oldsymbol{S}$ and $oldsymbol{b}^e
ightarrow oldsymbol{b}$

- Divide the domain into linear triangular elements.
- Oerive the weak formulation of the PDE.
- S Approximate the solution by a linear combination of basis functions.
- Replace the test function by each of the basis function separately.
- Determine the element matrix S^e and element vector b^e for each element, with $S^e \in \mathbb{C}^{3 \times 3}$ and $b^e \in \mathbb{C}^3$.
- Obtain the global matrix S and global vector b, with $S \in \mathbb{C}^{N \times N}$ and $b \in \mathbb{C}^N$.
- ② Compute the solution in each node by solving $S\zeta = b$.

Non-linear Mild-Slope equation

$$abla \cdot \left(rac{n_0}{k_0^2}
abla ilde{\zeta}
ight) + \left(n_0 - rac{iW}{\omega}
ight) ilde{\zeta} = 0 \quad ext{and BC's}$$

Application of the Ritz-Galerkin finite element method results in element matrices of the following form:

Non-linear Mild-Slope equation

$$\nabla\cdot\left(\frac{n_0}{k_0^2}\nabla\tilde{\zeta}\right)+\left(n_0-\frac{iW}{\omega}\right)\tilde{\zeta}=0 \quad \text{and BC's}$$

Application of the Ritz-Galerkin finite element method results in element matrices of the following form:

$$\boldsymbol{S}^{e} = -\frac{n_{0}}{k_{0}^{2}}\boldsymbol{L}^{e} + \left(n_{0} - \frac{iW}{\omega}\right)\boldsymbol{M}^{e} - i\frac{n_{0}}{k_{0}^{2}}\left(\frac{1-R}{1+R}\right)\boldsymbol{C}^{e}.$$

Non-linear Mild-Slope equation

$$\nabla\cdot\left(\frac{n_0}{k_0^2}\nabla\tilde{\zeta}\right)+\left(n_0-\frac{iW}{\omega}\right)\tilde{\zeta}=0 \quad \text{and BC's}$$

Application of the Ritz-Galerkin finite element method results in element matrices of the following form:

$$\boldsymbol{S}^{e} = -\frac{n_{0}}{k_{0}^{2}}\boldsymbol{L}^{e} + \left(n_{0} - \frac{iW}{\omega}\right)\boldsymbol{M}^{e} - i\frac{n_{0}}{k_{0}^{2}}\left(\frac{1-R}{1+R}\right)\boldsymbol{C}^{e}.$$

$$\nabla \cdot \left(\frac{n_0}{k_0^2} \nabla \tilde{\zeta}\right) \quad \Longrightarrow \quad -\frac{n_0}{k_0^2} L^e$$

Gemma van de Sande (DUT)

Acceleration of HARES

May 23, 2012 19 / 39

Non-linear Mild-Slope equation

$$abla \cdot \left(rac{n_0}{k_0^2}
abla ilde{\zeta}
ight) + \left(n_0 - rac{iW}{\omega}
ight) ilde{\zeta} = 0 \quad ext{and BC's}$$

Application of the Ritz-Galerkin finite element method results in element matrices of the following form:

$$\boldsymbol{S}^{e} = -\frac{n_{0}}{k_{0}^{2}}\boldsymbol{L}^{e} + \left(n_{0} - \frac{iW}{\omega}\right)\boldsymbol{M}^{e} - i\frac{n_{0}}{k_{0}^{2}}\left(\frac{1-R}{1+R}\right)\boldsymbol{C}^{e}.$$

$$\left(n_0 - \frac{iW}{\omega}\right) \tilde{\zeta} \implies \left(n_0 - \frac{iW}{\omega}\right) M^e$$

Gemma van de Sande (DUT)

Acceleration of HARES

May 23, 2012 19 / 39

Non-linear Mild-Slope equation

$$\nabla\cdot\left(\frac{n_0}{k_0^2}\nabla\tilde{\zeta}\right)+\left(n_0-\frac{iW}{\omega}\right)\tilde{\zeta}=0 \quad \text{and BC's}$$

Application of the Ritz-Galerkin finite element method results in element matrices of the following form:

$$\boldsymbol{S}^{e} = -\frac{n_{0}}{k_{0}^{2}}\boldsymbol{L}^{e} + \left(n_{0} - \frac{iW}{\omega}\right)\boldsymbol{M}^{e} - i\frac{n_{0}}{k_{0}^{2}}\left(\frac{1-R}{1+R}\right)\boldsymbol{C}^{e}.$$

