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Preface

The graduation project of the master Applied Mathematics starts with a literature survey
which spans more or less three months. After completion of the literature survey the research
objectives are formed and the research part of the thesis starts. This document contains the
literature study that I have performed during the last three months.

The master thesis is performed for the company Svas̆ek Hydraulics 1, a specialist consultant in
coastal, harbour and river engineering. They use advanced numerical models to determine the
water dynamics, e.g. currents and waves, and sediment transport caused by water dynamics.
Most of the used models are developed by the employees of Svas̆ek Hydraulics and mainly
based on the finite element method. One of these models is HARES (HArbour RESonance)
which calculates the wave penetration in harbours and is especially useful in harbour and
breakwater optimization studies. HARES incorporates the effects of diffraction, reflection,
refraction, shoaling and directional spreading. Using HARES the natural frequency of the
studied domain can be determined and therefore also the sensitivity for resonance. One of
the latest additions is the inclusion of bottom friction and wave breaking, this leads to a
non-linear problem. Hence more advanced solution techniques are necessary to obtain the
solution. In the current software they define an outer iteration to treat the non-linearity of
the problem and an inner loop which solves a linear problem. In HARES Picard iteration
is used for the outer (non-linear) loop and Bi-CGSTAB preconditioned with a special form
of the incomplete LU factorization for the inner loop. However the computational time gets
undesired long when large domains are considered. The main aspect of the graduation project
is to determine which numerical method leads to the least matrix-vector multiplications and
hence a fast computation time.

Not only the different numerical methods have my interest, but also the mathematical physics
behind the problem. Therefore also the derivation of the governing equations is presented
in this literature study. The water dynamics in the coastal region can be described by the
so called Mild-Slope equation, which includes the effects of diffraction, reflection, refraction
and shoaling. The effects of bottom friction and wave breaking can be easily included by
introducing an energy dissipation term. The Mild-Slope equation can be derived from the
linearised small-amplitude wave equations.

Set-up of the literature study
This report is organized in the following way: In chapter 1 the linearised small-amplitude wave
equations are derived, starting with the equation of motion and the equation for conservation
of mass. Chapter 2 describes the combined effects of diffraction-reflection and refraction-
shoaling and the corresponding equations are derived. In chapter 3 we combine the four

1http://www.svasek.com/index.html
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effects which leads to the Mild-Slope equation. In this chapter we also derive the corresponding
boundary conditions and the equation for dissipation of wave energy due to bottom friction
and wave breaking. Chapter 4 treats the numerical implementation of the Mild-Slope equation
with the finite element method. The next chapter, chapter 5, contains the algorithm of
the basic incomplete LU factorization and a short description of the numerical method Bi-
CGSTAB derived by van der Vorst (1992). Since this method does not result in a satisfactory
computational time the preconditioner shifted Laplace, Erlangga et al. (2004), and the matrix
solver IDR(s), Sonneveld and van Gijzen (2008), are described in chapter 6. The shifted
Laplace preconditioner and IDR(s) are tested in chapter 7 against the methods CG-S and
Bi-CGSTAB. After that we have the conclusion of this literature study and the proposed
research objectives and the appendix with detailed derivations.
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Geometry

Figure 1: The geometry in a vertical section
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Used symbols

a(x, y, z) Amplitude; maximal deviation from the mean z = 0
c Wave celerity c = ω

k0
cg Group velocity cg = nc
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E Mechanical wave energy
Ek Kinematic wave energy
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ggg Gravitational acceleration ggg = (0, 0,−g)T

h(x, y) Water height from the ocean bottom to the still water level
h̄ Average water depth
H Wave height H = 2a
k0 Wave number when no energy dissipation is present k0 =

2π
L

k Wave number when energy dissipation is present
l0 Free surface characteristic length l0 = g/ω2

L Wave length L = 2π
k0

n0 Fraction of mechanical wave energy in a wave that is transmitted forward
each wave period

ppp(xxx, t) Pressure vector ppp = (px, py, pz)
T

Pa Environmental pressure
P Wave power
R Reflection coefficient
T Wave period T = 2π

ω
vvv(xxx, t) Velocity vector vvv = (v1, v2, v3)

T = (u, v, w)T

W Energy source term for the dissipation of wave energy
Wf Energy source term due to bottom friction
Wb Energy source term due to wave breaking
xxx Spatial coordinates xxx = (x, y, z)T

δik The Kronecker δ function
ζ(x, y, t) Height measured from the still water level z = 0
η Viscosity coefficient η > 0
θ Angle between an incidental wave and the normal vector n
ν Kinematic viscosity ν = η/ρ
ρ Water density
σ The mean slope
σik Stress tensor of the fluid
σ′
ik Viscous stress tensor

Φ Velocity potential vvv = ∇Φ
Ψ Force potential FFF = −∇Ψ
ΩΩΩ(xxx, t) Vorticity vector defined by ΩΩΩ = ∇× vvv
ω Wave frequency



Chapter 1

Surface gravity waves and their
governing equations

In this chapter the equations that are used to describe the surface gravity waves are derived.
We start with the derivation of the Navier-Stokes equation and its boundary conditions.
These boundary conditions are non-linear in the unknowns, therefore the linearisation of
these equations is treated. To be able to say more about the motion of the waves the solution
of the two-dimensional system of equations is derived. And the end of this chapter this
solution is used to say something about wave characteristics like the wave velocity and the
wave length.

Ocean waves can be classified by their restoring force, e.g. compressibility, gravity and earth
rotation. In harbours and near the shore the water surface waves are the ones most prominent
and their main restoring force is gravity. The waves in this category are called the surface
gravity waves. These waves have a time scale (1 - 25 s for wind waves and swells, 10 min
- 2 h for tsunamis) such that compressibility and surface tension at one extreme and earth
rotation at the other are of little importance (Mei, 1989).

In this section the governing equations for surface gravity waves will be derived. For the
derivation of these equation of wave motion the following assumptions, as described in the
Shore Protection Manual (1984), are made;

1. The fluid is homogeneous and incompressible; hence the density ρ can be considered
constant.

2. The surface tension can be neglected, for increasing wave length the surface tension
becomes less important.

3. The Coriolis effect, due to the rotation of the earth, can be neglected.

4. Pressure at the free surface is uniform and constant.

1.1 The Navier-Stokes equations

For the derivation of the well-known Navier-Stokes equations the approach by Dingemans
(1997) is followed. It starts with the equation for conservation of mass and the equation of
motion. The equation for conservation of mass reads

9



10CHAPTER 1. SURFACE GRAVITY WAVES AND THEIR GOVERNING EQUATIONS

∂ρ

∂t
+∇ · (ρv) = 0, (1.1.1)

and with the assumption that the fluid is homogeneous and incompressible equation (1.1.1)
reduces to

∇ · v = 0. (1.1.2)

The general form of the equation of motion for an incompressible fluid is denoted by

ρ
dvi
dt

= −∂σik
∂xk

+ ρFi, (1.1.3)

where d
dt , the total derivative. is given by

d

dt
=

∂

∂t
+ v · ∇.

The term F = (F1, F2, F3)
T represents the total of forces per unit mass acting on a fluid

element. Since we only consider surface gravity waves the force F is given by

F = g = (0, 0,−g)T . (1.1.4)

σik denotes the stress tensor for a real fluid with

σik = −pδik + η

(
∂vi
∂xk

+
∂vk
∂xi

)
= −pδik + σ′

ik,

where η > 0 is the viscosity coefficient and δik the Kronecker δ. The stress tensor represents
the irreversible flow of momentum due to the viscosity of the fluid. Equation (1.1.2) states
that ∂vj/∂xj = 0 and since the order of partial differentiation can be reversed the following
equation is obtained

ρ
dvi
dt

= − ∂p

∂xi
+ η

∂2vi
∂x2k

+ ρFi,

or in vectorial form

ρ
dv

dt
= −∇p+ η∆v + ρF . (1.1.5)

Due to the form of the force F , equation (1.1.4), it is derivable from a potential Ψ, this gives

F = −∇Ψ = −∇(−g · x),

with g · x = −gz. Substitution of the force potential into equation (1.1.5) gives

ρ
dv

dt
= −∇p+ η∆v − ρ∇(gz),

= −∇ (p+ ρgz) + η∆v. (1.1.6)

Equations (1.1.2) and (1.1.6) are also known as the Navier-Stokes equations. Dividing equa-
tion (1.1.6) by ρ and introducing ν = η/ρ, the kinematic viscosity, gives
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dv

dt
= −∇

(
p

ρ
+ gz

)
+ ν∆v,(

∂

∂t
+ v · ∇

)
v = −∇

(
p

ρ
+ gz

)
+ ν∆v. (1.1.7)

On the right-hand side of equation (1.1.7) the viscosity coefficient ν is present. To investigate
whether this term has a strong influence on the behaviour of surface gravity waves the curl
is taken on both sides of equation (1.1.7). This results in

∇×
(
∂v

∂t
+ v · ∇v

)
= ∇×

[
−∇

(
p

ρ
+ gz

)
+ ν∆v

]
.

Using that the curl of the gradient (∇× (∇a)) and the divergence of the curl (∇ · (∇× a))
are always equal to zero for any vector a and some forward calculations (see Appendix, A.1)
gives

dΩ

dt
= (Ω · ∇)v + ν∆Ω with Ω = ∇× v, (1.1.8)

where Ω(x, t) denotes the vorticity vector. Equation (1.1.8) physically means that the rate
of change in the vorticity is due to stretching and twisting of vortex lines (first term on the
right-hand side) and to viscous diffusion (second term on the right-hand side). For surface
water waves a good approximation is to consider the fluid as inviscid, equation (1.1.8) reduces
to

dΩ

dt
= (Ω · ∇)v. (1.1.9)

Dingemans (1997) describes that short water waves usually are considered as a perturbation of
the state of rest. When a fluid is at rest the vorticity Ω is zero, hence the fluid is irrotational.
Only the presence of viscosity can generate vorticity in the velocity field. The effect of viscosity
will only be felt at the boundary of the sea bottom, therefore it can only generate vorticity
there. The vorticity can diffuse inwards, but this takes only place when the motion is in only
one direction. Since wave motion is considered as oscillatory motion, the direction of the
flow changes often. Hence the inward diffusion remains restricted to the bottom boundary
layer with thickness of order O(

√
2ν/ω) (Stokes length, Dingemans (1997)) where ω is the

frequency of the motion. This means that the major part of the fluid for short waves can be
considered as irrotational. It is important to keep in mind that in regions of wave breaking
the zero vorticity assumption does not hold.

In the derivation above we made two additional assumptions about the motion of surface
gravity waves, namely;

1. The fluid is inviscid, i.e. ν ≡ 0.

2. The major part of the fluid can be considered as irrotational, i.e. ∇× v ≡ 0.

The resulting Navier-Stokes equations without the presence of viscosity, also known as the
Euler equations, are given by

∇ · v = 0, (1.1.10)
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(
∂

∂t
+ v · ∇

)
v = −∇

(
p

ρ
+ gz

)
. (1.1.11)

The assumption of irrotational flow results in the expression of the velocity v as the gradient
of a scalar potential

v = ∇Φ. (1.1.12)

For the equation of conservation of mass, equation (1.1.10), substitution of the velocity po-
tential leads to the Laplace equation;

∆Φ = 0. (1.1.13)

1.2 Derivation of the Bernoulli equation

To be able to determine the pressure in a surface gravity wave the Bernoulli equation is
needed. Here the derivation of the Bernoulli equation is given as is described in Dingemans
(1997).

Rewriting equation (1.1.11) gives,

∂v

∂t
+

1

2
∇v2 = −∇

(
p

ρ
+ gz

)
, with ∇v2 = ∇(v · v). (1.2.1)

Substituting the velocity potential into equation (1.2.1) results in

∇
(
∂Φ

∂t
+

1

2
(∇Φ)2

)
= −∇

(
p

ρ
+ gz

)
. (1.2.2)

Integration of equation (1.2.2) with respect of the space variables gives

∂Φ

∂t
+

1

2
(∇Φ)2 = −p

ρ
− gz + C(t).

Rewriting this equation and omitting the term C(t) results in the Bernoulli equation

−p

ρ
=

∂Φ

∂t
+

1

2
(∇Φ)2 + gz. (1.2.3)

As can be seen from equation (1.2.3) the total pressure p is determined by a hydrostatic and
hydrodynamic contribution. In section 1.3 the Bernoulli equation will also be used to derive
a boundary condition at the free surface.

1.3 Boundary conditions for the Laplace equation ∆Φ

In this section the boundary conditions for the Laplace equation ∆Φ = 0 are derived. As
can be seen in figure 1 there are two types of boundaries, i.e. the air-water interface and
the bottom of the ocean. At the free surface there are two unknowns, namely the velocity
potential Φ and the elevation of the free surface ζ. Therefore two conditions are needed. At
the ocean bottom the only unknown is the velocity potential Φ, only one boundary condition
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will lead to an unique solution. The derivation of the boundary conditions as described by Mei
(1989) is followed. Mei assumes that along the boundaries the fluid only moves tangentially.

Boundary conditions for the free surface

For the free surface the following function is introduced

F (x, y, z, t) = z − ζ(x, y, t), (1.3.1)

it is easily seen that at the free surface, when z = ζ, it holds that F = 0. A point x on the
moving surface has velocity q, after a short time dt the free surface is described by

F (x+ qdt, t+ dt),

and the Taylor expansion around F (x, t) is given by

F (x+ qdt, t+ dt) = F (x, t) + q · ∇F dt+
∂F

∂t
dt+O(dt)2,

= F (x, t) +

(
∂F

∂t
+ q · ∇F

)
dt+O(dt)2.

The equation above should also be zero when z = ζ. The first term on the left hand side
equals zero by definition as z = ζ, hence it follows that the second term also should be zero
for z = ζ. The assumption of tangential motion requires that v · ∇F = q · ∇F , this implies

∂F

∂t
+ v · ∇F = 0 for z = ζ. (1.3.2)

Substitution of the velocity potential, equation (1.1.12), and the function for the free surface,
equation (1.3.1), into equation (1.3.2) gives

−∂ζ

∂t
− ∂Φ

∂x

∂ζ

∂x
− ∂Φ

∂y

∂ζ

∂y
+

∂Φ

∂z
= 0 for z = ζ,

rewriting results in
∂ζ

∂t
+

∂Φ

∂x

∂ζ

∂x
+

∂Φ

∂y

∂ζ

∂y
=

∂Φ

∂z
for z = ζ. (1.3.3)

Equation (1.3.3) is denoted as the kinematic boundary condition. Which corresponds to
the assumption that the fluid moves only tangentially to the surface. The second boundary
condition can be obtained with the Bernoulli equation, equation (1.2.3). The assumption of a
uniform and constant pressure Pa, the atmospheric pressure, at the free surface is substituted
in the Bernoulli equation, this gives

−Pa

ρ
=

∂Φ

∂t
+

1

2
(∇Φ)2 + gζ for z = ζ.

This boundary condition is known as the dynamical boundary condition at the free surface.

Boundary condition for the ocean bottom

At the ocean bottom it holds that, see figure 1, z = −h(x, y). Equation (1.3.1) transforms
for the sea bottom into
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F (x, y, z) = z + h(x, y),

with F = 0 as z = −h. For the boundary at the ocean bottom the same condition as stated
in equation (1.3.2) must hold, since here the movement is also tangentially. This results in
the kinematic boundary condition

−∂Φ

∂z
=

∂Φ

∂x

∂h

∂x
+

∂Φ

∂y

∂h

∂y
for z = −h. (1.3.4)

Summary of the boundary conditions

The boundary conditions that are derived in this section for surface gravity waves are

∂ζ

∂t
+

∂Φ

∂x

∂ζ

∂x
+

∂Φ

∂y

∂ζ

∂y
=

∂Φ

∂z
; z = ζ,

∂Φ

∂t
+

1

2
(∇Φ)2 + gζ = −Pa

ρ
; z = ζ,

∂Φ

∂z
+

∂Φ

∂x

∂h

∂x
+

∂Φ

∂y

∂h

∂y
= 0 ; z = −h.

1.4 Linearisation of boundary conditions

The equations that are obtained so far are

∆Φ = 0 ; − h(x) ≤ z ≤ ζ(x, t) (1.4.1)

∂ζ

∂t
+

∂Φ

∂x

∂ζ

∂x
+

∂Φ

∂y

∂ζ

∂y
=

∂Φ

∂z
; z = ζ(x, t) (1.4.2)

∂Φ

∂t
+

1

2
(∇Φ)2 + gζ = −Pa

ρ
; z = ζ(x, t) (1.4.3)

∂Φ

∂z
+

∂Φ

∂x

∂h

∂x
+

∂Φ

∂y

∂h

∂y
= 0 ; z = −h(x) (1.4.4)

It is easily seen that these equations are non-linear in the unknown velocity potential Φ
and the free-surface elevation ζ. Finding a solution for non-linear equations is in general very
difficult, therefore a linearisation of equations (1.4.1) - (1.4.4) is made based on the description
made by Mei (1989).

