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1 | Introduction
The purpose of this chapter is to give an introduction to the work presented in this literature study, which
deals with numerical solvers for the Helmholtz equation. The modeling of wave scattering in a efficient
computational manner is crucial for many practical problems. The Helmholtz equation often arises from
problems related to steady-state oscillations, such as electromagnetic, acoustical, mechanical and ther-
mal problems. As can be seen in the following chapter, the Helmholtz equation follows from the wave
equation by separation of variables and the Helmholtz equation represents a time-independent from of
the wave equation.

Typically, finite difference or finite element methods are used for modeling of the Helmholtz equation.
Additionally, in order for the bounded the Helmholtz problem to be well-posed Dirichlet boundary condi-
tions or Sommerfeld radiation conditions are used. However, Dirichlet conditions cause wave reflections,
while Sommerfeld conditions dampen these wave reflections.
As a consequence of either the finite difference or finite element modeling techniques a linear system
of equations arises. For this linear system the coefficient matrix is large, sparse, symmetric and com-
plex non-Hermitian. The coefficient matrix becomes indefinite very quickly when the wave number of
the Helmholtz equation increases. Solving the indefinite Helmholtz equation numerically leads to two
problems.

The first problem that arises is that when the wave number of the Helmholtz equation increases a pol-
lution error appears in the solution. In order to avoid this pollution error the grid needs to be refined
when the wave number increases. This gives rise to the second problem, which is that the problem
size becomes very large for large wave numbers and that the problem size is dependent on the wave
number.
Over the years a lot of active research has been devoted to developing numerical solvers for the
Helmholtz problem that are wave number independent. This means that the wave number, and there-
fore the problem size, can increase, but the computational time stays the same. No numerical Helmholtz
solver has yet been developed that has this independence property for real-world problems.

The goal of this report is to give an introduction into numerical Helmholtz solvers that deal with the
wave number dependence and the large problem size of the Helmholtz problem. Additionally, the aim
of this report is to give background information for the research questions that are proposed in Chapter
6. These research questions are the core of the thesis and research that will follow. The content of this
report gives information necessary to construct and understand the research questions at the end.

In the first chapter after this introduction a proper introduction the the Helmholtz equation is given. This
includes the derivation, the analytical solution and details about the boundary conditions used with the
Helmholtz equation. In Chapter 3 details about the linear system, iterative methods and precondition-
ers for the Helmholtz problem are given. Additionally, existing relevant numerical Helmholtz solvers
are mentioned and their details are given. Chapter 4 gives details about using domain decomposition
techniques for preconditioning of iterative methods for the Helmholtz problem. After that an introduction
to parallel computing is given in Chapter 5, since parallel computing can be used in combination with
some domain decomposition techniques. The final chapter gives the details of two numerical experi-
ments of test problems related to the work in this report. But more importantly, the final chapter states
the research questions which are the core of the thesis that will follow.
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2 | The Helmholtz Equation
This chapter is the start of the analysis of the Helmholtz equation. The Helmholtz equation is named
after the physicist Hermann von Helmholtz who is the creator of the equation. It is a second order par-
tial differential equation that models wave phenomena. The equation seems many applications in fields
such as optics, acoustics, seismology and more.
The structure of this chapter is as follows: first the derivation of the Helmholtz equation from the homo-
geneous wave equation is given, followed by an explanation of different boundary conditions and finally,
the construing of the analytical solution to the one dimensional non-homogeneous Helmholtz equation.
This analytical solution is will be used thought out this study for analysis.

2.1 Derivation

The homogeneous wave equation is (
∂2

∂t2
− c2∇2

)
u(x, t) = 0, (2.1)

where u(x, t) denotes the wave displacement.

Let us now apply the method of separation of variables. We begin by separating the solution u(x, t)
in a time dependent and time independent part. This solution is then written in the following form:

u(x, t) = h(t)ϕ(x). (2.2)

Substituting (2.2) into (2.1) gives the results(
∂2

∂t2
− c2∇2

)
h(t)ϕ(x) = 0. (2.3)

By moving the time dependent parts to the left side, the space dependent parts to the right side
and setting this equation equal the separation constant which we pick to be −k2, we get the following
equation

1

c2h(t)

d2h(t)

dt2
=

1

ϕ(x)
∇2ϕ(x) = −k2. (2.4)

Thus we obtain two equations

•
d2h(t)

dt2
= −k2c2h(t), (2.5)

•
∇2ϕ(x) = −k2ϕ(x). (2.6)

Now, (2.6) gives is the Helmholtz equation, which can be rewritten to the more conventional form of(
−∇2 − k2

)
ϕ(x) = 0. (2.7)

with k being the wave number, which is defined as

k =
2π

λ
, (2.8)

where λ is the wave length.

The non-homogeneous Helmholtz equation can be written when the right hand side of (2.7) is replaced
by a function f(x). For this literature study, the non-homogeneous part is defined as the source function
given by

f(x) = δ(x − x0). (2.9)

The non-homogeneous Helmholtz equation is therefore given by(
−∇2 − k2

)
ϕ(x) = δ(x − x0). (2.10)
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2.2 Boundary Conditions

In order to solve the Helmholtz equation on a domain Ω, boundary conditions are necessary for the
problem to not be ill-posed. In problems with the Helmholtz equation the following boundary conditions
are generally used. Also note that for a domain Ω the boundary of that domain is indicated by ∂Ω.

• Dirichlet Boundary Conditions:
Also sometimes called boundary conditions of the first type, are boundary conditions that specify
a value on the boundary of the domain. Non-homogeneous Dirichlet boundary can generally be
written as

ϕ(x) = g(x), for x ∈ ∂Ω. (2.11)

In the homogeneous case, so g(x) = 0∀x ∈ ∂Ω, the Dirichlet boundary conditions is sometimes
referred to as a vanishing boundary conditions

• Neumann Boundary Conditions:
or second-type boundary conditions, are boundary conditions that specify a value to the derivative
of the boundary. Generally, this is boundary conditions is expressed as

∂ϕ(x)
∂n

ϕ(x) = h(x), for x ∈ ∂Ω. (2.12)

n denotes unit vector pointing outward with respect to the boundary Ω. The homogeneous, so
h(x) = 0 ∀x ∈ ∂Ω, Neumann boundary condition is sometimes called the reflective boundary
conditions.

• Robin Boundary Conditions:
Robin boundary conditions are a weighted combination of the first two boundary conditions. Its
non-homogenous case is therefore expressed as(

a
∂ϕ(x)
∂n

+ bϕ(x)
)

= k(x), for x ∈ ∂Ω, (2.13)

with a, b ∈ C being the weight coefficients. Similarly as before, the homogeneous case is given
when k(x) = 0∀x ∈ ∂Ω.

• Sommerfeld Radiation Condition:
Often, the Sommerfeld radiation condition is used for the Helmholtz problem to introduce some
damping to the problem. The damping is beneficial since it allows the Helmholtz problem to be
controlled more easily. This means that the problems we will see later on, will be reduced. It is
for example easier to construct an iterative Helmholtz solver that is wave number independent for
the Helmholtz problem when the Sommerfeld radiation condition is applied to the whole boundary,
compared to when the homogeneous Dirichlet boundary condition is applied to the Helmholtz
problem. The Sommerfeld radiation condition is a more specific version of the Robin boundary
conditions. Sometimes the Sommerfeld radiation conditions is also referred to as the absorbing
boundary condition and it is represented as(

∂ϕ(x)
∂n

− ikϕ(x)
)

= 0, for x ∈ ∂Ω, (2.14)

where i is the imaginary number and k is the wave number in the Helmholtz equation.

4



2.3 Analytical Solution of the One Dimensional Helmholtz Equa-
tion

In this section we will give the analytical solution to the 1D non-homogeneous Helmholtz equation with
homogeneous Dirichlet boundary conditions. For convenience we will use u(x) instead of ϕ(x). The
boundary value problem is given by

−d2u(x)
dx2 − k2u(x) = δ(x− L

2 ), in Ω = [0, L] ⊂ R.
u(x) = 0 for x ∈ ∂Ω.

k ∈ N\{0}.
(2.15)

Note that the harmonic source term is placed in the middle of the domain and note that k is independent
of x. For some problems, a wave number which is dependent on x is chosen (k = k(x)). This is for
example the case when modeling the Helmholtz equation in a non-homogeneous medium.

The boundary value problem of (2.15) can be expressed in terms of the Green’s function G(x, x′). First
we note that the Sturm-Liouville operator given by

L =
d

dx

[
p(x)

d

dx

]
+ q(x). (2.16)

Setting p(x) = −1 and q(x) = −k2, we find the Sturm-Liouville operator for the boundary value problem
of (2.15).
Therefore, we can now write the boundary value problem with the Green’s function, with a general
location x′ instead of L

2 for the source location, as{
L(G(x, x′)) = δ(x− x′), in Ω = [0, L] ⊂ R.
G(x, x′) = 0 for x ∈ ∂Ω.

(2.17)

An eigenfunction ϕ must satisfy
L(ϕ) = −λσ(x)ϕ. (2.18)

"Eigenfunctions corresponding to different eigenvalues are orthogonal with the weight σ(x)."
(i.e. ϕn and ϕm are orthogonal with weight σ(x) for λn ̸= λm).

We take σ(x) = −1. Thus (2.18) gives us the ODE

d2ϕ

dx2
+ k2ϕ = −λϕ, (2.19)

d2ϕ

dx2
+ (k2 + λ)︸ ︷︷ ︸

α

ϕ = 0 (2.20)

d2ϕ

dx2
= −αϕ (2.21)

Independent solution can often be obtained in the form of exponential, ϕ = erx. When this expression
is substituted into the ODE of (2.21) we find the polynomial

r2 = −α. (2.22)

We can distinguish three different cases:

• α > 0,

• α = 0,

• α < 0.
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α can not be complex, since α needs to be real for the boundary value problem to have nontrivial
solutions. The three cases are analysed separately.

First, α = 0. This implies that r = 0, which means that we get the only trivial solutions due to the
Dirichlet boundary conditions.

Second, α < 0. This means that r = ±
√
−α, which suggests a solution of the form

ϕ(x) = c1 cosh(
√
−αx) + c2 sinh(

√
−αx). (2.23)

Applying the boundary conditions, ϕ(0) = ϕ(L) = 0, gives us that ϕ(x) = 0. This is also a trivial solution.

