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Definitions

Definition 1. LetΩ be bounded by ∂Ω. Then the following function spaces are defined:

C (Ω) :=
{

f :Ω→R
∣∣ f continuous over Ω

}
C p (Ω) :=

{
f :Ω→R

∣∣ f is up to p times continously differentiable over Ω
}

C0(Ω) :=
{

f ∈C (Ω)
∣∣ f |∂Ω = 0

}
Lp (Ω) :=

{
f :Ω→R

∣∣ ∫
Ω
| f |p dΩ<∞

}
H 1(Ω) :=

{
f ∈ L2(Ω)

∣∣ ∂ f

∂x
,
∂ f

∂y
∈ L2(Ω)

}
Definition 2. Let u ∈Rn and A ∈Rn×n . Then A is:

Symmetric if and only if: AT = A

Positive definite if and only if: uT Au > 0 , ∀u 6= 0

A matrix A that is both symmetric and postive definite is called symmetric positive definite
(SPD).

Definition 3. Let x,y ∈Rn and let A ∈Rn×n be SPD. The A-inner product of x,y is defined as(
x,y

)
A = xT Ay.

Definition 4. Given 1 ≤ p <∞, the p-norm (Hölder norm) of a vector u ∈Rn denotes as ‖u‖p

is defined by

‖u‖p =
(

n∑
i=1

|ui |p
) 1

p

.

In particular it holds that

‖u‖∞ = max
i=1,...,n

|ui | .

Definition 5. Given 1 ≤ p <∞, the p-norm (Hölder norm) of a matrix A ∈Rm×n denoted as
‖A‖p is defined by

‖A‖p = sup
u∈Rn \{0}

‖Au‖p

‖u‖p
.

For p =∞ the following expression for the matrix norm exists

‖A‖∞ = max
1≤i≤m

n∑
j=1

|Ai , j | .

iii



iv

Definition 6. Let A ∈ Rn×n . The spectral condition number measured in p-norm κp (A) of A
is defined as

κp (A) = ‖A‖p
∥∥A−1

∥∥
p .

In particular if A is SPD it holds that

κ2(A) = λmax(A)

λmin(A)
.

Definition 7. The A-norm of a vector u is defined as ‖u‖A =p
(u,u)A.

Definition 8. Let A ∈ Rn×n and p, q ∈ R≥0. Then A is said to have lower bandwidth p if and
only if p is the smallest number such that ai j = 0 whenever i > j+p. Analogously, A is said to
have upper bandwidth q if and only if q is the smallest number such that ai j = 0 whenever
j > i +q.

If p = 0 (q = 0) the matrix A is upper (lower) triangular.
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1
Introduction

1.1. Background and motivation

In the recent years, the structural failure of buildings has lead to increased attention to the
assessment of structural risks. Examples are the cracking of masonry buildings in Gronin-
gen due to gas extraction or the colllaapse of a concrete floor in Eindhoven due to technical
errors. Not only residents but also insurance companies are interested in having a clear
view of the risks involved and what damage can be expected.

To assess these risks, a nonlinear finite element analysis (NLFEA) can be carried out. In
order for these assessments to produce reliable results, it is important that the adopted
numerical method used is robust. However, when analyzing for example masonry or con-
crete structures robustness issues can arise. These issues are inherent to the iterative na-
ture of NLFEA. Most of these analyses apply loads incremental after which an equilibrium
is re-established between internal and external forces. Once the imbalance is sufficiently
small the load is incremented again and the process is repeated. In most cases this itera-
tive process works relatively well, however problems arise when large deformations occur
in-between load increments. The masonry and concrete structures which are often subject
to the NLFEA are characterized by brittle behaviour meaning that cracks can occur sud-
denly and propagate rapidly. As a result, the iterative procedure may not be able to find a
converged solution.

To address these issues, Rots [15] proposed an alternative robust finite element method
named sequentially linear analysis (SLA). The main assumption of the method is that it as-
sumes incremental material degradation, that is the stiffness and strength properties of the
material degrade stepwise. To locate at which point in the model the damage is applied
a selection procedure is used which compares the current strength to the stresses as ob-
tained with a linear analysis. This way a critical load factor can be determined with which
the linear analysis load can be scaled such that the stress reaches the current strength only
in one element, resulting in progressive damage. After the damage is incremented, the

1



2 1. Introduction

stiffness matrix is recomputed and the process is repeated. With this method, the nonlin-
ear behaviour of structures can be approximated with a sequence of linear analyses. In this
incremental method, no iterative process is required making SLA inherently stable.

SLA has been successfully implemented into DIANA (Displacement Analyzer), a software
package developed by DIANA FEA BV. Where standard finite element packages can only
solve a limited range of conventional engineering problems, DIANA is able to handle non-
conventional problems. Examples are the analysis of big structures such as dams; stresses
induced from extreme loading conditions such as fire; earthquakes; explosions or complex
non-linear behaviour. Ongoing research is performed on DIANA to maintain its reputation
as being the best software package of its kind.

While SLA has been proven to be effective in robustly simulating brittle failure [18], it can
be computationally intensive. One of the main reason is the possibility of having to solve a
significant number of linear systems. This can occur in structures where the damage is (al-
most) fully incremented for many elements. Another key factor is the absence of efficient
re-usage of solutions from previous damage increments. Since the damage increments are
only applied to single elements, the resulting stiffness matrix remains mostly unchanged
between damage increments. Only a small number of entries corresponding to the partic-
ular critical element are adjusted meaning that the system of linear equations is similar to
that of the previous increment. Therefore, calculating the solution without exploitation of
this property possibly comes at the cost of significant additional computing time, especially
for large problems.

Due to the possibility of SLA requiring significant computer time, a desire developed at
DIANA FEA BV to aim some of the research on these issues. As part of this desire, a master
thesis position was made available with the aim of addressing the mentioned issues. While
the first reason mentioned above is an inherent problem of the structural behaviour, the
other reason is a result of the implementation of the SLA procedure. Therefore, the aim of
this thesis, part of which is this literature study, is to exploit the incremental approach of
SLA to achieve improved computing times. This literature study will provide the necessary
background information on NLFEA, SLA, solution methods and some proposed techniques
for improving these methods.

1.2. Research question

The main research question that will be addressed in the thesis is the following:

How can sequentially linear analysis be improved such that it requires reduced computing
time?

Chapter 8 provides a detailed description of research proposal including sub-questions and
methodology. The next section will provide an overview of the structure of this literature
study.
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1.3. Outline

This literature study will provide the necessary background information for the thesis. First
an introduction is given on the finite element method including a brief description on its
application to structural problems. Then NLFEA and the proposed method of SLA are in-
troduced. Subsequently, two different classes of solution methods are discussed for the
linear analyses in SLA followed by techniques for improving these methods. A detailed
overview of the structure of this literature study is provided below.

Section 2: Introduction to the displacement based finite element method and its applica-
tion to structural problems.

Section 3: Explanation of nonlinear analyses problems and incremental-iterative solution
techniques to solve such problems.

Section 4: Explanation of the general idea of sequentially linear analysis, an alternative
approach to solving structural problems.

Section 5: Direct solution techniques for solving systems of linear equations, including
implementations into DIANA.

Section 6: Iterative solution techniques for solving systems of linear equations, including
preconditioning and deflation.

Section 7: Solution technique for reusing solutions of linear systems after a small rank up-
date to the system matrix.

Section 8: Research proposal for the remainder of the thesis.





2
Finite element method

The finite element method (FEM) is a numerical method for solving partial differential
equations (PDE). The method is employed extensively in various areas such as for example
the analysis of solids and structures, heat transfer and fluid flow. The flexibility of FEM in
dealing with complex geometries is one of the reasons why the method is preferred over
other numerical methods. Generally speaking, two different approaches exist to derive
a linear system of equations from a given PDE. The first is known as Ritz’ method and
determines the solution by converting the PDE to a minimization problem. The second
method determines the solution to the PDE by first translating it to a weak formulation,
which is known as Galerkin’s method. An introduction will be given for both methods. For
a complete overview of FEM the interested reader is referred to standard textbooks such as
Zienkiewicz [23] or Bathe [13].

Given a PDE it is possible under certain conditions, mainly the symmetry of the differential
operator, to derive a minimization problem that is in some sense equivalent to the PDE.
[20] These minimisation problems often aim at minimizing an underlying energy potential
or shortest path to solve the equivalent PDE. The advantage of the minimization problem
is that fewer boundary conditions are necessary meaning that a larger class of solutions
is allowed. The boundary conditions that are still present in the minimization problem
are called essential. On the other hand are boundary conditions that are present in the
PDE formulation of the problem but not explicitely anymore in the minimization problem.
These boundary conditions follow implicitly from the minimization formulation and are
referred to as natural boundary conditions. To obtain a system of linear equations from
the minimization problem, the solution is approximated by a weighted combination of lin-
early independent basis functions. Substitution of this approximation into the minimiza-
tion problem and subsequent partial differentiation with respect to the unknown weights
then yields a system of equations in terms of weights and integrals over the basis functions.
Using a preferred numerical integration scheme allows these equations to be rewritten as
a system of equations linear in the unknown weights.

As mentioned, the equivalent minimization problem does not necessarily exist for arbi-
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6 2. Finite element method

trary PDEs. In these cases, Galerkin’s method can be used to derive a weak formulation
from the PDE. In situations where the minimization does exist it is equivalent to the weak
formulation, making the weak formulation a more generally applicable method. In the next
sections, the definition of the weak formulation will be given along with its application to
structural problems.