Boundary conditions $\implies -i\frac{n_0}{k_0^2}\left(\frac{1-R}{1+R}\right)C^e$

Non-linear Mild-Slope equation

$$\nabla\cdot\left(\frac{n_0}{k_0^2}\nabla\tilde{\zeta}\right)+\left(n_0-\frac{iW}{\omega}\right)\tilde{\zeta}=0 \quad \text{and BC's}$$

Application of the Ritz-Galerkin finite element method results in element matrices of the following form:

$$\boldsymbol{S}^{e} = -\frac{n_{0}}{k_{0}^{2}}\boldsymbol{L}^{e} + \left(n_{0} - \frac{iW}{\omega}\right)\boldsymbol{M}^{e} - i\frac{n_{0}}{k_{0}^{2}}\left(\frac{1-R}{1+R}\right)\boldsymbol{C}^{e}.$$

• Global matrix S is a symmetric, non-Hermitian, sparse matrix.

Non-linear Mild-Slope equation

$$\nabla\cdot\left(\frac{n_0}{k_0^2}\nabla\tilde{\zeta}\right)+\left(n_0-\frac{iW}{\omega}\right)\tilde{\zeta}=0 \quad \text{and BC's}$$

Application of the Ritz-Galerkin finite element method results in element matrices of the following form:

$$\boldsymbol{S}^{e} = -\frac{n_{0}}{k_{0}^{2}}\boldsymbol{L}^{e} + \left(n_{0} - \frac{iW}{\omega}\right)\boldsymbol{M}^{e} - i\frac{n_{0}}{k_{0}^{2}}\left(\frac{1-R}{1+R}\right)\boldsymbol{C}^{e}.$$

• Global matrix S is a symmetric, non-Hermitian, sparse matrix.

• Global vector \boldsymbol{b} is completely determined by the incoming wave $\tilde{\zeta}_{in}$.

$$S\zeta = b.$$

$$S\zeta = b.$$

S is a general matrix \implies Krylov subspace methods

Solving a system of equations

After linearisation and spatial discretization we obtain the system of equations

$$S\zeta = b.$$

old S is a general matrix	\implies	Krylov subspace methods
---------------------------	------------	-------------------------

• Iterative solution method.

Starting vector ζ_0 , iterations ζ_1 , ζ_2 ,..., ζ_m until the stopping criterion is satisfied.

$$S\zeta = b.$$

S is a general matrix \implies Krylov subspace methods

- Iterative solution method.
- Krylov subspace of dimension m is given by

$$\mathcal{K}_m(\boldsymbol{S};\boldsymbol{r}_0) = span\{\boldsymbol{r}_0,\boldsymbol{S}\boldsymbol{r}_0,\ldots,\boldsymbol{S}^{m-1}\boldsymbol{r}_0\},\$$

with
$$\boldsymbol{r}_0 = \boldsymbol{b} - \boldsymbol{S} \boldsymbol{\zeta}_0$$
.

$$S\zeta = b.$$

S is a general matrix \implies Krylov subspace methods

- Iterative solution method.
- Krylov subspace of dimension m is given by

$$\mathcal{K}_m(\boldsymbol{S};\boldsymbol{r}_0) = span\{\boldsymbol{r}_0,\boldsymbol{S}\boldsymbol{r}_0,\ldots,\boldsymbol{S}^{m-1}\boldsymbol{r}_0\},\$$

with $\boldsymbol{r}_0 = \boldsymbol{b} - \boldsymbol{S} \boldsymbol{\zeta}_0$.

Number of matrix-vector products is an important measure.

$$S\zeta = b.$$

To accelerate the convergence we can apply a preconditioner $m{K}$ to the system of equations, i.e.

$$K^{-1}S\zeta = K^{-1}b$$

$$S\zeta = b.$$

To accelerate the convergence we can apply a preconditioner \boldsymbol{K} to the system of equations, i.e.

$$K^{-1}S\zeta = K^{-1}b$$

ullet Preconditioner $oldsymbol{K}$ is a good approximation of matrix $oldsymbol{S}$

$$S\zeta = b.$$

To accelerate the convergence we can apply a preconditioner \boldsymbol{K} to the system of equations, i.e.

$$K^{-1}S\zeta = K^{-1}b$$

- ullet Preconditioner $oldsymbol{K}$ is a good approximation of matrix $oldsymbol{S}$
- Constructing the preconditioner *K* is not too expensive.

• Proposed by H.A. van der Vorst in 1992.

- Proposed by H.A. van der Vorst in 1992.
- Krylov subspace method.