Finally, we look at the case α > 0. This means that r = ±i
√
α. This suggests that the general

solution is given by
ϕ(x) = c1 cos(

√
αx) + c2 sin(

√
αx). (2.24)

Applying the boundary conditions we find that c1 = 0 and sin(
√
αx) = 0. Thus we find the eigenfunctions

and eigenvalues

ϕn = c2 sin(
nπx

L
), (2.25)

αn =
n2π2

L2
, for n = 1, 2, 3, . . . . (2.26)

But since α = k2 + λ, we find

ϕn = sin(
nπx

L
), (2.27)

λn =
n2π2

L2
− k2 , for n = 1, 2, 3, . . . . (2.28)

c2 is an arbitrary multiplicative constant, so we can say c2 = 1.

We will seek to solve (2.15) by using the method of eigenfunction expansion. This gives us that the
solution u(x) can be expressed as a series of sines in the following way

u(x) =

∞∑
n=1

αn(x
′) sin(

nπ

L
x). (2.29)

We also know from (2.17) that
u(x) = G(x, x′). (2.30)

G(x, x′) can now be expressed, since we know that λn ̸= 0∀n ∈ N\{0}. This give the following

u(x) = G(x, x′) =

∞∑
n=1

ϕn(x)ϕn(x
′)

−λn

∫ L

0
ϕ2
n(x)σ dx

. (2.31)

=
2

L

∞∑
n=1

sin(nπ2 ) sin(nπL x)(
n2π2

L2 − k2
) , for k2 ̸= n2π2

L2
and n = 1, 2, 3, . . . . (2.32)

Now we have expressed the solution u(x) to the boundary value problem of (2.15).

2.4 Dimensionless Helmholtz Model

Equation (2.15) can be made dimensionless. The goal is to map the problem onto the unit domain [0, 1].
Equation (2.15) uses the arbitrary domain [0, L]. To get a dimensionless model we introduce the new
variable x̂ such that

x̂ =
x

L
, (2.33)

from which it follows that
dx̂

dx
=

1

L
. (2.34)
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Now equation (2.15) can be written as
−d2u(x̂)

dx2 − k̂2u(x̂) = L2δ(x̂− L
2 ), in Ω = [0, 1] ⊂ R.

u(x̂) = 0 for x̂ ∈ ∂Ω.

k̂ = Lk, with k ∈ N\{0}.
(2.35)

If not otherwise specified, we will use the notation k̂ = k and x̂ = x for the following chapters.

2.5 Concluding Remarks and Summary

• Applying separation of variables on the homogeneous wave equation gives the Helmholtz equa-
tion.

• An analytical solution to the Helmholtz problem can be given using Green’s functions and the
method of eigenfunction expansion.

• The Sommerfeld radiation condition introduces minor damping to boundary value problem. There-
fore, it is expected that it is easier to acquire a numerically scalable solver when the Sommerfeld
radiation condition is applied to the boundary.

• A dimensionless Helmholtz model is constructed by introducing a new variable.
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3 | Iterative Methods & Preconditioners
It becomes very difficult to solve the Helmholtz equation analytically in dimensions higher than one.
Therefore, instead of solving the Helmholtz equation analytically, it is more convenient to solve the
problem by using a numerical method. For the Helmholtz problem, the numerical methods that are
used are the finite element method and the finite difference method. For the research in this report we
will only focus on methods that use the finite difference method numerical scheme.
By nature of the equation, for large wave numbers that matrix of the numerical discretization becomes
indefinite. But, as we will see in the next section, a large wave number also results in the size of the
problem becoming large. For medium sized numerical problem, it is still possible to use direct numerical
solution methods. In the case of the Helmholtz problem using direct numerical solution methods is not
realistic anymore. Therefore, for the Helmholtz problem iterative solution methods are used. Direct
solution numerical methods can still serve a purpose as they are often used as solvers for subdomain
problems in domain decomposition methods and multigrid methods.

Before describing the structure of this chapter, it is important to give a few clear definitions of somewhat
general terms.

• an efficient numerical solver is defined as a solver that has solutions very close to the exact
solutions, i.e. the numerical solutions gives a good representation of the real problem.

• a numerically scalable numerical solver has two attributes. First, the number of iterations needed
to reach convergence can not grow when the wave number increases. Second, the solver needs
a time complexity with respect to the number of grid nodes of O(n).

• a parallel scalable numerical solver is defined as a solver where the number of iterations needed
to reach convergence does not grow when the number of subdomains (or parallel processes)
increases.

This chapter is constructed in the following way. In the first section an introduction ...

3.1 Introduction/Problems when solving Helmholtz numerically

When trying to solve the Helmholtz equation numerically there are two major problems that arise [38].
The first problem is that for large wave numbers a so-called pollution error appears in the numerical
solution [12][15][16]. This pollution error has to do with a phase misalignment of the exact and numerical
solution. To deal with this pollution error, the grid has to be kept very fine. Specifically, when a second
order finite difference scheme is used the requirement k3h2 ≤ 1, with k being the wave number and h
the length of a mesh element in one direction in the grid, has to hold in order to avoid the pollution error
[15]. Thus, as the wave number becomes large, the grid has to be refined further.
For second order accurate finite difference discretizations it is a rule of thumb to have a minimum of 10
grid points per wave length λ [31]. Therefore we define

κ = kh =
2π

10
≈ 0.625. (3.1)

This rule of thumb hold for wave numbers that are not too large. For larger wave number it might be
necessary to use 20 or 30 grid points per wave length. In general, this rule of thumb is not very good. In
[31] it is found that even if κ is kept small this is not to avoid the pollution error for high wave numbers.
Instead, the requirement k3h2 ≤ ϵ is introduced. We will mostly use the requirement that k3h2 ≤ 1 or the
weaker requirement κ < 1. The rule of thumb should result in the pollution error being avoided enough
and the problem size not becoming too large when k becomes large.
When solving the Helmholtz equation numerically there seems to be no way to avoid the pollution error
besides refining the grid as the wave number increases. A numerical solver that can deal with this
accuracy problem is called an efficient numerical solver.
The second problem that arises when trying to solve the Helmholtz equation numerically is a conse-
quence of the first problem. Due to the grid being required to be refined when k increases the size of

8



the problem also increases and quickly becomes large. Since the size of the problem is large, itera-
tive methods are used as numerical solvers for the Helmholtz problem. As the grid becomes finer the
computation cost of most iterative solvers increases. Therefore, a numerically scalable iterative solver
has to be used. In order for a solver to be called numerically scalable, the solver needs to have two
properties. The first property the solver needs is that the number of iterations to reach convergence
does not grow with the wave number. The second property is that the solver has a time complexity with
respect to the number of grid nodes of O(n).
An iterative Helmholtz solvers that is efficient and almost scalable has been developed [39]. It is not
fully scalable since the solver has a nonlinear time complexity with respect to the number of grid nodes.
In the following subsection the Helmholtz models that are used in this thesis are given. In sections
after that details about iterative methods and preconditioning is given in order to understand Helmholtz
numerical solvers and how to make them efficient.

3.1.1 Helmholtz Models

The boundary value problem for the Helmholtz equation with constant wave number and the Sommerfeld
radiation condition is given by: 

−d2u(x)
dx2 − k2u(x) = f(x), in Ω ∈ Rd.(

∂u(x)
∂n − iku(x)

)
= 0, for x ∈ ∂Ω,

k ∈ N\{0},

(3.2)

where d is either 2 or 3, depending if the problem is a 2D or 3D problem. Unless stated otherwise,
d = 2 and the Helmholtz equation has a constant wave number. For the boundary conditions we have
either a Dirichlet boundary condition or a Sommerfeld radiation condition. The difficulty in using Som-
merfeld radiation conditions is that the eigenvalues of the resulting system matrix can not be expressed
in closed-form and spectral analysis becomes more difficult but it can provide useful heuristics [38]. For
this reason, some of the analysis is performed on the 1D boundary value problem without the Sommer-
feld radiation condition. The 1D boundary value problem with Dirichlet boundary conditions is

−d2u(x)
dx2 − k2u(x) = f(x), in Ω ∈ R.

u(x) = 0 for x ∈ ∂Ω,

k ∈ N\{0}.
(3.3)

And the 2D case is given by 
−d2u(x)

dx2 − k2u(x) = f(x), in Ω ∈ R2.

u(x) = 0 for x ∈ ∂Ω,

k ∈ N\{0}.
(3.4)

The boundary value problems with Dirichlet boundary conditions are the worst case scenarios. It is
therefore useful to test solvers for this case.

3.2 Finite Difference Discretization

We will discuss the finite difference method in the 2D case for equation (3.2) and (3.4). First the domain
has to be discretized. Suppose we discretize the domain Ω = [0, 1] × [0, 1] uniformly with mesh size
h = 1/n with n being the number of mesh elements. We get the grid Ωh, which has (n + 1)2 nodes
including the boundary nodes and the discrete grid is defined as

Ωh = {(xi, yj)|xi = (i− 1)h, yj = (j − 1)h; h = 1/n, 1 ≤ i, j ≤ n+ 1, n ∈ N} . (3.5)

And since we also need a discretization of the physics we also have

u(xi, yj) ≈ uh(xi, yj) for (xi, yj) ∈ Ωh,

f(xi, yj) ≈ fh(xi, yj) for (xi, yj) ∈ Ωh,

9



A global ordering of the grid nodes is defined in order to construct a linear system formulation. The
boundary nodes are included in linear system formulation. For the internal and boundary nodes x-
lexicographical ordering is introduced. The nodes with coordinates (i, j) are assigned a global index
by

I = i+ (j − 1)(n+ 1), for 1 ≤ i, j ≤ n+ 1 (3.6)

We let a central second order accurate finite difference scheme and the boundary conditions be applied
to (3.2) to discretize it. We find the linear system with the discrete solution uh

Ahuh = fh. (3.7)

The exact solution, evaluated on the grid nodes, is denoted by uh
ex.

On the grid Ωh, we apply a second order accurate finite difference scheme to discretize the partial
differential equation of equation (3.2) or (3.4). The finite difference approximation for the internal nodes
of the PDE is given by

−uh
i,j−1 − uh

i−1,j + 4uh
i,j − uh

i,j+1 − uh
i+1,j

h2
− k2uh

i,j = fh
i,j , for 2 ≤ i, j ≤ n. (3.8)

The 5-point stencil for the internal nodes is given by:

h−2

 0 −1 0
−1 4− k2h2 −1
0 −1 0

 .