2.1. Weak formulation

The aim of the weak formulation is to allow a larger solution class than the PDE admits. To
illustrate how to obtain the weak formulation of a given PDE, consider a classical Poisson
problem: {

−∆u = f in Ω

u = g (x, y) on ∂Ω
(2.1)

Multiplication with a so-called test function ϕ ∈C 1
0 (Ω) and integration over the domain Ω

the boundary value problem from Equation (2.1) can be written as:

−
∫
Ω
ϕ∆udΩ=

∫
Ω
ϕ f dΩ , ∀ϕ ∈C 1

0 (Ω) . (2.2)

Applying integration by parts and Gauss’s divergence theorem to Equation (2.2) allows it to
be rewritten as:

−
∫
Ω
∇(
ϕ∇u

)−∇ϕ∇udΩ=
∫
Ω
ϕ f dΩ , ∀ϕ ∈C 1

0 (Ω) (2.3)

⇐⇒−
∫
∂Ω

(
ϕ∇u

) ·ndΓ+
∫
Ω
∇ϕ∇udΩ=

∫
Ω
ϕ f dΩ , ∀ϕ ∈C 1

0 (Ω) (2.4)

Since it holds that ϕ ∈ C 1
0 (Ω), the integral over the boundary ∂Ω vanishes and Equation

(2.4) simplifies to: ∫
Ω
∇ϕ∇udΩ=

∫
Ω
ϕ f dΩ , ∀ϕ ∈C 1

0 (Ω) . (2.5)

The weak formulation corresponding to the boundary value problem of Equation (2.1) is
thus: 

Find u ∈Cg (Ω) such that∫
Ω
∇ϕ∇udΩ=

∫
Ω
ϕ f dΩ , ∀ϕ ∈C 1

0 (Ω)
(2.6)

In the original PDE the solution u had to be twice differentiable due to the Laplace oper-
ator. However, in the weak formulation (2.6) it can be seen that u only needs to be once
differentiable. This illustrates the fact that the weak formulation allows a larger class of
solutions than the corresponding PDE.

The next section will discuss Galerkin’s method for deriving the system of linear equations
from the weak formulation.
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2.2. Galerkin’s method

Galerkin’s method solves the weak formulation (2.6) by dividing the area into a finite num-
ber of non-overlapping elements and approximating the solution by a linear combination
of basis functions defined on these elements.

Dividing the area of interest Ω into nel non-overlapping elements then allows the domain
to be decomposed as:

Ω'
nel⋃
k=1

ek . (2.7)

Each element ek consists of a number of nodes, some of which can be shared with neigh-
bouring elements.

Choosing a set of basis functions {ϕ j } and introducing the notation x = (x, y)1, the solution
u can be approximated as follows:

u(x) ≈ un(x) =
n∑

j=1
u jϕ j (x) . (2.8)

To be able to ensure that u(xi ) = ui the basis functions have to be chosen such that ϕ j = 1
only at x = x j and 0 elsewhere. Therefore, the basis functions have to equal the Kroneck-
erdelta function:

ϕi (x j ) = δi j =
{

1 i = j

0 i 6= j
(2.9)

Substitution of the approximation of u in weak formulation (2.6) then yields:∫
Ω
∇ϕi∇

(
n∑

j=1
u jϕ j

)
dΩ=

∫
Ω
∇ϕi

n∑
j=1

u j∇ϕ j dΩ

=
n∑

j=1
u j

∫
Ω
∇ϕi∇ϕ j dΩ

=
∫
Ω
ϕi f dΩ (2.10)

1x = (x, y, z) in R3.
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Introducing two new variables for the integrals:

Ki j =
∫
Ω
∇ϕi∇ϕ j dΩ=

nel∑
m=1

∫
em

∇ϕi∇ϕ j dΩ

=
nel∑

m=1
K em

i j (2.11)

fi =
∫
Ω
ϕi f dΩ=

nel∑
m=1

∫
em

ϕi f dΩ

=
nel∑

m=1
f em

i (2.12)

In structural settings, the terms K em
i j are referred to as element stiffness matrices and f em

i
element force vectors which add elementary contributions to the system stiffness matrix
and force vector respectively. By substitution of Equations (2.11) and (2.12) into Equation
(2.10) the expression simplifies to:

n∑
j=1

Ki j u j = fi , ∀i ∈ {1, . . .n} , (2.13)

where n is the total number of nodal degrees of freedom. These n equations can be assem-
bled to obtain the matrix-vector notation:

K u = f . (2.14)

The next section will provide an introduction on how the finite element approach described
in this section is applied to structural problems.

2.3. Application to structural problems

In static structural problems, the user is interested in finding the structural response as a
result of a given load. This response is given by displacements, stresses and strains. While
it is clear what a displacement is, this does not necessarily hold for stress and strain.

The two quantities (mechanical) stress and strain are closely related. Where stress, denoted
by σ, is a quantity that expresses the internal forces per area that neighbouring particles
exert on each other, strain, denoted by ε, is a measure for the deformation of a material.
Stresses can occur in the absence of strains, for example in a beam supporting a weight.
The presence of the weight induces stresses in the beam, but it does not necessarily have
to strain. It is even possible for stresses to occur it the absence of external forces due to, for
example, self-weight. The relation between stresses and strains is typically expressed using
a material dependant stress-strain curve.

A detailed description of how the finite element method can be applied to structural prob-
lems can be found in Zienkiewicz [23]. For static structural problems, the local strain ε can
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be calculated by taking the product of the strain-displacement relation Bi and the displace-
ments u:

ε= Bi u . (2.15)

The strain-displacement relation Bi is only defined for a particular point and thus needs to
be evaluated for every point. Assuming linear elastic behaviour in the structure, the local
stresses can be calculated as:

σ= Di (ε−ε0)+σ0 . (2.16)

In this equation Di is the elasticity matrix which is a function of the related material prop-
erties such as Young’s modulus (measure of stiffness of solids) and Poisson’s ratio (measure
of contraction of a material under tension). Furthermore, it is possible that a structure is
under stresses and strains prior to the analysis. This is taken into account with the terms
σ0, ε0 respectively.

The system of linear equations can be obtained by imposing the principle of virtual work
by equating the external and internal work done by the various forces and stresses during
the virtual displacement. The textbooks by Zienkiewicz [23] and Bathe [13] provide exten-
sive elaborations and examples on the principle of virtual work. Imposing the principle of
virtual work it follows that the element stiffness matrices K em

i j from Equation (2.11) can be
written as:

K em
i j =

∫
Ω

B T
mDmBmdΩ . (2.17)

In order to be able to map the local element numbering to the global numbering, an element-
dependant mapping Ti has to be introduced. Applying this mapping to all element stiffness
matrices in Equation (2.11) yields:

Ki j =
nel∑

m=1
T T

mK em
i j Tm . (2.18)

Similarly, the principle of virtual work allows the right-hand side of Equation (2.14) to be
written as a sum of integrals over the geometry (boundary).

In order to be able to obtain a solution, the integrals over the geometry have to be calcu-
lated. In practical problems, this is not possible analytically and hence numerical integra-
tion has be applied. The next section will elaborate on how the element integrations are
performed which are necessary to obtain a set of linear equations that can be solved.

2.4. Numerical integration

In the previous sections it was shown how Galerkin’s method can be used to derive a system
of linear equations from the weak formulation of a PDE. In this derivation, Equations (2.11)
and (2.12) still require the integration over the elements. In most practical problems, ex-
act integration is not possible hence a numerical integration scheme has to be used. Some
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well-known numerical integration schemes are Newton-Cotes of various degrees or Gaus-
sian quadrature.

All of the numerical integration schemes have in common that they evaluate the function to
be integrated in specific points, called integration points. The number of these integration
points is dependent of the chosen numerical scheme. In DIANA, Gaussian quadrature is
chosen as integration scheme as this minimizes the required number of integration points.
To illustrate Gaussian quadrature consider again the element force vector from Equation
(2.12). Applying Gaussian quadrature to this equation yields:

f em
i =

∫
em

ϕi (x) f (x)dΩ

:=
∫

em

gi (x)dΩ

≈
nξ∑

i=1
wξgi (ξi )

Here are ξi the integration points, nξ the number of integration points and wξ describe the
weight function of the applied method for the specific integration interval.



3
Nonlinear analysis

In nonlinear finite element analysis the relation between the exerted force and the dis-
placement is no longer linear which can be the result of material-, geometric- or contact
nonlinearities, or a combination. Similar to a linear analysis, the problem is to find the
displacement of the structure which equilibrates the external and internal forces such that
a stationary state is found. To solve this, the problem is not only discretized spatially but
also temporal (increments). To obtain a feasible solution within one increment, an iterative
procedure is used to equate the forces. Due to the combination of temporal discretization
and iterative nature, this solution procedure is referred to as incremental-iterative.

Discretizing the displacement vector in time (increment) as

ut+∆t = ut +∆u , (3.1)

the problem can then be defined as finding∆u such that the resulting displacement equates
the internal and external foces:

fint(ut+∆t ,ut , . . . ,u1) = fext(ut+∆t ) . (3.2)

Due to the possibility of the internal forces depending on the history of the displacements
these previous displacement vectors are included in Equation (3.2) in the argument of the
internal force. To be able to solve the above problem with a iterative method such as
Newton-Raphson, Equation (3.2) is rewritten as follows. Find a displacement increment
∆u such that

g(∆u) := fext(ut+∆t )− fint(ut+∆t ,ut , . . . ,u1) = 0 . (3.3)

All methods available in DIANA adapt the displacement vector using iterative increments
δu

∆ui+1 =∆ui +δui+1 , (3.4)

11



12 3. Nonlinear analysis

where i is the iteration number.

This process is repeated until a displacement increment is found for which the residual
force vector g reaches 0, up to a prescribed tolerance. At that point, a new increment is
determined and the process repeats.

The difference between the available methods is the way in which the iterative increments
are determined. The following sections will discuss the different iterative procedures that
are available within DIANA. Note that it is not necessary to use the same method for all
increments, in theory the force equilibrium can be reached with a different method for
every increment.

3.1. Newton-Raphson methods

In the class of Newton-Raphson methods, generally two variants can be distinguished; reg-
ular- and modified Newton-Raphson. Both methods determine the iterative increment us-
ing the Jacobian, which in structural problem is the ’stiffness matrix’. Contrary to Chapter 2
in which stiffness matrix represented the linear relation between force and displacement,
such linear a relation does not exist in nonlinear problems. Hence some kind of linearized
form of the relation between the force and displacement vector is calculated. The differ-
ence between regular- and modified Newton-Raphson is the point at which this stiffness
matrix is evaluated.

Regular Newton-Raphson recomputes the stiffness matrix every iteration. As a result, every
prediction is based on the most recent information. This property is illustrated in Figure
3.1 where it can be seen that the tangent changes with each iterations within an increment.