The scale for Φ is chosen as aωL/2π, with a = |ζ| the amplitude of the wave, ω the wave
frequency and L the wave length, and for x the scale is given by L/2π. With this choice
the velocity v will be scaled with aω. The dimensionless variables, denoted with primes, are
determined by

Φ =
aωL

2π
Φ′, (x, y, z, h) =

L

2π
(x′, y′, z′, h′), t =

1

ω
t′ and ζ = aζ ′.
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Inserting these scaled variables into equations (1.4.1) - (1.4.4) gives the following set of di-
mensionless equations (see Appendix, A.2)

(
∂2

∂(x′)2
+

∂2

∂(y′)2
+

∂2

∂(z′)2

)
Φ = ∆′Φ′ = 0 ; − h′ ≤ z′ ≤ ϵζ ′ (1.4.5)

∂Φ′

∂z′
=

∂ζ ′

∂t′
+ ϵ

(
∂Φ′

∂x′
∂ζ ′

∂x′
+

∂Φ′

∂y′
∂ζ ′

∂y′

)
; z′ = ϵζ ′ (1.4.6)

∂Φ′

∂t′
+

1

2
ϵ(∇′Φ′)2 +

(
2πg

ω2L

)
ζ ′ = −P ′

a ; z′ = ϵζ ′ (1.4.7)

∂Φ′

∂z′
+

∂Φ′

∂x′
∂h′

∂x′
+

∂Φ′

∂y′
∂h′

∂y′
= 0 ; z′ = −h′ (1.4.8)

where ϵ = 2πa
L = wave slope and P ′

a = 2πPa
ρaω2L

.

In the dimensionless equations the term ϵ of the wave slope appears, when the wave slope is
small (ϵ ≪ 1) the waves are called small-amplitude waves. Equations (1.4.6) and (1.4.7) are
still non-linear in the unknown variables Φ′ and ζ ′. The unknown free surface elevation ζ ′

differs only an amount of O(ϵ) from the still water level z′ = 0, therefore Φ′ can be expanded
in a Taylor series around z′ = 0,

Φ′(x′, y′, ϵζ ′, t′) = Φ′∣∣
z′=0

+ ϵζ ′
∂Φ′

∂z′

∣∣∣∣
z′=0

+
(ϵζ ′)2

2!

∂2Φ′

∂z′2

∣∣∣∣
z′=0

+O
(
ϵ3
)
.

Substitution of this expansion into equation (1.4.6) gives

∂

∂z′

(
Φ′∣∣

z′=0
+ ϵζ ′

∂Φ′

∂z′

∣∣∣∣
z′=0

+ . . .

)
=

∂ζ ′

∂t′

+ϵ

[
∂

∂x′

(
Φ′∣∣

z′=0
+ ϵζ ′

∂Φ′

∂z′

∣∣∣∣
z′=0

+ . . .

)
ζ ′

∂x′
+

∂

∂y′

(
Φ′∣∣

z′=0
+ ϵζ ′

∂Φ′

∂z′

∣∣∣∣
z′=0

+ . . .

)
∂ζ ′

∂y′

]
.

For equation (1.4.7) this results in

∂

∂t′

(
Φ′∣∣

z′=0
+ ϵζ ′

∂Φ′

∂z′

∣∣∣∣
z′=0

+ . . .

)
+
1

2
ϵ

(
∇′
(
Φ′∣∣

z′=0
+ ϵζ ′

∂Φ′

∂z′

∣∣∣∣
z′=0

+ . . .

))2

+
2πg

ω2L
ζ ′ = −P ′

a

Hence the zeroth order, O(1), terms of the free surface boundary conditions are given by

∂ζ ′

∂t′
=

∂Φ′

∂z′
; z′ = 0, (1.4.9)

∂Φ′

∂t′
+

2πg

ω2L
ζ ′ = −P ′

a ; z′ = 0 (1.4.10)

These conditions can be combined by taking de derivative with respect to time of equation
(1.4.10), this results in

∂2Φ′

∂t′2
+

2πg

ω2L

∂Φ′

∂z′
= 0, (1.4.11)
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keeping in mind the assumption of a constant environmental pressure Pa.

After returning to the physical variables, the following linearised equations for small-amplitude
waves are obtained

∆Φ = 0 ; − h(x) ≤ z ≤ 0, (1.4.12)

∂ζ

∂t
=

∂Φ

∂z
; z = 0, (1.4.13)

∂Φ

∂t
+ gζ = −Pa

ρ
; z = 0, (1.4.14)

∂Φ

∂z
+

∂Φ

∂x

∂h

∂x
+

∂Φ

∂y

∂h

∂y
= 0 ; z = −h(x). (1.4.15)

The linearisation of the Bernoulli equation (1.2.3) is given by

P = −ρgz − ρ
∂Φ

∂t
. (1.4.16)

The first term on the right hand side represent the hydrostatic pressure and the second term
the dynamic pressure.

1.5 2D progressive water waves on a constant depth

In this section the solution of the two-dimensional version of equations (1.4.12) - (1.4.15) is
determined. To do this the assumption of a constant depth is made, hence the derivatives of
h will be zero, and the environmental pressure Pa is set equal to zero. The solution of the
two-dimensional set of equations corresponds to the solution of the three-dimensional system,
as is described at the end of this section. Because in two dimensions the solution is more
easily obtained the choice to solve this system is made. The solution that is obtained in this
section shows the way in which variables like the wave frequency ω and the wave number
k0 influence the shape of the solution. The form of the solution obtained for the velocity
potential Φ will also be used in the derivation of the equations for the combined phenomenon
of diffraction and reflection, see section 2.1, and the Mild-Slope equation, see chapter 3. The
solution is derived with the method of separation of variables and the calculations made by
Dingemans (1997) are followed.

The two-dimensional form of equations (1.4.12) - (1.4.15) with a constant depth and Pa = 0
are given by

∂2Φ

∂x2
+

∂2Φ

∂z2
= 0 ; − h(x) ≤ z ≤ 0, (1.5.1)

∂ζ

∂t
=

∂Φ

∂z
; z = 0, (1.5.2)

∂Φ

∂t
+ gζ = 0 ; z = 0, (1.5.3)

∂Φ

∂z
= 0 ; z = −h(x). (1.5.4)
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With the method of separation of variables the unknown velocity potential Φ is written as

Φ(x, z, t) = X(x)Z(z)T (t).

Substituting this expression for Φ into equation (1.5.1), while assuming T (t) ̸= 0, gives

1

X

d2X

dx2
= − 1

Z

d2Z

dz2
.

The method of separation of variables states that both sides are equal to a constant, −k20 is
chosen as this constant. This gives

1

X

d2X

dx2
= −k20 and

1

Z

d2Z

dz2
= k20.

The general solutions for X(x) and Z(z) are given by

X(x) = A cos(k0x) +B sin(k0x) and Z(z) = Cek0z +De−k0z. (1.5.5)

Application of the boundary condition, equation (1.5.4), at z = −h to the solution of Z(z)
gives

dZ

dz
= 0, hence Ce−k0h −Dek0h = 0. (1.5.6)

We set Γ/2 = Ce−k0h = Dek0h and substitute this into the solution of Z(z), this gives

Z(z) =
Γ

2

(
ek0(z+h) + e−k0(z+h)

)
= Γcosh(k0(z + h)). (1.5.7)

The solutions that are obtained for X(x) and Z(z) are substituted in the expression for Φ,
hence Φ can now be written as

Φ(x, z, t) = Γ cosh(k0(z + h)) (A cos(k0x) +B sin(k0x))T (t). (1.5.8)

Due to the form of the solution in the x-coordinate it is seen that the separation constant
k0 denotes the wave number. To determine the structure of T (t) boundary conditions (1.5.2)
and (1.5.3) at the free surface z = 0 are applied. This gives

∂ζ

∂t
= kΓ sinh(k0h) (A cos(k0x) + b sin(k0x))T (t), (1.5.9)

−gζ = Γcosh(k0h) (A cos(k0x) +B sin(k0x))
dT

dt
. (1.5.10)

Equations (1.5.9) and (1.5.10) can be combined by taking the derivative of (1.5.10) with
respect to t. This results in

d2T

dt2
+ gk0 tanh(k0h)T = 0, (1.5.11)

where it is assumed that A cos(k0x) +B sin(k0x) ̸= 0. Let

ω2 = gk0 tanh(k0h) > 0, h > 0 and all k0, (1.5.12)
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then the general solution for T (t) is given by

T (t) = E cos(ωt) + F sin(ωt).

The solution for Φ obtained with the method of separation of variables for a single value of
the wave number k is given by

Φ(x, z, t) = Γ cosh(k0(z + h)) (A cos(k0x) + b sin(k0x)) (E cos(ωt) + F sin(ωt)) . (1.5.13)

This solution shows that ω represents the wave frequency, due to the form of the solution
of T (t). Equation (1.5.12) is called the dispersion relation, with this relation for each given
depth h and wave frequency ω the corresponding wave number k0 can be determined. A
progressive wave solution can be obtained of the form

Φ(x, z, t) = A cosh(k0(z + h)) sin(k0x− ωt).

Substitution of this solution into the kinematic boundary condition for z = 0, equation (1.5.3),
gives

−ωA cosh(k0h) cos(k0x− ωt) + gζ = 0,

hence the solution of the free-surface elevation ζ(x, t) results in

ζ(x, t) =
Aω

g
cosh(k0h) cos(k0x− ωt). (1.5.14)

The amplitude a(x, t) of the free surface elevation ζ(x, t) is given by

a(x, t) =
Aω

g
cosh(k0h).

The solutions, derived with the method of separation of variables, of ζ(x, t) and Φ(x, z, t) is
given by

ζ(x, t) = a cos(k0x− ωt), (1.5.15)

Φ(x, z, t) =
ag

ω

cosh(k0(z + h))

cosh(k0h)
sin(k0x− ωt). (1.5.16)

By the definition of the velocity potential Φ the velocity u in the horizontal direction and w
in the vertical direction respectively can be determined. This results in

u(x, z, t) =
∂Φ

∂x
=

agk0
ω

cosh(k0(z + h))

cosh(k0h)
cos(kx− ωt), (1.5.17)

w(x, z, t) =
∂Φ

∂z
=

agk0
ω

sinh(k0(h+ z))

cosh(k0h)
sin(k0x− ωt). (1.5.18)

Solution for three-dimensional wave motion

As stated earlier the solution of the three-dimensional wave motion is similar to the solution
of the two-dimensional system, equations (1.5.15) and (1.5.16). Wave motion is a behaviour
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in three dimensions, therefore the solution of the three-dimensional system, equations (1.4.12)
- (1.4.15), is given here. The only change in the three-dimensional solution occurs in the term
k0x since now both k0 and x are a vector, namely

x =

(
x
y

)
and k0 =

(
k1
k2

)
.

Define k̃ = |k0| =
√

k21 + k22 and the three-dimensional form of equations (1.5.15) - (1.5.18)
becomes

ζ(x, t) = a cos(k0 · x− ωt), (1.5.19)

Φ(x, z, t) =
ag

ω

cosh(k̃(z + h))

cosh(k̃h)
sin(k0 · x− ωt), (1.5.20)

u(x, z, t) =
agk0

ω

cosh(k̃(z + h))

cosh(k̃h)
cos(k0 · x− ωt), (1.5.21)

w(x, z, t) =
agk0

ω

sinh(k̃(z + h))

cosh(k̃h)
sin(k0 · x− ωt), (1.5.22)

with the dispersion relation ω2 = gk̃ tanh(k̃h).

1.6 Wave characteristics

In the previous section the solutions for the velocity potential Φ, the free-surface elevation ζ
and the velocity components u and w are obtained with the method of separation of variables.
Using these solutions, expressions for the wave velocity c, wave length L, wave energy E and
the wave power P can be determined. In this section these expressions are derived and some
simplifications are made for the expression for the wave velocity c and wave length L.

The wave characteristics (wave speed c, wave number k0 and wave frequency ω) are given by
the following relations

c =
L

T
, k0 =

2π

L
and ω =

2π

T
.

Combining these three relation and using the expression of the dispersion relation, equation
(1.5.12), gives

c =
ω

k0
=

√
gL

2π
tanh

(
2πh

L

)
.

1.6.1 Wave classification

Waves can be classified into three categories; i.e. deep-water waves, intermediate-water waves
and shallow-water waves. This classification is made on the ratio h

L known as the relative

depth, where h is the water height and L the wave length (figure 1). The values of h
L and the

corresponding approximations are based on the description made by Sorensen (1997).
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• For h
L > 0.5 we have deep-water waves. In this scenario the waves do not interact with

the sea bottom, hence the wave characteristics will be independent of the water height.
The shape of a particle track line in deep-water wave flow is a circle.

• For 0.05 < h
L < 0.5 the waves are called intermediate-water waves and some interaction

with the bottom occurs. Therefore the water height h will be present in the wave
characteristics. The shape of the particle track is an ellipse.

• For h
L < 0.05 shallow-water waves occur and the particles have a strong interaction

with the bottom. The depth of a particle will determine the shape of the motion of a
particle. At the free surface the movement will resemble a flattened off ellipse, deeper
in the water column the movement is shaped as a line segment, the particles move only
in the horizontal direction. In the wave characteristic the the water height h plays a
crucial role.

For deep-water waves the approximation tanh(2πh/L) ≈ 1 can be made, for shallow-water
waves tanh(2πh/L) ≈ 2πh

L . Using these approximations we get the following overview of the
wave characteristics.

Wave type Wave speed Wave length

Deep-water wave c0 =
√

gL0

2π = gT
2π L0 =

gT 2

2π

Intermediate-water waves c = c0 tanh
(
2πh
L

)
L = L0 tanh

(
2πh
L

)
Shallow-water waves c =

√
gh L =

√
ghT

Table 1.1: Approximations of the wave speed and wave length for the three different types of
waves that are considered.

The subscript 0 denotes the deep-water value of the characteristic. The characteristics for the
intermediate-water waves are valid for all values of h and L, the characteristics for deep-water
waves and shallow-water waves are special limit cases only valid for the restrictions on the
relative depth. Since the relative depth is not always known a priori only the expressions for
the intermediate-water waves are used.

1.6.2 Wave energy and wave power

An important characteristic of gravity waves is their mechanical wave energy. This energy is
transmitted forward as the wave propagates.

Wave energy

Sorensen (1997) describes that the mechanical wave energy is determined by the sum of the
kinetic and potential energy. The kinetic energy for a unit width of wave crest and one wave
length can be determined by the integral over one wave length and the water depth of one-half
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times the mass of a differential element times the velocity of that element squared. This leads
to

Ek =

∫ L

0

∫ 0

−h

1

2
ρ dzdx (u2 + w2), (1.6.1)

where expressions (1.5.17) for the horizontal velocity u and (1.5.18) for the vertical velocity
w is used. After some manipulations (see Appendix, A.3) the kinematic energy is given by

Ek =
ρgH2L

16
.

The potential energy solely due to the wave form can be determined by subtracting the
potential energy of a mass of still water, ρgLhh

2 , from the potential energy of the wave form.
This gives

Ep =

∫ L

0
ρg(h+ ζ)

(
h+ ζ

2

)
dx − ρgLh

(
h

2

)
, (1.6.2)

where equation (1.5.15) for the elevation of the free surface ζ is used. Noting that the wave
amplitude a equals 1

2H, half of the wave height, the potential energy is given by (see Appendix,
A.3)

Ep =
ρgH2L

16
.

The mechanical wave energy E is determined by the sum of the kinematic and potential
energy, hence it is given by

E = Ek + Ep =
ρgH2L

16
+

ρgH2L

16
=

ρgH2L

8
. (1.6.3)

Usually we are interested in the energy per unit length, the total mechanical energy E divided
by the wave length L, hence

Ē =
E

L
=

ρgH2

8
. (1.6.4)

Wave power

The wave power P is the energy per unit time transmitted in the direction of the wave
propagation. This can be calculated by the wave period average of the integral over one wave
period and the water depth of the dynamic pressure and the velocity u in the horizontal
direction. This results in as is given in Sorenson (1997)

P =
1

T

∫ T

0

∫ 0

−h

(
−ρ

∂Φ

∂t

)
u dzdt, (1.6.5)

where ∂Φ/∂t is determined by the expression given in equation (1.5.16). After some straight-
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forward calculations (see Appendix, A.4) the wave power is given by

P =
ρgH2L

16T

(
1 +

2k0h

sinh(2k0h)

)
,

=
ĒL

2T

(
1 +

2k0h

sinh(2k0h)

)
,

=
n0ĒL

T
= Ēn0c = Ēcg with n0 =

1

2

(
1 +

2k0h

sinh(2k0h)

)
. (1.6.6)

The term cg denotes the group velocity and is treated in section 1.6.3. From the expression
for P it can be seen that the group velocity is also the velocity of the transport of wave
energy. The value of n0 increases as the water depth decreases, namely for deep-water waves
n0 equals 0.5 while for shallow-water waves we have that n0 = 1.0.

