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Abstract

Tomography methods concentrate on reconstructing objects from multiple projections that are
obtained by sending, for example, X-rays through the object. Applications of these methods
are, among others, radiology (CT-, MRI- and PET scans), geophysics and material science. The
tomographic problems can be formulated as a system of linear equations. Unfortunately, these
systems are not symmetric nor positive (semi)definite, rank deficient and not square.

In material science one is often presented with very small objects (like crystals or nano-structures)
that consist of one or a small number of different materials, each with its own density. Scanning
these small objects can cause damage to the structure and thus one can only take a very limited
amount of projections. Fortunately, one can use the prior knowledge about the object to arrive
at a reconstruction of the original object. How to arrive at this reconstruction is studied by the
field of discrete tomography (DT).

With every kind of tomography, and thus also with DT, one is faced with noisy data. Because of
this noise the reconstruction process becomes more difficult since the system of linear equations
becomes inconsistent. The DART (Discrete Algebraic Reconstruction Method) algorithm was
developed to solve DT problems. This algorithm deals with noise in a very heuristic method.
The goal of this project is to investigate how the problem can be regularized such that it deals
with the noise in a more efficient and robust manner.
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Chapter 1

Introduction

The study of reconstructing (slices of an) object from its projections is called tomography. The
projections are obtained from various angles via penetrating waves, e.g. X-rays. The word
tomography has it origins in the two Greek words τ óµoσ (tomos), meaning slice or part, and
γράφǫιν (graphein), meaning to write. Tomography was first considered after the invention
of X-rays by Wilhelm Röntgen in 1895 although it began flourishing in the period before the
second world war [31, p. 6]. Since reconstructions are usually done by computers the term
Computerised Tomography (CT) is often used in literature.

Figure 1.1: ‘Hand mit Ringen’, the first medical X-ray picture taken on December 22, 1895. It shows
the hand of Wilhelm Röntgen’s wife.

Tomography is probably most famous for its applications in medicine for it provides non-invasive
ways to see the internal structure of a person. Though the field of application is very broad, from
nanoscopic scale where it is used to determine structure of certain nano-particles, to galactic-
scale where it is used to reconstruct the X-ray structure of supernova remnants. Tomography
is, among many other fields, studied in medicine, materials science, geo- and astrophysics. This
motivates the need for developing better and faster reconstruction techniques.

One particular field of interest is Discrete Tomography (DT). The objects that are reconstructed
in this field are assumed to be made up out of a small number of different materials having a
homogeneous density that is known beforehand, like crystals or nano-structures. This kind of to-
mography is mainly used in microscopy to create 3-dimensional reconstructions of small objects,
but also other fields might benefit from the results that are obtained in discrete tomography.
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CHAPTER 1. INTRODUCTION

1.1 Motivation, Research Goals and Methodology

There are various methods to solve DT problems. One of these methods is an algorithm called
DART, which is an abbreviation for Discrete Algebraic Reconstruction Technique. This it-
erative method, proposed by Batenburg and Sijbers in [3], consists of two loops. A discrete
reconstruction is obtained by solving the reconstruction problem in the inner-loop without us-
ing the information about the densities or, equivalently, discrete grey values. Subsequently, this
information is used to obtain a reconstruction that only contains the densities that are known
to be in the object. This constitutes one DART iteration. The previous approximation is used
in the next DART iteration to improve the reconstruction. The algorithm is applied intensively
in applied fields, mainly electron microscopy, but also X-ray tomography benefits from using
DART. Two of many examples of research papers in which DART is applied are [20] and [18].
This broad application motivates the following research question:

Can the DART algorithm be improved?

Improvement in the sense of accuracy of the reconstruction, that is. Of course this question is
very broad and some more specific questions will be formulated along the way to help achieve
this goal. This will result in an attempt to improve DART by removing heuristic constructs and
introduce regularization.

There are a lot of parameters involved with DART. The experiments in this work will only
change one parameter at a time, in this way the corresponding results can be attributed to the
changed parameter. Consequently, DART is analysed and improved incrementally. From time
to time, when some changes and optimizations are implemented, it is investigated if previous
results still hold. For example, in Chapter 6 the optimal number of inner-loop iterations is
derived, later on it is investigated if the results from before still hold, which actually turns out
to be not entirely the case.

Some randomness is involved with DART and the simulations performed in this work. For
one, the current formulation of DART contains an inherent randomness known as the random
subset. One can easily imagine that two subsequent simulations with the same parameters will
results in different results. Another factor that introduces randomness in the simulation is noise
on the measurement data. Two simulations with the same parameter on (slightly) different
measurement data can also produce different results. One has to keep this in mind at all times.

The improvement of DART will be based on experiments on six different test problems which
have various properties. The validation of the improved DART algorithm is carried out by
comparing the performance of the current DART to the improved DART on two new test
problems. The new test problems are taken to make sure that the improvements are not just
improvements on the six test problems and actually have an adverse effect on other problems.
Lastly, the improved DART will be tested on experimental µCT data.

1.2 Outline of this Thesis

A short introduction in tomography is given in Chapter 2. For a more thorough introduction
into this subject one is referred to the corresponding literature study that has been performed
before realization of this thesis [29].
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1.2. OUTLINE OF THIS THESIS

Next, the algorithms that can be used as a subroutine in DART are introduced and defined in
Chapter 3. Also the convergence behaviour of these algorithms with and without noise in the
measurement data is investigated in this chapter.

Discrete tomography is properly defined in Chapter 4. Several solutions strategies for discrete
tomographic problems that are used in practice will be listed. One of these strategies is the
approach DART uses. Subsequently, the DART algorithm is introduced in detail.

In Chapter 5 several research questions will be formulated to construct a framework in which
the goal, i.e. to improve DART, is attempted to be achieved. The methodology of how the
individual research questions will be answered is described. Finally, the test problems that will
be used for the experiments are presented.

The numerical experiments are carried out in Chapter 6. First the framework of the experiments
is described and some remarks about how the simulations are executed will be made. Next some
parameters of DART will be investigated after which the research questions from Chapter 5 will
be addressed. After that a measure for reconstruction errors is introduced which will be used to
quantify the quality of a reconstruction. Finally, it is attempted to incorporate the properties
of SIRT, an algorithm introduced in Chapter 3, to other algorithms.

In Chapter 7 the performance of the current DART and the improved DART algorithm will
be compared. To this end they are both applied to two new test problems and to real world
experimental µCT data.

Chapter 8 will conclude this work and as such the research goal will be evaluated. Further-
more, some recommendations about future research are made that might prove beneficial for
the performance of DART.
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Chapter 2

Tomography

There are many types of tomography. Transmission tomography for example is based on sending
penetrating waves through an object and measuring the waves on the other end of the object
with a detector. This work will focus on this type of tomography. X-ray computed tomography
(CT/CATScan) uses transmission tomography for example. Emission tomography on the other
hand is based on having the source inside the object, this source is usually a radioactive tracer
which is injected into the blood stream. Two types of emission tomography can be distinguished,
Single Particle Emission Computed Tomography (SPECT) which measures emitted particles
along a half-line, and Positron Emission Tomography (PET) which is based on the conversion
of a proton into a neutron. During this conversion a positron and neutrino are released, this
positron will interact with an electron almost instantly creating two photons which travel in
approximate opposite direction. These photons are measured and from the measurement one
can determine the location where the annihilation took place, and hence the source was located.
Another type of tomography is reflection tomography, typically sound waves are emitted towards
an object, the sound is reflected and from that the object can be reconstructed.

For an extensive detailed report on the history of tomography and an account on the all various
aspects associated with tomography one is referred to the book of Webb [31].

2.1 The Reconstruction problem

All types of tomography reconstruct an object or function from its projections, or in mathemat-
ical sense, line (or hyperplane) integrals. The object has a certain internal distribution which
one wants to reconstruct. In X-ray tomography for example the density of tissue attenuates the
radiation. By measuring to which extent the rays are attenuated the internal distribution of
the object, and thus the distribution of the tissue, can be reconstructed. This reconstruction
can be done in roughly two ways, via analytical methods or algebraic methods. The former
method relies on Fourier transforms to make the reconstruction while the latter method writes
the problem as a linear system of equations.

In what follows a ray will be referred to as the path a certain penetrating wave follows when
travelling from the source to the detector. In X-ray CT this is simply the path from an X-ray
tube (vacuum tube that produces X-rays) to the detector. There are many ways in which one can
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CHAPTER 2. TOMOGRAPHY

emit these rays, referred to as data acquisition techniques. The rays can be emitted parallel to
each other for each projection angle. This yields the most natural understanding of tomography.
In practice, however, it is very hard to carry out such a parallel acquisition. Instead fan (in case
of one-dimensional projections) or cone (two-dimensional projections) acquisition techniques are
used. Luckily, some correspondence exist between the various types of techniques which enables
one to use results for parallel rays for non-parallel rays. Figure 2.1 shows two different data
acquisition techniques for two-dimensional reconstruction.

x

y
Detector

Source

x

y
Detector

Source

Figure 2.1: Left: Parallel data acquisition geometry. Right: Fanbeam (non-parallel) data acquisition
geometry.

Throughout this work a parallel data acquisition technique is assumed for it provides a more
natural understanding of the tomographic process. Furthermore, it is assumed that the density
of the object is related to the attenuation of rays, for example caused by the energy absorption
of X-rays by tissue. This attenuation or density is represented by the function f(x, y). Figure
2.2 depicts the sketch of the situation. In the figure one ray is shown which is sent through the
object and hits the detector at t1. The ray subtends an angle θ with the positive y-axis which
means that the projector, which moves orthogonal to the ray, subtends an angle θ with the
positive x-axis. This angle is called the projection angle. For one projection angle a great many
rays are sent through the object, each of which hits the detector at the other side resulting
in measurements Pθ(t) corresponding to projection angle θ. The measurement data for one
projection angle corresponds to the attenuation in the following way:

Pθ(t) =

∫

x cos(θ)+y sin(θ)=t

f(x, y)ds. (2.1)

The object is scanned for a certain number of angles and from the resulting data the shape of the
object is reconstructed. Usually there are multiple objects which yield the same projection data,
and thus in general one cannot expect to reconstruct the original object. Moreover, in practice
the measurements are polluted with noise. This noise can have a broad range of causes, the rays
do not have a uniform energy level for example. Due to this contamination it might happen that
there is no original object which corresponds to the measured data. In tomography one is then
interested in finding a reconstruction which fits the measurements as close as possible. How to
quantify this notion of being close to the measurements is studied in tomography.

6



2.2. ANALYTICAL RECONSTRUCTION METHODS

x

y

t

x cos(θ) + y sin(θ) = t1

t1 θ

θ

f(x, y)

Pθ(t)

Pθ(t1)

Figure 2.2: A ray which passes through the object with attenuation f(x, y), the t-axis represents the
projection values of the object with projection angle θ.

2.2 Analytical Reconstruction Methods

This section will briefly sketch the idea behind the analytical reconstruction methods. These are
the methods of choice in medical imaging for they provide reasonable accurate reconstructions
that require very short computation times. The analytical reconstruction methods employ the
result of the Fourier slice theorem [16, p. 58]:

Theorem 2.1. The Fourier transform of a parallel projection of an image f(x, y) taken at angle
θ gives the values of the two-dimensional Fourier transform f̂(u, v) along a line subtending an
angle θ with the u-axis in the frequency domain.

In Figure 2.3 one can see what the theorem entails. Taking the one-dimensional Fourier trans-
form of the measurement data of all the projection angles will result in a star shaped area of
known values in the frequency domain of f(x, y), Figure 2.4. Interpolating the unknown values
and taking the two-dimensional inverse Fourier transform yields a reconstruction of the original
object.

The filtered back-projection method (FBP) is based on the Fourier slice theorem, but rather than
interpolating in the frequency domain it takes the one dimensional inverse Fourier transforms
of each slice separately and adds these back-projected data in the spatial domain. This implies
that the interpolation is done in the spatial domain rather than the frequency domain, which,
as one might suspect, leads to better results when simple interpolation techniques are used [28].

Figure 2.5 shows the workings of the FBP method. Left the original image is shown in the
corresponding spatial domain. The image is scanned using 180 equally spaced projection angles
in the range [0, π). Note that taking a projection with angle 0 would yield the same data as
a projection angle π (assuming no noise is present) and thus only data have to be collected

7



CHAPTER 2. TOMOGRAPHY

x

y

θ

t

f(x, y)

Pθ(t)

u

v

θ
f̂(u, v) slice

Figure 2.3: The Fourier transform of the Projection Pθ(t) left corresponds to the line (f̂(u, v) slice) in
the right figure.

u

v

Figure 2.4: The known frequency data from the Fourier transformed projections.
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2.3. ALGEBRAIC RECONSTRUCTION METHODS

from [0, π). These data are called the forward projection of the image or simply projection and
can be represented in a sinogram, the middle figure. A sinogram lists the projection data as
columns, each vertical line in the image corresponds to the projection data of one particular
angle θ, the variable t represents the distance on the detector, with t = 0 corresponding to rays
going through the middle of the object (the origin). From this sinogram the reconstruction is
created. In this particular example the FBP method is used with a Ram-Lak filter (hence filtered
back-projection). Filters are used to suppress or amplify certain frequencies to arrive at better
results.