∆u0δu1δu2

∆u1

u

g

Figure 3.1: Example of regular Newton-Raphson.
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The main advantage of using regular Newton-Raphson is its quadratic convergence. This
implies that usually few iterations are required to attain the root of the residual force vector.
However, due to the required evaluation of the stiffness matrix in every iteration it is rela-
tively expensive. Furthermore, convergence of the approximations can not be guaranteed
for sufficiently bad initial guesses.

The modified Newton-Raphson method only computes the stiffness matrix at the start
of every increment. This implies that all predictions within an increment are based only
on the information available at the start of the increment. An illustration of the modified
Newton-Raphson can be seen in Figure 3.2 in which the constant tangent can be observed
within an increment.

∆u0δu1δu2

∆u1

u

g

Figure 3.2: Example of modified Newton-Raphson.

Usually modified Newton-Raphson requires more iterations than regular Newton-Raphson
to obtain the force equilibrium due to the fact that only information from the start of an in-
crement is used. However, since the stiffness matrix is only set-up once at the start of an
increment, the iterations of modified Newton-Raphson are faster. Furthermore, if a direct
solution method is used to obtain the iterative increments the costly decomposition of the
stiffness matrix need only be computed once after which the relatively cheap substitutions
will suffice. In figure 3.2 it can be seen that for the same function, starting point and num-
ber of iterations the modified Newton-Raphson method is considerably further from the
root than regular Newton-Raphson as was seen in Figure 3.1.

3.2. Quasi-Newton methods

In situations where the computation of the stiffness matrix in every iteration is too expen-
sive, an approximate of the stiffness matrix can be used instead. Any method that replaces
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the exact stiffness matrix with such approximation is referred to as a quasi-Newton method.
Note the misleading use of exact stiffness matrix, which in fact is already some linearized
form between the force and displacement vector. Three different quasi-Newton methods
have been implemented each of which approximate the stiffness matrix differently. Two of
these are:

Broyden: K −1
i+1 = K −1

i +
(
δui −K −1

i δgi
)
δuT

i K −1
i

δuT
i K −1

i δgi
(3.5)

BFGS: K −1
i+1 =

(
I + δuiδgT

i

δuT
i δgi

)
K −1

i

(
I − δgiδuT

i

δuT
i δgi

)
+ δuiδuT

i

δuT
i δgi

(3.6)

The inverses of the stiffness matrices K −1
i+1 are not calculated explicitly, but are calculated

by successive application of the above equations with the Jacobian K0 from the start of the
increment and the iterative increments. This approach implies that for every iteration an
additional iterative increment vector has to be stored and that additional vector calcula-
tions are required.

The third implemented quasi-Newton method was proposed by Crisfield [4] and suggests
only to use the most recent correction vector. This prevents the increasing storage needed
to store all intermediate iterative increments. Especially in problems with a large number
of degrees of freedom this can result in significant savings in required memory.

3.3. Additional methods

Besides the Newton-Raphson and quasi-Newton methods some other iterative methods
are available to obtain a force equilibrium.

The first two methods are the linear- and constant stiffness methods which both use the
same stiffness matrix during all iterations within an increment. The linear stiffness method
uses the stiffness matrix from the first increment. This means that it costs the least per iter-
ation than all other methods, while potentially requiring significantly more iterations. On
the other hand, the constant stiffness method uses the stiffness matrix from the previous
increment. If one uses the constant stiffness method for all increments, it is equivalent to
the linear stiffness method.

A third method is the continuation method. If a displacement is relatively continuous, the
displacement of the previous increment can be used as an initial guess for the subsequent
increment. This initial guess can then serve as a starting point for one of the other men-
tioned methods.

The last method that is available in DIANA is line search. The problem with most former
mentioned methods is that divergence can occur for a poorly chosen initial guess. If these
methods fail, line search can still be useful. The method uses the iterative increments δu
from one of the formerly mentioned methods and then scales Equation (3.4) to obtain

∆ui+1 =∆ui +ηδui+1 . (3.7)
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The scaling parameter η is determined by minimizing the energy potential from which the
scaled iterative increment can be considered as the best solution in the predicted direction.
For an in-depth elaboration on this topic, Crisfield [4] provides an excellent starting point.

3.4. Convergence criteria

The iterative process of the methods mentioned in the previous sections have to be termi-
nated once force equilibrium has been reached with sufficient accuracy. Not only is the
iterative process stopped once it reaches the prescribed accuracy, but also once a prede-
fined maximum number of iterations is attained which prevents excessive iterations due
to poorly chosen stopping criteria. Two of the most frequently used stopping criteria in
DIANA are the following.

The first stopping criterion is based on the force norm, which is the Euclidean norm of the

residual force vector gi :
√

gT
i gi . Checking this norm against the force norm at the start of

the increment allows to check for convergence and yields the force norm ratio:

Force norm ratio: r =
√

gT
i gi√

gT
0 g0

.

The second stopping criterion is similar to the force norm ratio but instead it is based on the

displacement norm, which is the Euclidean norm of the iterative increment δui :
√
δuT

i δui .

Checking for convergence can then be achieved by checking this norm against the displace-
ment norm at the start of the increment. This yields the displacement norm ratio:

Displacement norm ratio: r =
√
δuT

i δui√
∆uT

0 ∆u0

.

Other possibilities for stopping criteria are based on the norm of the build up energy in the
structure due to the iterative increments, or on a comparison between the residual force
norm from the current and previous iteration.

3.5. Incremental procedures

The incremental-iterative procedure consists of two parts; an incremental and iterative
part. The preceding sections of this chapter have all focused on the iterative part. For the
increment part several solution methods are available. The most simple of these methods
are load control and displacement control. A more advanced method is given by the arc-
length control method. For a detailed description on these and related methods, the reader
is referred to the DIANA Theory manual [3].





4
Sequentially linear analysis

The previous chapter described iterative procedures that can be used to obtain a solution
in NLFEA. Generally, these iterative processes work relatively well in finding a sufficiently
converged solution. However, in structures where brittle behaviour occurs suddenly and
propagates rapidly, the iterative process may not be able to find a converged solution any-
more. To address these issues, Rots [15] proposed sequentially linear analysis (SLA) as an
alternative. This section will provide the necessary background information on SLA. A good
starting point to this is a visualization of the step-by-step nature of SLA, which can be seen
in Figure 4.1.

Start

1. Define saw-tooth laws

2. Run linear analysis

3. Trace next event

4. Scale analysis results

5. Continue?

Stop

Apply damage increment

No

Yes

Figure 4.1: Flowchart of SLA step-by-step strategy.

17
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With this strategy, the structural response of the structure is captured as a sequence of sub-
sequent events. In this context, an event refers to a damage increment to a point in the
structure. The general procedure of SLA is then given by the following steps.

1. Initialisation: definition of material deformation under tensile- or compressive stresses
(saw-tooth laws)

2. Run the linear analysis with a (unit) load

3. Detect which element is closest to its stress limit

4. Scale the linear analysis according to the critical element

5. Check stopping criteria; if not reached apply damage increment and repeat

In the following sections, more in-depth elaboration will be given on the main steps of
SLA. Section 4.1 will describe how material properties are discretized using saw-tooth laws.
Since this chapter focuses on SLA, Section 4.2 only briefly presents what solvers are avail-
able to solve the resulting linear system of equations. An in-depth description on these
solution procedures can be found in Chapters 5 and 6. Once the linear system is solved,
the location of the next event is traced. This is described in Section 4.3. Lastly, Section 4.4
elaborates on the stopping criteria available within SLA.

4.1. Saw-tooth laws

A fundamental assumption within SLA is to approximate the nonlinear material behaviour
with a series of linear relations. Therefore, as initialisation SLA requires a discretisation of
the stress-strain curve which defines the material dependent relation between stress and
strain. Figure 4.2 shows some of the predefined tensile stress-strain curves that are present
in DIANA.
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Figure 4.2: Predefined tensile softening curves in DIANA. Source: DIANA theory manual [3].

The last 5 curves display a decrease in required stress for increased strain. This type of
nonlinear behaviour is referred to as material softening and characterises brittle materials
such as concrete and masonry. In order to approximate this nonlinear behaviour with a se-
quence of linear relations, the stress-strain is discretised using either constant or variable
strain increments. An example of the resulting saw-tooth law with variable strain incre-
ments is shown in the left-hand side of Figure 4.3.

Figure 4.3: Example of a saw-tooth law and corresponding decrease in Young’s modulus. Source: v.d. Graaf
[18].
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The resulting saw-tooth law transforms the continuous reduction in stiffness into discrete
jumps. Once an integration point attains its stress limit, the next step with reduced stiffness
and strength properties is assumed. This process is repeated until the stiffness has reached
a predefined stopping criteria or equals 0. The situation in which the stiffness equals 0 cor-
responds to complete material failure. Each step can thus be seen as a damage increment
reducing the material’s strength properties.

4.2. Linear analysis

The previous section described how the nonlinear material behaviour is discretised such
that, once the material reaches its limit stress, its strength properties can be decreased.
Once this has been defined, all structural properties are available to assemble the system
of linear equations. Depending on the type of loading (proportional/non-proportional), a
certain load is assumed1. To solve the resulting system of equations several solution tech-
niques and implementations of those are available in DIANA. All of these solution tech-
niques can be categorized as a either direct- or iterative. Chapters 5 and 6 will provide an
in-depth analysis of these two classes of solution methods and mention some implemen-
tations of these techniques.

4.3. Trace next event

In the linear analysis, a unit load on the structure was assumed. To determine in which
element the next damage increment occurs, a critical load factor has to be determined for
every element. This factor indicates how much the load in that point can increase until
material failure occurs. The critical load factor is defined as:

λ
( j )
crit;i =

f ( j )
i

σ
( j )
gov;i

, (4.1)

where σ( j )
gov;i is the governing stress component for integration point i and f ( j )

i the current
material strength. Taking the minimum of all these load factors then yields a critical load
factor:

λ
( j )
crit = min

i

(
λ

( j )
crit;i

)
∀i :λ( j )

crit;i > 0 . (4.2)

Scaling of the linear analysis with this critical load factor then results in the smallest load
that will lead to progressive damage. It is assumed that in the scaled analysis, the govern-
ing stress reaches the material strength only in one of the integration points, the critical
integration point.

