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Introduction

The inhomogeneous wave equation is

2
(% - c2v2) u(x,t) = F(x), x € R? (1)
Separation of variables leads to

(-v* - k%) o(x) = f(x),
Lo 2m (2)
-

f(x)=0(x—xp).
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Helmholtz Boundary Value Problems

(BVP-1):
(—V2 - k2) u(x) =8(x-xp), inQeR.
[u(x) =0 for x € 09, (3)
k e N\{0} and d €{1,2,3}.
(BVP-2):

(au(x) lku(x)) for x € 09, (4)

( k2) u(x) =6(x—xp), inQeRY,
k e N\{0} and d ¢ {1 2,3}.
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Finite Difference Discretization

Assume we have BVP-1 on unit domain Q and h= %

Au =f, on Q. (5)

® A becomes indefinite for large wave numbers.
® [terative solution methods, GMRES
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Numerical Solver Problems

® Pollution Error.

® Accuracy issue of the solution.
* Refinement requirements * 2.
kh < 1, or even better k3h% <1 with

® Problem size increasing with the wave number k.

LA, Sheikh (2014). "Development Of The Helmholtz Solver Based On A Shifted Laplace Preconditioner And A
Multigrid Deflation Technique”. Thesis

2A. Deraemacker, |. Babuska, and P. Bouillard (1999). “Dispersion and pollution of the FEM solution for the Helmholtz
equation in one, two and three dimensions”. n: /NTERNATIONAL JOURNAL FOR NUMERICAL METHODS N
ENGINEERING 46.4, pp. 471-499

Delft 6/19



Helmholtz solvers

Attempts at wave-number-independent solvers

* Adapted preconditioned DEF Scheme (APD) (Deflation
Preconditioner)3

® Two-Level Domain Decomposition Preconditioner with grid coarse
space and DtN coarse space *

3V. Dwarka and C. Vuik (2020). “Scalable convergence using two-level deflation preconditioning for the helmholtz
equation”. In: SIAM Journal on Scientific Computing 42.2, A901-A928. 1ssN: 1064-8275

M. Bonazzoli, V. Dolean, |. G. Graham, E. A. Spence, and P. H. Tournier (2018). “Two-level preconditioners for the
helmholtz equation”. In: Lecture Notes in Computational Science and Engineering. Vol. 125. Springer Verlag, pp. 139-147.
ISBN: 14397358 (ISSN). por: 10.1007/978-3-319-93873-8_11
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One-Level Schwarz Preconditioner
2D Unit Square Domain
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One-Level Schwarz Preconditioner

We introduce discrete projection-like operators as
Pi=RTA*R;, fori=1,...N (6)
Multiplicative Schwarz operator:
Mygs =1 = (I = Pn) (1 = Py-1)...(] = Pr). (7)

Additive Schwarz operator:

N
My§ = Zl Zl RTAT'R;. (8)

Upper bound for condition number preconditioner system:

K(M5LA) < C(52L2) 9)
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Two-Level Schwarz Preconditioner

Introduce a coarse space, which gives the two-level additive Schwarz
operator is of the form

N N
Miss = Pi=Ry Ag*Ro+ > RTAR;, (10)
i=0 i=1

Leads to new upper bound for condition number

r(MrgaA) < C(l + %) (11)
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Two-Level Schwarz Preconditioner

Introduce a coarse space, which gives the two-level additive Schwarz
operator is of the form

N N
Miss = Pi=Ry Ag*Ro+ > RTAR;, (10)
i=0 i=1

Leads to new upper bound for condition number
1 H
K’(MASQA) < C(1+E) (11)

This upper bound for the condition number is parallel scalable!
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GDSW Preconditioner

Advantages of using GDSW:
® More freedom in constructing the coarse grid,
® GDSW coarse spaces are flexible in adding additional coarse
functions,
® The GDSW preconditioner only requires the trace of the interface.
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GDSW Preconditioner

Ry from Equation (10) is replaced by & giving the operator

N N
Mabsw =3 Pi= 07 A'0+ Y RT AR, (12
i=0 i=1
with 2
H H
k (MabswA) < C(l * 3) (1 " '°g(F)) ’ (13)

and for certain GDSW coarse space we even find

K (Mab sy A) < C(l . %) (14)
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Deflation

Higher-order coarse correction operator

Deflation:
Pp=I1-P=1-AZ(E)*ZT, ZeR(mD™r’ (15)

For APD preconditioner: coarse correction operator Z = 12"h with weight
€

1

15 Lusn], = (% [u2n](i-2y o + (3-9) [u2n] iy o + 5 [Uzh](;+2)/2) if i is even,
2h i~ PP
3 ([U2h (-2t [U2h](,-+1)/2) if i is odd

(16)
Quadratic approximation using the rational Bézier curve.
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Parallel Computing

® More memory storage,

® better computational performance.

Distributed memory message-passing models using the MPI library.

Trilinos: software suite with robust, scalable, parallel solver algorithms.
FROSch: Schwarz preconditioner with GDSW-type coarse space.
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Test Problem Domain Decomposition Preconditioner

One-Level Additive Schwarz Preconditioner

Note: 2D Poisson problem unit square domain.

H (5=1) [ n = 6400 n? = 25600
05 17 22
0.25 24 33

0.125 30 43
0.0625 45 50+

Table: Number of GMRES iterations for the test problem using a one-level AS
preconditioner.
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Research Questions

Research Questions 1

Does a Helmholtz solver that uses a two-level additive Schwarz
preconditioner combined with first-order grid coarse space show
numerical scalability and efficiency?

® What causes the solver to be inscalable?
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Research Questions

Research Questions 2

Does a Helmholtz solver that uses a two-level additive Schwarz
preconditioner and a higher-order coarse space from the deflation
setting show numerical scalability and efficiency?

* What causes the solver to be inscalable if this is the case?

® How much better does the Helmholtz solver perform when the
higher-order coarse space from the deflation setting is used as
the multiplicative coupling of the coarse level?

5
TUDelft 17 / 19



Research Questions

Research Questions 3

When using higher-order coarse spaces shows promising performance,
does using a GDSW-type coarse space, improve the Helmholtz solver
further?

® Can higher-order coarse spaces be used in GDSW-type coarse
spaces?
® Does this solver show improved performance?

z
TUDelft 18 / 19



Research Questions

Research Questions 4

If time permits, does the numerically scalable and efficient Helmholtz
solver show parallel scalability when it is transformed into a parallel
algorithm? To do this we could use FROSch of Trilinos.

* Do memory or communication problems arise?

® How much does a restricted additive Schwarz preconditioner
improve the parallel algorithm further?
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