Original Image

x

y

Sinogram

θ

t

Reconstruction

x

y

Figure 2.5: The workings of the analytical reconstruction method FBP. Left:
the original image. Middle: the sinogram of the projoction data. Right: the
reconstruction obtained via FBP.

This concludes the brief introduction into analytical methods. For a more thorough account on
these methods one is referred to [29, p. 3–14], [16, p. 49–112].

2.3 Algebraic Reconstruction Methods

A different type of tomographic reconstruction is via algebraic reconstruction methods, abbre-
viated ARMs. In literature this class of methods is also referred to as algebraic reconstruction
techniques, but one particular ARM is named the algebraic reconstruction technique (ART).
Hence to avoid confusion the class is referred to as algebraic reconstruction methods. ARMs are
based on the idea that the tomographic problem can be written as a system of linear equations.
This system can then be solved by a huge range of methods. Although ARMs require consid-
erable more computation time than the analytical alternatives, the algebraic methods perform
better when one uses a small number of projection angles.

Consider Figure 2.6. Suppose an image f(x, y) is scanned using a total of M rays. A (square)
grid is superimposed on f(x, y) which divides the image into n× n = N square cells, which will
also be referred to as pixels. Rays pi, i ∈ {1, . . . ,M}, are modelled as stripes with width τ that
run through f(x, y). Each cell fj, j ∈ {1, . . . , N} has area δ × δ, it is assumed that in each cell
f(x, y) is constant. The reconstruction problem is written as

W f = p. (2.2)

9



CHAPTER 2. TOMOGRAPHY

pi

Ray i with width τ

f1 fn

fn+1

fn2

fj

δ

δ

Figure 2.6: The superimposed grid on f(x, y).

Here p is a vector containing all the (measured) projection values, hence the length of the
vector is M . The vector f contains the (approximated) values of f(x, y) per cell and thus is N
long. The matrix W will be referred to as the weight matrix, this matrix contains per entry
wij the weight cell j has corresponding to ray i, it is assumed that wij ≥ 0. Usually wij is
the length or the area of the ray running through the cell. Each of the N cells will have M
weights, hence W ∈ R

M×N . In tomography W is often too big to construct completely due to
memory limitations. For example, suppose an image is subdivided into 1024 × 1024 pixels and
it is scanned using 52 projection angles with 1449(= ⌈

√
2 · 10242⌉) parallel rays per angle. This

would yield a matrix W of N = 1024 · 1024 = 1.048.576 by M = 52 · 1449 = 75.348. However, if
the projection geometry is fairly structured it is possible to construct the wij on the fly during
computations.

In practice M 6= N and thus (2.2) is an under- or overdetermined system. In the case of an
underdetermined system there are more unknowns than equations, hence if a solution exists, it
is not unique. Overdetermined systems are systems with more equations than variables. An
overdetermined system, if consistent and of full column rank, yields a unique solution. It might
even happen that an overdetermined system has infinitely many solutions if the matrix is not
of full column rank. Note that the concepts of over- and underdetermination do not provide
any information about the linear (in)dependency of the equations. Sometimes overdetermined
systems are, erroneously, identified as inconsistent.

Now one method to solve (2.2) will be shown. Stefan Kaczmarz was a Polish mathematician who
proposed this method for solving linear systems in 1937. This method, from now the Kaczmarz’s
method, was rediscovered and first introduced in the open literature by Gordon, Bender, and
Herman in 1970 who used it to solve (2.2) [14, p. 204]. The method is based on viewing the
solution f as a point in a N dimensional space which is the intersection of M hyperplanes. The
hyperplanes are described by the equations of the linear system (2.2):

10



2.3. ALGEBRAIC RECONSTRUCTION METHODS

w11f1 + w12f2 + · · · + w1NfN = p1

w21f1 + w22f2 + · · · + w2NfN = p2

...

wM1f1 + wM2f2 + · · · + wMNfN = pM .

(2.3)

Note that if M < N one is faced with an underdetermined problem. Then the intersection of
these planes, if it exists, is not a point but a higher dimensional object, and thus infinitely many
solutions are possible. Kaczmarz’s method is iterative, thus a sequence of approximate solution
vectors (f0, f1, . . . , fk) is generated such that limk→∞ fk = f̂ assuming f̂ is the unique solution
to (2.2). Starting from an initial guess f0 the next approximation f1 is obtained by projecting
f0 orthogonal onto the hyperplane described by the first equation in (2.3). This constitutes one
iteration of the method. Subsequently f2 is obtained by projecting the vector f1 orthogonal onto
the hyperplane given by the second equation in (2.3). After one has projected the subsequent
approximate solutions onto all the hyperplanes the result fM is again projected onto the first
hyperplane of the system. The process is repeated until some stopping criterion is met, e.g. the
residual rk = p−W fk is smaller than some predetermined threshold. Figure 2.7 shows how the
method works for a linear system with 2 unknowns and 2 equations.

x

y

f
0

f
1

f
2

f
3

f
4

Figure 2.7: The workings of the Kaczmarz’s method in two dimensions.

Let wi,: = (wi1 wi2 . . . wiN )T be the i-th row of W such that W =











wT
1,:

wT
2,:
...

wT
M,:











. The i-th

iteration, i ∈ {1, . . . ,M}, of the Kaczmarz’s method can be expressed as:

f i = f i−1 +
pi −

〈

f i−1,wi,:

〉

〈wi,:,wi,:〉
wi,:. (2.4)

Note that this expression is composed of two vectors. The vector wi,: is orthogonal to the
hyperplane wT

i,:f = pi given by the i-th equation of (2.3). Hence the vectors described by f i−1 +

αwi,: lie on a line which is orthogonal to that hyperplane. The quantity α =
pi −

〈

f i−1,wi,:

〉

〈wi,:,wi,:〉

11
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ensures that the sum of both vectors coincides with the hyperplane, thus (2.4) projects f i−1

orthogonal onto the hyperplane wT
i,:f = pi. For a full geometric description of how this quantity

α comes about one is referred to [16, p. 278–280]. Note that i = 1, 2, . . . ,M and fk is N long,
hence, it is possible that one update alters multiple entries of fk. The interpretation is that
the update is computed according to the projection data, thus for every ray. All the cells j are
penetrated by this ray i have some weight wij 6= 0 and thus all those entries j in fk are altered.

Note that in (2.4) i ∈ {1, . . . ,M} for clarity, one can easily adapt the expression to allow for
iterations with iteration number i > M . Set î = (i − 1) mod (M) + 1, then

f i = f i−1 +
pî −

〈

f i−1,wî,:

〉

〈

wî,:,wî,:

〉 wî,:. (2.5)

The denominator of (2.4) (and consequently (2.5)) can be assumed to be unequal to zero. Indeed,
if 〈wi,:,wi,:〉 =

∑N
j=1 w2

ij = 0 this would mean that wij = 0 for every j and thus equation j

in (2.3) would be 0T f = pj, with 0 the zero-vector. But this in turn represents a ray hitting
no cells, consequently one can thus safely conclude that this ray is of no importance for the
reconstruction. And hence removing this equation from (2.3) would not result in any loss of
information.

This method only converges to a solution of W f = p if the system has an exact solution [30, p.
59]. Unfortunately the projections obtained in tomography often contain noise which causes p
not to lie in the range of W and thus no solution exists. In this case the sequence of approximate
solutions will keep fluctuating. And even if convergence is guaranteed, it does not mean that
a solution is found quickly. Consider for example a system with two unknowns (cf. Figure
2.7) where the two hyperplanes (lines) differ by a very small angle. The Kaczmarz’s method
would then convergence very slowly to the solution. If the two lines were perpendicular then
convergence would be reached within two iterations. One can imagine that hyperplanes arising
from two adjacent rays will most likely be nearly parallel because of high correlation between
information, hence it would be better to project onto the hyperplanes in a different order, for
example random, than in ascending order.

The range of W are all the projections arising from scanning an object with the operator W .
One can easily imagine that it is possible that multiple objects result in the same projection
when scanned. Imagine R(W ), the range of W , as a plane in some three-dimensional space.
The operator W , arising from the discretization of projection geometry, can only construct the
projections in R(W ). The measured projection p, however, might not be an element of this
range, due to noise for example. In that case one cannot find an object f for which W f = p, i.e.
the problem has no exact solution. One then often resorts to finding a least squares solution.
This solution is a vector for which the residual has minimal norm, i.e. ‖p−W f‖2 is minimal, see
Figure 2.8. In the problems considered in this work one generally also has that W is not of full
column rank, in that case the least squares solution is not unique. There is, however, a unique
minimal norm least squares solution. This particular vector is the solution one is interested in.
In Chapter 3 various ARM algorithms will be presented which attempt to find this solution.

Now some properties of the least squares solution will be given assuming that W is not of full
rank. From Figure 2.8 it is clear that the vector W f ′ −p is orthogonal to R(W ) and, indeed, if
f is a least squares solution of (2.2) then one has that

12
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R(W )

W f ′

p

Figure 2.8: The vector f ′ is a least squares solution for the problem W f = p.

∂

∂fj
‖W f − p)‖2 = 0 ∀j ∈ {1, 2, . . . , N} ⇔

∂

∂fj
〈W f − p,W f − p〉 = 0 ∀j ∈ {1, 2, . . . , N} ⇔

∂

∂fj
(〈W f ,W f〉 − 2 〈W f ,p〉 − 〈p,p〉) = 0 ∀j ∈ {1, 2, . . . , N} ⇔

2 〈w:,j,W f〉 − 2 〈w:,j,p〉 = 0 ∀j ∈ {1, 2, . . . , N} ⇔
〈w:,j, (W f − p)〉 = 0 ∀j ∈ {1, 2, . . . , N} ⇔

W T (W f − p) = 0 ⇔ (2.6)
〈

W T (W f − p),q
〉

= 0 ∀q ∈ R
N ⇔

〈W f − p,Wq〉 = 0 ∀q ∈ R
N ⇔

W f − p ⊥ R(W ).

Equation (2.6) can be written as:

W T (W f − p) = 0 ⇔ W TW f = W Tp. (2.7)

From (2.7) it follows that f is a least squares solution if and only if W TW f = W Tp. This system
of equations is known as the normal equations.

Note that if f is a least squares solution of W f = p and N (W ) is the null space of W that
then all other least squares solutions can be written as f +q with q ∈ N (W ) since W (f + q) =
W f +Wq = W f . From this one can conclude that f is the minimum norm least squares solution
of (2.2) if and only if f ⊥ N (W ) which is equivalent to f ∈ R(W T ).

2.4 Noise, Regularization and Semi-Convergence

Rays, originating from a X-ray tube for example, are modelled as uniform continuous streams
of particles. The intensity of the ray can be expressed in a number of counts, i.e. the number of
photons per time unit. In practice, however, the source does not emit the particles uniformly but
rather according to some distribution, such as a Poisson distribution. This poses a problem on
the detector side since now the number of incoming photons is depending on both the attenuation
of the object as the number of photons emitted by the source, which is unknown. Stronger
sources, with a high number of counts are more uniform than weak sources. When one sends a

13
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ray through the object f(x, y) travelling along the line l, the number of photons initially send
through the object Nin and the measured number of photons Nout are related as

Nout = Nine−
R

l
f(x,y)dl. (2.8)

From this one can conclude that

∫

l
f(x, y)dl = log

Nin

Nout
. (2.9)

The left-hand side represents the measured attenuation and corresponds to the measured data.
In the upcoming experiments noise will be artificially added to the measured data. This is carried
out by computing Nout for all the rays separately with equation (2.8) and adding some noise to
it according to a Poisson distribution. Subsequently, the noisy sinogram is obtained using (2.9).
Higher number of counts are less affected by the noise than low number of counts using this
method since the quantity of the amount of added noise is independent of the magnitude of the
number of counts and thus constant for all numbers of counts. In what follows noise levels will
be identified with the number of counts, typically the noise levels 106 (high number of counts
thus little noise), 105, 104 and 103 (low number of counts thus much noise) are used.

There are also other phenomena such as beam-hardening (photons of different energy levels are
not absorbed uniformly), electronic noise (the used electrical circuits add noise to the measure-
ment signals) and many others that cause the measurements to deviate from what one expects
from the model [13]. Many methods exist to counter these phenomena as good as possible,
but unfortunately one is never able to remove all the noise from the measurements. From a
mathematical point of view one can model the noise as some perturbation ǫ in the measured
projection data p, thus if the ideal projection is p̂ then p = p̂ + ǫ.