1Since the focus of this thesis is on the mathematical side of SLA and not on the mechanical, detailed elabo-
ration on non-proportional loading will be omitted. For such elaboration the interested reader is referred to
Rots [15] or for a more detailed description to v.d. Graaf [18].
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4.4. Stopping criteria

Before applying the damage to the critical integration point, it has to be decided whether
or not to continue the analysis. The simplest stopping criteria is checking whether the
number of linear analyses has reached a predefined maximal number [18]. However, other
less trivial stopping criteria are also possible. One possibility is to terminate the analysis as
soon as a certain displacement at a given degree of freedom is attained. Another possibility
is to stop the analysis once the damage in an integration point reaches a certain percentage
of complete material failure (90%-95%).

If the stopping criteria is not yet attained, the damage increment is applied to the critical
integration point according to the saw-tooth law. A new linear system is then set-up and
the analysis is repeated.





5
Direct methods for linear systems

The analysis of sequential linear analysis requires solving a linear system K u = f after each
damage increment. For any practical problem it is not feasible to invert the resulting stiff-
ness matrix K directly. Therefore, two classes of solution methods exist to calculate the
displacements u: direct and iterative methods. This chapter will focus on the direct solu-
tion methods whereas the next chapter will focus on the latter.

Typically, direct solution methods exist of three stages; a reordering of the system of equa-
tions, a decomposition of the system matrix, and a forward- and backward substitution to
obtain the solution. The following three sections will discuss each of these stages sepa-
rately.

5.1. Matrix reordering

The discretization of the structural equations using the finite element methods generally
results in sparse stiffness matrices; matrices of which most entries are 0. When solving
large sparse systems of equations it is desirable to exploit this property, as it reduces the
number of calculations to be performed. However, in the decomposition of a sparse ma-
trix the sparsity pattern is often destroyed and fill-in occurs meaning that the factors of
the decomposed matrix contain significantly more non-zero entries than the original ma-
trix. To illustrate the occurance of fill-in, Figure 5.1 shows a matrix decomposition without
applying a reordering scheme to the matrix.

23
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(a) Unreordered matrix. (b) LU decomposition of unreordered matrix.

Figure 5.1: Example of non-zero pattern of a matrix decomposition with fill-in.

Clearly, performing a matrix decomposition without applying a reordering scheme can re-
sult in significant fill-in. In the rest of the direct method this results in a severe performance
penalty as every non-zero element has to be stored in memory, but also unnecessary com-
putations have to be performed on these non-zero entries. To illustrate the significance of
reordering, Figure 5.2 shows the same matrix and decomposition, only now after applying
a reordering scheme (AMD) to the matrix.

(a) Reordered matrix. (b) LU decomposition of reordered matrix.

Figure 5.2: Example of non-zero pattern of a matrix decomposition with reduced fill-in due to reordering
(AMD).

From the number of non-zero elements it is clear that the reordering scheme has largely
maintained the sparsity pattern. This example motivates the use of reordering schemes
especially when solving large sparse systems of linear equations.
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In general, a matrix reordering can be written as multiplications of permutation matrices
P,Q with the original matrix K as

K u = f =⇒ (
PKQT )

(Qu) = P f (Complete pivoting) (5.1)

From Equation (5.1) it can be seen that complete pivoting permutes both the rows and
columns. Note that for symmetric matrices it must hold that P = Q in order to maintain
symmetry of the permuted matrix. The aim is then to find reorderings P,Q such that the
bandwidth of the resulting decomposition is minimal. It has been shown by Yannakakis
[22] that finding such minimal fill-in reordering is NP-hard, meaning that no known ef-
ficient way of finding such reordering exists. Despite this, several well-known reordering
heuristics exist of which some of the most used will be discussed.

5.1.1. Cuthill-McKee reordering

The Cuthill-McKee (CM) algorithm is a well-known reordering heuristic for reducing the
bandwidth of sparse symmetric matrices [5]. The general idea of the algorithm is as follows.
Assuming a square matrix K , consider K as the adjacency matrix of a graph. Every non-zero
element of K represent a connection between the corresponding nodes in the graph. The
algorithm then first finds the node with minimal vertex degree (number of adjacent nodes).
From this node, a breadth-first search is performed. For every depth level, the nodes are
relabelled according to the ascending vertex degree order. Once all nodes in the depth level
are relabelled, another depth level is considered. This process repeats until all nodes are
relabelled. The above algorithm can in short be written using the following pseudocode.

Algorithm 1 CutHill-Mckee pseudo-algorithm

1: Represent given matrix K ∈Rn×n as the adjacency matrix of a graph
2: Find vertex x with minimal degree, set R1 := ({x})
3: while |Ri | < n do
4: Find the adjacency set Ki of Ri

5: Sort the nodes in Ki with ascending vertex order
6: Relabel the nodes in Ki according the sorted vertex orders
7: Set Ri+1 = Ri ∪Ki

8: end while

Instead of the CM algorithm, often the reversed CM algorithm is used as proposed by George
[8]. This method inverts the labelling as provided by the CM algorithm and has been shown
to often produce a superior ordering in terms of fill-in while the bandwidth remains un-
changed.
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5.1.2. Minimum degree reordering

The Minimum Degree (MD) algorithm is another well-known reordering scheme that can
be used to reorder symmetric matrices. The general idea of MD is that it simulates n steps
of Gaussian elimination. In each of these steps, one row and one corresponding column
interchange is applied to the part of the matrix that remains to be factored such that the
number of non-zero entries in the pivot row and column are minimized.

Many different implementations of the MD algorithm exist, such as Approximate Minimum
Degree (AMD) or Symmetric Approximate Minimum Degree (SYMAMD).

5.2. Matrix decomposition

Most direct solution techniques for solving systems of large equations rely on some form
of Gaussian elimination. The most basic form of Gaussian elimination reduces the original
matrix K ∈Rn×n to a factorisation LU , in which L,U are lower and upper triangular respec-
tively. To write the matrix K in the factored form, Gaussian elimination step-by-step adds
multiples of one equation to another. The general idea of Gaussian is then as follows [2].

Step 1
Denote the original system K u = f as K (1)u = f(1) with k(1)

i , j , f (1)
i the entries of K (1), f(1).

Assume row 1 has a non-zero pivot; k(1)
1,1 6= 0. This allows the definition of the row multipli-

ers:

mi ,1 =
k(1)

i ,1

k(1)
1,1

, i = 2, . . . ,n . (5.2)

These multipliers quantify how many times the first row has to be added to the other n −1
rows in order to obtain 0 entries below the diagonal in the first column. Writing the row
multipliers in the matrix notation as

M1 =


1 0 · · · 0

−m2,1 1 · · · 0
...

...
. . .

...
−mn,1 0 · · · 1

 , (5.3)

the unknown u1 can be removed from equations 2, . . . ,n by multiplying the system of equa-
tions with the so-called Gauss transform M1:

K (2)u =: M1K (1)u = M1f(1) := f(2) . (5.4)

To motivate the structure of K (2), write the matrix multiplication of Equation (5.4) as:

k(2)
i , j = k(1)

i , j −mi ,1k(1)
1, j , i , j = 2, . . . ,n

f (2)
i = f (1)

i −mi ,1 f (1)
1 , i = 2, . . . ,n



5.2. Matrix decomposition 27

Equation (5.4) can then be written as:
k(1)

1,1 k(1)
1,2 · · · k(1)

1,n

0 k(2)
2,2 · · · k(1)

2,n
...

...
...

0 k(2)
n,2 · · · k(2)

n,n




u1

u2
...

un

=


f (1)

1
f (2)

2
...

f (2)
n

 . (5.5)

Step k
Let 1 ≤ k ≤ n−1 and assume again a non-zero pivot in row k; k(k)

k,k 6= 0. Furthermore, assume

that K (k)u = f(k) has been constructed such that the first k−1 columns of K (k) have 0 entries
below the diagonal:

K (k) =



k(1)
1,1 k(1)

1,2 · · · k(1)
1,n

0 k(2)
2,2 k(2)

2,n
...

. . .
...

0 · · · 0 k(k)
k,k

... k(k)
k,n

...
...

...

0 · · · 0 k(1)
n,k · · · k(k)

n,n


. (5.6)

Defining the row multipliers

mi ,k =
k(k)

i ,k

k(k)
k,k

, i = k +1, . . . ,n , (5.7)

allows the elimination of the non-zero entries below the diagonal in column k. Writing the
row multipliers in matrix notation as

Mk =



1 0 · · · 0 · · · 0

0
. . . . . .

...
...

... 1 0 · · · 0

0 · · · −mk+1,k 1
. . .

...
...

...
. . . 0

0 · · · −mn,k 1


, (5.8)

allows thee unknown uk to be removed from equations k+1, . . . ,n by multiplying the system
of equations from the previous step with Mk :

K (k+1)u =: Mk K (k)u = Mk f(k) := f(k+1) . (5.9)

By continuing in this manner, after n −1 steps the original matrix K has been reduced to
upper triangular form such that the resulting system of equations can be written as

k(1)
1,1 · · · · · · k(1)

1,n

0
. . .

...
...

. . . . . .
...