1.6.3 Group velocity

Until now only one wave of the form cos(k0x − ωt) is considered. Usually wave motion is
composed of many wave frequencies, expressed as the summation of all the individual wave
solutions, which moves with a group velocity cg. The derivation of the group velocity is
described by Dingemans (1997).

Consider two waves with slightly different wave frequencies ω1 and ω2 and wave numbers k1
and k2, for simplicity the same phase shift α and amplitude a is used. The individual waves
are given by

ζ1 = a cos(k1x− ω1t+ α) = a cos(γ1 + α) and ζ2 = a cos(k2x− ω2t+ α) = a cos(γ2 + α).

To determine the free surface elevation of the combined wave the waves ζ1 and ζ2 are summed,
this results in

ζ1 + ζ2 = 2a cos

(
(γ1 + α)− (γ2 + α)

2

)
cos

(
(γ1 + α) + (γ2 + α)

2

)
,

= 2a cos

(
k1 − k2

2
x− ω1 − ω2

2
t

)
cos

(
k1 + k2

2
x− ω1 + ω2

2
t+ α

)
. (1.6.7)

Define

k =
k1 + k2

2
and ω =

ω1 + ω2

2
.

The wave frequencies ω1 and ω2 and wave numbers k1 and k2 were just slightly different
chosen, therefore it follows that

k1 − k2 = ∆k ≪ k and ω1 − ω2 = ∆ω ≪ ω.

Substitution of these expressions into equation (1.6.7) gives the expression for the combined
free surface elevation
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ζ(x, t) = 2a cos

(
∆k

2
x− ∆ω

2
t

)
cos(kx− ωt+ α).

The free surface elevation consist of the carrier part (the term cos(kx−ωt+α)) and the wave
envelope (the other part). The whole group moves with speed cg = x/t = ∆ω/∆k. For this
group velocity the phases γ1 and γ2 remain equal so that the two components are in phase.
If the differences between the two waves numbers and wave frequencies become infinitesimal,
the group velocity is given by

cg =
dω

dk0
. (1.6.8)

Calculations show that (see Appendix, A.5) the relation between the group velocity and the
wave velocity is given by

cg = n0c with n0 =
1

2

(
1 +

2k0h

sinh(2k0h)

)
.

For deep-water waves it holds that n0 = 0.5 hence the group moves at half the speed of the
individual waves. For shallow-water waves we have that n0 = 1.0, thus there is no difference
between the velocity of the group and the velocity of the individual waves.
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Chapter 2

Wave transformations for surface
gravity waves

When modelling the wave motion in a harbour or near the shore it is not sufficient to use the
equations derived in the section 1.4. Near the shore the water depth decreases and objects
such as wave breakers or tidal entrances influence the behaviour of the waves. The four
major phenomena observed for a single wave motion are refraction, diffraction, shoaling and
reflection. The combined effects of diffraction and reflection is described in section 2.1 and
refraction and shoaling are treated in section 2.2. In this section only the basic equations are
considered, extensions such as interaction of the waves with a current are not included.

2.1 Diffraction and Reflection

Definition

Diffraction - The bending and spreading of a wave around an edge of
an object. The wave energy is transferred laterally along the wave crests.
Reflection - The return of all or part of the wave energy due to the
encounter of a boundary.

Calculations based on diffraction and reflection are important since wave height is in some
degree determined by the characteristics of the present structures, to reduce problems as
silting and harbour resonance and naturally occurring changes in hydography are affected by
diffraction and reflection.

Figure 2.1 (Shore Protection Manual (1984)) shows two situations, the first one is the hypo-
thetical case that no diffraction and reflection occurs. The incoming waves are not disturbed
by the presence of the breakwater. The second situation on the right shows the wave be-
haviour when diffraction and reflection do occur. In region III there is a superposition of
the incident wave and the reflected wave. This superposition leads to the appearance of
short-crested waves. In region I the bending of the diffracted waves occurs, the energy flow
is from region II into region I. The waves present in region II are not affected by the effects
of diffraction and reflection.

The following assumptions, as described in the Shore Protection Manual (1984), are made
when modelling the effects of diffraction and reflection,

25
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Figure 2.1: The left figure shows the situation when no diffraction and reflection takes place.
The figure on the right shows the wave behaviour when diffraction and reflection do occur.

1. Water is an ideal fluid, i.e. inviscid, irrotational and incompressible.

2. Small-amplitude waves can be described by linear wave theory.

3. The variation of the bottom profile can be neglected.

4. The obstacles are cylindrical extending from bottom to surface.

The second assumption indicates that the linearised time harmonic equations (2.2.4) - (2.2.6)
can be used as a starting point for the derivation of the diffraction-reflection model. Due
to the third assumption no variation of the bottom profile is present, this means that the
derivatives of h are zero. A constant water height also results in a constant wave number k.
The linearised time harmonic equations without water height variation are given by

∂2Φ

∂x2
+

∂2Φ

∂y2
+

∂2Φ

∂z2
= 0 ; − h(x, y) ≤ z ≤ 0, (2.1.1)

g
∂Φ

∂z
− ω2Φ = 0 ; z = 0, (2.1.2)

∂Φ

∂z
= 0 ; z = −h(x, y). (2.1.3)

To determine the equations for the diffraction-reflection phenomenon the derivation of Berkhoff
(1976) is followed. The solution Φ of the diffraction-reflection model can be written as a su-
perposition of a known incident wave potential Φ̃ and a scattered wave potential Φd, hence
Φ = Φ̃ + Φd. The scattered wave potential is given by

Φd(x, y, z) =
∑
j=0

Zj(z)φj(x, y) with Zj(z) = Cj cosh(kj(z + h)), (2.1.4)

and the incident wave potential

Φ̃(x, y, z) = −1

2

Hg

ω
i
cosh(k0(z + h))

cosh(k0h)
φ̃(x, y) with φ̃(x, y) = eik0(x cos(β)+y sin(β)) (2.1.5)
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with β the angle between the direction of wave propagation and and the positive x-axis.

The full reflection condition at the contours of the obstacles is defined as

∂Φd

∂n
= −∂Φ̃

∂n
. (2.1.6)

This condition can only be fulfilled if

∂φj

∂n
= 0, j = 1, 2, . . . and

∂φ0

∂n
= −∂φ̃

∂n

for all values of z on the contours of the obstacles. It can be shown that with this assumption
it must hold that φj ≡ 0 for j = 1, 2, . . . (see Berkhoff (1976)). Substitution of Φd into the
Laplace equation results in the Helmholtz equation

∂2φ0

∂x2
+

∂2φ0

∂y2
+ k20φ0 = 0.

We introduce the radiation condition

lim
r→∞

√
r

(
∂φd

∂r
− ik0φd

)
= 0 with r =

√
x2 + y2.

This radiation condition represents two conditions. The amplitude of the outgoing wave
should go to zero for the radial distance going to infinity, i.e. φd → 0 as r → ∞. This condition
is not enough to uniquely define the scattered wave potential, φd should also decrease fast
enough for an increasing r. Combining these two conditions results in the radiation condition
as stated above.

In real-life problems not all the objects are fully reflecting, as is stated in equation (2.1.6),
but partially reflecting. Therefore we introduce the partially reflecting boundary condition

∂φ

∂n
+ ak0φ = 0 with φ = φ̃+ φd and a = a1 + ia2.

In which a is the partial reflection coefficient.

2.2 Refraction and Shoaling

Definition

Refraction - The change in direction of wave propagation and in wave length

due only to a slow variation of the bottom.

Shoaling - Change of wave height due to bottom variation.

To determine a refraction-shoaling model is important for several reasons, e.g. to calculate
the wave height in the region of interest such that it is possible to determine whether the
design of this region is sensitive for large oscillations.

As described in the Shore Protection Manual (1984) the following assumptions are made to
model the combined effects of refraction and shoaling.
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1. The mechanical wave energy between wave rays or orthogonals remains the same, no
energy dissipation is present.

2. Direction of wave advance is perpendicular to the wave crest.

3. The small-amplitude wave theory applies.

4. The changes in the bottom topography are gradual.

5. The effects of currents, winds and reflections from beaches and underwater geometry
are considered negligible.

Figure 2.2 shows the change in direction of an approaching wave due to a slow variation in the
bottom. Diverging wave orthogonals indicate a reduce in energy, converging wave orthogonals
represent increased wave energy and hence an increasing wave height.

Figure 2.2: Wave refraction pattern

The first assumption states that no energy is dissipated when the wave approaches the shore.
This makes it possible to derive a ratio between the wave heights at two points on the wave
orthogonal. Suppose that there are two points on a wave orthogonal, where the space between
two wave orthogonals is denoted by B1 respectively B2. Conservation of energy between wave
orthogonals states that, as described by Sorensen (1997), the following must hold

B1E1 = B2E2

with E = ρgH2L
8 , the mechanical wave energy. This results in(

BρgH2L

8

)
1

=

(
BρgH2L

8

)
2

.

Rewriting this expression leads to the following relation between the two wave heights H1

and H2

H1

H2
=

√
n0,2L2

n0,1L1

√
B2

B1
.
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The first term represents the effect due to shoaling, also known as the shoaling parameter
Ks, and the second term the wave set-up due to refraction, the refraction parameter Kr. In
most practical applications the values of H, n, L and B are not known. Therefore another
model is needed to determine the wave height in the region of interest. The derivation of the
refraction-shoaling equations is based on the description made by Berkhoff (1976).

The third assumption implies that the linearised equations (1.4.12) - (1.4.15) can be used as a
starting point for the derivation. For convenience the linearised equations are repeated here,
where the boundary conditions (1.4.13) and (1.4.13) are combined;

∂2Φ

∂x2
+

∂2Φ

∂y2
+

∂2Φ

∂z2
= 0 ; − h(x, y) ≤ z ≤ 0, (2.2.1)

∂2Φ

∂t2
+ g

∂Φ

∂z
= 0 ; z = 0, (2.2.2)

∂Φ

∂z
+

∂Φ

∂x

∂h

∂x
+

∂Φ

∂y

∂h

∂y
= 0 ; z = −h(x, y). (2.2.3)

The small-amplitude wave theory assumes that the solution Φ is simple harmonic in time,
hence

Φ(x, y, z, t) = R
(
Φeiωt

)
.

Substituting this into equations (2.2.1) - (2.2.3) gives the time independent form of the lin-
earised small-amplitude wave motion

∂2Φ

∂x2
+

∂2Φ

∂y2
+

∂2Φ

∂z2
= 0 ; − h(x, y) ≤ z ≤ 0, (2.2.4)

g
∂Φ

∂z
− ω2Φ = 0 ; z = 0, (2.2.5)

∂Φ

∂z
+

∂Φ

∂x

∂h

∂x
+

∂Φ

∂y

∂h

∂y
= 0 ; z = −h(x, y). (2.2.6)

It is assumed that the changes in bottom topography are gradual, for that reason the new
horizontal coordinates are introduced;

(x̄, ȳ) =
σ

h̄
(x, y)

where σ is the mean slope over a distance D and h̄ the average water depth. The variation
of the water depth results in

∇h =

(
∂h

∂x
,
∂h

∂y

)T

=
σ

h̄

(
∂h

∂x̄
,
∂h

∂ȳ

)T

=
σ

h̄
∇h with ∇ =

(
∂

∂x̄
,
∂

∂ȳ

)T

.

The other variables are made dimensionless with the free surface characteristic length l0 =
g/ω2, hence

(x′, y′, z′, h′) =
1

l0
(x, y, z, h).

Substitution the dimensionless variables into equations (2.2.4) - (2.2.6) results in the dimen-
sionless equations, for readability we omit the primes,



30 CHAPTER 2. WAVE TRANSFORMATIONS FOR SURFACE GRAVITY WAVES

∂2Φ

∂x2
+

∂2Φ

∂y2
+

∂2Φ

∂z2
= 0 ; − h ≤ z ≤ 0, (2.2.7)

∂Φ

∂z
− Φ = 0 ; z = 0, (2.2.8)

∂Φ

∂z
+ ϵ

(
∂Φ

∂x

∂h

∂x̄
+

∂Φ

∂y

∂h

∂ȳ

)
= 0 ; z = −h, (2.2.9)

where ϵ = σ/µ with µ = h̄/l0. The fourth assumption states that he water depth varies
slowly, hence the variation of the potential Φ in the horizontal plane will be much less that
the variation in the vertical direction. Therefore x and y in the potential function are replaced
for the scaled variables (x′, y′) = ϵ(x, y). Equations (2.2.7) - (2.2.9) transform into the scaled
equations

ϵ2
(
∂2Φ

∂x2
+

∂2Φ

∂y2

)
+

∂2Φ

∂z2
= 0 ; − h ≤ z ≤ 0, (2.2.10)

∂Φ

∂z
− Φ = 0 ; z = 0, (2.2.11)

∂Φ

∂z
+ ϵ2

(
∂Φ

∂x

∂h

∂x̄
+

∂Φ

∂y

∂h

∂ȳ

)
= 0 ; z = −h. (2.2.12)

The velocity potential Φ is written as

Φ(x, y, z) = A(x, y, z)eiS(x,y,z),

where A(x, y, z) denotes the amplitude function and S(x, y, z) the phase function. Substitu-
tion of this representation into equations (2.2.10) - (2.2.12) gives (see Appendix, A.7)

ϵ2
(
1

A
∇2A+ (∇S)2

)
+

1

A

∂2A

∂z2
−
(
∂S

∂z

)2

= 0 ; − h ≤ z ≤ 0, (2.2.13)

∂A

∂z
−A = 0 ; z = 0, (2.2.14)

∂A

∂z
+ ϵ2

(
∇A · ∇h

)
= 0 ; z = −h, (2.2.15)

ϵ2∇ ·
[
A2∇S

]
+

∂

∂z

[
A2∂S

∂z

]
= 0 ; − h ≤ z ≤ 0, (2.2.16)

∂S

∂z
= 0 ; z = 0, (2.2.17)

∂S

∂z
+ ϵ2

(
∇S · ∇h

)
= 0 ; z = −h, (2.2.18)

Integration of equation (2.2.16), while making use of the boundary conditions (2.2.17) and
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(2.2.18), gives

ϵ2
∫ 0

−h
∇ ·A2∇S dz + A2∂S

∂z

∣∣∣∣0
−h

= 0,∫ 0

−h
∇ ·A2∇S dz + A2

(
∇S · ∇h

)∣∣
z=−h

= 0.

Applying Leibniz integral rule (see Appendix, A.6) to the integral on the left hand side results
in

∇ ·
∫ 0

−h
A2∇S dz = 0. (2.2.19)

A solution of equation (2.2.19) is sought, therefore A and S are expanded with respect to ϵ2.
The choice of ϵ2 is made since in equations (2.2.13) - (2.2.18) only the term ϵ2 appears. The
expansions are given by

A(x, y, z) = A0(x, y, z) + ϵ2A1(x, y, z) + . . . ,

S(x, y, z) = ϵm
[
S0(x, y, z) + ϵ2S1(x, y, z) + . . .

]
,

where m is a constant that needs to be determined. Substitution of these expansions into
equation (2.2.16) gives for the zeroth order, O(1), approximation

∂

∂z

[
A2

0

∂S0

∂z

]
= 0,

this implies that

A2
0

∂S0

∂z
= C constant and independent of z.

From the boundary condition ∂S0
∂z = 0 at z = 0 it follows that the constant C must be zero.

Therefore it must hold that

∂S0

∂z
= 0 for − h ≤ z ≤ 0,

that is S0 is independent of z. The zeroth order of S is now given by

S = ϵmS0(x, y).

The lowest possible order of equation (2.2.13) is given by

1

A0

∂2A0

∂z2
+ ϵ2ϵ2m (∇S0)

2 = 0. (2.2.20)

There are three options for m, namely;

1. If m > −1 it follows that ϵ2ϵ2m → 0 as ϵ → 0. With this choice equation (2.2.20)
reduces to

1

A0

∂2A0

∂z2
= 0.

Boundary condition ∂A0
∂z = 0, O(1) order of equation (2.2.15), states that A0 is indepen-

dent of z. Boundary condition (2.2.14) at z = 0 results in the trivial solution A0 ≡ 0.
Which indicates that the wave motion does not have an amplitude, this is not a desired
solution of the refraction-shoaling equations.
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2. If m < −1 it follows that ϵ2ϵ2m → ∞ as ϵ → 0. In this case equation (2.2.20) reduces
to

(∇S0)
2 = 0

hence S0 would also be independent of x and y. This means that there is no periodicity
of the solution in space, which is not the desired solution of the refraction-shoaling
model.

3. The only remaining option for m is m = −1 which makes sure that neither the trivial
solution for A0 nor a space independent phase function S0 is obtained.

With the choice of m = −1 the resulting equation is given by

1

A0

∂2A0

∂z2
= (∇S0)

2 .

S0 is independent of z, hence it must hold that the term on the left hand side is also inde-
pendent of z. Let there be a function κ(x, y) such that the eikonal equation is obtained

(∇S0)
2 = κ(x, y),

then it must hold that

1

A0

∂2A0

∂z2
= κ2(x, y) or

∂2A0

∂z2
− κ2A0 = 0.