To arrive at better reconstructions that suffer less from noise regularization can be used. Regular-
ization is the use of additional information to make an ill-conditioned problem well-conditioned
or at least less ill-conditioned. This entails that one finds superior reconstructions via regular-
ization and thus it is a very broad concept. There are many types of regularization and none of
these methods are superior to all the other methods. Rather, each method has its advantages,
depending on the properties of the system it is applied to [11, p. 2].

Ill-conditioned problems can roughly be categorized into two classes [11, p. 2]: rank-deficient
problems and discrete ill-posed problems. The former class is characterized by a system matrix
W which has a cluster of small singular values and there is a well-determined gap between the
larger and small singular values. The latter has singular values which, on average, decay gradu-
ally to zero. Small singular values of the system can cause the components of the approximate
solution to have large errors [30, p. 54]. This can be circumvented by means of regulariza-
tion. Both classes require other types of regularization. Tomographic problems are typically
rank-deficient.

Tikhonov regularization was independently proposed by Phillips (1962) and Tikhonov (1963).
Instead of solving the system W f = p the system

(

W
λI

)

f =

(

p
0

)

(2.10)
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→ Iterations

‖∆
f‖

2

Figure 2.9: The development of the error norm for
an increasing number of iterations.

is solved for a certain λ. Observe that this system gives preference to solutions with a smaller
norm, the value of λ gives a measure for this preference. For more information about Tikhonov
and other regularization methods one is referred to [11, Ch 5,6].

When solving an ill-conditioned linear system of equations one is interested in finding the best
approximate solution. Perturbations, such as noise, in the right-hand side might cause the
error of the approximation to explode [29, p. 32–33]. By means of regularization this can be
circumvented. Suppose the model solution (the original object) is f̂ and the pure measurement
data, thus without any noise, is p̂. Due to the rank deficiency and discretisation of the model
one can never hope to find this model solution when solving W f = p̂, rather one would find
some solution f̃ . Let the right-hand side be perturbed by some noise ǫ such that p = p̂ = ǫ.
Solving the system W f = p would then yield a solution f which will be different from both f̂
and f̃ . For the error ∆f = f̂ − f one makes one has

‖f̂ − f‖ ≤ ‖f̂ − f̃‖ + ‖f̃ − f‖. (2.11)

The first term f̂ − f̃ represents the approximation error∆fappr and is ever-present, even if there
is no perturbation in the data. This error depends on how the solution is obtained and thus
also on the regularization method that is used. The second term f̂ − f is the perturbation error
∆fpert and is a result of the noise that was present in the system.

Typically, when solving a perturbed ill-posed problem with an iterative method, the approxima-
tion error dominates during the initial iterations and thus the perturbation error is negligible.
Initially the approximation becomes more accurate, thus the approximation error decreases. But
eventually the perturbation error will dominate and might even increases [12]. The norm of the
error ‖∆f‖2 will thus decrease for the initial iterations but will increase after a certain number
of iterations. In Figure 2.9 one can see a sketch of the development of the error norm. This
phenomenon is coined semi-convergence by Natterer in 1986.

For a more thorough analysis one is referred to [30, Ch 2.7].
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Chapter 3

ARM Algorithms

The Kaczmarz’s method introduced in the previous chapter is one method to solve the system
W f = p. But many other iterative algorithms exist that can find an approximate solution to
the problem. This chapter will present 7 different ARM algorithms. The first three methods,
ART, SIRT and SART, are typically used in tomography. ART is simply Kaczmarz’s method
and SIRT and SART are adaptations of this method. The remaining methods, CGLS, CGNE,
LSQR and LSMR, are more widely used to solve underdetermined systems. This chapter will
be concluded with an analysis of the convergent behaviour of the methods.

3.1 ART

As stated earlier: ART is the same as Kaczmarz’s method. Here the ART algorithm will be
derived from another point of view and it will be shown that ART is actually the Gauss-Seidel
method applied to system

WW Tu = p (3.1)

of the alternative normal equations. Note that one solves this system for u and then finds the
approximate solution f = W Tu. This derivation is due to [26, p.247–248] and will closely follow
the reasoning in said source. Intuitively one can see that ART is similar to Gauss-Seidel in that
it uses all the newly obtained information for the update of the i-th component.

Solving (3.1) with Gauss-Seidel yields for i-th update uk = uk−1 + δiei, where ei is the i-th unit
vector and i = (k − 1) mod (M) + 1 (cf. ĩ in (2.5)). The scaler δi is chosen such that the i-th
component of the residual vector rk

i = (p − WW Tuk)i = 0, or equivalently
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(

p − WW T (uk−1 + δiei)
)

i
= 0 ⇒

〈

p− WW T (uk−1 + δiei), ei

〉

= 0 ⇒
〈

WW T δiei, ei

〉

=
〈

rk−1, ei

〉

⇒

δi

〈

W Tei,W
Tei

〉

=
〈

rk−1, ei

〉

⇒

δi =

〈

rk−1, ei

〉

‖W Tei‖2
2

To analyse this, re-substitute the definition of rk−1. This gives

δi =
pi −

〈

W Tuk−1,W Tei

〉

‖W Tei‖2
2

. (3.2)

Since f = W Tu one finds fk = fk−1 + δiW
Tei:

fk = fk−1 +
pi −

〈

fk−1,W Tei

〉

‖W Tei‖2
2

W Tei. (3.3)

Note that the updates are performed in ascending order i = 1, 2, . . . ,M and are immediately
stored in the new vector fk = W Tuk, hence this yields a Gauss-Seidel method which is applied to
the system WW Tu = p. Inspection of (3.3) confirms that this expression is actually equivalent
to (2.4). Simply observe that W Tei = wi,:,

〈

fk−1,W Tei

〉

=
〈

fk−1,wi,:

〉

and ‖W Tei‖2
2 =

〈wi,:,wi,:〉. The ART algorithm, in pseudo code, is listed below.

ART

Choose f0

k = 1
while termination criterion is not met do

for i = 1, 2, . . . ,M do
δi =

(

pi −
〈

fk−1,wi,:

〉)

/〈wi,:,wi,:〉
fk = fk−1 + δiwi,:

k = k + 1
end for

end while

Note that it is unclear what one iteration of the ART algorithm constitutes, from now on one
iteration of the ART algorithm will be regarded as executing the while-loop once (thus updating
all the components). Recall from the discussion at the end of Section 2.3 that updating the
components in random order order rather than ascending order, as in the algorithm above, will
yield faster convergence. This adaptation is easily implemented, one only has to change to order
in which the for-loop traverses the various rays.
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3.2 SIRT

SIRT is differs from ART in that it updates fk−1 to fk only after all the N new components
have been computed, this suggests a Jacobi method. Indeed, SIRT actually stems from Jacobi
applied to the alternative normal equations (3.1).

In the previous section it was established that in ART the update for the j-th component was

δi =

〈

rk−1, ei

〉

‖W Tei‖2
2

. (3.4)

Instead of the Euclidean norm in the denominator, the 1-norm is used for SIRT, i.e. ‖x‖1 =
∑

i |xi|. This yields:

δi =

〈

rk−1, ei

〉

‖W Tei‖2
1

. (3.5)

Since one deals with a Jacobi iteration the actual update is performed after all the other updates
have been computed, thus for every update the same residual is used. After the updates have
been computed for i = 1, . . . ,M one finds the new approximation as

dk−1 =

M
∑

i=1

〈

rk−1, ei

〉

∑N
h=1 |wih|

wi,: (3.6)

fk = fk−1 + Cdk−1 (3.7)

Recall that wij ≥ 0 was assumed. Note that in this case every component (pixel) j, will receive
updates from multiple rays i, these are precisely the rays which are affected by that pixel. At
the end of the cycle, SIRT averages over these updates proportional to total weight the cell has,
thus proportional to the j-th column sum of W , i.e. C in (3.7) is a diagonal matrix containing
the inverse of these sums on its diagonal: cj = 1/

∑M
i=1 wij. Clearly, if such a column sum is

equal to zero one would have that no ray passes through cell j and thus it would make no sense
to have this variable in the system since the cell is not part of the scanned image. And indeed,
if one were to incorporate this cell (and thus the zero column) into the system then one would
never find a unique solution, for if the system without this variable has a unique solution, the
system with this variable has infinitely many solutions, namely the unique solution found earlier
where one can freely choose the extra variable. The new averaged update for component j is
given by

fk
j = fk−1

j +
1

∑M
i=1 wij

M
∑

i=1

wijr
k−1
i

∑N
h=1 wih

. (3.8)

Although this expression looks messy, it is actually quite elegant. Moreover, one SIRT iteration,
i.e. computing the increments for all the components and obtaining the new approximation
fk, can be conveniently written in matrix-vector notation. Let R ∈ R

M , C ∈ R
N be a diagonal
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matrices with ri = 1/
∑N

j=1 wij and cj = 1/
∑M

i=1 wij . Note that
∑M

i=1 wij > 0 and
∑N

j=1 wij > 0.
With these matrices one SIRT iteration can be written as

fk = fk−1 + CW TRrk−1. (3.9)

And hence the algorithm can be formulated as

SIRT

Choose f0

r0 = p− W f0

k = 1
while termination criterion is not met do

fk = fk−1 + CW TRrk−1

rk = p− W fk

k = k + 1
end while

From the above algorithm it is clear that executing the while-loop once constitutes one SIRT
iteration.

3.3 SART

The Simultaneous Algebraic Reconstruction Technique is combination of ART and SIRT. In
ART the update of fk was determined by only looking at the contribution of the i-th ray for
i = 1, 2, . . . ,M . SIRT computed the average contribution of all the rays i, i = 1, 2, . . . ,M , first,
using the previous approximation fk−1, and then did an update to fk. SART is a combination of
ART and SIRT in that the update of fk is carried out per projection angle. Suppose the object
is scanned using the angles P = {θ1, θ2, . . . , θp} with R rays per angle such that p ·R = M . Then
the update for fk is computed for all rays per projection angle, thus the updates are performed
per block of R projections. Hence this method is also referred to as a block iterative method.
For the l-th block this results into the following expression for the j-th component of the next
approximation update:

fk
j = fk−1

j +
1

∑R·l
i=R·(l−1)+1 wij

R·l
∑

i=R·(l−1)+1

rk−1
i wij

∑N
h=1 wih

. (3.10)

Let C be a diagonal matrix with diagonal elements cj = 1/
∑R·l

i=R·(l−1)+1 wij . The following
algorithm results
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SART

Choose f0

r0 = p − W f0

k = 1
while termination criterion is not met do

for l = 1, 2, . . . , p do
for i = R · (l − 1) + 1, R · (l − 1) + 2, . . . , R · l do

fk = fk−1 + C
rk−1
i

∑N
h=1 wih

wi,:

end for
rk = p − W fk

k = k + 1
end for

end while

Note that, as with the ART algorithm, it is unclear what constitutes one iteration. Also in this
case one iteration is defined as executing the while-loop once, thus after all p blocks have been
used.

3.4 CGLS

The conjugate gradient method is widely used to solve sparse linear systems Ax = b with A
a symmetric positive definite (SPD) matrix. In essence CG uses the (shifted) Krylov subspace
x0+Kr(A, r0) to construct subsequent approximations, with A ∈ R

n×n SPD. Here r0 = b−Ax0,
the residual corresponding to the initial guess x0. The method was first proposed by M. R.
Hestenes and E. Stiefel in 1952 to solve SPD systems. The CG algorithm will now be presented
without any further introduction or derivation. For more details about the algorithm the reader
is referred to [26, Ch. 6.7].

CG

Choose x0

r0 = b − Ax0

d0 = r0

for j = 1, 2, . . . until convergence do
αj−1 =

〈

rj−1, rj−1
〉

/
〈

Adj−1,dj−1
〉

xj = xj−1 + αj−1d
j−1

rj = rj−1 − αj−1Adj−1

βj−1 =
〈

rj, rj
〉

/
〈

rj−1, rj−1
〉

dj = rj + βj−1d
j−1

end for

CG chooses αj and βj in such a way the the subsequent residuals r0, r1, . . . are mutually orthog-
onal and hence the CG method is guaranteed to produce the exact solution to the system after
at most n iterations (where n is the size of the problem). Unfortunately, due to round-off errors
this may, and often will, fail in practice. Fortunately, however, it can be shown that the approx-
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imate solution xj minimizes the so called energy norm ‖x∗ − xj‖A =
√

〈A(x∗ − xj),x∗ − xj〉
where x∗ is the exact solution [26, Ch. 6.11.3]. CG thus produces a sequence of monotonically
improving (in A-norm) solutions. In practice n is very big and it is very costly to perform that
many iterations, but, luckily, the results after k << n are often accurate enough.