0 · · · 0 k(n)
n,n




u1

u2
...

un

=


f (1)

1
f (2)

2
...

f (n)
n

 , (5.10)
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which by construction can be written as:

Mn−1Mn−2 . . . M1K u = Mn−1Mn−2 . . . M1f , (5.11)

where each of the matrices Mi have ones on the diagonal and are lower triangular. Mul-
tiplying each side of Equation (5.11) with the product of the Gauss transforms yields the
following system of equations which is equal to the original system K u = f:

(Mn−1Mn−2 . . . M1)−1 (Mn−1Mn−2 . . . M1K )u = f . (5.12)

By construction it holds that Mn−1Mn−2 . . . M1K is upper triangular hence it is denoted with
U . On the other hand, the inverse of the product of Gauss transforms can be written as

(Mn−1Mn−2 . . . M1)−1 = M−1
1 . . . M−1

n−2M−1
n−1 . (5.13)

It can be shown by direct multiplication that the inverses M−1
i are equal to Mi with all off-

diagonals changed in sign. Therefore, the inverse of the product of Gauss transformations
can be written as a product of lower triangular matrices which again is lower triangular,
hence the factorisation from Equation (5.12) can be written as

K u = (Mn−1Mn−2 . . . M1)−1 (Mn−1Mn−2 . . . M1K )u := LU u = f , (5.14)

known as the LU decomposition where U is upper triangular and L lower triangular. In the
next section it will be shown that decomposing the matrix in such form will prove extremely
convenient in solving linear systems of equations. The LU decomposition exists whenever
all submatrices of K are non-singular [2]. The LU decomposition can be written slightly
different by decomposing the matrix U further into factors D and M T , where D = diag(U )
and M T = D−1U . Since the matrix D is diagonal, its inverse is easy to compute. The inverse
D−1 exists since K is non-singular and thus has non-zero determinant. Furthermore, since
left multiplication with a diagonal matrix only scales the rows, the matrix M T is still upper
triangular. The LU decomposition then becomes

K = LDM T , (5.15)

where L is lower triangular, D diagonal and M T upper triangular. The decomposition from
Equation (5.15) is referred to as the LDM decomposition.

Now consider a matrix K that is symmetric positive definite (SPD). Since all submatrices
of a SPD matrix are non-singular, an LU decomposition exists. Writing this LU as a LDM
decomposition it immediately follows from the symmetry of K that L = M . Hence the LDM
decomposition for SPD matrices reduces to the LDL decomposition:

K = LDLT . (5.16)

Due to the positive definiteness of K , the (diagonal) entries of D are positive. Hence, it can
be written as D =p

D
p

D with which the decomposition of K can be written as the Cholesky
decomposition:

K =CC T , (5.17)
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where C is lower triangular and C = L
p

D . The advantage of the Cholesky decomposition
over the LU decomposition is twofold. Not only is the memory usage reduced by half with
respect to the LU decomposition, but also the required number of computations to deter-
mine the decomposition is halved.

In the derivation of the LU decomposition, every step assumed that the corresponding
pivot element was non-zero. This assumption can be omitted by starting each step with
switching two rows as to put a non-zero element on the pivot location. However, some el-
ements might be 0 in exact arithmetic but due to rounding errors become non-zero. Using
such element as a pivot element can result in significant errors building up in the solution.
Furthermore, if the entries of the matrix vary several orders of magnitude it is likely that
large rounding errors will occur. Therefore, to prevent these problems from happening the
next subsection introduces the concepts of scaling and partial-, complete pivoting.

5.2.1. Scaling & Pivoting

If the matrix entries of K vary several orders of magnitude it is possible that rounding er-
rors occur due to the machine precision. The conditioning of the matrix can be improved
by scaling the rows of the matrix. However, there is no a priori strategy to determine scal-
ing factors such that the effects of rounding errors are always decreased. Empirical results
have provided a possible approach which is to construct a diagonal scaling matrix Dscal

such that the rows of Dscal K all have approximately the same ∞-norm [2]. Not only is it
possible to scale the rows of K , but also techniques exist to scale the columns of K in order
to improve the conditioning of K [6, 9].

In Gauss elimination, every step assumed a non-zero pivot. In order to ommit this assump-
tion and to avoid small pivot elements partial pivoting (row interchanges) will be applied
prior to calculating the row multipliers as in Equation (5.7). To this extend let 1 ≤ k ≤ n −1.
In the k-th step of Gaussian elimination define

ck = max
k≤i≤n

|k(k)
i ,k | . (5.18)

Let i be the smallest row index such that the maximum for ck is attained. If i > k switch
rows i and k in both A and f. By construction it then holds that all row multipliers satisfy

|mi ,k | ≤ 1 , i = k +1, . . . ,n . (5.19)

This property prevents the excessive growth of elements in K (k) and thus decreases the
probability of rounding errors. Partial pivoting in step k of Gaussian elimination is typically
denoted with a permutation matrix Pk such that after n −1 steps the system is given by

Mn−1Pn−1Mn−2Pn−2 . . . M1P1K u = Mn−1Pn−1Mn−2Pn−2 . . . M1P1f . (5.20)

Instead of only interchanging rows, it is also possible to switch both rows and columns
which is referred to as complete pivoting. Let again 1 ≤ k ≤ n −1. Similarly to partial pivot-
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ing, in the k-th step of Gaussian elimination define

ck = max
k≤i , j≤n

|k(k)
i ,k | . (5.21)

Let i , j be the smallest row- and column indices such that the maximum for ck is attained.
If i , j > k switch the rows of A, f and the columns of A are switched according to i and
j . This ensures that the resulting row multipliers are minimal due ck being the maximum
of the remaining untransformed block matrix. As a result, complete pivoting results in a
small growth factor of matrix elements decreasing the probability of rounding errors. It is
important to note that the column switch implies a switch in variables. Once the resulting
system of equations has been solved this has to be reversed in order to obtain the solution
to the original problem. Since the computation cost of complete pivoting is higher than
for partial pivoting, and the error behaviour is often the same for both methods, in many
practical problems it is chosen to use partial pivoting.

When K is SPD (and hence its Cholesky decomposition exists) the use of scaling or pivoting
is not necessary [2].

5.3. Forward and back substitution

In the previous section it was shown how Gaussian elimination can be applied to write a
matrix K as a product of a lower- and upper triangular matrix. These favourable properties
can be used to efficiently solve the system of equations. By introducing an auxiliary vector
y of same size as f, the system of equations LU u = f can be written as:

Ly = f , (5.22)

U u = y . (5.23)

Due to the triangular properties of L and U , Equations (5.22), (5.23) are efficiently solv-
able by forward and backward substitution respectively. Introducing the notation Ai ,1:i :=[

Ai ,1, . . . , Ai ,i
]
,the two general algorithms for determining y and u are given in Algorithms 2

and 3.

Algorithm 2 Forward substitution

for i = 1, . . . ,n do
yi =

[
fi −Li ,1:i−1 · y1:i−1

]
/Li ,i

end for

Algorithm 3 Backward substitution

for i = n, . . . ,1 do
ui =

[
yi −Ui ,i+1:n ·ui+1:n

]
/Ui ,i

end for

Note that by construction it holds that Li ,i = 1 for every i = 1, . . . ,n. The same algorithms
can be used for a Cholesky factorisation since in that case U = LT .
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It can be shown that in the presence of round-off errors solving the linear equations Ly = f
obtains the solution vector ŷ such that

(L+F ) ŷ = f , (5.24)

where F is a perturbation matrix to L as a result of round-off errors. On most modern
computers with double precision it can be shown that the entries of F are relatively small
compared to those of L. This implies that the forward substitution from Equation (5.22) is
numerically stable. For a proof of the numerical stability the reader is referred to Higham
[11]. Analogously it can be proven that the back substitution from Equation (5.23) is also
numerically stable.

5.4. Implementation: Parallel Sparse Direct Solver

Many different implementations of the previously mentioned decompositions and solu-
tion methods exists. Arguably the most well-known, and also available within DIANA,
is Intel’s Parallel Sparse Direct Solver (PARDISO), which is a "high-performance, robust,
memory-efficient and easy to use solver for large and sparse (non)symmetric linear sys-
tems" [1]. PARDISO calculates the solution to a system of sparse linear equations K u = f
using a highly optimized parallel LU , LDLT or CC T decomposition. PARDISO is hand-
optimized to run on Intel hardware. For sufficiently large problems, numerical experiments
have demonstrated an almost linear relation between computational time and number of
parallel cores with a speed-up of factor 7 using eight processors being observed.





6
Iterative methods for linear systems

The previous chapter described direct solution methods for solving linear systems of equa-
tions. The most important downside of direct methods is the storage requirement espe-
cially for large three-dimensional problems. For this reason, iterative methods provide an
alternative since these methods do not require the computation and storage of the decom-
position of a matrix. Two different categories of iterative methods for solving linear sys-
tems exist: basic iterative methods and Krylov subspace methods. The next two sections
will elaborate on both these categories.

6.1. Basic iterative methods

The fundamental idea of iterative methods to solve a linear system K u = f is to construct a
sequence of successive approximations {uk }, where

lim
k→∞

uk = u , (6.1)

with u the exact solution. Clearly it is impossible to create an infinite sequence of approx-
imations, hence the iterative scheme is terminated once a sufficiently accurate solution is
found. To construct a basic iterative scheme a matrix splitting of K is constructed

K = P −R , (6.2)

in which P ∈ Rn×n is non-singular. Using the splitting of Equation (6.2) then allows to
rewrite the linear system as Pu = Ru+ f. By multiplying both sides of the equation with
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P−1 an iterative scheme can be derived as follows

uk+1 = P−1Ruk +P−1f

= P−1 (P −K )uk +P−1f

= (
I −P−1K

)
uk +P−1f (6.3)

= uk +P−1 (f−K uk )

= uk +P−1rk (6.4)

where rk is the residual vector of iteration k and u0 an initial guess. Since each iteration
requires a linear system solve with the matrix P , the matrix P should be chosen such that
this operation is as cheap as possible. This is the case when P is either a diagonal-, upper-
or lower triangular matrix.

The iteration from Equation (6.3) can be seen as a technique for solving[
I − (

I −P−1K
)]

u = P−1f ,

which can be rewritten as

P−1K u = P−1f . (6.5)

From this formulation it is clear that the matrix P serves as a preconditioner to the original
problem.

Some of the most well-known choices for preconditioners P are given below. Here D de-
notes a matrix of equal size to K with K ’s diagonal elements and zeros elsewhere, L and
U respectively contain all strictly lower- and upper-diagonal elements of K and zeros else-
where.