The O(1) boundary conditions of equation (2.2.14) and (2.2.15) are given by

∂A0

∂z
= 0 for z = −h and

∂A0

∂z
−A0 = 0 for z = 0.

The solution of A0(x, y, z) can be obtained with separation of variables as is done in section
1.5. Then it follows that

A0(x, y, z) = f(z, h)a(x, y) =
cosh(κ(z + h))

cosh(κh)
a(x, y), (2.2.21)

where the dimensionless dispersion relation is given by

1 = κ tanh(κh).

A more useful representation of equation (2.2.19) can be determined with the use of the
solution of A0, equation (2.2.21). Since S0 is independent of z it can be taken out of the
integral, this results in

∇ ·
∫ 0

−h
A2

0 dz ∇S0 = 0.

Substitution of the solution of A0(x, y, z) into the equation above gives

∇ ·
∫ 0

−h

(
cosh(κ(z + h))

cosh(κh)

)2

dz a2∇S0 = 0.

After some calculations (see Appendix, A.8) the following equation is obtained

∇ ·
(
ccga

2∇S0

)
= 0.
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After returning to the physical variables, the following equations describe the combined phe-
nomenon of refraction and shoaling.

(∇S0)
2 = k20, (2.2.22)

∇ ·
(
ccga

2∇S0

)
= 0, (2.2.23)

where k0 can be determined with the dispersion relation

ω2 = gk0 tanh(k0h).

Equations (2.2.22) and (2.2.23) are both first order differential equations, therefore it is not
possible to impose boundary conditions along the whole boundary of the solution domain.
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Chapter 3

The Mild-Slope equation

In the previous chapter the equations that describe the individual phenomena of refraction-
shoaling and diffraction-reflection are treated. However when a wave enters a harbour or
approaches the shore these four effects occur simultaneously. Therefore it is desired that
there exists an equations which combines these phenomena. In 1976 J.C.W. Berkhoff derived
the so called Mild-Slope equation in his dissertation at the Technical University of Delft.
The description of the Mild-Slope equation as presented here is based on the derivation that
Berkhoff made in his dissertation. In section 3.1 the derivation of the Mild-Slope equation is
presented and in section 3.2 the corresponding boundary conditions are treated.

Waves in a harbour or at the shore are also influenced by the effects of bottom friction and
wave breaking. The Mild-Slope equation can be extended to include these (non-linear) effects,
this is described in section 3.3.

3.1 Derivation of the Mild-Slope equation

The derivation starts with the assumption that it is valid to use the linearised small-amplitude
wave equations. As done for the refraction-shoaling equation, it is also assumed that the
changes in bottom topography are small or as written in Mei (1989)

∇h

k0h
≪ 1.

With these assumptions it is reasonable to start the derivation with the time-indendent di-
mensionless equations (2.2.7) - (2.2.9)

∂2Φ

∂x2
+

∂2Φ

∂y2
+

∂2Φ

∂z2
= 0 ; − h ≤ z ≤ 0, (3.1.1)

∂Φ

∂z
− Φ = 0 ; z = 0, (3.1.2)

∂Φ

∂z
+ ϵ

(
∂Φ

∂x

∂h

∂x̄
+

∂Φ

∂y

∂h

∂ȳ

)
= 0 ; z = −h. (3.1.3)

The three-dimensional velocity potential, as is done for the refraction-shoaling and diffraction-
reflection equations, can be written as

Φ(x, y, z, t) = Z(h, z)φ(x, y, z) =
cosh(κ(h+ z))

cosh(κh)
φ(x, y, z, t), (3.1.4)

35
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where κ is determined by the dimensionless dispersion relation 1 = κ tanh(κh). Subtitution
of equation (3.1.4) into equations (3.1.1) - (3.1.3) gives

Z∇2φ+ 2∇Z · ∇φ+ φ∇2Z + φ
∂2Z

∂z2
+ 2

∂Z

∂z

∂φ

∂z
+ Z

∂2φ

∂z2
= 0 ; − h ≤ z ≤ 0, (3.1.5)

∂φ

∂z
= 0 ; z = 0, (3.1.6)

Z
∂φ

∂z
+ ϵ
[
(∇Z · ∇h̄)φ+ (∇φ · ∇h̄)Z

]
= 0 ; z = −h, (3.1.7)

with ∇ =
(

∂
∂x ,

∂
∂y

)T
. Since Z is not directly dependent on x and y but indirectly due to the

pressence of h(x, y), the derivatives with respect to x and y are given by

∇Z =

(
∂Z

∂h

∂h

∂x
,
∂Z

∂h

∂h

∂y

)
= ϵ

(
∂Z

∂h

∂h

∂x̄
,
∂Z

∂h

∂h

∂ȳ

)
= ϵ

∂Z

∂h
∇h.

The second derivatives of Z with respect to x, y and z result in

∂2Z

∂z2
= κ2Z and ∇2Z = ϵ2

(
∂2Z

∂h2
∇h · ∇h+

∂Z

∂h
∇2

h

)
.

Substituting this into equations (3.1.5) - (3.1.7) gives

ϵ2
[
φ

(
∂2Z

∂h2
∇h · ∇h+

∂Z

∂h
∇2

h

)]
+ ϵ

[
2
∂Z

∂h
∇h · ∇φ

]
+ Z∇2φ+ κ2φZ + 2

∂Z

∂z

∂φ

∂z
+ Z

∂2φ

∂z2
= 0 ; − h ≤ z ≤ 0, (3.1.8)

∂φ

∂z
= 0 ; z = 0, (3.1.9)

ϵ2
[
φ
∂Z

∂h
∇h · ∇h

]
+ ϵ
[
∇φ · ∇hZ

]
+ Z

∂φ

∂z
= 0 ; z = −h. (3.1.10)

Multiplying equation (3.1.8) with Z and integrating it over the water depth, while using the
boundary conditions (3.1.9) and (3.1.10), gives (see Appendix, A.9)

ϵ2
[∫ 0

−h
z

(
∂2Z

∂h2
∇h · ∇h+

∂Z

∂h
∇2

h

)
φ dz

]
+ ϵ

[∫ 0

−h

∂Z2

∂h
∇h · ∇φ dz

]
∫ 0

−h
Z2
(
∇2φ+ κ2φ

)
dz + ϵ

[
Z2∇φ · ∇h

]
z=−h

+ ϵ2
[
Zφ

∂Z

∂h
∇h · ∇h

]
z=−h

= 0.

(3.1.11)

It is assumed that φ(x, y, z) is only a weak function of the coordinate z, since the dependency
of the velocity potential Φ with respect to the vertical coordinate z has been largely been
taken into account by Z(h, z). This implies that φ(x, y, z) can be expanded in a Taylor
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serie with respect to the coordinate σz. Due to boundary condition (3.1.9), the symmetry
boundary condition, the expansion only consists of even power of σz, this gives

φ(x, y, z) = φ0(x, y) + σ2z2φ1(x, y) + σ4z4φ2(x, y) + . . . .

Substituting this Taylor serie into equation (3.1.11) and noting that φ0 is independent of z,
gives

ϵ2
[
φ0∇h · ∇h

∫ 0

−h
Z
∂2Z

∂h2
dz + φ0∇

2
h

∫ 0

−h

1

2

∂Z2

∂h
dz

]
+ ϵ∇h · ∇φ0

∫ 0

−h

∂Z2

∂h
dz

+ (∇2φ0 + κ2φ0)

∫ 0

−h
Z2 dz + ϵ∇h · ∇φ0 Z

2
∣∣
z=−h

+ ϵ2φ0∇h · ∇h
1

2

∂Z2

∂h

∣∣∣∣
z=−h

+O (ϵnσm) = 0,

with n ≥ 0 and m ≥ 2. Applying Leibniz integral rule to
∫ 0
−h

∂Z2

∂h dz gives

∫ 0

−h

∂

∂h
Z2 dz =

∂

∂h

∫ 0

−h
Z2 dz − Z2

∣∣
z=−h

.

Neclecting the O(ϵ2) and O(ϵnσm), m ≥ 2, n ≥ 0 terms gives

ϵ∇h · ∇φ0

[
∂

∂h

∫ 0

−h
Z2 dz − Z2

∣∣
z=−h

]
+
(
∇2φ0 + κ2φ0

) ∫ 0

−h
Z2 dz + ϵ∇h · ∇φ0 Z

2
∣∣
z=−h

= 0.

This results in

ϵ∇h · ∇φ0

[
∂

∂h

∫ 0

−h
Z2 dz

]
+
(
∇2φ0 + κ2φ0

) ∫ 0

−h
Z2 dz = 0. (3.1.12)

After some manipulations (see Appendix, A.9) equation (3.1.12) can be written as

∇ ·
∫ 0

−h
Z2 dz∇φ0 + κ2φ0

∫ 0

−h
Z2 dz = 0. (3.1.13)

The obtained equation includes the term∫ 0

−h
Z2 dz with Z(z, h) =

cosh(κ(z + h))

cosh(κh)
.

In section 2.2 this term is also present and it is shown that it equals n0ω2

g . Substituting this
into equation (3.1.13) gives



38 CHAPTER 3. THE MILD-SLOPE EQUATION

∇ ·
(
n0ω

2

g
∇φ0

)
+ κ2

n0ω
2

g
φ0 = 0 ⇐⇒

∇ ·
(
n0ω

2

gκ2
∇φ0

)
+

n0ω
2

g
φ0 = 0 ⇐⇒

∇ · (ccg∇φ0) + ω2 cg
c
φ0 = 0, (3.1.14)

where it is used that c = ω/κ and cg = n0c. Equation (3.1.14) is known as the Mild-
Slope equation which combines the effects of refraction, shoaling, diffraction and reflection.
Substituting φ = AeiS into equation (3.1.14) will result in the equation for refraction and
shoaling. Assuming a constant water depth will result in the diffraction-reflection equation.

3.2 Boundary conditions

The Mild-Slope equation cannot be solved without the appropriate boundary conditions for
the considered domain. There are two distinct boundaries, i.e.

• The closed boundary of the harbour, where complete reflection, partial reflection or no
reflection of the wave energy occurs.

• At the open boundary there is an incoming wave, which is described by the wave-maker
condition. Waves which approach the open boundary completely pass it, thus the no
reflection boundary condition is needed.

Closed boundary

The situation of the closed boundary is sketched in figure 3.1.

Figure 3.1: An element of the closed boundary where there is an incoming wave φin at an
angle θ with respect to the normal vector n perpendicular to the boundary.

At the boundary (partial) reflection occurs, therefore the reflection coefficient R is introduced
with 0 ≤ R ≤ 1. R denotes the amount of energy that is reflected due to the interaction with
the boundary. For R = 1 there is full reflection, for 0 < R < 1 partial reflection and for R = 0
no reflection of the wave energy. At the boundary the velocity potential φ is determined by
summation of the incoming wave and the reflected part of the incoming wave, hence

φ = φin +Rφin = (1 +R)φin. (3.2.1)
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The amount of the wave energy that goes through the boundary depends on the angle θ of the
incoming wave and the reflection coefficient R. The part of the wave energy perpendicular to
the boundary minus the amount that is reflected goes through, hence this is given by

∂φ

∂n
=

∂φin

∂n
−R

∂φin

∂n
= −ik0(1−R)φin cos(θ). (3.2.2)

Combining the expressions (3.2.1) and (3.2.2) gives the condition for the closed boundary;

∂φ

∂n
= −ik0

(
1−R

1 +R

)
φ cos(θ) with 0 ≤ R ≤ 1. (3.2.3)

Open boundary

At the open boundary there is the sketched situation of figure 3.2

Figure 3.2: An element of the open boundary where there is a prescribed incoming wave φin

and an outgoing wave φ at an angle θ with respect to the normal vector n perpendicular to
the open boundary.

The condition at the open boundary is determined by a superposition of the influences due
to the incoming wave φin and the outgoing wave φ. Since there is no reflection at the open
boundary the amount of the incoming wave that crosses it is given by

∂φin

∂n
= −ik0φin(ein · n).

The outgoing wave φ is influenced by the contribution of the incoming wave at the angle θ,
namely

∂(φ− φin)

∂n
= −ik0(φ− φin) cos(θ).

Superposing these two conditions leads to the condition of the open boundary

∂φ

∂n
= −ik0φin(ein · n)− ik0(φ− φin) cos(θ). (3.2.4)

The boundary conditions (3.2.3) and (3.2.4) depend on the wave number k0. The wave number
changes when wave breaking and bottom friction is taken into account. In the case of energy
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dissipation the term ik0 should be replaced by p. The expression for p is derived in section
3.3.

The boundary conditions, equations (3.2.3) and (3.2.4), depend on the angle θ. Unfortu-
nately θ is not known a priori, hence an approximation for the numerical implementation is
needed. The same approximation can be used for both boundary conditions, therefore only
the approximation of the condition for the closed boundary is described. The condition for
the open boundary will follow automatically. The condition for the open boundary including
energy dissipation is given by

∂φ

∂n
= −p

(
1−R

1 +R

)
φ cos(θ).

The reflection coefficient R is also an unknown parameter depending on many (non-linear)
processes. Its value is determined experimentally by matching the outcome of the model to
the measurements on the domain. Since the measurements contain error, the value of R will
not be very accurate. The term cos(θ) is approximated by the first order Taylor series, i.e.

cos(θ) =

√
1− sin2(θ) ≈ 1− 1

2
sin2(θ).

Since the value of R is not very accurate it is assumed that this approximation is sufficient.
The solution of φ is of the form φ = φ0e

−p(x cos(θ)+y sin(θ)), the second derivative with respect
to s (parallel to the boundary) is given by

∂2φ

∂s2
= p2 sin2(θ)φ.

Substuting this into the condition for the closed boundary gives

∂φ

∂n
= −

(
1−R

1 +R

){
pφ− 1

2p

∂2φ

∂s2

}
.

For the boundary condition of the open boundary this yields

∂φ

∂n
= −pφin(ein · n)− p(φ− φin) +

1

2p

(
∂2φ

∂s2
− ∂2φin

∂s2

)
.

The condition of the open boundary does not contain the reflection coefficient R, therefore it
might be necessary to use a higher order Taylor series as an approximation of cos(θ). However
this is not taken into account in HARES.

3.3 Dissipation of wave energy

In the derivation of the Mild-Slope equation we assumed that there was no loss of energy.
However for shallow-water waves the waves interact with the bottom, hence energy loss due to
bottom friction will be present. Due to the assumption of a decreasing water depth shoaling
occurs. When no energy dissipation is present the waves would become infinitely high. In
real life this is not possible and waves will break after reaching a maximal height for a certain
water depth. Wave breaking will lead to energy dissipation.
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For a good approximation of the wave behaviour in a harbour it seems reasonable to include
energy dissipation in the Mild-Slope equation. The equation for energy conservation including
energy dissipation, as stated by Dingemans (1997), is given by

∇ · (cgE) +D = 0 with D = WE,

whereD represent the dissipation of wave energy, E the mechanical wave energy andW energy
source term. The energy source term consists of the summation of the energy dissipation due
to bottom friction Wf and the dissipation due to wave breaking Wb. The Mild-Slope equation
with dissipation of energy is given by

∇ · (ccg∇φ0) + ω2 cg
c
φ0 −W

∂φ0

∂t
= 0. (3.3.1)

Similarly, as done by Dingemans (1997), the Mild-Slope equation for the elevation of the free
surface ζ is obtained by

∇ · (ccg∇ζ) + ω2 cg
c
ζ −W

∂ζ

∂t
= 0. (3.3.2)

It is assumed that the wave motion is harmonic in time, therefore we substitute ζ = R
(
ζ̃eiωt

)
into equation (3.3.2). This results in the time independent form of the Mild-Slope equation;

∇ ·
(
ccg∇ζ̃

)
+ ω2 cg

c
ζ̃ − iωW ζ̃ = 0. (3.3.3)

Expression for p

The expression for p, the modified wave number due to the presence of energy dissipation,
is easily derived using the one dimensional version of equation (3.3.3). The one dimensional
form, with constant coefficients, is given by

n0

k20

∂2ζ̃

∂x2
+

(
n0 −

iW

ω

)
ζ̃ = 0 ⇐⇒ ∂2ζ̃

∂x2
+ k20

(
1− iW

ωn0

)
ζ̃ = 0.

Substituting the general solution ζ̃ = ζ̃0e
px into this equation gives the expression for p, that

is

p = ±ik0

√
1− iW

ωn0
.

In HARES the modified wave number p is not yet implemented, only the term ik0 is taken
into account. Although p is not yet implemented from now on it is used in the derivations.

3.3.1 Bottom friction coefficient Wf

For the derivation of the bottom friction coefficient Wf the approach as described in Visser
(1984) and Dingemans (1997) is followed. The dissipation of wave energy in the bottom
boundary layer is given by

⟨Df ⟩ =
⟨
τ b · ub

⟩
with τ b = cfρ

∣∣∣ub
∣∣∣ub, (3.3.4)
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where ⟨ · ⟩ denotes the mean over one wave period. Visser (1984) states that linear wave theory
for the horizontal velocity near the bottom can be used which yields that ub is expressed as

ub =
aω

sinh(kh)
cos(ωt),

with a(x, y, t) = |ζ(x, y, t)|. Substituting this into equation (3.3.4) gives

⟨Df ⟩ =

⟨
cfρ

∣∣∣∣aω cos(ωt)

sinh(kh)

∣∣∣∣ (aω cos(ωt)

sinh(kh)

)2
⟩

= cfρ

(
aω

sinh(kh)

)3 ⟨
| cos(ωt)|3

⟩
.