The normal equations applied to the ill-conditioned system W f = p yields W TW f = W Tp,
which is an SPD system and hence the CG method can be used to find a, possibly approximate,
solution to the problem. This means that the approximate solution minimizes ‖f∗ − f j‖W T W

where f∗ is an exact solution. This term might seem puzzling since one can have multiple exact
(i.e. least squares) solutions to the original system. However, for each of these f∗ one has the
same energy norm ‖f∗‖W T W (see the discussion at the end op Section 2.3) and thus the term
yields the same value for all the exact solutions. Analysis of this term results in

‖f∗ − f j‖2
W T W =

〈

W T W
(

f∗ − f j
)

, f∗ − f j
〉

=
〈

W
(

f∗ − f j
)

,W
(

f∗ − f j
)〉

=
〈

p − W fj ,p− W fj
〉

= ‖p− W fj‖2
2.

Thus CG applied to the normal equations of (2.2) minimizes the residual of the original problem.
Hence this method is called CGLS (LS for Least Squares). Sometimes this algorithm is also called
CGNR (NR for Normal Residuals). The corresponding algorithm is virtually the same as the
original CG but the residual is replaced by zj = W Trj . This yields the following steps for one
CGLS iteration:

• αj−1 =
〈

zj−1, zj−1
〉

/
〈

W TWdj−1,dj−1
〉

=
〈

zj−1, zj−1
〉

/
〈

Wdj−1,Wdj−1
〉

• f j = f j−1 + αj−1d
j−1

• zj = zj−1 − αj−1W
T Wdj−1

• βj−1 =
〈

zj , zj
〉

/
〈

zj−1, zj−1
〉

• dj = zj + βj−1d
j

Note that the first term αj is best computed using
〈

wj−1,wj−1
〉

with wj−1 = Wdj−1 since this
vector can then be reused once computed. This new vector wj−1 also enables one the compute
the residual of the normal equations zj as zj = W T rj since rj = rj−1−αj−1w

j−1. The numerical
stability of the method is improved by this construct [5] and one has the actual residual at its
disposal in every iteration. The whole algorithm can be written as:
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CGLS

Choose f0

r0 = p − W f0

z0 = W Tr0

d0 = z0

for j = 1, . . . until convergence do
wj−1 = Wdj−1

αj−1 =
〈

zj−1, zj−1
〉

/
〈

wj−1,wj−1
〉

f j = f j−1 + αj−1d
j−1

rj = rj−1 − αj−1w
j−1

zj = W Trj

βj−1 =
〈

zj , zj
〉

/
〈

zj−1, zj−1
〉

dj = zj + βj−1d
j−1

end for

3.5 CGNE

When appling CG to the alternative normal equations WW Tu = p an error-minimizing method
known as CGNE (NE for Normal Error) or Craig’s method results. This algorithm will precisely
be the CG algorithm with A = WW T and dj = W Tqj. Thus one CGNE iteration equals:

• αj−1 =

〈

rj−1, rj−1
〉

〈WW Tqj−1,qj−1〉 =

〈

rj−1, rj−1
〉

〈W Tqj ,W Tqj〉
• uj = uj−1 + αj−1q

j−1

• rj = rj−1 − αj−1WW Tqj−1

• βj−1 =

〈

rj, rj
〉

〈rj−1, rj−1〉
• qj = rj + βj−1q

j−1.

Note that since f j = W Tuj the algorithm can also be expressed in terms of f j and dj instead
of uj and qj . The resulting full algorithm can then be written as:

CGNE

Choose f0

r0 = p − W f0

d0 = W T r0

for j = 1, 2, . . . until convergence do
αj−1 =

〈

rj−1, rj−1
〉

/
〈

dj−1,dj−1
〉

f j = f j−1 + αj−1d
j−1

rj = rj−1 − αj−1Wdj−1

βj−1 =
〈

rj, rj
〉

/
〈

rj−1, rj−1
〉

dj = W T rj + βj−1d
j−1

end for
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CGNE minimizes the ‖u∗ − uj‖WW T where u∗ is the exact solution to WW Tu = p. Analysis
of this term gives

‖u∗ − uj‖2
WW T =

〈

WW T
(

u∗ − uj
)

,u∗ − uj
〉

=
〈

W T
(

u∗ − uj
)

,W T
(

u∗ − uj
)〉

=
〈

f∗ − fj, f∗ − fj
〉

= ‖f∗ − fj‖2
2.

with f∗ an exact solution to this original problem. Thus CGNE is an error minimizing method.

Note that CGLS finds a solution in the shifted Krylov subspace f0 + Kj(W
T W,W T r0). CGNE

finds vectors uj in the shifted Krylov subspace u0 + Kj(WW T , r0). Since f j = W Tuj one can
conclude that this subspace is equal to f0 + W TKj(WW T , r0) = f0 + Kj(W

T W,W T r0). Thus
both methods find a (in general different) solution f j in the same subspace, but both solutions
satisfy different optimality conditions.

3.6 LSQR

The LSQR (LS for Least Squares and QR because of a QR decomposition) algorithm was
developed by C. Paige and M. Saunders in 1982 and, like all the methods considered here,
is used to iteratively solve a system Ax = b for sparse matrices A that may be rectangular.
Analytically the method is equivalent to CGLS but possesses better numerical properties. LSQR
is celebrated for its robustness.

The method is based on the application of the Lanczos method to the auxiliary system

(

I A
AT 0

)(

r
x

)

=

(

b
0

)

(3.11)

with starting vector u1 =
1

‖b‖

(

r
x

)

.

Furthermore, the Golub-Kahan bidiagonalisation process and the QR-algorithm are used in
LSQR. The norm of the residual ‖rk‖ is reduced monotonically. For more information about
the method one is referred to the original paper [22].

3.7 LSMR

The LSMR algorithm is very similar to the LSQR algorithm in that it uses the Golub-Kahan
bidiagonalisation. Whereas LSQR is equivalent to CGLS and has monotonically reducing residu-
als ‖rk‖, LSMR is equivalent to MINRES [21] applied to the normal equations and consequently
the quantities ‖AT rk‖ are monotonically decreasing. CGLS, CGNE, LSQR and LSMR all search
for solutions in the same Krylov subspace. Ultimately LSQR and LSMR converge to the least
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Figure 3.1: The rate of convergence for the various
ARMs when the measurement data was pure.

squares minimum norm solution of W f = p (as does CGLS). LSMR is claimed to be safer to
terminate than LSQR. More information on LSMR can be found in [7].

3.8 Rate of Convergence

This section will be concerned with the rate of convergence of the aforementioned ARMs, both
on data with and without noise. To that extent the test problem Blob (see Section 5.3 is taken.
Artificial measurement data from 15 projection angles are created using the projection matrix
W on the vector of the original image f̂ . For the experiments with noise these data are polluted
with a very high noise level; 103. Every algorithm will perform 250 iterations. Subsequently the

relative error ek of every approximation fk is computed as ek =
‖f̂ − fk‖2

‖f̂‖2

.

Figure 3.1 and 3.2 show the convergent behaviour of the ARMs acting on pure data. All ARMs
seem to converge to a certain minimum solution (different per ARM). The convergence of SIRT
is very slow compared to the rest of the methods. Note that it seems that SART is converged
in only one iteration, and thus one could argue that SART is the fastest converging ARM. But
actually SART cheats since it updates its solution per projection angle. So when SART has
performed 1 iteration by the definition in Section 3.3, actually 10 updates have been performed.

More interesting results are obtained when the data is polluted with noise, see Figure 3.3 –
3.5. The concept of semi-convergence can now really be observed, especially for CGNE, CGLS,
LSQR and LSMR. In the zoomed plot it can be seen that these methods converge very rapidly
to a minimum error, but after that the error increases because the computed solution is fitted
to the noise (cf. Section 2.4. From the last figure, which is zoomed in on SIRT, it is clear that
every ARM shows semi-convergent behaviour, albeit very faint for ART, SIRT and SART. Note
that the divergence after reaching a minimal error is far less for LSMR than for LSQR. CGLS
& LSQR show the same behaviour, indicating that the methods indeed are equivalent.
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Chapter 4

Discrete Tomography

This chapter focusses on the discrete tomography (DT) problem. Unlike the previously con-
sidered problems, discrete tomography assumes certain properties about the image or object.
Furthermore, the number of projections used in DT is far fewer than in classical (continuous)
tomography. The resulting problem is more complex than for the continuous case. Four different
solution strategies will be briefly discussed, one of these strategies will be of particular interest.

4.1 Description

The term discrete tomography was first coined by Larry Shepp who organised the first meeting
devoted to this topic in 1994. Similar problems and a range of results were already known from
earlier research. For a more detailed account on the history of this field one is referred to [17,
Ch. 1].

In the foregoing chapters various methods were investigated to reconstruct a certain two-
dimensional image f ∈ R

N from its projections. This image could be viewed as a function
f : R

2 → R. Thus every point in the image has a corresponding function value, or grey value.
Discrete tomography solves a similar problem with some extra constraints.

Roughly two kinds of discrete tomography can be identified. The first one assumes that the
scanned image is defined on a lattice, i.e. the object or image is physically made up out of
‘pixels’. All these pixels are assumed to have some uniform density and the density can only be
one of a finite set of allowed densities. One can for example imagine that this model is suitable
for scanning a diamond on nanoscopic scale. All the atoms (pixels) lie in a neat lattice and have
uniform density. Hence a pixel can either represent an atom, in this case the corresponding grey
value would be 1 (for simplicity) or the pixel is just void, in which case the grey value is 0. In
this variant of DT one has a function with discrete domain and the range is a finite set, thus
f : L → {ρ1, ρ2, . . . , ρl} with L a lattice. A lattice L in some d-dimensional domain is isomorphic
to the integer lattice Z

d, hence one can assume that L = Z
d. The grey values of each of these

lattice points must be one of {ρ1, ρ2, . . . , ρl}. Usually these assumed densities follow from prior
knowledge about the image or object. In many cases there are only two allowed densities, then,
without loss of generality, the set is denoted as {0, 1} and one speaks of a binary image.
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In the second kind of discrete tomography the assumption that the image is only defined on a
lattice is dropped. Hence one has f : R

d → {ρ1, ρ2, . . . , ρl}, a function with continuous domain
and a finite set as range. Also for these problems it is common to only have two density values,
one then speaks of binary tomography. The upcoming work will mainly focus on this second
kind of DT.

One should note that the former DT variant is actually a special case of the latter variant. Both
problems can be written, like in the continuous case, as W f = p. The weight matrix of the
DT lattice problem will be a (0, 1)-matrix. For the latter variant the weights usually represent
the length of the intersection of a ray with a cell. In continuous tomography the number of
projections is often quite large compared to that in DT. On top of that, the few projections
obtained in DT can originate from a small angular range. All previously proposed methods
fail in solving this problem. This calls for better reconstruction techniques that incorporate the
extra information known about the image.

4.2 Solution Strategies

This section will present four different strategies to solve the DT problem. The first approach
will be to rewrite the problem as a combinatorial problem. The second strategy is statistical
in nature. The two remaining techniques both solve the continuous problem. One of these ap-
proaches obtains a reconstruction using optimisation techniques, this reconstructed image may
have different values than the allowed densities but this is penalised. The other method uses a
discretisation step on the initial reconstruction, that was obtained via a continuous reconstruc-
tion method. This is also the strategy the Discrete Algebraic Reconstruction Technique (DART)
algorithm uses. The algorithm that will be studied extensively in this work.

4.2.1 Combinatorial

Consider the problem of reconstructing a (0, 1)-matrix from its row and column sums. One
can easily see that this is equivalent to the reconstruction of a binary lattice image or object
from two orthogonal projections. The (0, 1)-reconstruction was studied by Ryser in 1957 who
also proposed an algorithm for solving the corresponding problem [25]. Unfortunately, one does
not have a unique solution for this problem in general. Consider for example the following two
(0, 1)-matrices:

1 0 1 0 2
0 0 1 1 2
1 1 1 0 3
1 0 1 1 3

3 1 4 2

0 1 1 0 2
1 0 1 0 2
1 0 1 1 3
1 0 1 1 3

3 1 4 2

(4.1)

Both matrices have the same column and row sums but are fairly different. Hence one cannot
expect to find the correct solution in this case. More information about the reconstruction of
(0, 1)-matrices can be found in [17, Ch. 1.2.2]. Gale modelled this reconstruction problem, also in
1957, as a network flow problem [8]. The Ford-Fulkerson algorithm for maximum flows can then
be used to find the reconstruction (if a unique solution exists). The solution strategies for this
problem proposed by Ryser and Gale are particularly computationally efficient. If one wants
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to solve the problem for more than 2 projection angles, however, the corresponding problem
becomes NP-hard [9]. Batenburg employed the idea of Gale to propose an algorithm which is
able to reconstruct a continuous image (not defined on a lattice) [1]. The idea behind Batenburg’s
algorithm is to iteratively reconstruct the next image by using the previous reconstruction and
two projection angles.

