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Introduction

The inhomogeneous wave equation is

( ∂2

∂t2
− c2∇2)u(x, t) = f (x), x ∈ Rd (1)

Separation of variables leads to

(−∇2 − k2)ϕ(x) = f (x),

k = 2π

λ
.

(2)

f (x) = δ(x − x0).
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Helmholtz Boundary Value Problems

(BVP-1):

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(−∇2 − k2)u(x) = δ(x − x0), in Ω ∈ Rd .

u(x) = 0 for x ∈ ∂Ω,
k ∈ N/{0} and d ∈ {1,2,3}.

(3)

(BVP-2):

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(−∇2 − k2)u(x) = δ(x − x0), in Ω ∈ Rd .

(∂u(x)∂n − iku(x)) = 0, for x ∈ ∂Ω,
k ∈ N/{0} and d ∈ {1,2,3}.

(4)
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Finite Difference Discretization

Assume we have BVP-1 on unit domain Ω and h = 1
n .

Au = f, on Ω. (5)

● A becomes indefinite for large wave numbers.

● Iterative solution methods, GMRES
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Numerical Solver Problems

● Pollution Error.
● Accuracy issue of the solution.
● Refinement requirements 1 2.

kh < 1, or even better k3h2 ≤ 1 with

● Problem size increasing with the wave number k.

1A. Sheikh (2014). “Development Of The Helmholtz Solver Based On A Shifted Laplace Preconditioner And A
Multigrid Deflation Technique”. Thesis

2A. Deraemaeker, I. Babuska, and P. Bouillard (1999). “Dispersion and pollution of the FEM solution for the Helmholtz
equation in one, two and three dimensions”. In: INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN
ENGINEERING 46.4, pp. 471–499
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Helmholtz solvers
Attempts at wave-number-independent solvers

● Adapted preconditioned DEF Scheme (APD) (Deflation
Preconditioner)3

● Two-Level Domain Decomposition Preconditioner with grid coarse
space and DtN coarse space 4

3V. Dwarka and C. Vuik (2020). “Scalable convergence using two-level deflation preconditioning for the helmholtz
equation”. In: SIAM Journal on Scientific Computing 42.2, A901–A928. issn: 1064-8275

4M. Bonazzoli, V. Dolean, I. G. Graham, E. A. Spence, and P. H. Tournier (2018). “Two-level preconditioners for the
helmholtz equation”. In: Lecture Notes in Computational Science and Engineering. Vol. 125. Springer Verlag, pp. 139–147.
isbn: 14397358 (ISSN). doi: 10.1007/978-3-319-93873-8_11
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One-Level Schwarz Preconditioner
2D Unit Square Domain

Figure: Non-overlapping subdomains Figure: Overlapping subdomains
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One-Level Schwarz Preconditioner
We introduce discrete projection-like operators as

Pi = RT
i A−1i Ri , for i = 1, ...,N (6)

Multiplicative Schwarz operator:

M−1MS = I − (I − PN)(I − PN−1)...(I − P1). (7)

Additive Schwarz operator:

M−1AS =
N

∑
i=1

Pi =
N

∑
i=1

RT
i A−1i Ri . (8)

Upper bound for condition number preconditioner system:

κ(M−1ASA) ≤ C (
1

δ2H2
) , (9)
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Two-Level Schwarz Preconditioner

Introduce a coarse space, which gives the two-level additive Schwarz
operator is of the form

M−1AS2 =
N

∑
i=0

Pi = RT
0 A−10 R0 +

N

∑
i=1

RT
i A−1i Ri , (10)

Leads to new upper bound for condition number

κ(M−1AS2A) ≤ C (1 +
H

δ
) (11)

This upper bound for the condition number is parallel scalable!
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GDSW Preconditioner

Advantages of using GDSW:

● More freedom in constructing the coarse grid,

● GDSW coarse spaces are flexible in adding additional coarse
functions,

● The GDSW preconditioner only requires the trace of the interface.
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GDSW Preconditioner

R0 from Equation (10) is replaced by Φ giving the operator

M−1GDSW =
N

∑
i=0

Pi = ΦTA−10 Φ +
N

∑
i=1

RT
i A−1i Ri , (12)

with

κ (M−1GDSWA) ≤ C (1 + H

δ
)(1 + log (H

h
))

2

, (13)

and for certain GDSW coarse space we even find

κ(M−1GDSWA) ≤ C (1 + H

δ
) . (14)
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Deflation
Higher-order coarse correction operator

Deflation:

PD = I − P = I −AZ (E)−1 ZT , Z ∈ R(n+1)d×rd . (15)

For APD preconditioner: coarse correction operator Z = I h2h with weight
ε

I h2h [u2h]i =

⎧
⎪⎪
⎨
⎪⎪
⎩

(
1
8
[u2h](i−2)/2 + (

3
4
− ε) [u2h](i)/2 +

1
8
[u2h](i+2)/2) if i is even,

1
2
([u2h](i−1)/2 + [u2h](i+1)/2) if i is odd

⎞

⎠

(16)

Quadratic approximation using the rational Bézier curve.
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Parallel Computing

● More memory storage,

● better computational performance.

Distributed memory message-passing models using the MPI library.

Trilinos: software suite with robust, scalable, parallel solver algorithms.
FROSch: Schwarz preconditioner with GDSW-type coarse space.
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Test Problem Domain Decomposition Preconditioner
One-Level Additive Schwarz Preconditioner

Note: 2D Poisson problem unit square domain.

H’ (δ = 1) n2 = 6400 n2 = 25600

0.5 17 22
0.25 24 33
0.125 30 43
0.0625 45 50+

Table: Number of GMRES iterations for the test problem using a one-level AS
preconditioner.
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Research Questions

Research Questions 1

Does a Helmholtz solver that uses a two-level additive Schwarz
preconditioner combined with first-order grid coarse space show
numerical scalability and efficiency?

● What causes the solver to be inscalable?
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Research Questions

Research Questions 2

Does a Helmholtz solver that uses a two-level additive Schwarz
preconditioner and a higher-order coarse space from the deflation
setting show numerical scalability and efficiency?

● What causes the solver to be inscalable if this is the case?

● How much better does the Helmholtz solver perform when the
higher-order coarse space from the deflation setting is used as
the multiplicative coupling of the coarse level?
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Research Questions

Research Questions 3

When using higher-order coarse spaces shows promising performance,
does using a GDSW-type coarse space, improve the Helmholtz solver
further?

● Can higher-order coarse spaces be used in GDSW-type coarse
spaces?

● Does this solver show improved performance?
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Research Questions

Research Questions 4

If time permits, does the numerically scalable and efficient Helmholtz
solver show parallel scalability when it is transformed into a parallel
algorithm? To do this we could use FROSch of Trilinos.

● Do memory or communication problems arise?

● How much does a restricted additive Schwarz preconditioner
improve the parallel algorithm further?
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