For the 2D boundary value problem with Sommerfeld radiation conditions stelcels for the boundary
nodes can be given. For the boundary nodes we have two cases:

• 4 corner nodes,

• remaining boundary nodes.

Starting with the remaining boundary nodes. If we, for example, look at uh
1,j with 2 ≤ j ≤ n, then we find

the stencil

h−2

0 −1 0
0 4− k2h2 − 2ikh −2
0 −1 0

 .

In order to obtain symmetry of the linear system matrix Ah later on, a rescaling is often performed. This
gives the following stencil

h−2

0 − 1
2 0

0 2− k2h2

2 − ikh −1
0 − 1

2 0

 ,

where we replace fh
1,j by 1

2f
h
1,j for 2 ≤ j ≤ n. For the other boundary nodes of the remaining boundary

nodes case, the stencils can be found in the same way.
For the 4 corner nodes case we do something similar. For example, for the corner node of uh

1,1, the
following stencil is found

h−2

0 −2 0
0 4− k2h2 − 4ikh −2
0 0 0

 ,

Also for these boundary nodes rescaling is performed. This give the following stencil for uh
1,1

h−2

0 − 1
2 0

0 1− k2h2

4 − ikh − 1
2

0 0 0

 ,

where we replace fh
1,1 by 1

4f
h
1,1. The same thing is done for the other corner boundary nodes.

10



For the 2D boundary value problem with Dirichlet boundary conditions (3.4) different stencils have to be
defined for the boundary nodes. The stencil of the boundary nodes is then simply given by0 0 0

0 1 0
0 0 0

 ,

with the value on the boundary replacing the corresponding value of fh
i,j . In the case of using homoge-

neous Dirichlet boundary conditions the boundary value is 0 for the whole boundary, so all the boundary
nodes get fh

i,j replaced by 0.

Now we want to define the size of Ah. Since we do not eliminate the boundaries from the linear system,
we have that:

Ah ∈ C(n+1)2×(n+1)2 , and uh, fh ∈ C(n+1)2

Using the stencils, details about the matrix Ah can be given. It is straight forward to give the linear
system formulation of the boundary value problem with Dirichlet boundary conditions of equation (3.4).

Ah =
1

h2



h2In+1 0 · · · · · · · · · · · · 0

0 T̂h −Îh 0 · · · · · · 0

0 −Îh T̂h −Îh 0 · · · 0
...

...
...

...
...

...
...

0 · · · 0 −Îh T̂h −Îh 0

0 · · · · · · 0 −Îh T̂h 0
0 · · · · · · · · · · · · 0 h2In+1


∈ R(n+1)2×(n+1)2 (3.9)

with

Îh =

 0 0 0
0 Ihn−1 0
0 0 0

 ∈ R(n+1)×(n+1) , T̂h =

 h2 0 0
0 Th 0
0 0 h2

 ∈ R(n+1)×(n+1), (3.10)

Th =


4− k2h2 −1 0 . . . · · · 0

−1 4− k2h2 −1 0 · · · 0
...

...
...

...
...

...
0 . . . 0 −1 4− k2h2 −1
0 · · · · · · 0 −1 4− k2h2

 ∈ R(n−1)×(n−1) (3.11)

and Ihn−1, Ihn+1 are identity matrices on R(n−1)2×(n−1)2 and R(n+1)2×(n+1)2 , respectively. For this bound-
ary value problem it is also possible to give a closed-form expression for the eigenvalues of the matrix
(3.9).

The linear system formulation for the boundary value problem of equation (3.2) is given by

Ah =
1

h2



Ĩh İh 0 · · · · · · · · · 0

İh T̃h İh 0 · · · · · · 0

0 İh T̃h İh 0 · · · 0
...

...
...

...
...

...
...

0 · · · 0 İh T̃h İh 0

0 · · · · · · 0 İh T̃h İh

0 · · · · · · · · · 0 İh Ĩh


∈ C(n+1)2×(n+1)2 (3.12)

with

Ĩh =



β − 1
2 0 . . . · · · · · · 0

− 1
2 α − 1

2 0 · · · · · · 0
0 − 1

2 α − 1
2 0 · · · 0

...
...

...
...

...
...

...
0 . . . 0 − 1

2 α − 1
2 0

0 . . . . . . 0 − 1
2 α − 1

2
0 · · · · · · · · · 0 − 1

2 β


∈ C(n+1)×(n+1), (3.13)
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where β = 1− k2h2

4 − ikh and α = 2− k2h2

2 − ikh. And

T̃h =



α −1 0 . . . · · · · · · 0
−1 γ −1 0 · · · · · · 0
0 −1 γ −1 0 · · · 0
...

...
...

...
...

...
...

0 . . . 0 −1 γ −1 0
0 . . . . . . 0 −1 γ −1
0 · · · · · · · · · 0 −1 α


∈ C(n+1)×(n+1), (3.14)

where γ = 4− k2h2 and α is the same as before.
And finally,

İh =



− 1
2 0 0 . . . · · · · · · 0
0 −1 0 0 · · · · · · 0
0 0 −1 0 0 · · · 0
...

...
...

...
...

...
...

0 . . . 0 0 −1 0 0
0 . . . . . . 0 0 −1 0
0 · · · · · · · · · 0 0 − 1

2


∈ R(n+1)×(n+1), (3.15)

As already noted earlier, for the boundary value problem with Sommerfeld radiation conditions enforced
on the boundary it is not possible to give a closed-form expression of the eigenvalues of the coefficient
matrix (3.12).

For writing convenience the discretized domain Ωh is from now on just denoted with Ω. Also we now de-
note the vectors uh and fh by u and f, respectively. Finally, the matrix Ah is denoted A for convenience.
So the linear system of equation (3.7) is now written as

Au = f, on Ω. (3.16)

For the boundary value problem of equation (3.2), which has the Sommerfeld radiation condition on
the whole boundary, we find that the coefficient matrix A is indefinite real symmetric. For the boundary
value problem of equation (3.3), which has homogeneous Dirichlet boundary conditions on the whole
boundary, the coefficient matrix A is complex symmetric, but non-Hermitian.

For the 1D Helmholtz problem with Dirichlet boundary conditions (Equation (3.3)) we have already found
that the exact eigenvalues and eigenfunctions are given by

ϕn = sin(nπx), (3.17)

λn = n2π2 − k2 , for n = 1, 2, 3, . . . , k2 ̸= n2π2 (3.18)

The discrete eigenvalues and eigenfunctions for the same boundary value problem are

λ̂l =
1

h2

[
2− 2 cos(lπh)− k2h2

]
,

l = 1, 2, 3, . . . , n+ 1
(3.19)

and

ϕ̂i = sin(iπx), 1 ≤ i ≤ n+ 1 (3.20)

where x = [xi] , 1 ≤ i ≤ n+ 1 represents the grid vector on the 1D version of Ωh.

For the 2D Helmholtz problem with Dirichlet boundary conditions (Equation (3.4)) the exact eigenvalue
and eigenfunction expressions are given by

ϕn,m = sin(nπx) sin(mπy) , for n,m = 1, 2, 3, . . . (3.21)

λn,m = n2π2 +m2π2 − k2 , for n,m = 1, 2, 3, . . . , k2 ̸= n2π2 +m2π2. (3.22)
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The related discrete eigenvalue are given by

λ̂i,j =
1

h2

[
4− 2 cos(iπh)− 2 cos(jπh)− k2h2

]
i, j = 1, 2, 3, . . . , n+ 1

(3.23)

and the discrete eigenfunctions by

ϕ̂i,j = sin(iπx) sin(jπy), 1 ≤ i, j ≤ n+ 1 (3.24)

with x and y being the grid vectors from the 2D discrete domain Ωh.

3.3 Direct Method

Most of the information from this section is from the Scientific Computing lecture notes by C. Vuik and
D.J.P. Lahaye [32]. One way of solving the system of linear equations of equation (3.16) is by using
direct solution methods. These methods are often the method of choice when dealing with problems
of moderate size. Often, direct solution methods are used as subdomain solvers when using domain
decomposition methods or multigrid methods.

The direct method consists of two stages. First, the system matrix A from equation (3.16) is decom-
posed into an upper triangular matrix U and a lower triangular matrix L where the diagonal of L are all
1’s. The decomposition is done in such a way that A = LU .
After the decomposition, the linear system of equation (3.16) can be easily solved using a forward linear
solve followed by a backward linear solve. The linear system is solved with the following algorithm

LUu = f =⇒ Ly = f, followed by Uu = y. (3.25)

This gives the solution u of equation (3.16). The computational cost of the LU direct method is O( 23n
3).

Because of this, the speed of this method highly depends on the size of the problem. It is for this rea-
son that iterative methods are used when dealing with large systems of linear equations. Currently, the
state-of-the-art iterative methods are preconditioned Krylov subspace methods.

3.4 Krylov Subspace Methods

In this section we study Krylov subspace methods as iterative methods for solving systems of linear
equations. As with the previous section, a lot of information of this section comes from [32]. Krylov sub-
space iterative method can also be used for eigenvalue problem. Some popular eigenvalue algorithms
using the Krylov subspace method are Arnoldi and Lonczos. Krylov subspace methods are designed to
avoid matrix-matrix operations, since these operations are computationally costly. Instead, Krylov sub-
space methods rely on multiplying vectors by the matrix. For using Krylov subspace iterative methods,
the sequence of iterations of is denoted by

{uk}k≥0 where uk → u for k → ∞ (3.26)

For the Richardson iterative method, the iterative scheme can be written in terms of residuals rk :=
f −Auk as

uk+1 = uk +M−1rk,

with the initial guess u0 given, and where A = M − N with M assumed to exist and be non-singular.
With no additional information, it is recommended that the initial guess is zero [26]. Writing out the first
few steps of the recursion shows that

uk ∈ u0 + span
(
M−1r0,M−1A(M−1r0), ..., (M−1A)k−1(M−1r0)

)
The Krylov-space of dimension k of matrix A with initial residual r0 is then defined as

Kk(A; r0) := span
(
r0, Ar0, ..., Ak−1r0

)
13



The most well known Krylov subspace iterative methods are CG(Conjugate Gradient), GMRES(generalized
minimum residual) and Bi-CGSTAB(biconjugate gradient stabilized). These methods all have their re-
quirements when they can be used and when they are optimal to use.