With
⟨
| cos(ωt)|3

⟩
= 4

3π we get

⟨Df ⟩ =
4

3π
cfρ

a3ω3

sinh3(kh)
.

The bottom friction coefficient Wf is obtained by dividing the equation above by the energy
per unit length Ē, equation (1.6.4), i.e.

Wf =
⟨Df ⟩
Ē

=
8

3π
cf

aω3

sinh3(kh)
.

3.3.2 Wave breaking coefficient Wb

The wave breaking coefficient Wb is determined by the derivation as obtained by Battjes
and Janssen (1978). The characteristic breaker height, as described by Southgate (1993), is
defined as

γs =

(
H

h

)
b,shallow

and γd =

(
H

L

)
b,deep

.

Shallow-water waves break due to limitations on the water depth while for deep-water waves
the steepness of the wave is crucial. The maximal value for γd is by default 0.14. The well-
known Miche’s criterion, Battjes and Janssen (1978), for the maximal possible wave height
Hm is given by

Hm =
2πγd
k

tanh

(
γs

2πγd
kh

)
=

0.88

k
tanh

( γs
0.88

kh
)
.

The probability that at a given point a height is associated with a breaking or broken wave
Qb can be determined by

1−Qb

lnQb
= −

(
Hrms

Hm

)2

,

where Hrms denotes the root mean square wave height. In HARES Hrms = 2a is used. The
power dissipation in the bore per unit span is given by

D′
b =

1

4
ρg(h2 − h1)

3

√
g(h1 + h2)

2h1h2
,

with h1 and h2 the water heights at both sides of the bore. The following estimates are made

h2 − h1 ≈ H and

√
g(h1 + h2)

2h1h2
≈
√

g

h
.
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This results in

D′
b ∼

1

4
ρgH3

√
g

h
.

If the waves are periodic with frequency f = 1
T , the average power dissipation per unit length

for shallow-water waves in the breaking process is then given by

Db =
D′

b

L
=

fD′
b

c
∼

fD′
b√

gh
=

1

4
fρg

H3

h
. (3.3.5)

For shallow water the ration H/h is approximately 1, hence Db ∼ 1
4fρgH

2. For random waves
the expected value of the dissipated power per unit area is of interest. Hence equation (3.3.5)
needs to be multiplied by Qb and H set to Hm. This results in

Db =
α

4
fρgQbH

2
m.

The obtained wave breaking coefficient Wb is given by

Wb =
Db

Ē
=

2α

T
Qb

H2
m

H2
rms

=
2α

T
Qb

H2
m

4a2
.
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3.4 Summary of the Mild-Slope equation

In this chapter we derived the Mild-Slope equation where the dissipation of wave energy is
included and given its corresponding boundary conditions. The Mild-Slope with dissipation
is given by equation (3.3.3), with c = ω/k0 and cg = n0c this can be written as

∇ ·
(
n0

k20
∇ζ̃

)
+

(
n0 −

iW

ω

)
ζ̃ = 0, (3.4.1)

with k0 the wave number dependent on the water height h, W the energy source for the
dissipation of energy and ω the constant wave frequency. The energy source W is given by

W = Wf +Wb =
8

3π
cf

aω3

sinh3(kh)
+

2α

T
Qb

H2
m

4a2
. (3.4.2)

Including the energy dissipation in the Mild-Slope equation leads to a non-linear contribution.
In both Wf and Wb a(x, y) = |ζ̃| is present , therefore we have that the last term iW

ω ζ̃ results
in a non-linear contribution. In chapter 4 it is described how this non-linearity is treated in
the numerical implementation of the Mild-Slope equation.

The condition for the open boundary with an incoming wave is given by

∂ζ̃

∂n
= −pζ̃in (ein · n)− p

(
ζ̃ − ζ̃in

)
+

1

2p

(
∂2ζ̃

∂s2
− ∂2ζ̃in

∂s2

)
, (3.4.3)

and for the closed boundary we have

∂ζ̃

∂n
= −

(
1−R

1 +R

){
pζ̃ − 1

2p

∂2ζ̃

∂s2

}
. (3.4.4)

The modified wave number p is given by

p = ik0

√
1− iW

ωn0
.



Chapter 4

Numerical implementation of the
Mild-Slope equation

In chapter 3 we derived the dissipation included Mild-Slope equation and its corresponding
boundary conditions. These equations are used in HARES to determine the wave motion in
harbours. In this chapter the numerical implementation of the non-linear Mild-Slope equation
is described. In section 4.1 we apply the Ritz-Galerkin finite element method to obtain a
system of equations. In section 4.2 the implementation of the non-linearity in HARES is
described.

4.1 Ritz-Galerkin Finite Element Method

To determine the solution of equation (3.4.1) with the boundary conditions (3.4.3) and (3.4.4)
the method of finite elements is used. Berkhoff (1976) states that this is a good method to
solve the Mild-Slope equation in a harbour for the following two reasons;

• It has an easy way of representing boundaries of an arbitrary shape.

• It is possible to use small elements in areas where a strong variation of the solution can
be expected and large elements in areas where not.

The derivation of the finite element integrals is based on Ritz-Galerkin method as described
by Zienkewicz (1971). Integrating equation (3.4.1), after multiplication with the test function
η(x, y), over the domain Ω gives the weak formulation of the Mild-Slope equation;∫

Ω

{
∇ ·
(n0

k2
∇ζ̃
)
+

(
n0 −

iW

ω

)
ζ̃

}
η dΩ = 0 ∀η.

As observed in chapter 3 the term W , the dissipation of energy due to bottom friction and
wave breaking, leads to a non-linearity in the Mild-Slope equation. For the derivation of the
integrals it is assumed that W is piecewise constant on each element.

Application of Gauss divergence theorem results in

−
∫
Ω

n0

k2
∇ζ̃ · ∇η dΩ+

∫
Ω

(
n0 −

iW

ω

)
ζ̃η dΩ+

∫
Γ

n0

k2
η
∂ζ̃

∂n
dΓ = 0 ∀η, (4.1.1)
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where the boundary of Ω is denoted by Γ. The boundary Γ of the domain consist of an open
boundary and a closed boundary, therefore it is divided into Γ1 for the open boundary and Γ2

for the closed boundary. Substituting the boundary conditions (3.4.3) and (3.4.4) in equation
(4.1.1) gives

∫
Ω

{(
n0 −

iW

ω

)
ζ̃η − n0

k2
∇ζ̃ · ∇η

}
dΩ−

∫
Γ2

n0

k2

(
1−R

1 +R

){
pζ̃ − 1

2p

∂2ζ̃

∂s2

}
η dΓ

+

∫
Γ1

{
n0

k2

(
−pζ̃in(ein · n)− p(ζ̃ − ζ̃in) +

1

2p

(
∂2ζ̃

∂s2
− ∂2ζ̃in

∂s2

))}
η dΓ = 0 ∀η.

(4.1.2)

The boundary conditions contain both the term 1
2p

∂2ζ̃
∂s2

η, applying partial integration of the
expression gives

1

2p

∫
Γi

∂2ζ̃

∂s2
η dΓ =

1

2p

{
η
∂ζ̃

∂s

∣∣∣∣∣
Γi

−
∫
Γi

∂η

∂s

∂ζ̃

∂s
dΓ

}

It is assumed that

1

2p

{
η
∂ζ̃

∂s

∣∣∣∣∣
Γ1

+ η
∂ζ̃

∂s

∣∣∣∣∣
Γ2

}
= 0

since Γ = Γ1+Γ2 is a closed boundary. The term 1
2p

∂2ζ̃in
∂s2

is only present on the open boundary,

partial integration will lead to the term 1
2pη

∂ζ̃in
∂s

∣∣∣
Γ1

. In the implementation in HARES is it

assumed that this term also equals zero, since it only gives a contribution at the two ends of
the open boundary. After the application of the partial integration the governing equations
are given by

∫
Ω

{(
n0 −

iW

ω

)
ζ̃η − n0

k2
∇ζ̃ · ∇η

}
dΩ−

∫
Γ2

n0

k2

(
1−R

1 +R

){
pζ̃η +

1

2p

∂ζ̃

∂s

∂η

∂s

}
dΓ

+

∫
Γ1

n0

k2

{
−pζ̃in (ein · n) η − p(ζ̃ − ζ̃in)η +

1

2p

(
∂ζ̃in
∂s

∂η

∂s
− ∂ζ̃

∂s

∂η

∂s

)}
dΓ = 0. (4.1.3)

The unknown solution of ζ̃ is approximated by a finite linear combination of basis functions
ζj(x, y);

ζ̃(x, y) ≈ ζ̃n(x, y) =

n∑
j=1

ajζj(x, y).

Substituting this approximation into equation (4.1.2) and setting η → ζi(x, y) gives the fol-
lowing system of equations
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nel∑
j=1

aj

{∫
Ω

[(
n0 −

iW

ω

)
ζiζj −

n0

k2
∇ζi · ∇ζj

]
dΩ

}

+

nbel1∑
j=1

aj

{
−
∫
Γ1

n0

k2

(
pζiζj +

1

2p

∂ζj
∂s

∂ζi
∂s

)
dΓ

}

+

nbel2∑
j=1

aj

{
−
∫
Γ2

n0

k2

(
1−R

1 +R

)(
pζjζi +

1

2p

∂ζj
∂s

∂ζi
∂s

)
dΓ

}

=

∫
Γ1

n0

k2

(
pζ̃in(ein · n)ζi − pζ̃inζi −

1

2p

∂ζ̃in
∂s

∂ζi
∂s

)
dΓ. (4.1.4)

This can also be written in the matrix-vector notation Sa = f . Our domain Ω and boundary
Γ are divided into nel internal elements and nbel boundary elements, with n = nel+nbel. The
internal elements are shaped as a triangle, where ζi is piecewise linear, and the boundary
elements are linear line segments. There are two boundaries, Γ1 and Γ2, hence nbel = nbel1 +
nbel2 where nbeli (i = 1, 2) denotes the amount of boundary element on boundary Γi. Matrix
S and vector f are determined by the summation over all the contributions from the internal
and boundary elements, this results in

Sij =

nel∑
l=1

Sel
ij +

nbel1∑
l=1

Sbel1
ij +

nbel2∑
l=1

Sbel2
ij ,

fi =

nel∑
l=1

f el
i +

nbel1∑
l=1

f bel1
i +

nbel2∑
l=1

f bel2
i .

The basis functions in each element satisfy the following property

ζi(x, y) = αi + βix+ γiy, (4.1.5)

ζi(xj , yj) = δij ,

where δij denotes the Kronecker delta function and the coefficients αi, βi and γi can be
uniquely determined (see van Kan et al. (2008, p. 110)).

4.1.1 Internal elements

For the internal elements, they have no connection to the boundary, the following expression
for Sij and fi are found

Sij =

∫
Ω

[(
n0 −

iW

ω

)
ζiζj −

n0

k2
∇ζi · ∇ζj

]
dΩ and fi = 0. (4.1.6)

In HARES they make the assumption that n0, k, p, W , ω and h are constant for each element
and substituting the basis function, equation (4.1.5), into equation (4.1.6) gives
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Sel
ij =

(
n0 −

iW

ω

)∫
el

ζiζj dΩ− n0

k2
(βiβj + γiγj)

∫
el

1 dΩ and f el
i = 0. (4.1.7)

4.1.2 Boundary elements on the open boundary

The elements on the open boundary, Γ1, are described by the following equations

Sij = −
∫
Γ1

n0

k2

(
pζiζj +

1

2p

∂ζj
∂s

∂ζi
∂s

)
dΓ,

fi =

∫
Γ1

n0

k2

(
pζ̃in(ein · n)ζi − pζ̃inζi −

1

2p

∂ζ̃in
∂s

∂ζi
∂s

)
dΓ.

The assumption that the variables are constant on each element also holds for R, thus inserting
the basis function into equations (4.1.8) and (4.1.9) results in

Sbel1
ij = −n0

k2

{
p

∫
Γ1

ζiζj dΓ− 1

2p

∫
Γ1

∂ζj
∂s

∂ζi
∂s

dΓ,

}
(4.1.8)

f bel1
i =

n0

k2

{
p

∫
Γ1

{
ζ̃in(ein · n)− pζ̃in

}
ζi dΓ− 1

2p

∫
Γ1

∂ζ̃in
∂s

∂ζi
∂s

dΓ

}
. (4.1.9)

4.1.3 Boundary elements on the closed boundary

For the elements on the closed boundary Γ2 we found the following expressions for Sij and
fi;

Sij = −
∫
Γ2

n0

k2

(
1−R

1 +R

)(
pζiζj +

1

2p

∂ζj
∂s

∂ζi
∂s

)
dΓ and fi = 0.

With the assumption of constant variables in each element and the substitution the basis
function gives for each element on the closed boundary

Sbel2
ij = −n0

k2

(
1−R

1 +R

){
p

∫
Γ2

ζiζj dΓ +
1

2p

∫
Γ2

∂ζj
∂s

∂ζi
∂s

dΓ

}
and f bel2

i = 0. (4.1.10)

4.1.4 Summary of the integrals

In this section we derived the integrals, obtained with the Ritz-Galerkin finite element method,
that are solved in HARES. The internal elements are shape like a triangle and have piecewise
linear basis functions, the boundary elements for the open and closed boundary are linear
line segments. Ror each element the assumption that the variables n0, k, W , ω, p, h and R
are constant is made. The equations that are obtained in this section are given below

Internal element

The integral for an internal element is given by

Sel
ij =

(
n0 −

iW

ω

)∫
el

ζiζj dΩ− n0

k2
(βiβj + γiγj)

∫
el

1 dΩ and fel
i = 0. (4.1.11)
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Boundary element on the open boundary

For an element on the open boundary the following expression yields

Sbel1
ij = −n0

k2

{
p

∫
Γ1

ζiζj dΓ− 1

2p

∫
Γ1

∂ζj
∂s

∂ζi
∂s

dΓ

}
, (4.1.12)

f bel1
i =

n0

k2

{
p

∫
Γ1

{
ζ̃in(ein · n)− pζ̃in

}
ζi dΓ− 1

2p

∫
Γ1

∂ζ̃in
∂s

∂ζi
∂s

dΓ

}
. (4.1.13)

Boundary element on the closed boundary

The integral for a boundary element on the closed boundary results in

Sbel2
ij = −n0

k2

(
1−R

1 +R

){
p

∫
Γ2

ζiζj dΓ +
1

2p

∫
Γ2

∂ζj
∂s

∂ζi
∂s

dΓ

}
and f bel2

i = 0. (4.1.14)

In HARES these integrals are exactly determined by Gaussian integration. As can be seen
from the expressions for f el

i , f bel1
i and f bel2

i the only contribution on the right-hand side of
the matrix-vector notation Sa = f is given by the prescribed incoming wave ζ̃in.

4.2 Non-linearity in the Mild-Slope equation

As stated earlier the dissipation included Mild-Slope equation is non-linear in the unknown
free surface elevation parameter ζ̃(x, y). Hence the system Sa = f should actually be written
as S(W (a))a = f . Therefore the solution is obtained in an iterative manner. In the first
iteration is is assumed that W = 0 and the system S(0)a1 = f is solved. A solution for a1 is
obtained and W (a1) is determined with equation (3.4.2) for each element. The next iteration
step is solving the new system S(W (a1))a2 = f and after that a2 is determined. This is
repeated until a good approximation of the elevation of the free surface ζ(x, y, t) is obtained.
This procedure can also be put into an algorithm, this gives

W 0 = 0 ; initial value for the dissipation term

for i = 1, 2, . . .
Solve ai from S(W i−1)ai = f
W i = W (ai)

end

The term S(W i−1) can be determined with equations (4.1.11), (4.1.12) and (4.1.14) and
W i = W (ai) by equation (3.4.2).
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Chapter 5

ILU Bi-CGSTAB

In the previous chapter the system Sa = f is derived where vector a contains the unknowns.
This system could be solved with the calculation of a = S−1f , but in general computing
the inverse takes a lot of time. Therefore numerical methods are derived which deal with
solving a general system Ax = b in a smart way such that the solution is obtained faster.
The solution of the system Sa = f is in HARES numerically approximated with the Bi-
CGSTAB method preconditioned with the Incomplete LU (ILU) factorization. In section
5.1 a description of the unpreconditioned Bi-CGSTAB method and its algorithm is given,
section 5.2 treats the Incomplete LU preconditioner and section 5.3 gives the algorithm for
preconditioned Bi-CGSTAB method.