Jacobi: P = D

forward Gauss-Seidel: P = D +L

backward Gauss-Seidel: P = D +U

ω-damped Jacobi P = 1

ω
D

SOR(ω): P = 1

ω
D +L

SSOR(ω): P = ω

ω(2−ω)

(
1

ω
D +L

)
D−1

(
1

ω
D +U

)

As mentioned earlier, successive approximations are calculated until the approximation
is sufficiently accurate. To determine when the algorithm stops, a stopping criterion has
to be defined. In a good choice of stopping criterion one aims at balancing the imposed
accuracy of the approximation with the required computational cost. A commonly used
stopping criterion is to iterate until

‖rk‖
‖f‖ ≤ ε (6.6)

for some ε. This stopping criterion is scaling invariant and the required accuracy does not
depend on the initial guess. Higham [11] provides a detailed elaboration on this and more
preferable stopping criterion.
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6.2. Krylov subspace methods

In basic iterative methods from the previous section the solutions are calculated with the
recursion

uk+1 = uk +P−1rk .

Writing out the first few iterations of this recursion gives

u0 ,

u1 = u0 +P−1r0 ,

u2 = u1 +P−1r1 = u0 +P−1r0 +P−1 (f−K u1)

= u0 +P−1r0 +P−1 (
f−K

[
u0 +P−1r0

])
= u0 +2P−1r0 −P−1K P−1r0 ,

l
...

From this it follows that the solutions of basic iterative methods belong to the following
subspace

ui ∈ u0 + span
{

P−1r0,
(
P−1K

)(
P−1r0

)
, . . . ,

(
P−1K

)i−1 (
P−1r0

)}
.

These types of subspaces of the formKi (K ;r0) := span
{

r0,K r0, . . . ,K i−1r0

}
are called Krylov

subspaces of dimension i corresponding to the matrix K and initial residual r0. The ba-
sic iterative methods thus find an i -th approximate solution in the Krylov subspace u0 +
Ki

(
P−1K ;P−1r0

)
.

Krylov subspace methods are popular for solving large systems of linear equations. The
idea of these methods (and projection methods in general) is to extract an approximate
solution to the problem from a subspace Kn of Rn . For Krylov subspace methods the sub-
space Kn is a Krylov subspace. If Km has dimension m, then m constraints must be im-
posed to be able to find such an approximation. Typically, these constraints are imposed
as independent orthogonality conditions meaning that the residual f−K u is constrained to
be orthogonal to m linear independent vectors. These constraints define another subspace
L of dimension m [16].

The above procedure can be formulated as

Find um ∈ u0 +Km such that f−K um ⊥Lm , (6.7)

with u0 an arbitrary initial guess.

For Krylov subspace methods the subspace Km is the Krylov subspace

Km (K ,r0) = span
{

r0,K r0, . . . ,K m−1r0

}
, (6.8)

where a preconditioner P has been left out for simplicity.
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Assuming symmetry of the matrix K , Lanczos algorithm can be used to construct an or-
thogonal basis

{
v1, . . . ,vm

}
for Km as follows.

Algorithm 4 Lanczos Algorithm

1: Choose a vector v1, such that ‖v1‖2 = 1
2: Set β1 = 0, v0 = 0
3: for j = 1, . . . ,m do
4: w j = K v j −β j v j−1

5: α j =
(
w j ,v j

)
6: w j = w j −α j v j

7: β j+1 =
∥∥w j

∥∥
2

8: if β j+1 = 0 then
9: Stop

10: else
11: v j+1 = w j /β j+1

12: end if
13: end for

In exact arithmetic, Lanczos algorithm ensures that the vectors vi are orthogonal. In real-
ity, however, orthogonality is lost rapidly after a few iterations due to rounding errors. To
address this issue, many improvements have been developed to reduce the occurrence of
orthogonality. An overview of some of these improved orthogonalization schemes can be
found in Saad [16].

The Lanczos is a short recurrence algorithm meaning that only a few vectors have to be
stored. To illustrate this steps 11,6,4 can be combined to obtain

β j+1v j+1 = K v j −β j v j−1 −α j v j . (6.9)

Rearranging terms yields

K v j =β j v j−1 +α j v j +β j+1v j+1 , j = 1, . . . ,m . (6.10)

Writing Vm = [
v1, . . . ,vm

]
and

Tm =



α1 β2 0

β2 α2
. . .

. . . . . . βm

βm αm

0 βm+1

 (6.11)

allows Equation (6.10) to be rewritten as

K Vm =VmTm . (6.12)
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Multiplication with V T
m and using the orthogonality of the vectors vi then yields the expres-

sion

V T
m K Vm = Tm . (6.13)

Since the matrix Tm is tridiagonal, only two additional vectors have to be stored in order
to be able to compute the next vector. This is a significant advantage over the analogous
Arnoldi’s algorithm for the unsymmetrical case which is characterized by long recurrences.
For a description on the unsymmetrical case and Arnoldi’s algorithm the reader is referred
to Saad [16].

One of the most popular Krylov subspace methods for solving large sparse SPD linear sys-
tems is the Conjugate Gradient (CG) method. The next section will provide an intuitive
introduction to CG .

6.2.1. CG

The Conjugate Gradient method is an iterative technique to solve large sparse SPD linear
systems by orthogonalizing the residuals with respect to each other. An intuitive way to de-
rive the CG method is to first consider the steepest descent method. To this extend consider
the problem of minimizing the function

φ(u) = 1

2
uT K u−uT f .

The minimum of φ(u) is attained by u = K −1f hence the above minimization is equivalent
to solving the system K u = f.

At a current point uk the function φ(uk ) decreases fastest in the direction of the negative
gradient −∇φ(uk ) which can be shown to be equal to the residual [9]:

−∇φ(uk ) = f−K uk = rk . (6.14)

To choose a new approximation along the line of steepest descent, uk+1 = uk +αrk , the
value α has to be determined such that the function φ is minimized along that line. Hence
the value of α can be found by solving:

d

dα
φ(uk+1) = 0

Expanding the left-hand side we obtain:

d

dα
φ(uk+1) = d

dα

(
1

2
(uk +αrk )T K (uk +αrk )− (uk +αrk )T f

)
= d

dα

(
1

2
uT

k K uk +αrT
k K uk +

1

2
α2rT

k K rk −uT
k f−αrT

k f
)

= rT
k K uk +αrT

k K rk − rT
k f

= 0
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Solving for α then yields:

α= rT
k f− rT

k K uk

rT
k K rk

= rT
k (f−K uk )

rT
k K rk

= rT
k rk

rT
k K rk

.

The above framework describes the method of steepest descents. In this method it is possi-
ble that the gradient directions are not different enough during iterations and the approx-
imation jumps back-and-forth between points. To avoid this, the CG method considers
minimization of φ along a set of different directions that do not necessarily correspond to
the residuals as in Equation (6.14). Instead, the new approximation is constructed with a
new set of search directions

{
p1,p2, . . .

}
:

uk+1 = uk +αpk . (6.15)

For this choice it can be shown, similarly to the derivation above, that the valueα for which
the function along the new search direction is minimized is given by

α=αk = pT
k rk

pT
k K pk

. (6.16)

The goal then is to find the search directions pi in a way that guarantees convergence. Sub-
stitution of the choice of α into the function φ then allows to write

φ(uk+1) =φ(uk +αpk ) =φ (uk )− 1

2

(
pT

k rk
)2

pT
k K pk

, (6.17)

from which it follows that we want to choose the search direction pk such that it is not
orthogonal to the residual rk . Because uk+1 ∈ u0+span

{
p1, . . . ,pk

}
and that φ is being min-

imized over Rk it follows that convergence is guaranteed in at most n steps. However, for
this to be viable it must hold that uk is ’easy’ to compute from uk−1.

Writing out Equation (6.15) obtains

uk+1 = uk +αpk

...

= u0 +
k−1∑
i=1

yi pi +αpk

:= u0 +Pk−1y+αpk

where the yi correspond to the α’s from previous iterations and Pk−1 =
[
p1, . . . ,pk−1

]
. Sub-

stitution of this expression into φ and rearranging terms then yields

φ(uk ) =αyT P T
k−1K pk +

1

2
α2pT

k K pk −αpT
k r0 . (6.18)

Choosing the search direction pk K -conjugate to all other previous search directions, i.e.

pk ∈ span
{
K p1, . . . ,K pk−1

}⊥, it can be shown that the original minimization reduces to two
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uncoupled minimizations for α and y where the minimization for α is minimized by the
expression found in Equation (6.16). To see that this choice for α is well-defined observe
the following. The matrix P T

k K Pk is a diagonal matrix, and because K is positive definite
and the search directions are non-zero it is non-singular.

Combining both steepest descent and the above K -conjugate searching, the search vec-
tor pk can be chosen such that it is closest (in the 2-norm sense) to rk while still being
k-conjugate to all previous search directions:

pk = min
p∈span

{
K p1,...,K pk−1

}⊥
||p− rk ||2 . (6.19)

For search directions constructed according to the above minimization, the following the-
orem and corollary hold.

Theorem 1. After k iterations we have

rk+1 = rk −αk K pk

P T
k rk = 0

span
{

p1, . . . ,pk
}= span

{
r1, . . . ,rk

}=Kk (K ;r0)

and the residuals r0, . . . ,rk are mutually orthogonal.

Corollary 1.1. The residuals and search directions have the property for k ≥ 2:

pk ∈ span
{

pk−1,rk−1
}

For the proofs the reader is referred to [9]. The above theorem and corollary can be used to
find a more efficient expression for α and a more simple recursion for the search direction:

pk+1 = rk+1 +βk pk1 , (6.20)

where

βk = rT
k+1rk+1/rT

k rk . (6.21)

The general form of the conjugate gradient method then follows as given in Algorithm 5.

Algorithm 5 Conjugate Gradient algorithm

1: Set r0 = f−K u0, p0 = r0.
2: rk 6= 0
3: for k = 0,1, . . . do
4: αk = rT

k rk /pT
k K pk

5: uk+1 = uk +αk pk

6: rk+1 = rk −αk K pk

7: βk = rT
k+1rk+1/rT

k rk

8: pk+1 = rk+1 +βk pk

9: end for
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A well-known error-bound is known for approximations obtained with the CG method [16].
To this extend, we define the condition number of a matrix K , which for a SPD matrix is
defined the ratio of the extreme eigenvalues κ := κ2(K ) = λmax

λmin
. The error of approximation

in iteration k is then bounded by :

‖u−uk‖K ≤ 2‖u−u0‖K

(p
κ−1p
κ+1

)k

. (6.22)

6.2.2. Preconditioning

As can be seen from Equation (6.22) the convergence of CG is highly dependent on the ex-
treme eigenvalues of the linear operator K . Therefore, the linear system can be precondi-
tioned to obtain more favourable extreme eigenvalues. The preconditioned stiffness matrix
leads to the linear system of Equation (6.5). Ideally, the preconditioning matrix P is chosen
such that the eigenvalues of the preconditioned system are clustered around 1 which im-
plies very fast convergence of CG . However, since the preconditioned system is evaluated
every iteration the preconditioning must be cheap to compute and inexpensive to apply to
the linear system [12]. Therefore, in general some approximate form of the stiffness matrix
is used, as described in Section 6.1.