• CG: the matrix A should be symmetric positive definite (SPD). This method is one of the best
iterative methods, but is limited due to its requirements.

• GMRES type methods: These iterative method can be used for general matrices. These methods
have long recurrences, but they do have some optimality properties

• Bi-CG type methods: Applicable for general matrices. The methods have short recurrences, but
do not have an optimality property.

Because the matrix A will not be SPD, the CG method can not be used and will therefore also not be
discussed any further.

3.4.1 Bi-CGSTAB

The Bi-CG Stabilized algorithms was introduced in [8]. The method is a Krylov subspace method that
can be used for general matrices. The precondtioned algorithm of the Bi-CGSTAB method can be
found below. More details about preconditioned linear systems can be found in the following section.
The information about Bi-CGSTAB given in this subsection is from [32]. More details about the method
can also be found in [32].

Algorithm 1: Preconditioned Bi-CGSTAB Algorithm
u0 is an initial guess; r = f −Au0;
r̄0 is an arbitrary vetor, such that (r̄0, r0) ̸= 0, e.g. for r̄0 = r0;
ρ−1 = α−1 = ω−1 = 1; v−1 = p−1 = 0;
for i = 0, 1, 2, ... do
ρi = (r̄0)T ri;βi−1 = (ρi/ρi−1)(αi−1/ωi−1);
pi = ri + βi−1(pi−1 − ωi−1vi−1);
p̂ = M−1pi;
vi = Ap̂;

αi = ρi/
(
r̄0
)T

vi;
s = ri − αiv

i

if ∥s∥ < On where n > 0 is small, then
ui+1 = ui + αip̂;

end if
z = M−1s;
t = Az;
ωi = t⊤s/t⊤t;
ui+1 = ui + αip̂+ ωiz;
if ui+1 < On where n > 0 is small, then
ri+1 = s− ωit;

end if
end for

3.4.2 GMRES

The General Minimal RESidual (GMRES) method is based on the MINRES method. The details about
the GMRES method come from [32].
Instead of using the Lanczos method, the GMRES algorithm uses the Arnoldi method. The GMRES
algorithm can be found below.
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Algorithm 2: GMRES

Choose u0 and compute r0 = f −Au0 and v1 = r0/
∥∥r0∥∥

2
,

for j = 1, . . . , k do
vj+1 = Avj;
for i = 1, . . . , j do
hij :=

(
vj+1

)⊤
vi,vj+1 := vj+1 − hijv

i,
end for
hj+1,j :=

∥∥vj+1
∥∥
2
,vj+1 := vj+1/hj+1,j

end for
The entries of upper k + 1× k Hessenberg matrix H̄k are the scalars hij .

3.5 Preconditioning

Typically, iterative methods are combined with preconditions to increase the speed of convergence. The
speed of convergence of iterative methods depends of the condition number κ of the system matrix A.
If the eigenvalues are not well clustered, the condition number will be large which would cause slow
convergence. Preconditioning is used to cluster the eigenvalues more favorably and therefore speed up
the iterative method.
In order to understand the following to section, knowledge about basic iterative methods is necessary
because these are the building blocks preconditioning in a Krylov subspace context.

The preconditioner is a matrix M which is similar to the matrix A. By using a preconditioner the linear
system of equations (3.16) is transformed into the linear system

M−1Au = M−1f. (3.27)

The preconditioned matrix is defined as, Â := M−1A. The preconditioner matrix, M or M−1, has the
following requirements:

• the eigenvalues of M−1A need to be distributed around 1,

• computing M−1f should be low cost.

When the matrix A is SPD the condition number is given by

κ(A) =
λmax(A)

λmin(A)
. (3.28)

If the matrix is not SPD, then the condition number is more difficult to define. As noted earlier, when
the Sommerfeld radiation condition is used the coefficient matrix becomes complex symmetric, but non-
Hermitian, which introduces difficulties. The matrix A being non-normal results the condition number
of the eigenvector matrix being larger than one. For GMRES it has been shown that if the coefficient
matrix A is non-normal but diagonalizable the convergence of A behaves the same as if A was normal.
This means that the convergence rate of non-normal A for GMRES does not explicitly depend on its
eigenvalues, but the eigenvalues do influence the rate of convergence significantly.

3.5.1 Complex Shifted Laplacian Preconditioner

One of the preconditioners studied for the Helmholtz problem is the Complex Shifted Laplacian Precon-
ditioner (CSLP) [20] [21]. The CSLP is defined as

MCSLP := −∇2
h − (β1 + iβ2)k

2Ih = −∆h − (β1 + iβ2)k
2Ih, β1, β2 ∈ [0, 1], (3.29)

where ∆h is the discrete Laplacian operator and i is the imaginary unit. β1 and β2 represent the real
and complex shift in the preconditioner, where the preconditioner is optimal for (β1, β2) = (1, 0.5) [22].
Using the CSLP greatly benefits the convergence behavior of the iterative method. The CSLP clusters
the eigenvalues on the complex plane on a unit circle with the left side of the circle being the origin, if
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β1 = 1 [26]. When the wave number is small only some eigenvalues lay around the origin, but when the
wave number increase the number of eigenvalues that go towards 0 increases. Consequentially, this
makes the iterative solver with the CSLP not numerically scalable since the smallest eigenvalue keeps
becoming smaller, which causes the number of iterations needed for convergence to keep increasing.
The matrix MCSLP can be approximately or exactly inverted. In [20], [21] and [38] one multigrid iteration
is used to approximately invert the preconditioning matrix.
Specifically, one V (1, 1) multigrid iteration is often used to approximately invert the preconditioning
matrix. V (1, 1) means that the multigrid method uses a V type cycle with 1 pre-smoothing step and 1
post-smoothing step.
It should be noted that when β1 = 1, we find that the smaller β2 the fewer eigenvalues are close
to the origin. And the fewer eigenvalues close to the origin is favorable for the convergence of the
preconditioned Krylov method. But, also note that the smaller β2 the harder it is to do an approximate
inversion of the preconditioner using multigrid, i.e. the higher β2, the longer it takes for the multigrid
method to converge and find the approximate inverse of the preconditioning matrix [35] [26].

3.5.2 Deflation

Deflation preconditioning is a method of removing the smallest eigenvalues. The removing is done by
deflating the small eigenvalues all the way to 0. Eigenvalues that are 0 do not harm the convergence
behavior and are ignored when computing the condition number of the preconditioned matrix Â.

Details about the deflation method are given in the case of having a 1D boundary value problem. As-
sume we have the linear system of equation such as from equation (3.16), but then in 1D. In order to
describe the deflation method the projection PD is defined as

PD = I − P = I −AZ
(
ZTAZ

)−1
ZT , Z ∈ R(n+1)×r. (3.30)

In the equation above I is the identity matrix, and the column space of the matrix Z is the deflation
subspace. The deflation subspace is the space that is to be projected out of the residual. Furthermore,
we assume that Z has rank r and r ≪ (n+ 1).
We also define the matrix E ∈ Rr×r where E = ZTAZ. The matrix P is a projection which projects an
input vector ν ∈ Rn+1 to the deflation subspace. But we are not interested in the deflation subspace,
we are interested in the null space of the deflation subspace. PD projects on the null space of P . Thus
PD projects on the null space of the deflation subspace.
We know that another projector is defined as

PT
D = I − ZE−1ZTA. (3.31)

The solution u of equation (3.16) can be written as

u = (I − PT
D)u + PT

Du. (3.32)

Only PT
Du needs to be computed, since

(
I − PT

D

)
u is computed very easily as(

I − PT
D

)
u = ZE−1ZTAu = ZE−1ZT f.

We know that PDA = APT
D , thus the deflated system is given by

PDAũ = PDf (3.33)

Using a Krylov subspace iterative method the solution ũ can now be found. Multiplying ũ by PT
D and

adding it to equation (3.32) gives the solution to the linear system of equation (3.16).
Note that the null space never enters the iterative method. Therefore, the zero eigenvalues have no
influence on the convergence of the iterative method. This is the reason for using the deflation method.

Applying deflation preconditioning comes with some difficulties. Deflation preconditioning is often not
used in combination with the GMRES method, since the deflation method requires the original system
matrix to be positive semi definite and self-adjoint. For the Helmholtz problem these requirements do not
hold. Because the requirements do not hold it could be that the projections are ill-defined. Therefore,
conditions for the matrix A and AZ can be given such that deflation is possible when the system matrix
A is not positive semi definite and self-adjoint [29]. The following theorem is found in [29]
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Theorem 1 (Deflated GMRES). Let Au = f be a linear system with A non-singular, A ∈ C(n+1)×(n+1),
b ∈ Cn+1 and Z a subspace of C(n+1)×(n+1) with dimension dim(Z) = r < n. Furthermore, let θZ,AZ <
π
2 , where θZ,AZ denotes the principle angle between the subspaces Z and AZ. Then the project matrix
PD := PDu = (I − P )u = u − AZ⟨Z,AZ⟩−1⟨Z,u⟩, u ∈ Cn+1 is well-defined. Moreover, for all initial
guesses u0, the GMRES method applied to the deflated system is well-defined.

Proof. The proof of this theorem can be found in [29], in section 3.3 theorem 3.9

To conclude, all that is needed in order to apply the deflated GMRES to the projection matrix PD is that
the original system matrix A is non singular and that the principle angle between the subspaces Z and
AZ is less than π

2 .
Because this theorem does not apply to Bi-CGSTAB Krylov method, and because there is no equivalent
theorem for the Bi-CGSTAB, the Bi-CGSTAB iterative method will not be used or discussed any further.
The application of deflation preconditioning, CSLP and domain decomposition is essential in the work
of this study. Therefore, this study will continue by using the GMRES Krylov method as the basis of its
iterative solvers.