Another combinatorial approach for solving the DT lattice problem is from Gritzmann et al. [10].
They propose to solve two complementary problems: Best-Inner-Fit (BIF) and Best-Outer-Fit
(BOF). The reconstruction is found using optimisation techniques.

4.2.2 Statistical

The statistical reconstruction method uses a maximum a posteriori probability estimate (MAP
estimate) to approximate an optimal reconstruction based on the measured projection data. The
admitted grey values are assumed to be distributed among the various pixels/cells according to
some probability distribution. In 2005 Liao and Herman proposed to reconstruct discrete images
using a Gibbs distribution [19].

4.2.3 Continuous Optimisation

The DT problem can also be solved using continuous optimisation. In this approach the standard
continuous formulation of the problem is actually solved, i.e. the problem is relaxed so that f can
take any real value, but function values outside the set of admitted grey values are penalised.
Schüle et al. proposed a convex-concave regularization approach for the binary problem in 2003
[27]. The idea behind this approach is to use primal-dual optimisation to arrive at a solution
which is steered towards a binary solution.

4.2.4 Continuous with Discretisation Step

The problem is first solved as if it were a continuous tomographic problem, thus the values of
the image can attain any real value. Subsequently the reconstructed values are discretised, i.e.
set to one of the admitted densities. Perhaps this is the most natural approaches to solve the
DT problem. The DART algorithm uses this approach. The algorithm itself is explained in
detail in Section 4.3.

4.3 DART

The Discrete Algebraic Reconstruction Technique (DART) was first proposed by Batenburg et
al. in 2007 [3]. In 2011 Batenburg and Sijbers presented a more elaborate paper [4] giving a
detailed description of the DART algorithm. For this section the proceedings in said paper are
used to describe the DART algorithm.

4.3.1 The DART algorithm

DART is an iterative method of the type described in Section 4.2.4. It consists of reconstructing
the image using a continuous update step followed by a discretisation step. The continuous
step is just the reconstruction of the image using some ARM. The discretisation uses the prior
knowledge, i.e. the allowed grey values {ρ1, ρ2, . . . , ρl}. The number of allowed grey values should
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not be too large, according to Batenburg et al. [4] the algorithm in general performs well for five
or fewer grey values.

Initially a continuous reconstruction is computed by performing a fixed number of ARM itera-
tions, this serves as a starting point for the DART algorithm. The reconstructed image is then
segmented to obtain an image that consists of only the admitted grey values. The segmentation
can be obtained by simply rounding the pixel values to the nearest allowed grey values. Or
formally, define the threshold τi by

τi =
ρi + ρi+1

2
, (4.2)

for i = 1, 2, . . . , l − 1. Then the threshold function r : R → {ρ1, ρ2, . . . , ρl} is given by

r(v) =



















ρ1, (v < τ1)
ρ2, (τ1 ≤ v < τ2)
...

ρl, (τl−1 ≤ v)

. (4.3)

Other more intricate segmentation methods can be used that may lead to better convergence or
more accurate reconstructions.

Next this segmented image is subdivided into two groups of pixels, the free pixels U and the fixed
pixels F . The set U are all pixels that are adjacent to at least one pixel with a different grey
value. Here one can choose the adjacent pixels of pixel j as the pixels North, East, South and
West of the considered pixel, i.e. the 4-connected neighbourhood of pixel j. DART uses the 8-
connected neighbourhood of pixel j which is simply the 4-connected neighbourhood augmented
with the diagonally neighbouring pixels. The set F consists of the pixels that are not free, hence
fixed. Note that U ∩ F = ∅ and U ∪ F are all the pixels of the image. The set of free pixels
represents the edges of the object, where an edge is the transition of one density into another.
It may happen that there are edges which are not covered by the free pixels, holes in the image
may for example be overlooked. The set U is therefore supplemented with some random pixels
from F . Define 0 < p ≤ 1 as the fix probability. Each fixed pixel from F is freed with probability
1 − p, independently of neighbouring pixels.

Subsequently DART performs some fixed number of ARM iterations, also called intermediate
iterations, on the free pixels while, obviously, keeping the fixed pixels at their respective grey
values from the set {ρ1, ρ2, ..., ρl}. The initial guess for the ARM iterations are the grey values
of the free pixels from before the segmentation. Fixing some pixels results into a system with
less variables but the same number of equations as initially, as will be shown later on. This, in
combination with noise, causes heavy fluctuations in the values of the free pixels after the ARM
iterations. Therefore, a smoothing operation is carried out. Smoothing evens out the function
values and thus reduces the influence of the noise. The smoothing in DART is carried out by
applying a Gaussian smoothing filter with radius 1 to the free pixels.

The process of segmenting the image, dividing it into free and fixed pixels, applying some ARM
iterations to the free pixels and subsequently performing a smoothing operation constitutes one
DART iteration. DART can either terminate after the total projection error is below some
threshold ε, i.e.
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Figure 4.1: Flowchart of the DART algorithm.

‖W f − p‖2 ≤ ε. (4.4)

Note that it might happen that this criterion is never satisfied. Or DART may terminate simply
after a fixed number of iterations. After the last iteration the reconstruction is again segmented
to obtain the final reconstruction which only contains pixels with admitted grey values. Figure
4.1 shows a flowchart of the DART algorithm. Traversing the purple boxes once constitutes one
DART iteration.

Now the process of fixing pixels is investigated more thoroughly. Initially one is presented with
the system:





| |
w:,1 . . . w:,N

| |











f1
...

fN






=







p1
...

pM






. (4.5)

By fixing pixel j the value of variable fj is known. This means that w:,jfj ∈ R
M can be

computed beforehand and thus one may remove the variable fj from f and column w:,j from W
and subtract w:,jfj from the right-hand-side. This results in the system





| | | |
w:,1 . . . w:,j−1 w:,j+1 . . . w:,N

| | | |

























f1
...

fj−1

fj+1
...

fN





















=







p1
...

pM






− w:,jfj. (4.6)
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This system consists of the same number of equations as the initial system (4.5) but the number
of variables is reduced by one. Eventually some number of ARM iterations are applied to the
system

W̃ f̃ = p −
∑

j∈F

w:,ffj (4.7)

which only has the free pixels as variables. This system will henceforth be referred to as the
reduced system, the system matrix and the vector corresponding to the free pixels will have a ·̃ to
indicate that they correspond to the reduced system. The effects of noise, which is ever-present,
acts therefore only on the free pixels. This causes the heavy fluctuations in the values of these
pixels and thus the need of the smoothing operation is more or less justified.

Below the DART algorithm is given in pseudo code. Let q be the number of initial ARM itera-
tions that will be performed and o the number of ARM iterations during one DART iteration.
If f is obtained by performing i ARM iterations with initial guess x on system W with right
hand side p then this is denoted as f = ARM(x,W,p, i).

DART

f0 = ARM(0,W,p, q)
x0 = f0

k = 1
while termination criterion is not met do

Segment image: sk = r(xk−1)
Identify boundary pixels Uk from sk

Let F k = {1, 2, . . . , N}\Uk represent the set of fixed pixels
Free pixels in F k with probability 1 − p
Let W̃ k be the reduced matrix
p̃k = p− ∑

i∈F k sk
i w:,i

Let yk be a vector containing the non-segmented values xk−1 of the free pixels Uk

fk = ARM(yk, W̃ k, p̃k, o)
Smooth all the free pixels Uk to obtain xk

k = k + 1
end while

One should note that the initial guess yk for the ARM iterations during a DART iteration
consist of all the free variables that have their non-segmented values xk−1 rather than sk. Also
observe that the smoothing is only applied to the free pixels Uk.
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Chapter 5

Research Goals

This chapter will formulate the research questions and goals that will form the basis for the
upcoming research. Some test cases will be described that will be involved in answering the
posed questions.

5.1 Research Questions

Chapter 4 described the DART algorithm in detail. Although the performance of DART is
reasonable, its approach is very heuristic. The random subset construct, for example, is needed
to find any holes in the object. The reduced system (4.7) contains only the free pixels as
variables, which are the boundary pixels supplemented with the random subset. The effects of
the noise, which is present in the projection data p, is distributed over these free variables only.
This causes heavy fluctuations in their values. Smoothing with the Gaussian filter counters this
effect, but there is no theoretical motivation which justifies the use of this blurring operator. In
Chapter 3 the concept of regularization was introduced as a tool to reduce the effects of noise
on the reconstructions. DART might benefit from the use of regularization on the set of free
pixels U .

The main goal of the upcoming research will be to investigate if the DART algorithm can be
improved. Hence the general research question will be:

Can the DART algorithm be improved?

More specific questions can be asked in the context of this general research question:

• Which algorithm should be used as ARM in DART and does it matter?

• Can better results be obtained by introducing regularization directly onto the set of free
pixels U?

• Are there alternatives for the fixed-free pixels construct?
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5.2 Methodology

This section will describe what approach will be used to answer each of the research questions.

Which algorithm should be used as ARM in DART and does it matter?

To answer this question further experiments have to be carried out. Analysis of the results of
these experiments should yield the best ARM.

Can better results be obtained by introducing regularization directly onto the set of free pixels U?

Regularization can be interpreted in many different ways. One approach would be to use
Tikhonov regularization, see (2.10), on the free pixels. One would in that case solve to fol-
lowing problem:

(

W̃
λI

)

f̃U =

(

p − ∑

j∈F w:,jfj

0

)

, (5.1)

with f̃U the vector containing the free pixels.

Are there alternatives for the fixed-free pixels construct?

DART typically attempts to solve the discrete minimization problem

min
f∈{ρ1,...,ρl}N

‖W f − p‖. (5.2)

The problem with DART is that the fixing of pixels might cause holes in the object to be
overlooked and that the effects of noise is distributed among the free pixels only. One can
alternatively consider the following problem:

(

W
D

)

f =

(

p
Dv

)

, (5.3)

with D a diagonal matrix and v a vector containing the presumed values of the corresponding
pixels. This system will steer the solution towards the presumed values in v but the pixels are
allowed to deviate from these values. The entries di, i = 1, 2, . . . , N , of the matrix D represent
the degree to which the pixels of the solution should be steered towards the values in v. Solving
(5.3) is equivalent to the minimization problem

min
f∈RN

‖W f − p‖ + ‖Df − Dv‖. (5.4)

Note that deviation of the proposed values vi is penalised proportional to di. Very high values of
di will mostly likely result into a system where pixel i has grey values vi. A smaller di indicate
some uncertainty associated with the value vi, the grey value of these pixels are more likely to
deviate from the presumed values.
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This approach gives rise to the following sub questions:

• Can this approach lead to similar behaviour as the original DART?

• How should the di be chosen?

5.3 Test Problems

The research questions posed in the previous section call for modifications of the DART imple-
mentation. Naturally these new implementations have to be validated, the results of experiments
have to be verified and compared to the results of the original algorithm. To do this valida-
tion some test problems will be presented. The test problems have some hierarchical structure
ranging from simple objects to more intricate shapes. The choice of problems is motivated by a
range of features:

• The shape of the object;

• The ratio of edges to the total number of pixels;

• The number of grey values.

The shape of the object is a very broad notion. Objects can be very simple, e.g. symmetric,
homogeneous and convex, or more complex, the image might even consist of multiple objects.
Edges in the image are very important in DART since these are the only pixels that are subject
to change. Images with a low ratio of edges to pixels require less computation time since a great
number of pixels are fixed and thus a smaller system is considered. It is obvious why the number
of different grey values is an important feature.

Figure 5.1 shows the six test problems that will be used to answer the research questions.
Hexagon is a very simple symmetric homogeneous object. Blob is somewhat more intricate
as it is not symmetric. Two Circles are two objects, each with a hole. Moreover, the objects
are not in the center of the image. The fourth test problem is Bone which is inspired by the
reconstruction of bones, the problem still contains two grey values. These two grey values in
the binary images are black, or grey value 0 and white, grey value 255. The final two problems
contain multiple grey values: Shapes consists of three grey levels (black, grey and white or 0,
128 and 255), Phantom is the Shepp-Logan head phantom which is a widely used test problem
in tomography and consists of six different grey values: 0, 25, 51, 76, 102 and 255.

The main interest of this research is the performance of the improved implementation when one
deals with noisy projection data. Therefore, the sinograms of the images will be polluted with
Poisson distributed noise. Four different number of counts will be used: 103, 104, 105 and 106.
Recall that low number of counts correspond to more noise.