- Proposed by H.A. van der Vorst in 1992.
- Krylov subspace method.
- Finite method, one iterations has two matrix-vector products.

- Proposed by H.A. van der Vorst in 1992.
- Krylov subspace method.
- Finite method, one iterations has two matrix-vector products.
- Stopping criterion for Bi-CGSTAB

$$\frac{\|\boldsymbol{b} - \boldsymbol{S}\boldsymbol{\zeta}_m\|_2}{\|\boldsymbol{b} - \boldsymbol{S}\boldsymbol{\zeta}_0\|_2} \leq \mathsf{TOL}.$$

- S = LU R.
 - L lower triangular matrix.
 - U upper triangular matrix.
 - *R* residual matrix.

- S = LU R.
- The elements of matrices L and U are determined by
 - L and U have the same zero-pattern as S, i.e. if $s_{i,j} = 0$ then $u_{i,j} = l_{i,j} = 0$ and if $s_{i,j} \neq 0$ then $u_{i,j} \neq 0$ and $l_{i,j} \neq 0$.
 - diag(L) = 1 and diag(U) is determined by the algorithm.

•
$$S = LU - R$$
.

• The elements of matrices L and U are determined by

- L and U have the same zero-pattern as S, i.e. if $s_{i,j} = 0$ then $u_{i,j} = l_{i,j} = 0$ and if $s_{i,j} \neq 0$ then $u_{i,j} \neq 0$ and $l_{i,j} \neq 0$.
- $\operatorname{diag}(\boldsymbol{L}) = 1$ and $\operatorname{diag}(\boldsymbol{U})$ is determined by the algorithm.
- Preconditioning is done by $L^{-1}SU^{-1}y = L^{-1}b$ with y = Ux.

Outline

Introduction

- 2 Mild-Slope equation
- 3 Initial implementation
- Proposed improvements
 - 5 Numerical experiments
 - 6 Conclusions & Recommendations

Future research

To reduce the computing time we propose the following solution methods

To reduce the computing time we propose the following solution methods

Outer loop:

- ◊ Implement a stopping criterion for Picard iteration.
- ◇ Inexact Picard iteration.

To reduce the computing time we propose the following solution methods

Outer loop:

- ◊ Implement a stopping criterion for Picard iteration.
- ◇ Inexact Picard iteration.

Inner loop:

- \diamond IDR(s) combined with the shifted Laplace preconditioner.
- Direct method MUMPS.

- Current programme performs 25 outer iterations.
- A suitable stopping criterion is needed to determine when and whether the non-linear solution is obtained.

$$\frac{\|F(\boldsymbol{\zeta}^k)\|_2}{\|F(\boldsymbol{\zeta}^0)\|_2} \leq \mathsf{TOL}_{\mathsf{residual}}$$

• Value for TOL_{residual} depends on the test case.

Each iteration of Picard iteration we need to determine the solution of the system of equations $S\zeta = b$. This can be done exactly.

Each iteration of Picard iteration we need to determine the solution of the system of equations $S\zeta = b$. This can be done exactly.

However, we can relax this condition with the following stopping criterion

$$\|\boldsymbol{S}\boldsymbol{\zeta}^k - \boldsymbol{b}\|_2 \le \eta_k \|\boldsymbol{b}\|_2,$$

with

$$\eta_k = \mathsf{TOL} \cdot \frac{\|\boldsymbol{\zeta}^k - \boldsymbol{\zeta}^{k-1}\|_2}{\|\boldsymbol{\zeta}^0\|_2}.$$

• IDR is proposed by P. Sonneveld in 1980.

- IDR is proposed by P. Sonneveld in 1980.
- Krylov subspace method.

- IDR is proposed by P. Sonneveld in 1980.
- Krylov subspace method.
- Generate residuals r_n that are in the subspace \mathcal{G}_j with decreasing dimension.

$$\mathcal{G}_j = (\boldsymbol{I} - \omega_j \boldsymbol{A}) \left(\mathcal{G}_{j-1} \cap \boldsymbol{P}^{\perp} \right),$$

with $\mathcal{G}_0 = \mathcal{K}^N(\boldsymbol{A}; \boldsymbol{v}_0)$ and $\boldsymbol{P} \in \mathbb{C}^{N imes s}$.