5.1 Bi-CGSTAB

The Bi-CGSTAB method is in 1992 derived by van der Vorst as an improvement of the
Conjugate Gradient Squared (CG-S) method by Sonneveld (1989), which on its turn was an
improvement of the Bi-Conjugate Gradient (Bi-CG) method. These methods involve solving
the linear system of equations Ax = b with A ∈ RN×N and x, b ∈ RN . In general matrix
A is a sparse matrix and A does not have to satisfy nice properties, such as a symmetric
positive definite matrix, for the methods to work.

The methods Bi-CG, CG-S and Bi-CGSTAB are Krylov subspace methods, where the Krylov
subspace of dimension m is defined as

Km(A; r0) = span
{
r0,Ar0,A

2r0, . . . ,A
m−1r0

}
,

with r0 = b−Ax0.

Bi-CG

Bi-CG uses a basis r0, . . . ri−1 which is constructed forKi(A; r0) such that rj ⊥ span{r∗0, . . . , r∗j−1}
with (j ≤ i) and r∗0, . . . , r

∗
i−1 forms a basis for Ki(A

T ; r∗0) such that r∗j ⊥ span{r0, . . . , rj−1}
with (j ≤ i).
The Bi-CG method is derived by Fletcher (1976) where he assumes that the residuals ri and
r∗i can be written as

rBi−CG
i = Pi(A)r0 and r∗Bi−CG

i = Pi(A
T )r∗0,
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where Pi(A) is a polynomial of degree at most i. The bi-orthogonality of the residuals ri and
r∗j can also be written as (

Pi(A)r0, Pj(A
T )r∗0

)
= 0 for j < i. (5.1.1)

With this expression ri as well as r
∗
j need to be constructed, therefore matrix-vector products

with both A and AT need to be determined.

CG-S

The CG-S method is Sonneveld (1989), he used that equation (5.1.1) can be written as(
Pi(A)r0, Pj(A

T )r∗0
)
= (Pj(A)Pi(A)r0, r

∗
0) = 0 for j < i.

CG-S constructs residuals that can be written as

rCG−S
i = Pi(A)rBi−CG

i = P 2
i (A)r0.

The benefit of the CG-S algorithm is that r∗j do not need to be formed and hence matrix-vector

products with AT are not computed any more and the convergence of CG-S can be twice
as fast as the convergence of Bi-CG. The downside of this method is that its convergence
behaviour is not very smooth and the squaring of the residual polynomial may lead to a
build-up of rounding errors.

Bi-CGSTAB

To improve the convergence behaviour of the CG-S method van der Vorst (1992) derived the
more smoothly converging variant of CG-S called Bi-CGSTAB. The residual ri is written as

rBi−CGSTAB
i = Qj(A)rBi−CG

i = Qj(A)Pj(A)r0,

with
Qj(A) = (I − ω1A)(I − ω2A) . . . (I − ωjA), (5.1.2)

where the coefficients ωi are chosen such that the residual is minimized. The Bi-CGSTAB
algorithm, see van der Vorst (1992), is given in algorithm 5.1.

Bi-CGSTAB is a finite method, this means that in finite precision arithmetic after at most
N iterations the exact solution x is obtained. The algorithm presented in algorithm 5.1 ω
is chosen to minimize the norm of the residual. Another choice of ω is possible and its form
should be depending on the specific problem that is solved. There are three possibilities when
breakdown in the Bi-CGSTAB algorithm occurs. It could happen when ρi = (r0∗, ri−1) = 0
with ri−1 ̸= 0, when (r∗0,vi) = 0 or when (t, s) = 0. One iteration of Bi-CGSTAB computes
4 inner products, 2 matvec products and 12N flops. The vectors x, b, ri, r

∗
0, p, v and t and

matrix A need to be stored.

5.2 ILU preconditioner

In preconditioning the trick is to find a matrix K such that K−1A has better properties than
matrix A for the numerical algorithm that is used. Due to the better properties of K−1A
less iterations are needed for a good approximation of the solution x. As described by van der
Vorst (1992) a good preconditioner K satisfies the following properties



5.2. ILU PRECONDITIONER 53

Bi-CGSTAB

1. x0 is an initial guess; r0 = b−Ax0;
2. r∗0 is an arbitrary vector, such that (r0, r

∗
0) ̸= 0, e.g. r∗0 = r0;

3. ρ0 = α = ω0 = 1;
4. v0 = p0 = 0;

5. For i = 1, 2, . . .
6. ρi = (r∗0, ri−1); β = (ρi/ρi−1)(α/ωi−1);
7. pi = ri−1 + β(pi−1 − ωi−1vi−1);
8. vi = Api;
9. α = ρi/(r

∗
0,vi);

10. s = ri−1 − αvi−1;
11. t = As;
12. ωi = (t, s)/(t, t);
13. xi = xi−1 + αpi + ωis;
14. if xi is accurate enough then quit
15. ri = s− ωit;
16. end

Alg. 5.1: The unpreconditioned Bi-CGSTAB algorithm.
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ILU

1. For i = 1, 2, . . . , n
2. For k = 1, . . . , i− 1 and for (i, k) ∈ NZ(A)
3. aik = aik/akk;
4. For j = k + 1, . . . , n and for (i, j) ∈ NZ(A)
5. aij = aij − aikakj ;
7. end
8. end
9. end

Alg. 5.2: Incomplete LU factorization algorithm (Meijerink and van der Vorst (1977)).

1. K is a good approximation to A in some sense.

2. The cost of the construction of K is not prohibitive.

3. The system Ky = z is much easier to solve than the original system.

In HARES the incomplete LU factorization (ILU) is used as a preconditioner of matrix S,
ILU is a variant of Gaussian elimination where some elements in the LU factorization are
discarded. Gaussian elimination of a matrix results in a LU factorization, where L is a lower
triangular matrix and U an upper triangular matrix. The standard ILU method uses that
matrices L and U have the same zero pattern as A, i.e. if ai,j = 0 (1 ≤ i, j ≤ N) for a
certain combination (i, j) then ui,j = li,j = 0 and if ai,j ̸= 0 then ui,j ̸= 0 and li,j ̸= 0. The
diagonal of L is set equal to one, i.e. li,i = 1, and the diagonal of U is determined in the ILU
algorithm. In general it is impossible to match A with LU when L and U have the same
zero-pattern as A, the extra elements of LU are called the fill-in elements. Matrix A can be
written as

A = LU −R,

where matrix R is the residual of the factorization, containing the fill-in elements, and K =
LU is the preconditioner.

There are three ways of applying the preconditionerK, at the left or at the right side of matrix
A or when the preconditioner K is available in factored form on both sides of matrix A. The
ILU preconditioner K = LU is available in factored form, with K1 = L and K2 = U . The
preconditioned system Ax = b is given by

L−1AU−1y = L−1b with y = Ux.

Denote the set of non-zero elements of matrix A as NZ(A), i.e. the set of pairs (i, j),
1 ≤ i, j ≤ N such that ai,j ̸= 0. The incomplete factorization of matrix A is determined
such that the elements of A−LU are zero in the elements of NZ(A). The algorithm of the
incomplete LU factorization is given in algorithm 5.2.
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Preconditioned Bi-CGSTAB

1. x0 is an initial guess; r0 = b−Ax0;
2. r∗0 is an arbitrary vector such that (r∗0, r0) ̸= 0, e.g. r∗0 = r0.
3. ρ0 = α = w0 = 1;
4. v0 = p0 = 0;

5. For i = 1, 2, . . .
6. ρi = (r∗0, ri−1); β = (ρi/ρi−1)(α/wi−1);
7. pi = ri−1 + β(pi−1 − wi−1vi−1);
8. Solve y for Ky = pi;
9. vi = Ay;
10. α = ρi/(r

∗
0,vi);

11. s = ri−1 − αvi;
12. Solve z from Kz = s;
13. t = Az;
14. wi = (t, s)/(t, t);
15. xi = xi−1 + αy + wiz;
16. if xi is accurate enough then quit;
17. ri = s− wit;
18. end

Alg. 5.3: The preconditioned Bi-CGSTAB algorithm.

The ILU preconditioner used in HARES is not the ILU(0) preconditioner as presented above
but the ILU variant derived by van der Ploeg (1994), which uses a special reordering of the
unknowns.

5.3 Preconditioned Bi-CGSTAB

The Bi-CGSTAB algorithm given in table 5.1 can be easily adapted in the case when a
preconditioner is applied to the system Ax = b. The preconditioned Bi-CGSTAB algorithm
as described by van der Vorst (1992) is given in algorithm 5.3.
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Chapter 6

Numerical methods proposed for
improvement

In this section alternative numerical methods are presented which could lead to an improve-
ment of the current numerical implementation of the non-linear Mild-Slope equation. Section
6.1 treats the matrix solver IDR(s) and section 6.2 the shifted Laplace preconditioner.

6.1 IDR(s)

The IDR(s) algorithm (see Sonneveld and van Gijzen (2008)) is a Krylov subspace type
method for which the residuals rn = b − Axn are in the Krylov subspace Kn(A; r0). The
residuals of a Krylov method satisfy the following recursion method

rn+1 = rn − αAvn −
l̂∑

l=1

γl∆rn−l,

where vn is any computable vector in Kn(A; r0) \ Kn−1(A; r0) and ∆rn = rn+1 − rn. The
IDR(s) method is based on the following theorem (see Sonneveld and van Gijzen (2008), also
for the proof).

Theorem 1. (IDR theorem) Let A be any matrix in CN×N , let v0 be any non-zero vector
in CN , and let G0 be the full Krylov space KN (A,v0). Let S denote any (proper) subspace
of CN such that S and G0 do not share a non-trivial invariant subspace of A, and define the
sequence Gj, j = 1, 2, . . . as

Gj = (I − ωjA)(Gj−1 ∩ S),

where the ωj’s are non-zero scalars. Then

(i) Gj ⊂ Gj−1 for all Gj−1 ̸= {0}, j > 0.

(ii) Gj = {0} for some j ≤ N .

The IDR(s) algorithm is based on generating residuals rn which are forced to be in the
subspace Gj , where j is non-decreasing with increasing n. According to theorem 1 ultimately
rn ∈ GM = {0} with M ≤ N . The residual rn+1 is in the space Gj+1 if

rn+1 = (I − ωj+1A)vn, (6.1.1)
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with vn ∈ Gj ∩S. The main problem becomes finding vn. The following expression is chosen
for vn;

vn = rn −
s∑

l=1

γl∆rn−l.

Let there be a N × s matrix P = (p1 p2 . . . ps) such that S is the left null-space of P , i.e.
S = N

(
PH

)
. Since vn is contained in S it also holds that

PHvn = PH (rn − c∆Rn) = 0 ⇒ PH∆Rnc = PHrn,

with ∆Rn = (∆rn−1 ∆rn−2 . . . ∆rn−s) and c ∈ Cs contains the coefficients γl. We obtained
an s × s linear system for the coefficients γl which is uniquely solvable. Vector c can be
determined and hence we are able to compute vn and rn+1 ∈ Gj+1. By theorem 1 it follows
that Gj+1 ⊂ Gj , therefore it also holds that rn+1 ∈ Gj . Using rn+1 we can compute ∆Rn+1,
vn+1 ∈ (Gj ∩ S) and hence rn+2 ∈ Gj+1. This needs to repeated s+ 1 times such that all the
elements of ∆Rn are in Gj+1. Then we have that vn+(s+1) ∈ (Gj+1 ∩ S) and therefore the
computed residual rn+(s+1) is contained in the subspace Gj+2 of Gj+1.

The IDR(s) algorithm is given in algorithm 6.1. From the algorithm we can see that for the
first residual in Gj+1 the coefficient ω can be chosen freely (in this algorithm minimizing the
norm of rn+1) but for the computations of the other residuals in Gj+1 it remains the same.
Also the matrix P can be chosen freely in the beginning of the algorithm.

In the current algorithm the initialization is done using a simple Krylov method. However,
as long as the ∆xi, i = 0, . . . , s− 1 are in the complete Krylov subspace, they can be chosen
freely. In the algorithm ω should be selected, currently it is based on a strategy proposed by
Sleijpen and van der Vorst (1995).

The IDR theorem states that dimension reduction takes place but not by how much. The
following theorem describes at which rate the dimension reduction takes place.

Theorem 2. (Extended IDR theorem) Let A be any vector in CN×N , let p1, p2, . . ., ps ∈
CN be linearly independent, let P = (p1,p2, . . . ,ps), let G0 = KN (A; r0) be the full Krylov
space corresponding to A and the vector r0, and let the sequence of spaces {Gj , j = 1, 2, . . .}
be defined by

Gj = (I − ωjA)
(
Gj−1 ∩N

(
PH

))
,

where ωj are non-zero numbers, such that I − ωjA is non-singular. Let dim(Gj) = dj; then
the sequence {dj , j = 0, 1, 2, . . .} is monotonically non-increasing and satisfies

0 ≤ dj − dj+1 ≤ dj−1 − dj ≤ s.

According to the extended IDR theorem the dimension reduction per step is between 0 and
s. When the dimension reduction is precisely s it is called the generic case, otherwise we
have the non-generic case. The extended IDR theorem leads to the following corollary for the
generic case.

Corollary 1. In the generic case IDR(s) requires at most N+N
s matrix-vector multiplications

to compute the exact solution in exact arithmetic.



6.1. IDR(S) 59

IDR(s)

1. Require: A ∈ CN×N ; x0, b ∈ CN ; P ∈ CN×s; TOL ∈ (0, 1); MAXIT > 0
2. Ensure: xn such that ∥b−Axn∥ ≤ TOL
3. {Initialization.}
4. Calculate r0 = b−Ax0;

5. {Apply s minimum norm steps, to build enough vectors in G0}
6. For n = 0, 1, . . . , s− 1
7. v = Arn; Select ω;
8. ∆xn = ωrn; ∆rn = −ωv;
9. rn+1 = rn +∆rn; xn+1 = xn +∆xn;
10. end
11. ∆Rn+1 = (∆rn . . .∆r0); ∆Xn+1 = (∆xn . . .∆x0);

12. {Building Gj spaces for j = 1, 2, 3, . . .}
13. n = s
14. {Loop over Gj spaces}
15. while ∥rn∥ > TOL and n < MAXIT
16. {Loop inside Gj space}
17. for k = 0, 1, . . . , s

18. Solve c from PH∆Rnc = PHrn;
19. v = rn −∆Rnc;
20. if k = 0
21. {Entering Gj+1}
22. t = Av;
23. Select ω;
24. ∆rn = −∆Rnc− ωt;
25. ∆xn = −∆Xnc+ ωv;
26. else
27. {Subsequent vectors in Gj+1}
28. ∆xn = −∆Xnc+ ωv;
29. ∆rn = −A∆xn;
30. end
31. rn+1 = rn +∆rn;
32. xn+1 = xn +∆xn;
33. n = n+ 1;
34. ∆Rn = (∆rn−1 . . .∆rn−s);
35. ∆Xn = (∆xn−1 . . .∆xn−s);
36. end
37. end

Alg. 6.1: The IDR(s) algorithm
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6.1.1 IDR(s)-biortho

It is possible to make some adjustments to the IDR(s) algorithm as presented previously. The
residual of equation 6.1.1 can also be written as

rn+1 = rn − ωj+1Avn −Gnc with Gn = ∆Rn.

The corresponding recursion for the iterate is obtained by multiplying the equation above by
A−1, hence

xn+1 = xn + ωj+1vn +Unc with Un = A−1Gn = ∆Xn.

For un+1 = xn+2 − xn+1 and gn+1 = −(rn+2 − rn+1) we find the following iterates

un+1 = ωj+1vn+1 +Un+1c and gn+1 = Aun+1.

The next residual and iterate can be determined by

rn+k+1 = rn+k − gn+k and xn+k+1 = xn+k + un+k,

with rn+k+1, rn+k, gn+k ∈ Gj+1. To compute a new residual in Gj+1 we could also use a more
general linear combination of vectors in Gj+1;

rn+k+1 = rn+k −
k∑

i=1

βign+i.

And for the vector gn+k we can use

gn+k = ḡ −
k−1∑
i=1

αign+i with ḡ = −(rn+k+1 − rn+k) = −∆rn+k.

The values of αi and βi are chosen such that intermediate residuals and gn+k have desirable
properties. Analogous xn+k+1 and un+k can be determined with a linear combination using
the same parameters αi and βi. In IDR(s)-biortho αi is chosen such that the vector gn+k is
orthogonal to p1, . . . ,pk−1 and βi such that the intermediate residual rn+k+1 is orthogonal
to p1, . . . ,pk.

6.2 Shifted Laplace Preconditioner

As described in chapter 4 applying the finite element method to the Mild-Slope equation leads
to a discrete Mild-Slope operator, which for the inner iteration results in solving the linear
system Sa = f . The global vector f ∈ CN contains the source term of the given incoming
wave and global matrix S ∈ CN×N has the following form

S = (−L−C + z1M) = (L∗ +C∗ − z1M
∗) with L∗ = −L, C∗ = −C and M∗ = −M .