With the general background information about the deflation given, it is now possible to choose the
deflation vectors as the columns of Z ∈ C(n+1)×r for the Helmholtz problem. Many options are available
for Z and the choice of the deflation vectors is crucial for the success of the deflation method.
The goal of deflation is to remove the eigenvalues corresponding to the r smallest eigenvalues from
the solution subspace. It is therefore natural to pick the eigenvectors corresponding to these r smallest
eigenvalues as columns of Z. Choosing the matrix Z as such, results in the r smallest eigenvalues
becoming zero. Even though this choice of column of Z is effective, it is also expensive. Computing
the eigenvectors corresponding to the r smallest eigenvalues is computationally hard to do for large
matrices.
Instead of computing the eigenvectors exactly, it is also possible to compute approximations of the
eigenvectors corresponding to the r smallest eigenvalues. One possible approximation of the eigenvec-
tors are the constant deflation vectors [4]. The domain Ω is divided into subdomains and the eigenvec-
tors are approximated with constant deflation vectors in each subdomain. Each column of the matrix Z
will then have ones at the grid index of the corresponding subdomain and zero everywhere else.
Another possibility is to use linear deflation vectors. These require more computational work compared
to the constant deflation vectors, but they approximate the eigenvectors of the subdomains better.
Besides eigenvalue-based deflation, it is also possible to construct physics-based deflation vectors or
algebraic deflation vectors. Only eigenvalue-based deflation is discussed in this report.
In the following chapter domain decomposition as a preconditioner is discussed. Deflation and domain
decomposition are methods with a lot of similarities.

3.5.3 Deflation-based preconditioner

In [38] several deflation preconditions for the Helmholtz problem are given and tested numerically. The
goal in the article is to construct a preconditioner that is wave number independent. The preconditioners
in the article mostly consist of a CSLP in combination with deflation using a coarse correction operator
as the deflation matrix Z from equation (3.30). This means that Z = Ih2h. Several different definition for
Ih2h varying in order and if a weight is included in the coarse correction operator are given in [38].
Combining Deflation and CSLP preconditioning results in having to solve the following linear system

M−1
CSLPPDAu = M−1

CSLPPDf. (3.34)

When using a standard linear grid interpolation function the preconditioning scheme is referred to as a
DEF-based preconditioner. In this case we have a interpolation function as

Ih2h [u2h]i =

{
[u2h](i+1)/2 if i is odd,

1
2

(
[u2h](i)/2 + [u2h](i+2)/2

)
if i is even

)

for i = 1, ..., n.
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The most promising preconditioner from the article, based on the numerical results, is given when
the coarse correction operator in 1D is defined as

Ih2h [u2h]i =


(

1
8 [u2h](i−2)/2 +

(
3
4 − ε

)
[u2h](i)/2 +

1
8 [u2h](i+2)/2

)
if i is even,

1
2

(
[u2h](i−1)/2 + [u2h](i+1)/2

)
if i is odd

 (3.35)

for i = 1, ..., n and ε > 0. The definition for ε is given by

ε = 0.75−
(
cos(lπh)− 1

4
cos(2lπh)

)
. (3.36)

The method of preconditioning which uses equation (3.35) is referred to as the the Adapted Precon-
ditioned DEF scheme (APD). This method uses higher-order interpolation polynomials for the coarse
correction operator, which is a quadratic approximation using the rational Bézier curve. Most often
equation (3.36) is used to compute the optimal value for ε, but numerical tests are also performed using
ε = 0.
After some numerical testing the article shows close to wave number independent convergence using
the APD.

In order to keep track of the DEF-based scheme and the APD scheme we introduce that notation ∼ for
the APD scheme. In Figure ?? the real and imaginary eigenvalues of the two deflation preconditioners
(DEF and APD) are plotted for different wave numbers and different values of κ. One of the things
we can conclude from the figures is that for very large wave numbers both preconditioner still have
problems. This can seen since both preconditioned linear systems have eigenvalues that are not well
clustered in the right column plots. Additionally, for the middle and left column we can see that the APD
preconditioner performs better than the DEF precondtioner, since the eigenvalue clustering of the APD
preconditioner is more favourable.
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(a) κ = 0.625

(b) κ = 0.3125

Figure 3.1: The eigenvalues of the linear system with APD scheme indicated by P̃M−1A (diamond marker) and of the linear
system with DEF-based scheme indicated by PM−1A (dot marker). In the top row κ = 0.625 and in the bottom row κ = 0.3125

Building on top of the APD scheme findings, a multilevel deflation preconditioner is constructed in [39].
The original APD is called a two-level deflation preconditioner, since it only uses a fine and a coarse
grid. By introducing more layers of grids, the preconditioner becomes a multilevel deflation precondi-
tioner.
It is important to note that instead of using a multigrid method on each level this article uses an exact
solve on the coarsest level or when n is lower then a certain threshold and a few-GMRES iterations for
the other levels. Earlier we said that due to the multigrid method β2 had to be kept large, but when it
is possible to use β2 = 1/k, which provides optimal convergence when using GMRES as an iterative
method and a direct method [34].
Using the multilevel deflation preconditioner the article finds by numerical experiments that the solver
is almost numerically scalable and efficient. When Sommerfeld radiation conditions are used in the
numerical experiments the article finds wave number independence for the number of iterations needed
for convergence. It also find that the time complexity with respect to the number of grid nodes is some-
where between O(n1.5) and O(n).

3.6 Concluding Remarks and Summary

• To deal with the pollution error that occurs in the numerical solution, the grid has to be refined
when the wave number increases.
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• Numerical Helmholtz solvers often consist of a Krylov subspace iterative method combined with a
preconditioner in order to improve number of iterations needed to reach convergence.

• GMRES is a suitable Krylov subspace iterative method and it allows the use of deflation precon-
ditioning.

• CSLP + APD and CSLP + DEF preconditioning are are mainly the preconditioners that are dis-
cussed. Additionally, these show promising results.

• For very large wave numbers both preconditioners still show unfavourable clustering of the eigen-
values.
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4 | Domain Decomposition Methods as
a Preconditioner

Sometimes complications, such as too high computational costs, arise when a large problem on a big
domain has to be solved. The basic idea of domain decomposition is that instead of solving the large
problem, it may be necessary to solve many smaller problems on single subdomains a certain number
of times. Due to the fact that domain decomposition methods solve many local subdomain problems,
the method is well-suited for parallel computing.
A domain decomposition methods (DDM) can either be used as iterative method or as a preconditioner
for iterative method. For this research we are interested in using DDMs as a preconditioner to accelerate
the convergence of Krylov subspace methods. This means that a preconditioning matrix is constructed
using domain decomposition methods and this preconditioning matrix approximates the coefficient ma-
trix A−1 of the linear system of equations. In the books [10] [17] [19] [33] a lot has been written about
the rapidly developing field of domain decomposition methods.

Figure 4.1: ...

The first example of a domain decomposition
method seems to be the alternating method by
the mathematician H.A. Schwarz, which was pub-
lished in 1870 [1]. Schwarz originally developed
the method as a tool for proving the existence of a
unique solution to the Laplace problem for an ar-
bitrary domain [28]. In his method he used over-
lapping domains as in Figure 4.1. For this rea-
son, overlapping domain decomposition methods
are still referred to as Schwarz domain decompo-
sition methods.
Domain decomposition methods are often divided
into two classes. These classes are overlapping
methods or also called Schwarz methods and
non-overlapping or sometimes called substructur-
ing methods.

This chapter is divided in the following way. In the first section Schwarz theory and Schwarz domain de-
composition methods are discussed. After that, some brief information about non-overlapping domain
decomposition methods, like Neumann-Neumann/FETI, are given. And finally, concluding remarks and
a summary of this chapter is found in the final section.

4.1 Schwarz Domain Decomposition Preconditioner

With domain decomposition methods the full domain of a boundary value problem is decomposed
into subdomains. As already mentioned in the introduction, Schwarz domain decomposition methods
are characterized by having overlapping subdomains. It makes most sense to first discuss one-level
Schwarz methods. After that we will discuss two-level DDM which are one-level DDMs with a coarse
space added. Finally, different possible coarse spaces and their benefits are discussed. The order of
the topics is like this since the topics naturally build on top of each other. It should be noted that the
literature on domain decomposition methods are mainly written for finite element methods (FEM). We
will mostly adhere to the FEM notation and only deviate when necessary.

Consider an elliptic partial differential equation problem with homogeneous Dirichlet boundary condi-
tions on the domain Ω. Next a mesh T is introduced to the domain Ω and a finite element approximation
is applied to the problem. The finite element approximation leads to a linear system formulation

Au = f, (4.1)
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with mesh size h and where u is the vector of which its coefficients are the discrete values of the ap-
proximate solution of the boundary value problem in the elements.

In the previous chapter iterative Krylov subspace solution methods were introduced to solve a finite
difference method linear system of equations. There, it was shown that the convergence behavior of a
Krylov subspace method strongly depends on the condition number of the system matrix A. In order
to improve the distribution of the eigenvalues, and therefore to improve the condition number, a pre-
conditioner can be used. Also in the previous chapter, the CSLP and deflation were discussed as a
preconditioners to get a more favourable spectrum for the linear system.
In this chapter domain decomposition methods as a preconditioner are explored. This means that the
different domain decomposition methods need to give definitions for the preconditioner operator M or
M−1. The benefit of using a domain decomposition method as a preconditioner is that that domain
decomposition methods are often well-suited for parallel computing. Since we are interested in con-
structing a scalable efficient Helmholtz solver, parallel computing will be very beneficial.