The experiments will reconstruct the objects from data acquired from a varying number of
angles. Naturally, simple objects such as 5.1(a) will require fewer angles to obtain a perfect
reconstruction than the more complex problems such as 5.1(d).
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(a) (b) (c)

(d) (e) (f)

Figure 5.1: Test problems (a) Hexagon (b) Blob (c) Two circles with holes (d) Bone (e) Shapes (f)
Phantom
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Chapter 6

Numerical Experiments

In this chapter the results of the numerical experiments are listed. The experiments are carried
out in MATLAB (Version R2010b, 64-bit) on a computer with an Intel Core 2 Quad Q6600 (quad
core, 2.4GHz) CPU and 8GB memory. Some functionalities of the ASTRA-toolbox (All Scale
Tomographic Reconstruction Antwerp) are used [23]. This toolbox is created by the ASTRA
group of the vision lab, a research lab of the Department of Physics of the University of Antwerp
and is free to download.

6.1 Methodology

The experiments are all performed in a similar way. First, measurement data are created from
the original object (image) using parallel projections. The images considered, unless stated
otherwise, are 128 × 128 pixels of size. The width of the detector needs to be at least as long
as the diagonal of the image, for it would not be able to cover the whole image if the projection
angle is π/4 for example. However, with such a detector and a reconstruction grid of 128 × 128
pixels, there might be very few pixels in the path of one ray, such as rays that intersect the
corners of the image. This poses problems when noise is added to the measurement data. Pixels
close to the corners of the reconstruction grid receive a disproportional share of this noise and
the reconstructions will have extreme (positive or negative) grey values in the corners where
generally no material is located. Hence the original images are zero padded to 182 × 182 pixels
(⌈
√

2 · 128⌉ = 182), and thus the reconstruction grid is also this size. A detector is made up out
of detector-pixels, the distance between two adjacent detector-pixels is 1 pixel and the parallel
detector is thus 182 detectors wide. Projections are taken, unless stated otherwise, from equally
spaced angles between 0 and π.

The quality of the reconstructions is quantified by means of the pixel error K which is simply
the number of misclassified pixels compared to the original object. Sometimes this error is
expressed in percentages. Note that the pixel error is based on the reconstruction on the slightly
bigger grid of 182 × 182 pixels while the percentage of misclassified pixels will assume only a
total of 128 × 128 = 16384 pixels. Hence it might happen that the percentage of misclassified
pixels is more than 100%, this will only be in extreme cases and the corresponding conclusion
is clear: the reconstruction is very poor. This pixel error is recorded after 100 DART iterations
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The development of the pixel error K

P
ix

el
E

rr
or

K

Iteration Number

0 20 40 60 80 100
0

50

100

150

200

250

Figure 6.1: The development of the pixel error K in DART. Note that the
minimal pixel error is reached after about 10 iterations and that the pixel error
after 100 iterations is slightly bigger.

are carried out. However, generally DART does not produce reconstructions of monotonically
decreasing (pixel) errors and thus one might find the best reconstruction (in terms of minimal
pixel error) after 10 iterations, see Figure 6.1. Experiments have shown that DART either has
converged to one solution or alternates between comparable solutions long before 100 iterations
are performed. In the real world one does not know the original object and thus also not the
(pixel) error of a reconstruction. Hence it might be misleading to only record the minimal pixel
errors. Consequently, it has been decided to record the error after 100 iterations for all the
upcoming experiments. Furthermore, one should note that the pixel error is not an absolute
measure for the quality of an image, reconstructions with lower pixel errors can appear poorer by
visual inspection than reconstruction with a somewhat higher pixel error. Consequently, actual
reconstructions will be shown from time to time.

The ASTRA-toolbox allows one to generate the projection matrix W for a giving projection
and volume geometry. In the experiments in this chapter the original test problem is passed
as an argument to DART. This image is then transformed into a vector f̂ and consequently
one can compute the non-polluted ‘ideal’ measurement data by p̂ = W f̂ . These data are then
polluted with noise according to some Poisson distribution (see Section 2.4 for details) of which
the magnitude is expressed in number of counts. Noise level 106 corresponds to very little
noise while 103 is the highest noise level that will be considered in this work. As a result of
the randomness involved by adding the noise to the data two identical simulations (same test
problem, parameters, noise level etc.) will have a different right-hand-side (the measurement
data) and thus will most likely converge to different solutions. Hence by this phenomenon
one of the simulations can, in a very extreme case, find a near perfect reconstruction while
the other generates a poor reconstruction. This has never been observed in practice however.
Furthermore, all the experiments are carried out for 6 different test problems which should
weed out any outliers. All the experiments show the same characteristics, for example, it will
be found that LSMR will nearly always produce slightly better results than LSQR and hence
the randomness as a result of the generation of noise cannot have a large influence on the
reconstructions. On top of that, in the appendix the results of the experiments will be shown,
from this conclusions are drawn. To strengthen these conclusions actual reconstructions will also
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Original ART, K = 3 SIRT, K = 62

SART, K = 61 CGLS, K = 3 CGNE, K = 3

LSQR, K = 3 LSMR, K = 3

Figure 6.2: DART reconstructions of the Blob
with a hole after 100 DART iterations with differ-
ent ARMs and fix probability 1

be shown, these were obtained by repeating the experiment with the same parameters. Also in
this case no significant differences were found between the simulations. Nevertheless, it is good
to keep in mind that the results of the experiments, especially for the higher noise levels, can
slightly change if they are run again. The conclusion of the experiments, however, will still hold.

6.2 The Fix Probability

The DART algorithm is generally used with SIRT or SART as ARM. The fix probability p, as
introduced in Chapter 4, is needed for these methods since it should find holes in homogeneous
areas of the reconstruction that have been overlooked. Figure 6.2 shows the DART reconstruc-
tions after 100 DART iterations using the various ARMs. The fix probability was set equal to
1, the initial reconstruction was made using 50 ARM iterations and in each DART iteration an
additional 50 intermediate ARM iterations were carried out. The measurement data were not
polluted with any noise. The original image of 128 by 128 pixels was scanned using 6 equally
spaced angles in the range [0, π) with 182 parallel rays per angle. As one can see all methods
except SIRT and SART were able to find the hole in the image, moreover, all methods find the
same near perfect reconstruction that has only 3 misclassified pixels (of the 128 × 128 = 16384
pixels). Repeating the experiment with p = 0.99 results in the reconstructions that can be found
in Figure 6.3. Note that SIRT and SART are now able to find the holes. The other methods,
however, seem to perform less well with this random subset construct. Consequently, because of
this and the heuristic nature of the random subset it has been decided to carry out the upcoming
experiments with fix probability 1.

One might wonder how some ARMs are able to find the holes in the image since DART fixes
certain pixels. Figure 6.4 shows how CGLS finds the hole in the blob. First the blob is roughly
reconstructed as a homogeneous object. At this stage SIRT and SART would gradually find the
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Original ART, K = 20 SIRT, K = 30

SART, K = 45 CGLS, K = 11 CGNE, K = 14

LSQR, K = 14 LSMR, K = 7

Figure 6.3: DART reconstructions of the Blob
with a hole after 100 DART iterations with differ-
ent ARMs and fix probability 0.99

1 iteration 3 iterations 9 iterations 15 iterations

Figure 6.4: DART with CGLS finding the hole in the image.

edges of the blob never finding the hole. CGLS (and the other methods) on the other hand acts
very unstable at the boundary, as if it knows something is not right. The number of boundary
pixels increases rapidly and pixels inside the object are freed because of that. Once the free pixels
arrive at the location of the hole, the boundary is reconstructed correctly, without this unstable
behaviour. Recall that these methods actually solve different systems, CGLS for example solves
the normal equations while SIRT, as will be seen later on, solves the ‘scaled’ normal equations
implying that different norms are used.

One big concern needs to be expressed at this point. Choosing fix probability equal to 1 results
into fewer free pixels. The noise which is present in the measurement data can have no influence
on the fixed pixels, since these are not variables of the reduced system. All the effect of the
noise is therefore distributed among the free pixels. When the number of free pixels is small,
the impact of the noise might be greater. In practice this means that DART with SIRT, for
example, might produce better results with a lower fix probability if noise increases. Indeed,
this is also what is pointed out in the paper of Batenburg and Sijbers about DART [4].
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6.3 Initial Guess

In Chapter 4 DART was introduced. Every DART iteration some pixels are fixed and the
corresponding columns are removed from the system of linear equations. This results in the
reduced system:

W̃ f̃ = p−
∑

j∈F

w:,ffj. (6.1)

Subsequently, this reduced system is solved using some number of ARM iterations to find fk
grey

(subscript grey is to indicate that this solutions contains non-segmented grey values). As initial
guess the grey values, thus before segmentation, of the free pixels from the previous DART ap-
proximation fk−1

grey are used. It might, however, happen that this approximation has components

in the null space N (W̃ ). Let f̂ be an exact solution (the original object for example). In general
the norm of the residual ‖W fk

grey − rk‖ will be minimized, the norm of the approximation error,

however, ‖fk
grey − f̂‖ might never diminish to zero since fk

grey can still have components in the

null space of W̃ , even if p ∈ R(W̃ ).

It can be proven for binary images, if the right-hand-side is not perturbed by any noise, that
the minimum norm least squares solution (which has continuous grey values) is geometrically
located in the middle of all binary solutions [2]. Thus the minimum norm least squares solutions,
which has no components in N (W̃ ), can be seen as not being biased towards any binary solution.
This would motivate the choice of 0 as initial guess since it leads to finding a minimum norm
least squares solution.

Now the effect of the two possible choices of the initial guess will be investigated. To this end
the performance of DART with SIRT and CGLS with both initial guesses, the grey values and
the zero vector, will be investigated for the noise levels 106 (very little noise), 105, 104 and 103

(very much noise). The number of initial and intermediate ARM iterations is 50 and the fix
probability is chosen equal to 1. The Blob test problem is scanned using 10 angles. In Figure
6.5 the results of the experiment are shown. It is clear that taking the zero vector as initial
guess yields the best results, especially when noise increases. Although this does not prove that
this choice will always perform better, it is a good indication that its results for problems with
high levels of noise are better than when the grey values of the previous approximation are
used. Since this work focusses on the development of robust algorithms, in the sense that the
algorithm deals with noise in an efficient way, the upcoming experiments will use the zero vector
0 as initial guess for the intermediate ARM iterations.

6.4 The Best ARM

This section investigates the first research question:

Which algorithm should be used as ARM in DART and does it matter?

Chapter 3 introduced seven algebraic reconstruction methods that can be used in DART. The
first three methods: ART, SIRT and SART, are widely used in the field of tomography. CGLS
can also be encountered in practice for tomographic reconstruction but CGNE, LSQR and LSMR
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Figure 6.5: The performance of DART with different initial guesses for the
indermediate ARM iterations

are used to a very low degree if they are used at all in tomography. It is expected that CGLS,
LSQR and LSMR produce similar results since, in theory, they converge to the least squares
minimum norm solution.

6.4.1 Performance of the Various ARMs

The experiments are carried out as follows. First it is investigated how many angles are needed to
make a (near) perfect reconstruction with DART for each test problem, when no noise is present
in the measurement data. Subsequently, a slightly larger number of angles is used to reconstruct
the test problem when noise is present. The performance of DART with the various ARMs is
then investigated. The number of initial ARM iterations as well as the number of intermediate
ARM iterations is 50. In Table 6.1 the number of minimal angles is found (second column), for
these number of angles the DART reconstruction of all the ARMs were nearly perfect. For the
upcoming experiments two number of angles per test problem will be considered to investigate
if more angles correspond to better results (third and fourth column). The pixel errors K of
the test problems for these and fewer angles can be found in Appendix B.1: Table B.1 – B.6. It
seems that SIRT and SART are outperformed by the other ARMs. Regarding the cause of this
one can only speculate at this time, but since it is also observed for homogeneous objects without
holes like Hexagon and Blob it cannot be attributed to the absence of the random subset. It
might be that these methods need more (or fewer) initial/intermediate ARM iterations.

Next the performance of DART is investigated when the measurement data are polluted with
noise. The noise levels that will be considered are 106 (very little noise), 105, 104 and 103

(very much noise). The results of the experiments can be found in Appendix A.1: Figure A.1
– A.6. In these figures the pixel error is given in percentages, note that the total number of
pixels is 16384. The performance of ART with noise was that bad that it is not even included
in the plots for it distorted the vertical axis in such a way that the performance of the other
methods was no longer clearly visible. In Figure 6.6 a reconstruction of DART with ART after
100 DART iterations is shown. The noise level was 106 which implies very little noise on the
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Test Problem Minimal Experiment 1 Experiment 2

Hexagon 3 6 10
Blob 7 10 20
Two Circles 7 10 20
Bone 80 90 105
Shapes 20 30 45
Phantom 65 75 95

Table 6.1: The minimal number of angles for a near perfect reconstruction and the number of angles for
which the experiments with noise are performed. The different number of angles of the two experiments
are to investigate if more angles lead to better results.

measurement data. The used number of projection angles was 10. All other methods were able
to reconstruct the hexagon effortlessly. This divergent behaviour of ART is observed for a great
many experiments, moreover, it is very unpredictable when this divergence will occur, rendering
the algorithm not trustworthy. Also CGNE seems the suffer from noise to a high degree and
is practically useless for high noise levels (104 and up). Note that ART and CGNE solve the
problem using the alternative normal equation WW Tu = p while all the other methods except
SIRT use some form of the normal equations W T W f = W Tp. This is most likely the reason that
ART and CGNE are very bad at dealing with noise. Why SIRT does not have this behaviour
will be investigated later on.