Matrix L is the discretization of ∇ ·
(
n0
k2
∇ζ̃
)
, C corresponds to the boundary conditions and

M the mass matrix for ζ̃ with z1 =
(
n0 − iW

ω

)
. As described by Erlangga et al. (2004) the

shifted Laplace preconditioner is of the form

K = (L∗ +C∗ − z2M
∗) = (−L−C + z2M),
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that is the same form as the discrete Mild-Slope operator S. The precondioned system is
given by

K−1Sa = K−1f ⇒ (−L−C + z2M)−1(−L−C + z1M)a = (−L−C + z2M)−1f .

The shift parameter z2 needs to be chosen in such a way that it is easy to obtain the inverse
of the preconditioner P . As mentioned by van Gijzen et al. (2007) a suitable value for the
shift parameter is z2 = −|z1|i. Hence the shifted Laplace preconditioner is given by

K = (−L−C − i|z1|M).

Matrix K is still a full matrix and therefore computing its inverse takes a long computational
time. Hence one should approximate it, e.g. by taking the incomplete LU factorization of it.

The matrix K−1S has, with the exact shifted Laplace preconditioner, has a special spectrum
for certain properties of the matrices L, C and M . The complex numbers z1 and z2 can be
written as

z1 = α1 + iβ1 and z2 = α2 + iβ2.

van Gijzen et al. (2007) derived that, when L and C are symmetric positive semidefinite real
matrices and M a symmetric positive definite real matrix and β2 < 0 all the eigenvalues of
the preconditioned system are located inside or on a circle with center c = z1−z2

z2−z2
and radius

R =
∣∣∣ z2−z1
z2−z2

∣∣∣.
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Chapter 7

Numerical experiments

The following experiments are performed to gain insight in the behaviour of the several
numerical methods.

• Incompete LU factorization (ILU(0)) preconditioner combined with

CG-S; Bi-CGSTAB; IDR(2); IDR(4);

• The shifted Laplace (SL) preconditioner combined with

CG-S; Bi-CGSTAB; IDR(2); IDR(4);

• The incomplete LU factorization (ILU(0)) of the shifted Laplace (ILU(0)-SL) precondi-
tioner combined with

CG-S; Bi-CGSTAB; IDR(2); IDR(4);

The test are done on the data of the harbour of Scheveningen (as is shown on the title
page), provided by Svasek Hydraulics. The domain is divided into 126.504 internal triangular
elements and 2.213 boundary line segments. This results in 63.253 unknowns, hence we have
that S ∈ C63.253×63.253. We considered 25 outer iterations for the non-linear part, figure 7.1
shows the number of iterations for each outer iteration that were needed for the numerical
method to converge.
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Figure 7.1: The number of iterations that are needed for the numerical method to converge
depending on the type of preconditioner.

Figure 7.1 shows the number of matrix-vector products needed for each outer iteration such
that the numerical method converges with the three types of preconditioners. As mentioned
in section 6.1 we can choose our starting vector ∆Xs as long as its elements are in the
complete subspace. In the implementation of IDR(s) we used, when the number of outer
iterations is larger than or equal to s, that ∆Xs contains the solutions of the s previous
outer iterations. This is why the amount of iterations needed for the numerical methods
IDR(2) and IDR(4) decrease fast as the number of outer iterations increases, while for the
methods CG-S and Bi-CGSTAB there is not a significant decrease of the amount of iterations
needed. CG-S and Bi-CGSTAB use only the previous solution. Figure 7.1(b) shows that
using the shifted Laplace preconditioner the number of iterations is decreased by a factor
four compared with using the incomplete LU factorization as a preconditioner. Using the full
shifted Laplace preconditioner is very expensive, see table 7.1. That is why the incomplete
LU factorization of the shifted Laplace preconditioner is determined. Figure 7.1(c) shows that
this preconditioner uses less iterations than the ILU(0) preconditioner but more than the full
shifted Laplace preconditioner. The total time needed for the 25 outer iterations is given in
table 7.1.

Numerical method

Preconditioner Bi-CGSTAB CG-S IDR(2) IDR(4)

Total time (s)
ILU(0) 3.0192 · 103 4.1053 · 103 1.2303 · 103 1.2863 · 103
SL 2.4946 · 104 3.7362 · 104 1.2566 · 104 1.3273 · 104

ILU(0)-SL 1.8525 · 103 2.6634 · 103 0.7361 · 103 0.9741 · 103

Table 7.1: CPU time until the whole process is completed.

As can be seen from table 7.1 the CPU time for IDR(2) and IDR(4) are of the same order, while
for Bi-CGSTAB and CG-S the computational time is significantly higher. At the moment
it takes more time when the shifted Laplace preconditioner is used than using the ILU(0)



65

preconditioner, but less iterations are needed. The algorithm which is currently used applies
the preconditioning with the standard direct method of Matlab. Hence for the matrix K
this costs more time than for the lower triangular matrix L. Applying the incomplete LU
factorization of the shifted Laplace preconditioner results is about a factor three faster than
the current numerical method ILU(0) preconditioner Bi-CGSTAB.

Figure 7.2 shows the convergence behaviour of the four numerical methods in the first outer
iteration. Preconditioning with the incomplete LU factorization leads to a greater difference
for the amount of iterations that are needed to convergence between the four numerical
methods than preconditioning with the shifted Laplace preconditioner. We can also see that
the convergence behaviour of CG-S is not as smooth as the convergence behaviour of Bi-
CGSTAB and IDR(s), which was one of the disadvantages of using CG-S. Figure 7.2(a) shows
that the convergence of the methods CG-S, Bi-CGSTAB and IDR(2) stagnates when using
the ILU(0) preconditioner, when using the shifted Laplace and the ILU(0) shifted Laplace
this behaviour is only present for CG-S and Bi-CGSTAB.
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Figure 7.2: The convergence behaviour of the first outer iteration of the four numerical
methods with the two preconditioners applied.

Combining the results of figures 7.1 and 7.2 and table 7.1 indicate that using the IDR(s)
method results in less iterations (matrix-vector products) and shorter CPU time than Bi-
CGSTAB or CG-S. Figure 7.3 shows the convergence behaviour of ILU(0)-IDR(s), SL-IDR(s)
and the ILU(0) version of SL-IDR(s) with s = 2 and s = 4. Using the incomplete LU fac-
torization of the shifted Laplace preconditioner IDR(s) converges faster than just the ILU(0)
preconditioner, but comparing it to the full shifted Laplace preconditioner a lot more itera-
tions are needed.
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Figure 7.3: The convergence behaviour of IDR(2) and IDR(4) combined with the two pre-
conditioners.



Chapter 8

Conclusion and research objectives

This literature study starts with the derivation of the linearised small-amplitude wave equa-
tions as described in the work by Dingemans (1997) and Mei (1989). Using these equations
the Mild-Slope equation, as described by Berkhoff (1976) in his PhD thesis for the Techni-
cal University of Delft, can be derived. The Mild-Slope equations combines the four effects
(diffraction, reflection, refraction and shoaling) that influence the wave dynamics in coastal
regions. Therefore it is often used to predict the wave behaviour in harbours. The origi-
nal Mild-Slope equation does not incorporate the loss of wave energy, e.g. caused by wave
breaking and bottom friction, but this is present in the actual wave dynamics. Including
the energy dissipation leads to a non-linear component in the Mild-Slope equation and hence
more advanced numerical methods are needed to solve it.

The Ritz-Galerkin finite element method of the Mild-Slope equation is derived in chapter 4,
to get an idea of the shape of the matrices and vectors used in HARES. Hence we might be
able to say something about the convergence behaviour of the numerical methods proposed.
Currently the matrix solver Bi-CGSTAB, derived by van der Vorst (1992), preconditioned
with a special form of the incomplete LU factorization, proposed by van der Ploeg (1994).
The iterative method IDR(s), Sonneveld and van Gijzen (2008), and the shifted Laplace
preconditioner, van Gijzen et al. (2007), are presented as a possibility to improve HARES.
Tests are performed on the data of the harbour of Scheveningen to see whether IDR(s) and the
shifted Laplace preconditioner result in a decreased computational time. Comparing figure
7.1(a) with figure 7.1(c) we see that the amount of iterations needed for each outer iteration
has decreased. The computational time, CPU time, see table 7.1, has been improved by a
factor three when using the incomplete LU factorization of the shifted Laplace preconditioner
combined with IDR(s) instead of the ILU(0) preconditioner with Bi-CGSTAB.

Research objectives

In the second part of this research I will investigate the following topics.

• Which improvements can be made regarding way the non-linearity of the problem is
treated? Currently they implemented Picard iteration and just perform 25 outer it-
erations. It might be that less outer iterations are also sufficient. Is it possible to
implement a method such that only the amount of outer iterations is performed which
significantly improve the solution? Can something be said about the error that is made
in the obtained result?
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• In the performed experiments we obtained a faster convergence when using the shifted
Laplace preconditioner. In van Gijzen et al. (2007) an optimal value is derived. However
it is not clear whether our damping matrix C satisfies the conditions for this optimal
shift. Can we theoretically say something about the convergence behaviour of the shifted
Laplace preconditioner for the Mild-Slope equation? Knowing this it might be possible
to determine an optimal form of the shifted Laplace preconditioner to improve the con-
vergence even further. In figure 7.3 we see that using the incomplete LU factorization of
the shifted Laplace preconditioner speeds up the convergence. However using a different
approximation could decrease the number of needed matrix-vector multiplications even
more. How should the shifted Laplace preconditioner be approximated?

• In this literature study some iterative methods based on the Krylov subspace are tested
on a test problem. However other methods, such as a direct method, could also give good
results. More types of matrix solvers will be tested on a wide range of test problems.
At Svas̆ek Hydraulics FORTRAN is used as the computational program. Hence in the
end the proposed numerical method should be able to run in FORTRAN.

• The algorithm of IDR (s), as presented in Alg. 6.1, produces in the lines 5 − 11 the
vectors that are contained in G0. These starting vectors do not have to be formed this
way and maybe they can be chosen in such a way that the convergence is speeded up.
Does chosing the initial vectors lead to a faster convergence, and if so how should these
vectors be chosen?

• In section 6.2 it is stated that all the eigenvalues of the preconditioned system are located
in a circle for certain conditions of the matrices. In the algorithms of Bi-CGSTAB and
IDR(s) the coefficients ωi present in the polynomial Q(A), equation 5.1.2, can be chosen
in a desired manner. A good choice would be to choose ωi such that this polynomial is
minimized on a given domain. When this domain is a circle, how should we choose the
coefficients ωi.



Appendix A

Calculations not included in the
text

A.1 Derivation of the vorticity equation

∇(a · b) = (a · ∇)b+ (b · ∇)b+ a× (∇× b) + b× (∇× a)

∇× (a× b) = (b · ∇)a− (a · ∇)b+ a∇ · b− b∇ · a

∇v2 = 2(v · ∇)v + 2v × (∇× v) ⇒ (v · ∇)v =
1

2
∇v2 − v × (∇× v)

∇×
(
∂v

∂t
+ v · ∇v

)
= ∇×

[
−∇

(
p

ρ
+ gz

)
+ ν∆v

]
can be written as

∂

∂t
(∇× v) +∇×

(
1

2
∇v2 − v × (∇× v)

)
= ∇× ν∆v

Introducing Ω = ∇× v gives

∂Ω

∂t
−∇× (v ×Ω) = ν∆Ω

∂Ω

∂t
− (Ω · ∇)v + (v · ∇)Ω− v∇ ·Ω+Ω∇ · v = ν∆Ω

The terms ν∇ ·Ω and Ω∇ · v are both equal to zero, hence we get

∂Ω

∂t
+ (v · ∇)Ω = (Ω · ∇)v + ν∆Ω(

(
∂

∂t
+ v · ∇

)
Ω = (Ω · ∇)v + ν∆Ω

dΩ

dt
= (Ω · ∇)v + ν∆Ω

69
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A.2 Derivation of the dimensionless equations

We start with the equations

∆Φ = 0 ; − h(x) ≤ z ≤ ζ(x, t) (A.2.1)

∂ζ

∂t
+

∂Φ

∂x

∂ζ

∂x
+

∂Φ

∂y

∂ζ

∂y
=

∂Φ

∂z
; z = ζ(x, t) (A.2.2)

∂Φ

∂t
+

1

2
(∇Φ)2 + gζ = −Pa

ρ
; z = ζ(x, t) (A.2.3)

∂Φ

∂z
+

∂Φ

∂x

∂h

∂x
+

∂Φ

∂y

∂h

∂y
= 0 ; z = −h(x) (A.2.4)

and the scaled variables

Φ =
aωL

2π
Φ′, (x, y, z, h) =

L

2π
(x′, y′, z′, h′), t =

1

ω
t′ and ζ = aζ ′.

We will treat each equation separately. Substitution of these dimensionless variables into
equation (A.2.1) gives

∆Φ =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
Φ = 0,

2π

L

(
∂2

∂x′2
+

∂2

∂y′2
+

∂2

∂z′2

)
aωL

2π
Φ′ = 0,

aω

(
∂2

∂x′2
+

∂2

∂y′2
+

∂2

∂z′2

)
Φ′ = 0,

∆′Φ′ = 0.

The same is done for equation (A.2.2)

∂Φ

∂z
=

∂ζ

∂t
+

∂Φ

∂x

∂ζ

∂x
+

∂Φ

∂y

∂ζ

∂y
,

aωL

2π

2π

L

∂Φ′

∂z′
= ωa

∂ζ ′

∂t′
+

aωL

2π

2π

L
a
2π

L

(
∂Φ′

∂x′
∂ζ ′

∂x′
+

∂Φ′

∂y′
∂ζ ′

∂y′

)
,

∂Φ′

∂z′
=

∂ζ ′

∂t′
+

2πa

L

(
∂Φ′

∂x′
∂ζ ′

∂x′
+

∂Φ′

∂y′
∂ζ ′

∂y′

)
,

∂Φ′

∂z′
=

∂ζ ′

∂t′
+ ϵ

(
∂Φ′

∂x′
∂ζ ′

∂x′
+

∂Φ′

∂y′
∂ζ ′

∂y′

)
,

where ϵ = 2πa
L . For the dynamical boundary condition, equation (A.2.3), for z = ζ we get
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∂Φ

∂t
+

1

2
(∇Φ)2 + gζ = −Pa

ρ
,

aω2L

2π

∂Φ′

∂t′
+

1

2
a2ω2(∇′Φ′)2 + gaζ ′ = −Pa

ρ
,

∂Φ′

∂t′
+

1

2

2πa

L
(∇′Φ′)2 +

2πg

ω2L
ζ ′ = − 2πPa

ρaω2L
,

∂Φ′

∂t′
+

1

2
ϵ(∇′Φ′)2 +

(
2πg

ω2L

)
ζ ′ = −P ′

a.

The last equation for the wetted surface boundary is made dimensionless by

∂Φ

∂z
+

∂Φ

∂x

∂h

∂x
+

∂Φ

∂y

∂h

∂y
= 0.

aω
∂Φ′

∂z′
+ aω

(
∂Φ′

∂x′
∂h′

∂x′
+

∂Φ′

∂y′
∂h′

∂y′

)
= 0,

∂Φ′

∂z′
+

∂Φ′

∂x′
∂h′

∂x′
+

∂Φ′

∂y′
∂h′

∂y′
= 0.

For the boundaries z = ζ and z = h we get the dimensionless expressions

z = ζ ⇒ Lz

2π
= aζ ′ ⇒ z′ =

2πa

L
ζ ′ hence z′ = ϵζ ′,

and

z = −h ⇒ Lz′

2π
=

Lh′

2π
⇒ z′ = h′.

Now we have obtained the set of equations (1.4.5) - (1.4.8).

A.3 Calculations for the kinetic- and potential wave energy

Kinetic wave energy

The equation for the kinetic wave energy is given by

Ek =

∫ L

0

∫ 0

−h

1

2
ρ dzdx (u2 + w2),

with

u(x, z, t) =
gk0H

2ω

cosh(k0(z + h))

cosh(k0h)
cos(k0x− ωt),

w(x, z, t) =
gk0H

2ω

sinh(k0(z + h))

cosh(k0h)
sin(k0x− ωt).
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Taking the square of both velocity components gives

u2(x, z, t) =
g2k20H

2

4ω2

cosh2(k0(z + h))

cosh2(k0h)
cos2(k0x− ωt),

=
gk0H

2

4 tanh(k0h)

cosh2(k0(z + h))

cosh2(k0h)
cos2(k0x− ωt),

=
gk0H

2

4 sinh(k0h) cosh(k0h)
cosh2(k0(z + h)) cos2(k0x− ωt),

=
gk0H

2

2 sinh(2k0h)
cosh2(k0(z + h)) cos2(k0x− ωt),

w2(x, z, t) =
gk0H

2

2 sinh(2k0h)
sinh2(k0(z + h)) sin2(k0x− ωt).

Summing the squared velocity components gives

u2 + w2 =
gk0H

2

2 sinh(2k0h)

(
cosh2(k0(z + h)) cos2(k0x− ωt) + sinh2(k0(z + h)) sin2(k0x− ωt)

)
.