For the sake of brevity and to avoid repetitiveness, the assumptions and starting point of the Schwarz
domain decomposition method are given here. Consider the linear system as in equation (4.1), which
arises from the finite element approximation of the elliptic partial differential equation, such as the Pois-
son problem, on the mesh T of domain Ω with homogeneous Dirichlet boundary conditions. Also
consider a solution space V of basis functions on the mesh. The solution space is associate with the
domain Ω.
Next, the polygonal domain Ω ⊂ Rd, with either d = 1, 2, 3, is partitioned, based on element splitting, into
N non-overlapping uniform subdomains, which results in the set of subdomains {Ω′

i}Ni=1 with diameter
H ′

i and the maximum diameter of the subspaces is indicated by H ′. The boundary of a non-overlapping
subdomain where two non-overlapping subdomains meet is called the interface.
Now the subdomains are extended to a larger region, with {Ωi}Ni=1 denoting the set of new subdomains,
in such a way that the boundary of the extended subdomains do not cut through any elements of the
mesh T . The extension can be done be repeatedly adding a layer of elements. For the elements that
are on the boundary we do the same thing, but we do not extend outside of Ω. The result of the exten-
sion is that we have constructed the set of N overlapping subdomains {Ωi}Ni=1 with maximum diameter
H. This now gives rise to N local overlapping meshes Ti on the overlapping subdomains Ωi.
For the overlapping subdomains we introduce finite element solution spaces {Vi}Ni=1 which consist of
basis functions associated with the meshes {Ti}Ni=1. With K indicating the element in a mesh, we define

Vi =
{
u ∈ H1

0 (Ωi) | u |K ∈ P1,K ∈ Ti
}
, 1 ≤ i ≤ N. (4.2)

Assume that the domain Ω is a 2D square domain, that the mesh has uniform square elements and
that the subdomains are quasi-uniform. Figure 4.2 gives an illustration of a 2D partitioned grid with
and without overlap. The degree of overlap is the amount of element layers of overlap there is and it
is indicated by δ. Let Ii denote the indices of the nodes of the subdomains Ωi. For the grid nodes we
say that n indicates the number of nodes in the grid T . For the subdomains we say that ni indicates the
number of nodes in the grid Ti, for i = 1, 2, ..., N .
The overlapping domains Ωi are all quasi-uniform squares, due to the extension, with square elements.
Therefore, we can state the following In the case of no overlap (δ = 0), ni is the same for all subdomains
and we only have the set of non-overlapping subdomains {Ω′

i}Ni=1. In the case that δ > 0, ni is not the
same in all subdomains {Ωi}. ni is not the same in all subdomains in this case because of the way
that we extend the non-overlapping domain that are touching the boundary ∂Ω. For either case of δ we
know that

∑N
i=1 ni > n due to the shared nodes on the interface of the subdomains.

The system/stiffness matrix A from the linear system of equation (4.1) can also be transformed into a
local system matrix for each subdomain. To do this, new operators have to be defined. Suppose that
there exists extension operators

RT
i : Vi → V, (4.3)

also sometimes referred to as prolongation operators. And the Ri matrices are often called restriction
operators. The space V is assumed to decompose as

V = RT
0 V0 +

N∑
i=1

RT
i Vi. (4.4)
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Note that the decomposition will not necessarily be a direct sum of subspaces. This is because an
element of V can often be found in more than one Vi space. Vi does not need to be a subspaces of
V , but it is customary to refer to Vi as a subspace or local space. The space V0, sometimes called the
global space, is related to a coarse problem build on a coarse mesh and remaining spaces {Vi}Ni=1 are
related to the subdomains which followed from the partitioning we performed.
Now the local system matrices, sometimes referred to as the local operators, of subdomain Ωi and local
space Vi are given by

Ai = RiART
i , for i = 1, ..., N (4.5)

Here we can interpret the matrix Ai as the part of matrix A corresponding to the grid nodes in subdomain
Ωi.
Next we can introduce discrete projection-like operators as

Pi = RT
i A

−1
i Ri, for i = 1, ..., N (4.6)

One of the properties of these operators is that P̂ = PiA is a projection, i.e. P̂ 2 = P̂ .

Now that we have a set of subspaces and local problems, we can give a number of different Schwarz
operators, which give us the different Schwarz domain decomposition methods. The Schwarz operators
are defined by a polynomial of the operators {Pi} without P0.

(a) 2D grid domain image partitioned in 4 subdomains with no overlap.
Note that the subdomains do share grid nodes on the interfaces of the
partitions. ni = 62 = 36 and n = 112 = 121

(b) 2D grid domain image partitioned in 4 subdomains with 1 grid layer
of overlap δ = 1h. ni = (6 + 1)2 = 49 and n = 112 = 121

Figure 4.2: Mesh image of non-overlapping and overlapping subdomains. The subdomains are indicated by the coloured areas.
h indicates the mesh size, H′ indicates the non-overlapping subdomain size, H indicates the maximum overlapping subdomain
size and δ indicates the overlap. In (b) δ = 1, which means that each non-overlapping subdomains is extended by 1 layer of
elements. This leads to overlapping subdomains.

From [19] we also have the following assumptions for the local spaces. We say that δi measures the
width of the regions Ωi\Ω′

i.

Assumption 1. For i = 1, ..., N , there exists δi such that, if x belongs to Ωi, then

dist(x, ∂Ω\∂Ω′) ≥ δi,

for a suitable j = j(x), possibly equal to i, with x ∈ Ωj . The maximum of the ratios H ′
i/δi is denoted by

H

δ
= max

1≤i≤N

{
H ′

i

δi

}
Assumption 2 (Finite Covering). The partition {Ωi} can be colored using at most N c colors, in such a
way that the subdomains with the same color are disjoint.

4.1.1 One-Level Schwarz Domain Decomposition Methods

In the introduction the alternating Schwarz one-level domain decomposition method has already been
mentioned. A lot of work on the abstract theory of the alternating Schwarz method is done by Lions in
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[43]. The original domain decomposition methods were all methods that only used the local spaces cre-
ated by the decomposition of the domain. Methods like that are called one-level domain decomposition
methods. One-level Schwarz domain decomposition preconditioners were first introduced in [2] [3]. In
this subsection we will discuss the one-level additive and multiplicative Schwarz domain decomposition
methods, which can be used as preconditioners.

Multiplicative Schwarz Method

We will now give the definition of the multiplicative Schwarz (MS) method. The use of alternating
Schwarz methods on boundary value problems has become to be known as the multiplicative Schwarz
method. Considering the assumptions from above, we can now define the multiplicative Schwarz pre-
conditioner as

M−1
MS = I − (I − PN )(I − PN−1)...(I − P1). (4.7)

With I ∈ R(n+1)×(n+1) in identity matrix and {Pi}Ni=1 are as defined in equation (4.6).
The MS method is a DD method that, due to its nature, has problems being combined with parallel
computing [17]. For this reason the MS method is a method that will not be useful for the one-level
Schwarz method. Without parallel computing, the MS method is fast than the additive Schwarz method
[33]. When looking at two-level or multilevel Schwarz methods, the multiplicative method might again
be useful.

Additive Schwarz Method

The remaining one-level Schwarz method is the one-level additive Schwarz (AS) method. It is also
possible to give another variant of the one-level AS method called the restricted additive Schwarz (RAS)
method. More details about the RAS method can be found in the subsubsection below this one.
The one-level AS method was first introduced in [5] and [7]. The preconditioner matrix for the one-level
AS method is defined as

M−1
AS =

N∑
i=1

Pi =

N∑
i=1

RT
i A

−1
i Ri. (4.8)

This preconditioner uses exact solvers for the local spaces. One of the advantages of the AS method
is that it is suitable for parallel computing. It is suitable for parallel computing because the local spaces
can all be solved independently of each other. Because of the ability to combine the AS method with
parallel computing, the AS method has gained popularity in the last two decades. Using the AS method
as a preconditioner for a Krylov subspace method is sometimes referred to as the Krylov acceleration
approach.

An upper bound for the condition number of the matrix M−1
ASA is given in [17, p. 95]. Some necessary

assumptions about the domain decomposition are given before the upper bound can be shown. For the
condition number it is found that

κ(M−1
ASA) ≤ C(

1

δ2H2
), (4.9)

Where H is the maximum width of the subdomains Ωi, for i = 1, ..., N , and δ is the overlap between the
subdomains, where if δ is 0 there is no overlap and if δ is H ′/2 the overlap is half the maximum width of
the non-overlapping subdomains. The rate of convergence of the AS method combined with a Krylov
method increase as that overlap of the subdomains increase up until some point. When the overlap
becomes roughly equal to or larger than H ′/2 rate of convergence decreases again. This happens
because the number of colors N c of Assumption 2 increases when the overlap becomes too large.

Restricted Additive Schwarz Method

The restriction/extension operator of eq. (4.5) can be seen as the sum of two terms Ri = R0
i + Rc

i ,
where R0

i only includes the non-overlapping nodes and Rc
i only includes the nodes of the overlapping

area [17]. Using this, Cai and Sarkis introduced a new AS preconditioner [11] called the restricted
additive Schwarz (RAS) method, which is defined as

M−1
RAS =

N∑
i=1

Pi =

N∑
i=1

(R0
i )

TA−1
i Ri (4.10)
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The benefit of this new preconditioner is that when a parallel implementation is used for this precondi-
tioner the communication cost can be lowered. This is because computing (R0

i )u does not involve data
exchange with the processors of the neighbouring subdomains.

4.1.2 Two-Level Additive Schwarz Method

It has been shown that the one-level Schwarz domain decomposition method are not numerically scal-
able with respect to the number of subdomains. Additionally, it is quite easy to see from (4.9) that if H
decreases, due to the increase in the number of subdomains, that the upper bound for the condition
number increases. By using a two-level Schwarz domain decomposition preconditioner, which includes
a solve of a coarse space the size of the number of subdomains, the scalability problem can be avoided
[33].
Two-level Schwarz methods are given in term of partitions of the domain Ω into subdomains Ωi, and
by a coarse shape-regular mesh TH . The only requirement for the elements of TH is that the elements
should have a diameter on the order of Hi if the element intersects subdomain Ωi. Besides this require-
ment, the coarse mesh can be independent of the fine mesh T . We introduce the finite element space
V0, which is defined is for now defined as

V0 =
{
u ∈ H1

0 (Ω) | u |K ∈ P1,K ∈ TH
}

(4.11)

As already mentioned, by introducing a coarse space to the one-level AS preconditioner the conver-
gence rate of the algorithm can be made independent of the number of subdomains[14]. The one-level
AS method with a coarse space is what is called a two-level additive Schwarz method. It is also pos-
sible to have a two-level hybrid preconditioner, which combines an additive and multiplicative Schwarz
method in a two-level Schwarz preconditioner [24]. With regards to parallel computing, the two-level
hybrid method will be the most relevant method. Finally, it is also possible to construct a two-level MS
preconditioners, which is quite similar to a multigrid method.

Figure 4.3: Illustration of a nested two-level grid. The
coarse grid is indicated by red and it is a 3-by-3 grid.
The fine grid is indicated with green and it is a 9-by-9 grid
(n = 8).

The construction of the coarse space can be
done in several different ways. The most obvi-
ous way is to create a two level mesh by gener-
ating a coarse mesh, partitioning the coarse grid
and refining the grid inside the partitions. This
way a nested two level mesh is created. Fig-
ure 4.3 gives an illustration of a nested two-level
mesh.