In [12] an algorithm is presented for preconditioned CG , which adds only one line to the
original algorithm as can be seen in Algorithm 6.

Algorithm 6 Preconditioned Conjugate Gradient algorithm

1: Set r0 = f−K u0, z0 = P−1r0, p0 = z0.
2: rk 6= 0
3: for k = 0,1, . . . do
4: αk = rT

k zk /pT
k K pk

5: uk+1 = uk +αk pk

6: rk+1 = rk −αk K pk

7: zk+1 = P−1rk+1

8: βk = rT
k+1zk+1/rT

k zk

9: pk+1 = zk+1 +βk pk

10: end for

In SLA, the stiffness matrix is updated every iteration with a low-rank update. Therefore,
a possible choice for a preconditioner could be the stiffness matrix. To this extend, the
first iteration should be solved using a direct solution method. This implies that a decom-
position of the stiffness matrix is known such that the application of the preconditioner
is inexpensive to apply. Since the preconditioner is now an approximation of the stiffness
matrix, especially for low-rank updated matrices, many of the eigenvalues will be equal to
1, speeding up CG . In particular, after a rank-k update this preconditioner will lead to n−k
of the eigenvalues equal to 1 [19]. As a result, CG only takes k +1 iterations.
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6.3. Deflation

It is known that the smallest eigenvalues correspond to the slow converging components
of the solution [12]. As a result, in situations where there are many small eigenvalues, such
as in composite materials with strongly varying properties, the CG method may require
a significant number of iterations until convergence. Therefore, it is desirable to remove
these small eigenvalues from the problem. To this extend, the method of deflation can be
used.

Deflation is a technique to improve iterative methods by splitting the solution in a part that
is to be computed directly and a part that is computed iteratively by solving a deflated sys-
tem [7, 14]. It is proven to be successful for systems with a few isolated extreme eigenvalues.

To construct the splitting of the solution, recall the system of interest K u = f where K is
a SPD matrix. Defining the deflation space Z ∈ Rn×m that is to be projected out of the
residual, the projection P can be constructed as follows

P = I −K Z
(
Z T K Z

)−1
Z T . (6.23)

Defining

Ac = Z T K Z (6.24)

such that Ac ∈Rm×m allows the solution u to be written as

u = (
I −P T )

u+P T u

=
(

I −
[

I −K Z
(
Z T K Z

)−1
Z T

]T
)

u+P T u

=
(
I − [

I −K Z A−1
c Z T ]T

)
u+P T u

= (
I − [

I −Z A−1
c Z T K

])
u+P T u

= Z A−1
c Z T K u+P T u

= Z A−1
c Z T f+P T u . (6.25)

In Equation (6.25) the solution u has been written as the sum of two terms of which only
one is a function of u. Now assume m ¿ n and that Z is of rank m and SPD. The matrix
Ac is then easily computed and factored due to its relatively small size. A back and forward
substitution then suffices to calculate A−1

c .

To calculate the right-hand side term P T u note first that the following equality holds.

K P T = K
(
I −K Z

(
Z T K Z

)−1
Z T

)T

= K
(
I −Z

(
Z T K Z

)−1
Z T K

)
=

(
I −K Z

(
Z T K Z

)−1
Z T

)
K

= PK (6.26)
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With this equality, it suffices to calculate the solution ũ of the deflated system:

(K P T ũ =)PK ũ = P f (6.27)

with CG and subsequently multiplying the solution ũ with P T to obtain P T ũ. The notation
ũ has been used here to distinguish the solution of the original problem from the deflated
system.

The projection P results in an singular system in Equation (6.27). This does not necessarily
have to be an issue for CG , as long as the system is consistent (i.e., P f is in the range of
PK )[17]. Now, since the same projection P is applied to both sides of the original system it
still holds that PK ũ = P f for some ũ.

Note that if the complete space is deflated, Z = I , Equation (6.25) reduces to u = K −1f. This
implies that, for this choice, the deflation method effectively becomes a direct solution
method.

6.3.1. Choices for deflation subspace

The previous derivation of deflation assumed a general deflation subspace Z of order m.
Several choices for Z exist, of which three will be discussed now.

Eigenvector deflation
The most generic possibility is to choose the Z as the span of the eigenvectors of the small-
est eigenvalues. Not only are the eigenvalues usually not readily known, but also the order
of the deflation subspace grows when a large amount of eigenvalues are deflated out.

Subdomain deflation
Another possibility is to choose Z as a subdomain deflation. Diving the geometry Ω in nel

non-overlapping domainsΩ j the deflation subspace can be chosen as

Zi j =
{

1 if i ∈Ω j

0 else
(6.28)

resulting in a deflation subspace or order nel , Z ∈Rn×nel .

Rigid body modes deflation
A third possibility is to deflate the rigid body modes. The idea of rigid body modes deflation
is to consider collections of elements as rigid bodies. Due to the (possibly) large jumps in
properties between these collections, the stiffness matrix K has similar discontinuities in
the coefficients making it ill-conditioned. Furthermore, since the collections of elements
are approximated as rigid bodies, the resulting eigenvalues are close to zero. Rigid body
modes deflation aims at removing these small eigenvalues, which correspond to the slow
converging components of the solution, from the system. From [12] it is known that the
rigid body modes of a finite element are spanned by the kernel base vectors of the corre-
sponding element stiffness matrix.
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To illustrate how rigid body modes can be constructed, consider a problem consisting of
a rigid material inside of a significantly less rigid material. The stiffness matrix K of the
problem can then be split as K = C +R, where C is the singular submatrix correspond-
ing to the rigid material and R the submatrix corresponding to the less rigid material. The
deflation subspace is then chosen as the null space of C : null (C ) = span

{
Z

}
. For three

dimension problems, a stiffness matrix has 6 rigid body motions, 3 translational and 3 ro-
tational. Hence Z consists of 6 basis vectors of the null space of C which corresponds to all
six rigid body modes.

A fast and cheap solution for the computation of these rigid body modes is presented in
[12]. Assuming that the rigid material consists of a single 4 noded tetrahedral element, the
coordinate vector of the element can be given by

x = {
x1 y1 z1 . . . x4 y4 z4

}T .

A trivial choice to obtain three orthogonal translations is to choose the x, y and z directions
to obtain the translational vectors:{

1 0 0 1 0 0 1 0 0 1 0 0
}T{

0 1 0 0 1 0 0 1 0 0 1 0
}T{

0 0 1 0 0 1 0 0 1 0 0 1
}T .

To calculate the rotational rigid body modes, a transformation is used to a spherical coor-
dinate system. In the new coordinate system, expressions can then be found for the three
rotations along the trivial planes. For a derivation the reader is referred to [12].

Here the rigid body modes are given for a single element. To obtain the rigid body modes
of a collection of elements, the rigid body modes of the individual elements can be assem-
bled, taking into account the multiplicity of those degrees of freedom that lie in multiple
elements.





7
Low-rank matrix update

In this section mathematical techniques will be discussed that present a numerically cheap
way of dealing with low-rank matrix updates. In this context, a low-rank update to a matrix
represents a small number of changes to the elements relative to the total number of matrix
elements. In Section 7.1 a formula will be presented which allows cheap computation of
the inverse of a rank-1 updated matrix. Section 7.2 then presents a generalization to this
formula for the computation of the inverse of a k-rank updated matrices for arbitrary values
k.

7.1. Sherman-Morrison formula

The Sherman-Morrison formula presents a method for computing the inverse of a rank-1
updated matrix. The statement of the formula is as follows.

Theorem 2 (Sherman-Morrison Formula). Let A ∈ Rn×n an invertible square matrix and

u,v ∈ Rn column vectors. Then A +uvT is invertible,
(

A+uvT
)−1 = A−1 − A−1uvT A−1

1+vT A−1u
if and

only if 1+vT A−1u 6= 0

This formula allows for the computation of the rank-1 updated matrix A +uvT . Since the
inverse A−1 is usually already known, this formula presents a computationally cheap way
of determining the inverse of the updated matrix without having to perform the computa-
tionally intensive inverse operation. The proof of Theorem 2 is given below.

Proof. (⇐=): To prove the backward direction assume that 1+ vT A−1u 6= 0. It remains to
be proven that the matrix A +uvT is invertible. This implies that there should exist some

matrix B such that (A +uvT )B = B(A +uvT ) = I . It will be shown that B = A−1 − A−1uvT A−1

1+vT A−1u

45
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satisfies this condition by substitution:

(
A+uvT )(

A−1 − A−1uvT A−1

1+vT A−1u

)
= A A−1 − A A−1uvT A−1

1+vT A−1u
+uvT A−1 − u

(
vT A−1u

)
vT A−1

1+vT A−1u

= I − uvT A−1

1+vT A−1u
+uvT A−1 −

(
vT A−1u

)
uvT A−1

1+vT A−1u

= I +
(
− 1

1+vT A−1u
+1− vT A−1u

1+vT A−1u

)
uvT A−1

= I +
(
−1+vT A−1u

1+vT A−1u
+1

)
uvT A−1 = I

where in the second equality it was used that vT A−1u is a scalar. In the last equality the
assumption was used that 1+vT A−1u 6= 0 such that the fraction is well defined.