Figure 6.6: DART reconstruction with ART of Hexagon using 10 angles, noise level: 106.

The remaining algorithms do seem to be able to deal with noise. For the low noise levels 106

and 105, CGLS, LSQR and LSMR produce slightly better results. As the noise increases to 104

and 103 SIRT and SART seem to outperform CGLS, LSQR and LSMR. All the algorithms have
great difficulty with the reconstruction of Phantom. This is most likely because of the large
number of grey values (six). Note that the pixel error of CGNE is even more than 100% which
indicates that the reconstruction is exceptionally poor since the total number of misclassified
pixels in the large grid is more than the number of pixels in the original grid (cf. the discussion
at the beginning of this chapter). Figure 6.7 shows the reconstructions of Phantom for all the
methods. The data originated from 75 angles and were polluted with a noise level of 105. Note
that although the pixel errors are quite high, the quality of the reconstructions is still very
reasonable, even for ART and CGNE.

One interesting thing that should be observed is that the performance of the algorithms is not
improved when the number of angels is increased, on the contrary, in some cases (cf. A.3)
the pixel errors even seem to increase. This can be attributed to the fact that although more
measurement data are available, all these data are polluted with noise. Usually when solving
least squares problems the noise is assumed to be distributed with mean 0 and to be uncorrelated.
In this case, however, the noise is Poisson distributed and thus does note have mean 0. This
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Original ART, K = 3144 SIRT, K = 872

SART, K = 1527 CGLS, K = 1921 CGNE, K = 9025

LSQR, K = 1946 LSMR, K = 1653

Figure 6.7: DART reconstruction of the various methods of
Phantom. Number of projection angles was 75 and the noise level
105.

could be a possible reason for this phenomenon. The noise is added to the sinogram using
a functionality in the ASTRA-toolbox. The method of adding noise to the sinogram is quite
peculiar, since it needs to be defined in the number of counts, but also because it is dependent on
the maximal value in the sinogram. Obviously the maximal detector value will not be the same
if the original object is scanned using more angles and thus the noise levels are not comparable
anymore. This could also play a role in the manifestation of this phenomenon.

From these experiments it is concluded that SIRT and SART are the best performing algorithms.
From the remaining methods ART and CGNE immediately drop out since they are bad at dealing
with noise. The performance of CGLS and LSQR is similar, as was to be expected since they
are mathematically the same, LSMR seems to produce marginally better results. Since in the
upcoming experiments the linear system that is solved is changed drastically, two ARMs are
chosen with which the experiments will be carried out. SIRT because it was (with SART) the
best performing ARM and it is faster than SART. LSQR is also chosen to have a different
natured method. LSQR is chosen above CGLS because it is famous for its robustness and over
LSMR since it has proven itself in practice. In some experiments, however, the performance
of LSMR will also be investigated since it is mathematically different to CGLS and LSQR and
quite new, so it will be interesting to see how it performs. In Table 6.2 the computation times
of 100 DART iterations with the various algorithms are listed. The times originate from a
reconstruction of Shapes using 30 angles, 50 initial and intermediate ARM iterations and a
noise level of 105. Although these timings are of course very dependent on the platform on
which the algorithm works it shows the relative computation times. ART and SART are both
particularly slow compared to the rest, this is inherent to their definition since they cannot be
formulated in a matrix-vector update for-loops need to be used, which is particularly slow in
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MATLAB. It needs to be noted that these computations were carried out on a quad core CPU
(on which in fact only 1 core did the computation), whereas if they would have been computed
on a GPU (with the proper implementation, of course) the proportions might be very different.
The high computation time of CGNE compared to SIRT, CGLS, LSQR and LSMR is mainly
due to the bad performance of the algorithm with noise. Because of this a greater number
of pixels is considered free by DART and therefore the corresponding reduced system that is
solved is larger. If no noise were present the computation time of CGNE would be of the same
magnitude as CGLS.

Method Time (s)

ART 217.3882
SIRT 14.4288
SART 202.6539
CGLS 17.1253
LSQR 16.7358
CGNE 77.4953
LSMR 15.507

Table 6.2: The computation times of 100 DART iterations per algorithm in seconds.

6.4.2 Number of ARM iterations

In the experiments of the previous section the number of initial and intermediate ARM iterations
was 50. The DART reconstructions improve if more or, because of semi-convergence (cf. Section
2.4 and 3.8), fewer ARM iterations are used. In this section it is investigated what number of
ARM iterations yields the best results. Only SIRT and LSQR will be investigated as ARM
due to the conclusion of the previous experiments. The upcoming experiments consist of the
reconstruction of the test problems using 100 DART iterations. The chosen number of projection
angles is equal to those found in the third column (‘Experiment 1’) of Table 6.1. The fix
probability p is still chosen equal to 1 and the considered noise levels will again be 106 (little
noise), 105, 104 and 103 (much noise). The investigated number of ARM iterations (both initial
and intermediate) are 20, 35, 50, 75, 100, 150 and 200.

The results of the experiments can be found in Appendix A.2: A.7 – A.12. Overall it seems
that fewer iterations yield better results. This is most likely due to semi-convergence: as the
number of iterations increases, noise present in the measurement data is being fitted to the
solution. SIRT outperforms LSQR on the whole but for low levels of noise LSQR seems to
produce slightly better results than SIRT. In some cases (e.g. Bone and Phantom) more SIRT
iterations yield better results for low levels of noise, this can also be observed for LSQR but to a
lesser extent. SIRT and LSQR show similar performance regarding the number of intermediate
iterations indicating that both methods have a similar convergence rate. Although the results
for fewer than 20 iterations are marginally better it is not advisable to perform so few iterations
since then the ARM has very little time to converge.

From the above experiments one can conclude that DART performs best when SIRT is used
as ARM and every iteration 20 ARM iterations are performed. It is quite surprising that so
few iterations are needed and that it is not strongly dependent on the noise level. The reduced
system of DART might explain that so few iterations are needed: by fixing pixels the number
of variables is reduced vastly.
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6.5 Regularization on the Free Pixels

This section investigates the second research question:

Can better results be obtained by introducing regularization directly onto the set of free pixels U?

For the regularization Tikhonov regularization can be used (cf. Section 2.4). This Tikhonov
regularization onto the free pixel is easily implemented as follows:

(

W̃
λI

)

f̃ =

(

p− ∑

j∈F w:,jfj

0

)

, (6.2)

with f̃ the vector containing the free pixels and the regularization parameter λ ∈ R≥0. Solving
this system is equivalent to solving the minimization problem
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∥

∥
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∥

∥

2
. (6.3)

From (6.2) and (6.3) one can easily see that the norm of f̃ is kept small because of the factor
λ. Hence one would expect that solutions fk that result from this regularized problem have an
overall smaller norm than the non-regularized problem.

For the experiments five values of λ are chosen, namely λ ∈ {0, 0.1, 0.5, 1, 10}. Note that
λ = 0 corresponds to the original non-regularized version of the problem. The test problems
are scanned using the same number of angles from the column ‘Experiment 1’ in Table 6.1 as
done throughout. The performance of DART is investigated with both SIRT and LSQR as well
as LSMR. The number of initial and intermediate ARM iterations is 20, in line with what was
concluded from the forgoing experiments. Again noise is introduced to the problem according
to the same numbers of counts as always: 106 (little noise), 105, 104 and 103 (much noise). The
results of the experiments can be found in Appendix A.3: A.13 – A.18.

The first thing one should note is that SIRT is again the overall best performing ARM, however,
for the more intricate problems (Bone, Shapes and Phantom) LSQR and LSMR perform better
when there is little noise. LSMR seems to perform marginally better than LSQR.

The effect of regularization on the ARMs is inconclusive. For the simple test problems (Hexagon,
Blob and Two Circles) λ > 0 seem to produce better results, but λ = 10 causes the problem to
tend too heavily towards the zero solution and thus produces bad results. For very high values
of λ the algorithm will find, not surprisingly, the zero vector as solution. It seems that the
optimal regularization parameter λ is between 1 and 10, but this optimum might be, and most
likely is, different for the various test problems. For the more intricate test problems, however,
the regularization seems to have a negative effect on the results.

A somewhat interesting phenomenon can observed when DART uses LSQR or LSMR on very
noisy data (103) and regularization parameter λ = 10. In this case the results are, with the
exception of Two Circles, better than any other value for λ. This is mainly due to eagerness
of the solution to be close to zero because of the high value of λ. This is not the case for
smaller values and then one will find speckles around the actual object. Since the regularization
pulls the solution towards 0 these speckles are far less present for λ = 10, resulting in fewer
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Original LSQR with λ = 0 LSQR with λ = 10

Figure 6.8: The result after 100 DART iterations with LSQR as ARM on
Blob, scanned using 10 angles. Left: the original image, middle: Using no
Tikhonov regularization, right: Using Tikhonov regularization with λ = 10.

Original LSQR with λ = 0 LSQR with λ = 10

Figure 6.9: The result after 100 DART iterations with LSQR as ARM on
Phantom, scanned using 75 angles. Left: the original image, middle: Using no
Tikhonov regularization, right: Using Tikhonov regularization with λ = 10.

misclassified pixels. Figures 6.8 and 6.9 show the DART reconstructions with LSQR of Blob
and Phantom from very noisy data (103) when no regularization was used and in the regularized
case with λ = 10. It is clear that the right figures have fewer (or no) non-black pixels outside the
object than the middle figures. Nonetheless one might argue that, especially for the Phantom
reconstruction, the non-regularized reconstruction looks more accurate.

Better results might be obtained if the value of λ is dependent on the location of the pixel in the
image. An object is usually located at the center of the reconstruction grid, whereas pixels close
to the edge of the reconstruction grid are generally outside the object. Increasing the value of
λ once a pixel is farther away from the center of the grid might thus decrease the speckles while
keeping a superior reconstruction of the object.

During each DART iteration, after the intermediate ARM iterations, a smoothing operation is
performed on the grey values (of the whole image, i.e. the new grey values for the free pixels
plus the segmented values of the fixed pixels) after which the reconstruction is segmented. It
might be that because of the Tikhonov regularization this smoothing has become redundant or,
even worse, counter productive.
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6.6 Alternative to the Fixed-Free Pixels Construct

This section investigates the final research question:

Are there alternatives for the fixed-free pixels construct?

This construct of fixing pixels can be circumvented by solving the following system:

(

W
D

)

f =

(

p
Dv

)

. (6.4)

Here D ∈ R
N×N is a diagonal matrix with N , the number of pixels, diagonal elements di.

The vector v ∈ R
N can, for example, contain the presumed grey values of the image, i.e. the

grey values after segmentation. Note that this formulation is very general and that it can also
approximately formulate the original problem. Approximately, because the solution space in
which the ARMs search for solutions is now different. In the original problem the ARM only
had a reduced system W̃ at its disposal, CGLS, LSQR and CGNE for example would search

for solutions f̃ j in the Krylov subspace f̃0 + Kj

(

W̃ T W̃ , W̃ T r̃0
)

. If one were to solve (6.4) with

CGLS, LSQR or CGNE one would search for solutions f j in the solution space

f0 + Kj
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)
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where

r0 =

(

p
Dv

)

−
(

W
D

)

f0. (6.6)

As mentioned the formulation in (6.4) is very general. If one chooses di = 106, or some other very
high number, and vi equal to the segmented grey value of the previous approximation for all the
pixels i that would formerly be classified as fixed and di = vi = 0 for the free pixels i, then the
fixed-free construct is mimicked. Indeed, deviation from the value vi for fixed pixels is penalised
so heavily that the obtained solution will most likely have fi = vi for these pixels. It is possible,
however, for di to deviate from vi, which is not possible in to classic DART. The constraints
imposed by D and v are therefore called weak constraints. Tikhonov-like regularization can be
carried out by choosing di = λ, vi = 0 for the free pixels and di = 106, vi = fi for the fixed
pixels.

Obviously, the goal is to improve the performance of DART with this new formulation. This
might be achieved by weakening the fixed-free construction. The value of the di can for example
be dependent on the number of neighbours that have a different grey value, after segmentation,
than pixel i. Or one can abandon the segmentation altogether and use the variation of grey
values in the neighbourhood of pixel i as measure for the value of di.