- IDR is proposed by P. Sonneveld in 1980.
- Krylov subspace method.
- Generate residuals r_n that are in the subspace \mathcal{G}_j with decreasing dimension.
- Based on the IDR theorem

(i)
$$\mathcal{G}_j \subset \mathcal{G}_{j-1}$$
 for all $\mathcal{G}_{j-1} \neq \{\mathbf{0}\}, j > 0$,
(ii) $\mathcal{G}_j = \{\mathbf{0}\}$ for some $j \leq N$.

Solving a system of equations IDR(s)

- IDR is proposed by P. Sonneveld in 1980.
- Krylov subspace method.
- Generate residuals r_n that are in the subspace \mathcal{G}_j with decreasing dimension.
- Based on the IDR theorem
- (i) $\mathcal{G}_j \subset \mathcal{G}_{j-1}$ for all $\mathcal{G}_{j-1} \neq \{\mathbf{0}\}, j > 0$,
- (ii) $\mathcal{G}_j = \{\mathbf{0}\}$ for some $j \leq N$.
- \implies Finite method, requires at most $N + \frac{N}{s}$ matrix-vector multiplications.

- IDR is proposed by P. Sonneveld in 1980.
- Krylov subspace method.
- Generate residuals r_n that are in the subspace \mathcal{G}_j with decreasing dimension.
- Based on the IDR theorem
- Stopping criterion implemented in IDR(s)

$$\frac{\|\boldsymbol{b} - \boldsymbol{S}\boldsymbol{\zeta}_m\|_2}{\|\boldsymbol{b}\|_2} \leq \mathsf{TOL}.$$

$$\mathbf{K}^{e} = -\frac{n_{0}}{k_{0}^{2}}\mathbf{L}^{e} - \xi^{2}\mathbf{M}^{e} - i\frac{n_{0}}{k_{0}^{2}}\left(\frac{1-R}{1+R}\right)\mathbf{C}^{e}$$

with $\mathbf{K}^e \in \mathbb{C}^{3 imes 3}$ and ξ^2 the shift parameter.

Solving a system of equations Shifted Laplace preconditioner

For each element the shifted Laplace preconditioner is given by

$$K^{e} = -rac{n_{0}}{k_{0}^{2}}L^{e} - \xi^{2}M^{e} - irac{n_{0}}{k_{0}^{2}}\left(rac{1-R}{1+R}
ight)C^{e}$$

with $\mathbf{K}^e \in \mathbb{C}^{3 imes 3}$ and ξ^2 the shift parameter.

Very similar to the element matrices

$$\boldsymbol{S}^{e} = -\frac{n_{0}}{k_{0}^{2}}\boldsymbol{L}^{2} + \left(n_{0} - \frac{iW}{\omega}\right)\boldsymbol{M}^{e} - i\frac{n_{0}}{k_{0}^{2}}\left(\frac{1-R}{1+R}\right)\boldsymbol{C}^{e}$$

$$m{K}^e = -rac{n_0}{k_0^2} m{L}^e - \xi^2 m{M}^e - i rac{n_0}{k_0^2} \left(rac{1-R}{1+R}
ight) m{C}^e$$

with $\mathbf{K}^e \in \mathbb{C}^{3 imes 3}$ and ξ^2 the shift parameter.

• The global preconditioner $m{K} \in \mathbb{C}^{N imes N}$ is computed from the matrices $m{K}^e.$

$$m{K}^e = -rac{n_0}{k_0^2} m{L}^e - \xi^2 m{M}^e - i rac{n_0}{k_0^2} \left(rac{1-R}{1+R}
ight) m{C}^e$$

with $\mathbf{K}^e \in \mathbb{C}^{3 \times 3}$ and ξ^2 the shift parameter.

- The global preconditioner $m{K} \in \mathbb{C}^{N imes N}$ is computed from the matrices $m{K}^e.$
- Approximate inverse of *K* by its incomplete LU decomposition.

$$m{K}^e = -rac{n_0}{k_0^2} m{L}^e - \xi^2 m{M}^e - i rac{n_0}{k_0^2} \left(rac{1-R}{1+R}
ight) m{C}^e$$

with $\mathbf{K}^e \in \mathbb{C}^{3 \times 3}$ and ξ^2 the shift parameter.

- The global preconditioner $m{K} \in \mathbb{C}^{N imes N}$ is computed from the matrices $m{K}^e.$
- Approximate inverse of *K* by its incomplete LU decomposition.

• Use the shift
$$\xi^2 = i \left| n_0 - \frac{iW}{\omega} \right|$$
.

• MUMPS - MUltifrontal Massively Parallel Solver.

- MUMPS MUltifrontal Massively Parallel Solver.
- Determines the solution of the system of equations $S\zeta = b$, where S is a square sparse matrix.