The one-level overlapping Schwarz methods were
originally extended to the two-level form by [5] [6]
[7] [41]. The Schwarz theory for the nested two-
level grids, as in Figure 4.3, for the two-level over-
lapping Schwarz method is first presented in [9]
and more two-level Schwarz theory is discussed in
[19].

The two-level additive Schwarz operator is of the form

M−1
AS2 =

N∑
i=0

Pi = RT
0 A

−1
0 R0 +

N∑
i=1

RT
i A

−1
i Ri, (4.12)

where P0 is the Schwarz operator of the coarse space V0 and the remaining Pi are associated with the
local problems on the subdomains from the set {Ωi}Ni=1. A coarse interpolation operator is defined as

RT
0 : V0 → V, (4.13)

which is obtained by interpolating the coarse functions onto the fine grid. Let u ∈ V0, then we define

RT
0 u = Ihu, (4.14)
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with Ih being the interpolation function from the coarse mesh to the fine mesh. There are many dif-
ferent options for the interpolation functions. It is for example possible to use the interpolation function
introduced in subsection 3.5.3.

The convergence behavior of the two-level additive Schwarz method can be analysed using the con-
dition number of M−1

AS2A. In the case as in equation (4.12) and a coarse interpolation function as in
equation (4.13), an upper bound for the condition number is given by

κ(M−1
AS2A) ≤ C

(
1 +

H

δ

)
(4.15)

where H is the width of a subdomain and δ is the overlap between the subdomains. The upper bound
of the condition number and the proof of equation (4.15) are found in [19, Theorem 3.13, p. 69].
The constant C depends on Nc, which is the maximum number of subdomains a node can be a part of
and it is also the same N c as in Assumption 2. For example, Nc = 4 in 4.2(b). C is independent of the
mesh size in the coarse grid (indicated by H when we use a nested two-level grid, see Figure 4.3), the
mesh size in the fine grid (indicated by h, see Figure 4.3), and the overlap of the subdomains (indicated
by δ).
Equation (4.15) shows us that the two-level additive Schwarz method can be numerically scalable. This
is because we can increase the problem size and at the same time keep the ratio of H/δ constant by
increasing the amount of subdomains.

4.1.3 Two-Level Schwarz Methods with Different Coarse Spaces

Instead of using the coarse interpolation function as introduced in equation (4.13) it is also possible to
use different coarse spaces. In the following subsection some other preconditioner with different coarse
space definitions are given.

In [37] different preconditioners using domain decomposition preconditioning are constructed and tested
for the Helmholtz equation. The preconditioners are two-level AS methods with two different coarse
space definitions.
The first coarse space definition is just another grid coarse space with absorption. This is done in the
following manner. First, a coarse mesh is constructed from which the operator and matrix R follows,
which maps the nodes of the fine grid to to coarse grid. Instead of using A0 = RART we now use
A0 = RAεR

T , where Aε is the coefficient matrix for the boundary value problem with Sommerfeld
radiation conditions, but with the PDE replaced by the following PDE

−d2u(x)
dx2

−
(
k2 + iε

)
u(x) = f(x).

The other coarse space definition that is used is a Dirichlet-to-Neumann (DtN) coarse space, which is
a coarse space that is based on local DtN eigenproblems on the subdomain interfaces. More details
about this coarse space can also be found in [27] and [37].
The results of the work by M. Bonazzoli et al. show that the performance of the coarse spaces depends
on the size of the coarse space size. For smaller coarse spaces the grid coarse space performs better
and for larger coarse space the DtN coarse space performs better, where better means fewer iterations
are needed compared to the other coarse space definition. The results are promising, but the iteration
count does still (slowly) grow with the wavenumber.

GDSW Preconditioner

in [23] [24] the generalized Dryja-Smith-Widlund (GDSW) preconditioner is introduced, which is given
by

M−1
GDSW =

N∑
i=0

Pi = ΦTA−1
0 Φ+

N∑
i=1

RT
i A

−1
i Ri, (4.16)

where Φ is the energy-minimizing coarse space. Note that Φ is just the same as R0 before.

The advantage of using GDSW type coarse spaces is that it gives us more freedom in constructing
grids, since the GDSW coarse spaces can be used for unstructured grids. Another advantage of the
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GDSW coarse spaces is that they are flexible in adding additional coarse functions. Furthermore, it
would be sufficient to know the trace on the interface. The interior will be computed automatically.

Equation (4.16) is a two-level additive Schwarz preconditioner with exact solvers for the local spaces.
The main ingredient of this precondition is the coarse space V0. To construct the energy-minimizing
coarse space, coarse basis function need to be constructed. For the GDSW preconditioner these
coarse basis functions are defined by the introduction of a partition of unity on the interface Γ and an
energy-minimizing extension to the interior.
The set Γ denotes the set of nodes on the interface of the decomposition. These nodes all have the
property that they belong to more than one subdomain. Additionally, the set I denotes the set of the
remaining nodes, which include the Dirichlet boundary nodes. The columns of Φ are the basis of the
coarse space and we can write

Φ =

[
ΦI

ΦΓ

]
=

[
−A−1

II A
T
ΓIΦΓ

ΦΓ

]
, (4.17)

Where ΦΓ is the restriction of the null space to the edges and vertices of the interface of the nonover-
lapping partition. The set Γ can be divided further into K connected sets Γj . When nodes of edges and
vertices are shared in the same set of subdomains they are combined into the set Γj . In the simple case
of having structured rectangular subdomains the set of nodes with edges and vertices of a subdomain.
For each set of interface nodes ,Γj , we construct a matrix ΦΓj

and the restriction matrix ,RΓj
, from Γ to

Γj . With this the matrix
ΦΓ =

[
RT

Γ1
ΦΓ1 · · · RT

ΓM
ΦΓM

]
(4.18)

is build and therefore Φ from Equation (4.17) is also given.
Now it is possible to compute the coarse coefficient matrix A0 with

A0 = ΦTAΦ. (4.19)

The condition number of the GDSW preconditioner is given by

κ
(
M−1

GDSWA
)
≤ C

(
1 +

H

δ

)(
1 + log

(
H

h

))2

, (4.20)

for general domains Ω partitioned into John domains [23][24]. This means that the condition number
definitely holds for structured grids, since these always satisfy being John domains. John domains
roughly means that the domain is such that it is possible to travel from one point in the domain to an-
other point in the domain while not getting to close to the boundary.
With the following additional assumptions from [19] upper bound for the condition number can be im-
proved. If the subdomains satisfy Assumption 4.3 from [19, p. 90] the term including a log function
becomes first order. Additionally, the logarithmic term can be removed altogether using Theorem 3.13
from [19, p. 69].
Theorem 3.13 from [19, p. 69] gives the condition number upper bound of equation (4.15). This means
that if the assumption necessary for Theorem 3.13 hold, then the GDSW preconditioner also has the
condition number upper bound of equation (4.15), i.e.

κ(M−1
GDSWA) ≤ C

(
1 +

H

δ

)
(4.21)

It is shown that the dimensions of the energy-minimizing coarse spaces can be lowered [36]. Here,
the article describes a method of constructing the coarse basis functions of the coarse space by using
equivalence classes of nodes on the interfaces Γ. The article shows that the dimension of the coarse
space can be reduced significantly without reducing the favorable upper bound for the condition number
shown above.
In the case of using a 2D structured grid, this reduced dimension approach builds functions only corre-
sponding to the vertices and not to the edges. So we can get rid of the edge functions.

4.2 Concluding Remarks and Summary

• Overlapping domain decomposition techniques for preconditioning of the Helmholtz problem pro-
vide the advantage of having a parallel scalable preconditioner.
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• Overlapping domain decomposition preconditioners have been constructed and tested for the
Helmholtz problem for different coarse space definitions. But no efficient and numerically scalable
solver has yet been created.

• GDSW type coarse spaces have many advantages while also being parallel scalable.
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5 | Parallel Computing
Parallel computing plays a major role in dealing with problems with large computational costs. The
indefinite Helmholtz problem requires a large system of equations, especially in 2D and 3D. For large
linear systems of equations the most appealing methods to solve those systems are iterative solution
methods. Because of this, iterative solution methods are the main candidate to apply to parallel com-
puting.
In this chapter we focus on standard algorithms in which as much parallelism as possible is imple-
mented. This is different from designing an algorithm with parallelisation in mind. The literature in this
chapter about parallel computing, high performance computing and MPI version 3 are found in [18] [25]
[30].

A parallel computer is a computer that has several processors and can therefore perform several tasks
simultaneously. These are tasks that are carried out simultaneously and not, as in multitasking, the
rapid switching back and forth between tasks. Traditionally, a parallel computer is a supercomputer with
thousands to hundreds of thousands of processors used for scientific computing, but today almost all
computers are parallel; even the simplest PCs and laptops are equipped with multi-core processors.
The main reasons for using a parallel computer are:

• To have access to more memory storage,

• and to obtain a higher computational performance.

If a computer takes T1 amount of time to run an algorithm, then in an ideal world parallelisation would
allow p processing elements to run the same algorithm in Tp = T1/p amount of time. In practice, such
efficiency can not be achieved due to factors such as overhead of processor communication, the work
of the processors not being uniform or sequential sections in the algorithm. The definition speedup is
defined as the factor of Sp = T1/Tp.
In parallel computing often two types of scalability are used. These types of scalability are weak and
strong scalability. We talk about strong scalability if a problem is partitioned over more and more pro-
cessors and it shows almost perfect speedup, i.e. Sp < p increases but Sp is close to p. Often in parallel
computing literature sentences like “this problem scales up to 1000 processors." are used. Here, the au-
thors are referring to strong scalability. It means that significant speedup can be achieved by partitioning
the problem over at most 1000 processors, but little or no speedup is achieved after some threshold.
Reasons for the speedup not increasing any further could be that the algorithm can not be partitioned
any further or maybe the overhead communication cost becoming too large.
Weak scalability is used to describe the behavior of execution where the amount of data per processors
stays the same, but the problem size and number of processors both grow.
For this research we are interested in weak scalability. This is because according to the domain de-
composition theory we can construct a numerically scalable Helmholtz algorithm, i.e. a solver where we
can increase the problem size by adding subdomains to the problem and keeping the size of the sub-
domains the same without the the upper bound of the condition number of the preconditioned system
increasing.
Thus, successfully implementing the numerically scalable Helmholtz solver into a weakly scalable par-
allel program leads us to a Helmholtz solver that is parallel scalable and numerically scalable.