(
A−1 − A−1uvT A−1

1+vT A−1u

)(
A+uvT )= A−1 A+ A−1uvT − A−1uvT A−1 A

1+vT A−1u
− A−1u

(
vT A−1u

)
vT

1+vT A−1u

= I + A−1uvT − A−1uvT

1+vT A−1u
−

(
vT A−1u

)
A−1uvT

1+vT A−1u

= I +
(
1− 1

1+vT A−1u
− vT A−1u

1+vT A−1u

)
A−1uvT

= I +
(
1− 1+vT A−1u

1+vT A−1u

)
A−1uvT = I

where again it was used that in the second equality that vT A−1u is a scalar, and in the last
equation the assumption that 1+ vT A−1u 6= 0 was used such that the fraction is well de-

fined. This proves that A+uvT is invertible with
(

A+uvT
)−1 = A−1 − A−1uvT A−1

1+vT A−1u
.

(=⇒): To prove the forward direction assume that A and A + uvT are invertible and let(
A+uvT

)−1 = A−1 − A−1uvT A−1

1+vT A−1u
. Furthermore, assume u 6= 0 otherwise the statement is triv-

ial. Then: (
A+uvT )

A−1u = u+u
(
vT A−1u

)= (
1+vT A−1u

)
u .

Since the product of two invertible identities is again invertible it holds that
(

A+uvT
)

A−1

is invertible. For an invertible matrix A it holds that the only solution to Ax = 0 is the trivial
solution x = 0. Therefore, with the assumption that u 6= 0 and the above identity it follows
that 1+vT A−1u 6= 0.

7.2. Woodbury matrix identity

The previous section presented a formula which allows for the numerically cheap compu-
tation of a rank-1 corrected matrix. However, in real-life applications it often occurs that a
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matrix is corrected on a higher number of points. To this extend, this section presents the
Woodbury matrix identity which is a generalization of the Sherman-Morrison formula in
the sense that it allows for a k-rank correction with arbitrary value k.

Theorem 3 (Woodbury matrix identity). Let A ∈ Rn×n ,U ∈ Rn×k ,C ∈ Rk×k ,V ∈ Rk×n . Fur-
thermore, assume A and C are invertible. Then (A+UCV )−1 = A−1−A−1U

(
C−1 +V A−1U

)−1
V A−1.

Proof. To prove the theorem, A+UCV will be multiplied with the stated inverse and it will
be shown that this indeed equals the identity. The proof is only given for multiplication on
the right-hand side since the proof with multiplication on the left-hand side is analogous.

(A+UCV )
(

A−1 − A−1U
(
C−1 +V A−1U

)−1
V A−1

)
= I −U

(
C−1 +V A−1U

)−1
V A−1 +UCV A−1 −UCV A−1U

(
C−1 +V A−1U

)−1
V A−1

= I +UCV A−1 −
(
U

(
C−1 +V A−1U

)−1 +UCV A−1U
(
C−1 +V A−1U

)−1
)

V A−1

= I +UCV A−1 −
((

U +UCV A−1U
)(

C−1 +V A−1U
)−1

)
V A−1

= I +UCV A−1 −UC
((

C−1 +V A−1U
)(

C−1 +V A−1U
)−1

)
V A−1

= I +UCV A−1 −UCV A−1

= I

Taking k = 1 it is clear that this is indeed a generalization of the Sherman-Morrison formula.

In the situation in which the low-rank update is symmetric, it can be written as UCU T with
C a symmetric matrix. The Woodbury matrix identity then simplifies to(

A+UCU T )−1 = A−1 − A−1U
(
C−1 +U T A−1U

)−1 (
A−1U

)T
. (7.1)

The application of the Woodbury matrix identity can vary greatly depending on the appli-
cation. Hagar [10] presented the framework of most common applications. Assuming two
linear systems are given K1y = f1, K2x = f2, where the matrix K2 ∈Rn×n is obtained by a (not
necessarily symmetric) rank-k update of K1 ∈Rn×n , the framework is as follows.

1. Define two matrices U ∈ Rn×k ,V ∈ Rk×n such that UV = K2 −K1, which implies the
choice C = Ik .

2. Solve the system K1y = f1 using a direct solution method such that a factorisation of
K1 is known.

3. Calculate w := K −1
1 f2 by back and forward substitution of the factorisation of K1.

4. Calculate A := K −1
1 U by back and forward substitution of the factorisation of K1.

5. Calculate the matrix-vector product vw :=V w
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6. Calculate the matrix-matrix product VA :=V A

7. Calculate the matrix-update B := I +VA

8. Obtain z := B−1vw by solving the lower-order system Bz = vw .

9. Calculate the matrix-vector product c := Az.

10. Calculate the solution by vector subtraction x = w−c.

To motivate that this approach is equivalent to using the Woodbury matrix identity, the
expression for x will be expanded by substitution of the intermediate steps of the above
framework.

x = w−c

= K −1
1 f2 − Az

= K −1
1 f2 −K −1

1 U B−1vw

= K −1
1 f2 −K −1

1 U (I +VA)−1 V w

= K −1
1 f2 −K −1

1 U (I +V A)−1 V K −1
1 f2

= K −1
1 f2 −K −1

1 U
(
I +V K −1

1 U
)−1

V K −1
1 f2

=
(
K −1

1 −K −1
1 U

(
I +V K −1

1 U
)−1

V K −1
1

)
f2

From this derivation it is clear that the proposed framework does indeed calculate the solu-
tion of the system K2x = f2 by exploiting the decomposition of K1 using Woodbury’s identity.

For any practical problem more than one iteration is required. As a result, the rank of the
update from the stiffness matrix from the first iteration to the stiffness matrix from the i -th
iteration typically rises with i . The application of the Woodbury identity achieves improved
computing times by reusing the decomposition of the original stiffness matrix and only re-
quiring some relatively cheap back substitutions and solving a significantly smaller system
of order k. However, after a significant number of iterations it is possible that k is of the
same order as n possibly resulting in the above method requiring more time than a direct
method. Therefore, it might be necessary to restart the above procedure by computing a
new decomposition once the rank of the update becomes too large. The point at which
the above procedure is restarted balances the costs of computing a new matrix decompo-
sition against solving a smaller linear system with some additional overhead in the form of
back/forward substitutions and matrix-matrix, matrix-vector products.



8
Research proposal

This literature study has provided an introduction to sequentially linear analysis which can
be used when nonlinear finite element analyses suffer from robustness issues. The advan-
tage of SLA over NLFEA is that the nonlinear material behaviour is approximated with a
series of linear systems. Two different classes of solution methods for these linear systems
have been discussed as well as several techniques to accelerate these methods. The aim of
this thesis, part of which is this literature study, is to apply these techniques to the solver
implemented in DIANA with the aim of reducing computing time. Therefore, the following
main research question has been formulated.

How can sequentially linear analysis be improved such that it requires reduced computing
time?

To answer this question, the following three approaches are proposed along with sub-
questions.

Woodbury matrix identity
The first approach is to apply the Woodbury matrix identity, as described in Chapter 7, to
the direct solution methods in DIANA. The issue of the order of the rank-update increasing
every iteration was discussed. Therefore, the following sub-question is formulated.

At which point has the rank-update become too large and is a new decomposition of the
stiffness matrix required?

Deflation
A possible improvement to iterative solution methods is applying deflation to the rigid
body modes. The aim is to investigate whether applying deflation can result to improved
computing times. Therefore, the following sub-question has been formulated.

Is it necessary to apply deflation to SLA in order to achieve improved computing time?

49
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Furthermore, another relevant question regarding deflation is the following.

Is choosing U from Woodbury’s identity as deflation space a good choice?

Common framework
Both previous approaches show similarities. Therefore, the third proposed approach is to
analyse if both methods can be assembled into a common framework. To this extend, the
following sub-question is formulated.

Is the Woodbury matrix identity mathematically equivalent to deflation applied to iterative
methods?

Preconditioning
Every linear analysis, a decomposition is made of the stiffness matrix. After a small rank up-
date of this matrix, the decomposition is still similar to the new stiffness matrix. Therefore,
the decomposition can possibly be used as a preconditioner to the new problem. There-
fore, the following sub-question is formulated.

Is it effective to use the decomposition of the stiffness matrix as a preconditioner for the system
of linear equations of the following iteration?

The analysis of nonlinear static material behaviour is only one of many areas of interest
of DIANA. It is therefore desirable to have the infrastructure of the DIANA solver remain
untouched such that the improvements of this thesis do not interfere with other parts of the
DIANA source-code. One of the aims of this thesis will thus be to implement the proposed
methods as a framework around the existing solver infrastructure.

In order to be able to assess how the proposed methods changed the computing times,
some test problems have to be defined. These problems will not only serve to validate
whether the results are the same, but also how the changes have affected the computing
times. Therefore, the following test problems have been defined.

1. Reinforced slab: As a first test, it was chosen to include a problem that takes a consid-
erable amount of time such that the improvements to computing time could clearly
be observed. Therefore, the problem of an reinforced concrete slab is included which
uses solid elements resulting in a high number of degrees of freedom, and a higher
number of integration points. A visualisation of the problem can be seen in Figure
8.1.

Figure 8.1: The adopted mesh (left) and the loading/boundary conditions of the reinforced concrete
slab (right). Figure courtesy of [21].
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The table below provides an overview of the problem.

Table 8.1: Specifications of slab-reinf properties

Property Specification

Elements 465
Type Solid brick element (HX24L)

Nodes 8
DOF 24

Integration scheme 3×3×3
Analysis steps 25000

Due to the high number of degrees of freedom, this problem takes several hours of
computing time.

2. Shear wall: The second example is aimed at investigating the effects of mesh refine-
ment on the numerical results. To this extend, a masonry wall of dimensions 1.1m ×
2.76m × 0.102m (w × h × d) has been discretized using two different meshes, the first
with 250 (10×25) and a refined mesh with 1210 (22×55) elements. A description of
the model is given in the table below.

Table 8.2: Specifications of shrwal properties

Property Specification

Elements 250 & 1210
Type Plane stress element (CQ16M)

Nodes 8
DOF 16

Integration scheme 2×2×2
Analysis steps 12500

Due to the lower number of degrees of freedom and analysis steps, these two exam-
ples take significantly less computing time than the first example.

In order to answer to implement the proposed methods and answer the mentioned re-
search questions, the following planning is proposed for the remainder of the thesis.

Topic Duration (months)

Implement & validate Woodbury matrix identity ±2
Implement & validate deflation ±2
Check common framework both methods ±1
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