- MUMPS MUltifrontal Massively Parallel Solver.
- Determines the solution of the system of equations $S\zeta = b$, where S is a square sparse matrix.
- Computes the LU factorization of the matrix S, i.e. S = LU.

- MUMPS MUltifrontal Massively Parallel Solver.
- Determines the solution of the system of equations $S\zeta = b$, where S is a square sparse matrix.
- Computes the LU factorization of the matrix S, i.e. S = LU.
- Obtains the solution by $\boldsymbol{\zeta} = \boldsymbol{U}^{-1} \boldsymbol{L}^{-1} \boldsymbol{b}$.

- MUMPS MUltifrontal Massively Parallel Solver.
- Determines the solution of the system of equations $S\zeta = b$, where S is a square sparse matrix.
- Computes the LU factorization of the matrix S, i.e. S = LU.
- Obtains the solution by $\boldsymbol{\zeta} = \boldsymbol{U}^{-1} \boldsymbol{L}^{-1} \boldsymbol{b}.$
- Available in a sequential and parallel version.

Outline

Introduction

- 2 Mild-Slope equation
- 3 Initial implementation
- Proposed improvements
- 5 Numerical experiments
 - 6 Conclusions & Recommendations

Future research

Test cases

Four test cases are considered:

- Harbour of Scheveningen
 - 63,253 unknowns

Test cases

Four test cases are considered:

- Harbour of Scheveningen
 - 63,253 unknowns
- Maasvlakte bottom topography A
 - 173,612 unknowns
- Maasvlakte bottom topography B
 - 173,612 unknowns

Test cases

Four test cases are considered:

- Harbour of Scheveningen
 - 63,253 unknowns
- Maasvlakte bottom topography A
 - 173,612 unknowns
- Maasvlakte bottom topography B
 - 173,612 unknowns
- Harbour of Marsaxlokk Malta
 - 170,423 unknowns

Results - computing time

Ē.

Results - computing time

Ē.

Results - computing time

Results - computing time

Results - computing time

Results - computing time

After implementing the proposed improvements we need the following percentages of the computing time of the initial implementation.

	Scheveningen	Maasvlakte A	Maasvlakte B	Malta
Iterative	5.8 %	2.8 %	2.7 %	3.4 %
Direct	7.0 %	1.6 %	1.0 %	1.5 %

Outline

Introduction

- 2 Mild-Slope equation
- 3 Initial implementation
- Proposed improvements
- 5 Numerical experiments
- 6 Conclusions & Recommendations

Future research

• Proposed improvements for the iterative solver are upto 35 times faster than the initial implementation.

- Proposed improvements for the iterative solver are upto 35 times faster than the initial implementation.
- The number of matrix-vector products is reduced by a factor 58.

- Proposed improvements for the iterative solver are upto 35 times faster than the initial implementation.
- The number of matrix-vector products is reduced by a factor 58.
- Using the direct method MUMPS the computing time is upto 100 times faster than the original implementation.

- Proposed improvements for the iterative solver are upto 35 times faster than the initial implementation.
- The number of matrix-vector products is reduced by a factor 58.
- Using the direct method MUMPS the computing time is upto 100 times faster than the original implementation.
- Use a direct method, e.g. MUMPS, to determine the solution of the system of equations.

- Proposed improvements for the iterative solver are upto 35 times faster than the initial implementation.
- The number of matrix-vector products is reduced by a factor 58.
- Using the direct method MUMPS the computing time is upto 100 times faster than the original implementation.
- Use a direct method, e.g. MUMPS, to determine the solution of the system of equations.
- If the dimension of the sparse matrix is considerably larger we propose inexact Picard iteration, where the system of equations is solved using IDR(s) preconditioned with the shifted Laplace preconditioner.

Outline

Introduction

- 2 Mild-Slope equation
- 3 Initial implementation
- Proposed improvements
- 5 Numerical experiments
- 6 Conclusions & Recommendations

7 Future research

• Parallel version of the direct method MUMPS.

- Parallel version of the direct method MUMPS.
- Parallel computation of the global matrix S.

- Parallel version of the direct method MUMPS.
- Parallel computation of the global matrix S.
- Approximation of the complete LU factorization of the shifted Laplace preconditioner.

- Parallel version of the direct method MUMPS.
- Parallel computation of the global matrix S.
- Approximation of the complete LU factorization of the shifted Laplace preconditioner.
- Inexact Picard iteration based on a different forcing sequence.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Computing time - logarithmic scale