Parallel computing has several forms of parallelism. The main form of parallelism we are interested in is
distributed computing. Distributed computing is a system of (identical) computers linked by some local
area network, sometimes called the topology. The computers all have their own input/output subsystem,
memory and CPU, but most importantly, with distributed memory each processor has its own address
space. Having their own address space means that if two processors reference a variable y, then they
get the variable from their own local memory. For the communication mechanisms for exchanging mes-
sage between the computers the parallel virtual machine (PVM) and the message passing interface
(MPI) are the best known libraries.

The main types of parallel architectures are the shared memory model, the data parallel models,
also sometimes called the single instruction multiple data (SIMD) models, and the distributed mem-
ory message-passing models.
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Since we are interested in solving many locals problems we want to use a parallel architecture that
makes use of this property. Shared memory models can not take advantage of the locality of data in
problems. This makes shared memory models unsuitable for this research.
Both data parallel models and distributed memory message-passing models are referred to as dis-
tributed memory models. The difference between data parallel models and message-passing models
is that message-passing models have no global synchronization of the parallel tasks. This means that
the local tasks on a processing element can start whenever that required data to start is available.
In the applications area the parallel architecture of choice are distributed memory message-passing
models using MPI [18]. Because this type of architecture also suits our needs the distributed memory
message-passing models with MPI are used.

5.1 Message Passing Interface (MPI)

As already mentioned, one way of facilitating the communication mechanics of a distributed memory
computer is by using MPI. MPI version 1.0 was released in June 1994 with MPI-1 being version 1.3
of MPI. The latest version (version 3) of MPI was released in 2012 [30] and MPI-3 is MPI version 3.1.
Besides that MPI is the most used communication mechanics, an additional advantage of MPI is that
the topology is often hidden from the user and no topology coding is required [18].
MPI uses all kinds of routines which can roughly be devided in:

• Process management,

• Point-to-point communication,

• Collective calls.

Here process management means that MPI manages the parallel environment and can construct sub-
sets of processing elements. Point-to-point communication means the routines which includes the set
of calls between two processing elements, like send and receive calls. Finally, collective calls means
the routines in which all the processing elements are involved. This is for example a gather call, where
one processors is instructed to collect the data from all the processing elements participating.
MPI allows for a portable, efficient and functional use of distributed computing. More details about the
using MPI are found in [30].

5.2 FROSch & Trilinos

Trilinos is an open-source object-oriented software suite for solving complex engineering and science
problems using robust, scalable, parallel solver algorithms. Besides that, the goal of the Trilinos frame-
work is also to provide a platform for the development of the robust, scalable parallel solver algorithms
and libraries. The software of packages insides the Trilinos library are for the most part written in C++
Trilinos has the ability to use many of the major parallel architectures, including distributed computing
with MPI.
The software library FROSch (Fast and Robust Overlapping Schwarz) [42] is a subpackage of the the
software package ShyLU, which is found inside the Trilinos software suite. The ShyLU package provides
two types of solvers. The first one are the distributed memory parallel domain decomposition solvers.
The other type are node-level directs solvers for the subdomains.
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6 | Research Proposal
Arguably, this chapter of the literature study is the most important chapter of them all. The goal of
this chapter is to summarize and combine some of the knowledge from the previous chapters and
propose clear and structured research questions for the thesis research. In the first section numerical
experiments are performed on test problems. After that some general findings and possible conclusions
are given in section two. The research questions for the master thesis research are given in section
three.

6.1 Test Problems

In order to get some experimental knowledge of some of the topics discussed in this report it is useful
to perform some numerical experiments on easy test problems. The two test problems include topics
from chapters above. The goal of this section is not to show new research, but to play around with the
information of the earlier chapters.
The topic in the first test problem is domain decomposition preconditioners from Chapter 4. Specifically,
a simple 2D Poisson problem is solved using GMRES and a one-level additive Schwarz preconditioner.
The second test problem is about numerically solving the Helmholtz problem using a Helmholtz solvers
from the literature.

6.1.1 One-Level additive Schwarz Method:
2D Poisson Problem with non-homogeneous Dirichlet Boundary Condi-
tions on a Unit Square

To see initial results about the one-level Schwarz domain decomposition method, the following problem
is used. The problem is a 2D Poisson’s equation problem on the domain Ω = [0, 1] × [0, 1], which is
described by the following equation

−∇2u(x, y) = f(x, y) on Ω. (6.1)

The problem is supplied with non-homogeneous Dirichlet boundary conditions

u(x, y) = u0(x, y) on ∂Ω. (6.2)

Now assume that the exact solution to this problem is given by uex(x, y) = sin(xy). This gives us that
the source term f(x, y) is given by

f(x, y) = (x2 + y2) sin(xy). (6.3)

And the boundary data is given by

u0(x, y) =


0 if x = 0

sin(y) if x = 1

0 if y = 0

sin(x) if y = 1

(6.4)

After discretization of the domain and applying a finite difference approximation to the PDE we end up
with a linear system of equations. The GMRES iterative method with a one-level AS preconditioner is
used to solve the linear system.
In the table 6.1 the number of iterations for convergence are given. The problem size is kept constant
and H of the subdomains is decreased and the relative residual have a tolerance level set to 10−7. The
non-overlapping subdomains are all extended by 1 grid layer, i.e. δ = 1.
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H (δ = 1) n2 = 6400 n2 = 25600
0.5 17 22

0.25 24 33
0.125 30 43

0.0625 45 50+

Table 6.1: Number of GMRES iterations for the test problem using a one-level AS preconditioner.

6.1.2 APD preconditioner with GMRES: 2D Helmholtz problem with constant
wave number

The following test problem is a 2D indefintite Helmholtz problem with constant wave number and ho-
mogeneous Dirichlet boundary conditions. The linear system is constructed both with and without
elimination of the boundary nodes.
To solve the linear system the GMRES iterative method is used with the ADP preconditioner from [38].
Note that in the tables the ADP preconditioner is denoted by DEF (0)+CSLP . The ADP preconditioner
consists of a combination of the CSLP and the deflation preconditioner, of which more information can
be found in Section 3.5.3. What is key to note here is that the deflation precondition uses higher-order
interpolation polynomials for the coarse correction operator and a weight ε. This higher-order coarse
correction operator is a quadratic approximation using the rational Bézier curve. From the literature we
find that ε = 0.01906 when κ = 0.625.
The reasons for performing the numerical experiments for this test problem are twofold. Firstly, this
test problem gives an introduction to dealing with the indefinite Helmholtz problem and the problems
that arise when trying to solve the indefinite Helmholtz problem numerically. The second reason is that
the test problem allows us to use the quadratic approximation using the rational Bézier curve from the
deflation preconditioner. These higher-order coarse correction operators could be used as a coarse
space for a two-level Schwarz domain decomposition method.

For the grid resolution the requirement κ = 0.625 is used. Additionally we have (β1, β2) = (1, 1/k) if exact
inversion is performed for the CSLP. In the numerical experiment only exact inversion is used for CSLP.
The results of the numerical experiments are found in table 6.2 and table 6.3. In the tables the x denotes
that no computations was performed. The reason for this is that the computation would take a long time.

k n2 No Precon CSLP DEF(0.01906) DEF(0) + CSLP
5 64 9 5 7 3

10 256 31 6 14 3
25 1600 101 8 17 3
50 6400 361 10 17 4
75 14400 x 13 16 5

100 25600 x 13 17 4
125 40000 x 13 17 5

Table 6.2: Number of iterations for the Helmholtz test problem, with elimination of the boundary
conditions, using different or no preconditioners (κ = 0.625). CSLP uses (β1, β2) = (1, 1/k) and
deflation uses higher order interpolation polynomials for the coarse correction operator with
ε = 0.01916 or ε = 0.
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k n2 No Precon CSLP DEF(0.01906) DEF(0) + CSLP
5 64 9 5 7 4

10 256 31 6 23 3
25 1600 101 8 29 3
50 6400 361 10 33 3
75 14400 x 13 34 4

100 25600 x 13 36 3
125 40000 x 13 37 4

Table 6.3: Number of iterations for the Helmholtz test problem, without elimination of the bound-
ary conditions, using different or no preconditioners (κ = 0.625). CSLP uses (β1, β2) = (1, 1/k)
and deflation uses higher order interpolation polynomials for the coarse correction operator
with ε = 0.01916 or ε = 0.

6.2 Preliminary Findings and Conclusions

• For the numerical experiment it can be seen that the one-level AS preconditioner is not scalable.
As the theory already said, in order for the domain decomposition preconditioner to be scalable a
second level has to be introduced.

• The APD preconditioner seems to be almost scalable from our numerical results. This is in agree-
ment with the literature.

6.3 Research Questions

The main goal of this master thesis project is to construct an efficient and scalable Helmholtz solver,
which exhibits robustness with respect to the wave number. In this research we are interested in using
two-level overlapping Schwarz domain decomposition methods with higher-order coarse spaces.

The main questions are:

1. Does a Helmholtz solver that uses a two-level additive Schwarz preconditioner combined with
first-order grid coarse space show numerical scalability and efficiency?

• How do coarse spaces using linear coarse basis function perform?

• Does using Restricted Additive Schwarz introduce further improvements?

2. Does a Helmholtz solver that uses a two-level additive Schwarz preconditioner and a higher-order
coarse space from the deflation setting show numerical scalability and efficiency?

• What causes the solver to be inscalable if this is the case?

• How much better does the Helmholtz solver perform when the higher-order coarse space
from the deflation setting is used as the multiplicative coupling of the coarse level?

3. When using higher-order coarse spaces shows promising performance, does using a GDSW-type
coarse space, improve the Helmholtz solver further?

• Can higher-order coarse spaces be used in GDSW-type coarse spaces?

• Does this solver show improved performance?

4. If time permits, does the numerically scalable and efficient Helmholtz solver show parallel scal-
ability when it is transformed into a parallel algorithm? To do this we could use FROSch of
Trilinos.

• Do memory or communication problems arise?

• How much does a restricted additive Schwarz preconditioner improve the parallel algorithm
further?
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