We would like to find a nice expression for

cosh2(k0(z + h)) cos2(k0x− ωt) + sinh2(k0(z + h)) sin2(k0x− ωt),

such that it is possible to integrate it. We will do this by introducing the Euler representation
of the cosine, sine, cosine hyperbolic and the sine hyperbolic . We have

cos(x) =
eix + e−ix

2
⇒ cos2(x) =

e2ix + e−2ix + 2

4
,

sin(x) =
eix − e−ix

2i
⇒ sin2(x) =

e2ix + e−2ix − 2

−4
,

cosh(x) =
ex + e−x

2
⇒ cosh2(x) =

e2x + e−2x + 2

4
,

sinh(x) =
ex − e−x

2
⇒ sinh2(x) =

e2x + 2e−2x − 2

4
.

Introducing α = k0(z + h) and β = k0x− ωt, gives

cosh2(α) cos2(β) =
(e2α + e−2α + 2)(e2iβ + e−2iβ + 2)

16
,

=
e2α+2iβ + e2α−2iβ + 2e2α + e−2α+eiβ + e−2α−2iβ + 2e−2α + 2e2iβ + e−2iβ + 4

16
,

sinh2(α) sin2(β) =
(e2α + e−2α − 2)(e2iβ + e−2iβ − 2)

−16
,

=
−e2α+2iβ − e2a−2iβ + 2e2α − e−2α+2iβ − e−2α−2iβ + 2e−2α + 2e2iβ + 2e−2iβ − 4

16
.
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Combining this gives

cosh2(α) cos2(β) + sinh2(α) sin2(β) =
4e2α + 4e−2α + 4e2iβ + 4e−2iβ

16
,

=
e2α + e−2α + e2iβ + e−2iβ

4
,

=
1

2
cosh(2α) +

1

2
cos(2β),

=
1

2
cosh(2k0(z + h)) +

1

2
cos(2(k0x− ωt)).

Hence for the sum of the squared velocity components we find

u2 + w2 =
gk0H

2

4 sinh(2k0h)
[cosh(2k0(z + h)) + cos(2(k0x− ωt))] .

We first consider the integral ∫ 0

−h

1

2
ρ(u2 + w2) dz.

This gives

∫ 0

−h

1

2
ρ(u2 + w2) dz =

ρgk0H
2

8 sinh(2k0h)

∫ 0

−h
[cosh(2k0(z + h)) + cos(2(k0x− ωt))] dz,

=
ρgk0H

2

8 sinh(2k0h)

[
1

2k0
sinh(2k0(z + h)) + cos(2(k0x− ωt))z

]0
−h

,

=
ρgk0H

2

8 sinh(2k0h)

[
1

2k0
sinh(2k0h) + h cos(2(k0x− ωt))

]
.

Now we can determine the outer integral, this gives

ρgk0H
2

8 sinh(2k0h)

∫ L

0

[
1

2k0
sinh(2k0h) + h cos(2(k0x− ωt))

]
dx

=
ρgk0H

2

8 sinh(2k0h)

[
1

2k0
sinh(2k0h)x+

h

2k0
sin(2(k0x− ωt))

]L
0

,

=
ρgk0H

2

8 sinh(2k0h)

[
L

2k0
sinh(2k0h) +

h

2k0
sin(2(k0L− ωt)− h

2k0
sin(−2ωt)

]
,

=
ρgk0H

2

8 sinh(2k0h)

[
L

2k0
sinh(2k0h)

]
,

=
ρgH2L

16
= Ek.

The expression sin(2(k0L−ωt))− sin(−2ωt) equals zero, this is because k0 = 2π/L hence we
get

sin(4π − 2ωt)− sin(−2ωt) = 0.
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Potential wave energy

The equation for the potential wave energy is given by

Ep =

∫ L

0
ρg(h+ ζ)

(
h+ ζ

2

)
dx− ρgLh

(
h

2

)
,

with

ζ =
H

2
cos(k0x− ωt).

We first look at the term (h+ ζ)2/2, this gives

(h+ ζ)2

2
=

h2 + 2hζ + ζ2

2
,

=
1

2

[
h2 + hH cos(k0x− ωt) +

H2

4
cos2(k0x− ωt)

]
,

=
1

2

[
h2 + hH cos(k0x− ωt) +

H2

8
[cos(2(k0x− ωt)) + 1]

]
.

For the integral we get

ρg

2

∫ L

0

[
h2 + hH cos(k0x− ωt) +

H2

8
[cos(2(k0x− ωt)) + 1]

]
dx

=
ρg

2

[
h2x+

hH

k0
sin(k0x− ωt) +

H2

8

[
1

2k0
sin(2(k0x− ωt)) + x

]]L
0

,

=
ρg

2

[
h2L+

hH

k0
[sin(k0L− ωt)− sin(−ωt)] +

H2

8

(
1

2k0
[sin(2(k0L− ωt))− sin(−2ωt)] + L

)]
,

=
ρg

2

[
h2L+

H2

8
L

]
.

Hence for the potential wave energy we get

Ep =
ρgh2L

2
+

ρgH2L

16
− ρgh2L

2
,

=
ρhH2L

16
.

A.4 Calculations for the wave power

The equation for the wave power is given by

P =
1

T

∫ T

0

∫ 0

−h

(
−ρ

∂Φ

∂t

)
u dzdt,

with

−ρ
∂Φ

∂t
=

ρgH

2

cosh(k0(z + h))

cosh(k0h)
cos(k0x− ωt),

u =
gHT

2L

cosh(k0(z + h))

sinh(k0h)
cos(k0x− ωt).
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Thus we get

−ρ
∂Φ

∂t
u =

ρg2H2T

4L

cosh2(k0(z + h))

sinh(k0h) cosh(k0h)
cos2(k0x− ωt),

=
ρg2H2T

4L

[cosh(2k0(z + h)) + 1]

sinh(2k0h)
cos2(k0x− ωt).

The integral with respect to z is given by

ρg2H2

4L

∫ 0

−h

[cosh(2k0(z + h)) + 1]

sinh(2k0h)
cos2(k0x− ωt) dz

=
ρg2H2

4L

[
1

2k0

sinh(2k0(z + h))

sinh(2k0h)
cos2(k0x− ωt) + z

cos2(k0x− ωt)

sinh(2k0h)

]0
−h

,

=
ρg2H2

4L

[
cos2(k0x− ωt)

2k0
+

h cos2(k0x− ωt)

sinh(2k0h)

]
,

=
ρg2H2

4L

[
(cos(2(k0x− ωt)) + 1)

4k0
+ h

(cos(2(k0x− ωt)) + 1)

2 sinh(2k0h)

]
.

For the second integral with respect to t we receive

ρg2H2

4L

∫ T

0

[
(cos(2(k0x− ωt)) + 1)

4k0
+ h

(cos(2(k0x− ωt)) + 1)

2 sinh(2k0h)

]
dt

=
ρg2H2

4L

[
sin(2(k0x− ωt))

−8ωk0
+

t

4k0
+

h

2 sinh(2k0h)

(
−1

2ω
sin(2(k0x− ωt)) + t

)]T
0

,

=
ρg2H2

4L

[
sin(2(k0x− ωT ))− sin(2k0x)

−8ωk0
+

T

4k0
+

h

2 sinh(2k0h)

(
sin(2k0x)− sin(2(k0x− ωT ))

2ω
+ T

)]
,

=
ρg2H2

4L

[
T

4k0
+

hT

2 sinh(2k0h)

]
=

ρg2H2T

16k0L

[
1 +

2k0h

sinh(2k0h)

]
,

=
ρgH2L

16T

[
1 +

2k0h

sinh(2k0h)

]
=

E

2T

[
1 +

2k0h

sinh(2k0h)

]
=

n0E

T
.

The expression that is obtained for the wave power is

P =
n0E

T
.

A.5 Derivation of the group velocity

As was derived in section 1.6.3 the expression for the group velocity is given by

cg =
dω

dk0
,
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with
ω =

√
gk0 tanh(k0h).

Performing the calculation gives

cg =
dω

dk0
,

=
g tanh(k0h) +

gk0h
cosh2(k0h)

2
√

gk0 tanh(k0h)
,

=
g tanh(k0h)

2
√

gk0 tanh(k0h)
+

gk0h

2
√

gk0 tanh(k0h) cosh
2(k0h)

,

=
ω2/k0
2ω

+
gk0h

2ω cosh2(k0h)
,

=
ω

2k0
+

1

2

gk0hω
2

ωgk0 sinh(k0h) cosh(k0h)
,

=
ω

2k0
+

ωh

sinh(2k0h)
,

=
1

2

ω

k0

(
1 +

2k0h

sinh(2k0h)

)
,

= n0c.

A.6 Leibniz integral rule for variable limits

Suppose that the limits of integration a and b and the integrand f(x, α) all are functions of
the parameter α. Then we can apply Leibniz integral rule to obtain

d

dα

∫ b(α)

a(α)
f(x, α) dx =

db(α)

dα
f(b(α), α)− da(α)

dα
f(a(α), α) +

∫ b(α)

a(α)

∂

∂α
f(x, α) dx.

A.7 Derivation of the refraction equations

We start with the equations

ϵ2
(
∂2Φ

∂x2
+

∂2Φ

∂y2

)
+

∂2Φ

∂z2
= 0 ; − h ≤ z ≤ 0,

∂Φ

∂z
− Φ = 0 ; z = 0,

∂Φ

∂z
+ ϵ2

(
∂Φ

∂x

∂h

∂x̄
+

∂Φ

∂y

∂h

∂ȳ

)
= 0 ; z = −,

and we substitute
Φ(x, y, z) = A(x, y, z)eiS(x,y,z)

into the equations above. Since both A and S depend on x, y and z the first and second deriva-
tives are the same with respect to x, y and z. Therefore we only determine the derivatives
with respect to z, the other ones follow immediately.
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∂Φ

∂z
=

∂A

∂z
eiS +Ai

∂S

∂z
eiS ,

∂2Φ

∂z2
=

∂2A

∂z2
eiS +

∂A

∂z
i
∂S

∂z
eiS +

∂A

∂z
i
∂S

∂z
eiS +Ai

∂2S

∂z2
eiS −A

(
∂S

∂z

)2

eiS .

Hence for the first equation, the real part is given by

ϵ2

(
∂2A

∂x2
+

∂2A

∂y2
−A

[(
∂S

∂x

)2

+

(
∂S

∂y

)2
])

+
∂2A

∂z2
−A

(
∂S

∂z

)2

= 0,

ϵ2

(
1

A

[
∂2A

∂x2
+

∂2A

∂y2

]
+

(
∂S

∂x

)2

+

(
∂S

∂y

)2
)

+
1

A

∂2A

∂z2
−
(
∂S

∂z

)2

= 0.

Introducing ∇ =
(

∂
∂x ,

∂
∂y

)
gives

ϵ2
(
1

A
∇2A+ (∇S)2

)
+

1

A

∂2A

∂z2
−
(
∂S

∂z

)2

= 0.

For the imaginary part of the first equation is given by

ϵ2
(
2∇A · ∇S +A∇2S

)
+ 2

∂A

∂z

∂S

∂z
+A

∂2S

∂z2
= 0.

Multiplying the equation above gives

ϵ2
(
2A∇A · ∇S +A2∇2S

)
+ 2A

∂A

∂z

∂S

∂z
+A2∂

2S

∂z2
= 0,

ϵ2∇ ·
[
A2∇S

]
+

∂

∂z

[
A2∂S

∂z

]
= 0.

For the boundary conditions we get

∂A

∂z
−A = 0 and

∂S

∂z
= 0 for z = 0,

∂A

∂z
+ ϵ2

(
∇A · ∇̄h

)
= 0 and

∂S

∂z
+ ϵ2

(
∇S · ∇̄h

)
= 0 for z = −h.

A.8 Integral for the refraction equation

We start with the integral

∇ ·
∫ 0

−h

(
cosh(κ(z + h))

cosh(κh)

)2

dz a2∇S0 = 0.

Now we only consider the integral, this gives
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∫ 0

−h

(
cosh(κ(z + h))

cosh(κh)

)2

dz =
1

cosh2(κh)

∫ 0

−h

1

2
[cosh(2κ(z + h)) + 1] dz,

=
1

cosh2(κh)

1

2

[
1

2κ
sinh(2κ(z + h)) + z

]0
−h

,

=
1

cosh2(κh)

1

2

[
sinh(2κh)

2κ
+ h

]
,

=
1

2

[
sinh(2κh)

2κ cosh2(κh)
+

h

cosh2(κh)

]
,

=
1

2

[
sinh(κh)

κ cosh(κh)
+

h

cosh2(κh)

]
,

=
1

2

[
tanh(κh)

κ
+

h

cosh2(κh)

]
,

=
1

2κ

[
tanh(κh) +

κh sinh(κh)

sinh(κh) cosh2(κh)

]
,

=
1

2κ

[
tanhκh) +

2κh tanh(κh)

sinh(2κh)

]
,

=
tanh(κh)

κ

1

2

[
1 +

2κh

sinh(2κh)

]
,

=
c2

g
n0 =

ccg
g

.

Hence the total expression becomes

∇ ·
∫ 0

−h
A2

0 dz ∇S0 = ∇ ·
(
ccg
g

a2∇S0

)
= 0,

since g is the gravitational constant we get

∇ ·
(
ccga

2∇S0

)
= 0.

A.9 Calculations for the derivation of the Mild-Slope equation

Multiplication of equation (3.1.8) with Z and integrating it over the water depth gives

ϵ2
[∫ 0

−h
Z

(
∂2Z

∂h2
∇h · ∇h+

∂Z

∂h
∇2

h

)
φ dz

]
+ ϵ

[∫ 0

−h

∂Z2

∂h
∇h · ∇φ dz

]

+

∫ 0

−h

[
Z2(∇2φ+ κ2φ) +

∂Z2

∂z

∂φ

∂z
+ Z2∂

2φ

∂z2

]
dz = 0,

where we used that 2Z ∂Z
∂h = ∂Z2

∂h . Applying partial integration to the last two terms on the
second line gives∫ 0

−h

[
∂Z2

∂h

∂φ

∂z
+ Z2∂

2φ

∂z2

]
dz = Z2∂φ

∂z

∣∣∣∣0
−h

−
∫ 0

−h
Z2∂

2φ

∂z2
dz +

∫ 0

−h
Z2∂

2φ

∂z2
dz = Z2∂φ

∂z

∣∣∣∣0
−h

.
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Applying the boundary conditions (3.1.9) and (3.1.10) gives

Z2∂φ

∂z

∣∣∣∣0
−h

= Z2∂φ

∂z

∣∣∣∣
z=0

− Z2∂φ

∂z

∣∣∣∣
z=−h

= −Z

(
Z
∂φ

∂z

)
z=−h

= Z

[
ϵ2
(
φ
∂Z

∂h
∇h · ∇h

)
+ ϵ
(
∇φ · ∇hZ

)]
z=−h

.

The equation we obtain is

ϵ2
[∫ 0

−h
z

(
∂2Z

∂h2
∇h · ∇h+

∂Z

∂h
∇2

h

)
φ dz

]
+ ϵ

[∫ 0

−h

∂Z2

∂h
∇h · ∇φ dz

]
∫ 0

−h
Z2
(
∇2φ+ κ2φ

)
dz + ϵ

[
Z2∇φ · ∇h

]
z=−h

+ ϵ2
[
Zφ

∂Z

∂h
∇h · ∇h

]
z=−h

= 0.

Here we give the manipulations that are done to show that equation (3.1.12) and equation
(3.1.13) are equivalent. We will start with equation (3.1.13) and end up with equation (3.1.12)

∇ ·
∫ 0

−h
Z2 dz∇φ0 + κ2φ0

∫ 0

−h
Z2 dz

=

∫ 0

−h
Z2 dz∇2φ0 +∇φ0∇ ·

∫ 0

−h
Z2 dz + κ2φ0

∫ 0

−h
Z2 dz,

=

∫ 0

−h
Z2 dz∇2φ0 +∇φ0

[
∇h Z2

∣∣
z=−h

+

∫ 0

−h

∂Z2

∂h
∇h dz

]
+ κ2φ0

∫ 0

−h
Z2 dz,

=

∫ 0

−h
Z2 dz∇2φ0 +∇φ0

[
∇h Z2

∣∣
z=−h

+
∂

∂h

∫ 0

−h
Z2 dz∇h−∇h Z2

∣∣
z=−h

]
+ κ2φ0

∫ 0

−h
Z2 dz,

=

∫ 0

−h
Z2 dz∇2φ0 +

∂

∂h

∫ 0

−h
Z2 dz∇h · ∇φ0 + κ2φ0

∫ )

−h
Z2 dz,

=

∫ 0

−h
Z2 dz∇2φ0 + ϵ

∂

∂h

∫ 0

−h
Z2 dz∇h · ∇φ0 + κ2φ0

∫ 0

−h
Z2 dz,

=
(
∇2φ0 + κ2φ0

) ∫ 0

−h
Z2 dz + ϵ∇h · ∇φ0

∂

∂h

∫ 0

−h
Z2 dz.

The equation we obtained equals equation (3.1.12).
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