During every DART iteration, after the intermediate ARM iterations and before segmentation,
DART performs a smoothing operation. This smoothening has no theoretical bases but is
carried out since it leads to better results. The idea behind smoothening the grey values before
segmentation was that the effects of noise, which is distributed among quite a few free pixels,
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Figure 6.10: Flowchart of the new DART algorithm.

would be diminished. Since in the ‘new DART’ construct 6.4 no (truly) fixed pixels exist anymore
there is no reason the do the smoothing. Hence this new DART does not perform a smoothing
operation. In Figure 6.10 a flowchart of the new DART is given.

In the following sections various choices of the di will be proposed, subsequently the performance
of this new DART is investigated.

6.6.1 Mimicking the Classical DART

First, before possible improvements are considered, the performance of the new DART is inves-
tigated when the fixed-free pixel construct is mimicked in order to see if this new formulation
leads to comparable results. This is realized, as proposed in the previous section, by choosing
di = 106 and vi equal to the segmented grey value of the previous approximation for all the pixels
i that would formerly be classified as fixed, and di = vi = 0 for the free pixels. This penalizes
the deviation of fixed pixels from their proposed grey values to such a degree that the resulting
approximation will most likely still have those grey values for the fixed pixels. Experiments
have shown that these grey values will vary, but to a very low degree. The maximal difference
between the found grey value and the segmented grey value of fixed pixels is ≪ 1, this has no
notable effect on the outcome of the subsequent segmentation of course.

In Appendix A.4.1: Figures A.19 – A.24 the results of the experiments are shown. For every
test problem the performance of the classical DART (left figure) and the new DART (middle
figure) is shown (before and after). Both types of the DART algorithm performed 20 initial
and intermediate ARM iterations, in line with what was concluded to be the best setup in
Section 6.4. For the new DART also the minimal pixel error is included (right figure). Note that
the pixel errors after 100 iterations (final pixel error) are higher than the minimal pixel errors
confirming that also this new DART does not produce a sequence of monotonically decreasing
errors. The first thing that catches the eye is the performance of SIRT. For almost every scenario
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Figure 6.11: The value of di corresponding to the number of
neighbours l with a different segmented grey value than pixel i.

the performance of SIRT is worse than it was before. LSQR, however, performs better in almost
all the experiments. LSMR has a slightly superior reconstruction than LSQR, in accordance
with what has been seen throughout. For some of the test problems, Two Circles, Shapes and
Phantom, classical DART with SIRT outperforms the new DART with LSQR. The reason for
the bad performance of SIRT with the new DART is most likely because it needs more ARM
iterations to converge for this new formulation since the number of variables is considerably
higher than in the classical DART case (recall the slow convergence of SIRT w.r.t. CGLS).

6.6.2 More Degrees of Fixedness

The advantage of the new formulation 6.4 is that one can introduce more degrees of fixedness.
This can be achieved by making the value of di dependent on the number of neighbouring pixels
that have the same segmented grey value. If this number is high the corresponding di should
be high, lower numbers should correspond to lower values of di. In the right-hand side the v
is chosen to be the previous segmented grey values of the pixels. For the following experiments
the relationship

di =
100

10l
(6.7)

is used, with l the number of neighbours with different segmented grey values than pixel i. The
8-connected neighbourhood is used. Note that the values of the di are much smaller than they
were in mimicking of the fixed-free construct. This allows for more flexibility in the grey values.

In Appendix A.4.2: Figure A.25 – A.30 the performance of this new construct is shown. The left
figure shows the performance of the classical DART, the middle figure the performance of the
new DART when the fixed-free construct is mimicked and the right figure shows the performance
of the new DART with this neighbours construct. Overall this new construct seems to perform
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Figure 6.12: The performance of the classical DART, new
DART with fixed-free construct and new DART with the neigh-
bours construct. Test problem Phantom, scanned using 75 angles
and the data was polluted with 103 noise.

somewhat better than the fixed-free construct, but the results of SIRT are still not what one
would expect.

In this and the previous experiment it seems that SIRT is the superior ARM when it comes
to dealing with very noisy data since it has the smallest pixel error. If one looks at the actual
reconstructions, however, Figure 6.12, one sees that the SIRT reconstructions are actually very
poor. The reason that LSQR and LSMR have higher pixel errors is because of the speckles
inside and around the object (cf. the discussion about high values of λ in Section 6.5). SIRT
seems to have a strong scaling property built in that causes the algorithm to favour homogeneous
areas. Better results might be obtained if SIRT has more time to convergence. Recall that SIRT
showed a slower convergence than LSQR and LSMR in Section 3.8.

The performance of this construct seems to depend to a certain degree upon the choice of the
weight function (6.7). An other function might yield somewhat better, or poorer results.

6.6.3 Number of ARM iterations

In Section 6.4.2 it was concluded that fewer intermediate iterations produced better results
for every ARM. The corresponding reduced system of this original DART contains a fraction
of the variables (free pixels) of what the new DART formulation has, namely all the pixels.
SIRT is known to have a slow convergence compared to ART and SART, thus maybe the
poor performance of SIRT can be attributed to the number of intermediate iterations that are
performed. Hence, in this section it is investigated if 20 ARM iterations is still the best option
for the considered ARMs.
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Figure 6.13: The performance of the new DART with the neigh-
bours construct and SIRT as ARM for a various number of inter-
mediate iterations. The test problem Phantom was scanned using
90 angles and the measurement data were polluted with 103 noise.

In Appendix A.4.3: Figure A.31 – A.36 one can find the results of the new DART formulation
with a various number intermediate ARM iterations. The considered ARMs are SIRT and
LSQR, the results of LSMR are not included but are similar to those of LSQR, as was to be
expected. For LSQR the conclusion of Section 6.4.2 still holds, 20 iterations, especially when
the data is noisy, produces the best results. SIRT, however, has the worst performance for every
test problem when only 20 initial and intermediate iterations are carried out. It seems that
at least 75 iterations are needed to achieve better results and 200 iterations produce the best
results overall. This many iterations has a major drawback though, the computation time is
increased drastically. Keeping this in mind 100 ARM iterations seems to be a good choice, it
has a nice performance for all the test problems and requires roughly half the computation time
of 200 iterations.

In Figure 6.13 the results of 100 new DART iterations with the neighbours construct are shown
when SIRT is used as ARM for a various number of intermediate iterations. The test problem
was Bone, that was scanned using 90 angles. The resulting measurement data was polluted
with noise level 103, corresponding to very much noise. From this figure one finds that the
performance of DART with SIRT improves as the number of ARM iterations increases, as was
also to be expected from Figure A.34. Also the quality of the reconstructions are improving, for
a small number of iterations the large outline of the object is there, but it lacks detail. Increasing
the number of intermediate iterations introduces more and more detail. This same behaviour is
also observed for the other test problems. In Table 6.3 the computation times of the 100 DART
iterations are listed per number of intermediate SIRT iterations. The test problem Shapes was
scanned using 30 angles and the resulting measurement data were polluted with 103 noise. Note
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that indeed the times seem to increase linearly, indicating that the majority of the computation
time is needed for the intermediate ARM iterations.

No. Iterations Time (s)

20 71.0791
35 115.1104
50 160.3452
75 247.9419
100 325.7848
150 467.3016
200 618.3459

Table 6.3: The computation times of 100 new DART iterations with SIRT for a various number of ARM
iterations in seconds.

6.7 The Reconstructed Residual Error

Throughout this section the reconstructions were obtained by running 100 DART iterations.
Unfortunately, the pixel error for subsequent approximations is not monotonically decreasing
meaning that in general the approximation found after 100 iterations does not have minimal
pixel error. In real world problems one does not know the original image and thus cannot
compute the pixel error. One does, however, know the residual of an approximation fk which
is defined as rk = W fk − p. Unfortunately, minimizing the residual, which CGLS for example
does, does not result in a minimal error in general and vice versa. In tomography one generally
would like to find solutions that have minimal error since the error is more connected to the
quality of the image than the residual.

An idea set forth in [24] by Roelandts et al. is to visualize the segmentation error using the
residual of an approximation. The idea is to forward project the segmented approximation fs
by computing W fs = ps. The resulting vector ps then corresponds to the projection data of the
segmented approximation. Now let es = p − ps be the deviation of the projection data from
the measured data called the residual projection error. This error es can be back projected,
i.e. a reconstruction of it can be found using any ARM. An approximate reconstruction ỹ is
found by solving Wy = es. This reconstruction is referred to as the reconstructed residual error
(RRE). The RRE is a visualization of the segmentation error, which can be very instructive and
useful. In [24] it is demonstrated how the RRE can be used to adjust the allowed grey values
{ρ1, ρ2, . . . , ρl}, this is helpful if these values were not known exactly a priori. Furthermore,
according to [24] it seems that the RRE resembles the real error of the approximation, i.e.
e = fk − f̂ where fk is the approximation before segmentation and f̂ is the original object. If
that is indeed the case, then the RRE can be used to approximate the error of the reconstruction,
providing one with a quantitative error measure. Figure 6.14 shows an example of the RRE and
the corresponding real error, note that it is from the outline in the picture one can see that the
test problem was Phantom. The RRE does seem to resemble the real error to some extent.

Every pixel will have an individual RRE. A negative value indicates that the segmented value
might be too high while a positive RRE suggests that the segmented grey value is too low. The
closer the RRE is to zero, the better the quality of the segmentation. This motivates the idea
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Figure 6.14: An example of what the reconstructed residual error looks like.
Left: the RRE, right: the real error.
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Figure 6.15: Flowchart of the new DART algorithm with the RRE incorporated.

for an error quantification that is based on the total deviation of RRE from zero. One simply
sums up the absolute RRE values of all the pixels to arrive at a number which supposedly gives
a measure for the error of the segmented reconstruction. One should note, however, that using
the RRE approximately doubles the computation time for in one DART iteration two systems
are solved, i.e. the actual system and Wy = es. The latter system is solved with the same
ARM and same number of ARM iterations as is chosen for DART. Figure 6.15 shows a flowchart
of the new DART that also computes the RRE.

In Figure 6.16 the real error ‖f̂ − fk‖2, the pixel error K and the absolute sum of the RRE
are shown for various noise levels per DART iteration. The test problem was Blob which was
scanned using 10 angles. SIRT was chosen as ARM and 100 ARM iterations were used to arrive
at the results. Note that the asterisks on the plot lines indicate a minimum. The real error, pixel
error and reconstructed residual error all seem to develop in a similar manner, indicating that
the absolute RRE sum is a good error approximation. For all noise levels except 103 the minima
of the pixel error and the RRE occur in the same iteration number. Although the minima for
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103 are different, the pixel error of the RRE is 153 versus 151 of the minimal K. The iteration
numbers in which the minima of the real error occurs do not always coincide with those of the
pixel error, but the actual pixel error is (almost) the same. Table 6.4 lists the pixel errors of the
various minima corresponding to the different noise levels.

Noise Level Real Error Pixel Error RRE

No noise 30 29* 29*
106 30 30* 30*
105 31* 31* 31*
104 50* 50* 50*
103 152 151* 153

Table 6.4: The pixel error K corresponding to the approximation which was minimal w.r.t. the real
error (2nd column), the pixel error (3rd column) or the absolute RRE sum (4th column). Test problem
Blob scanned using 10 angles and SIRT was the ARM. The ‘*’ indicates that the iteration number of the
minimum coincides with the minimal pixel error.

Figure 6.17 shows an equivalent experiment, but now the test problem was Shapes, scanned with
30 projection angles, and LSQR was used, performing 20 iterations every DART iteration. The
development of the errors seem to be similar except for the highest noise level. The iterations
numbers of the minimum pixel error and minimum RRE coincide only for noise level 106. The
minima of the real error only coincides for noise level 105. Table 6.5 lists the pixel errors of the
various minima corresponding to the different noise levels. Note that the pixel errors of all the
noise levels except 103 are practically the same for all the errors. For the highest noise level the
RRE measure seems to produce a poor result, though this result would be comparable to what
one would find if one takes the 100-th approximation.

Noise Level Real Error Pixel Error RRE

No noise 117 110* 111
106 115 112* 112*
105 131* 131* 136
104 249 246* 263
103 1154 1109* 1797

Table 6.5: The pixel error K corresponding to the approximation which was minimal w.r.t. the real
error (2nd column), the pixel error (3rd column) or the absolute RRE sum (4th column). Test problem
Shapes scanned using 30 angles and LSQR was the ARM. The ‘*’ indicates that the iteration number of
the minimum coincides with the minimal pixel error.

Figure 6.18 shows the results of the same experiments as Figure 6.17 but now with SIRT as
ARM. Note that the development of the pixel error and the absolute RRE sum is somewhat
similar, though the pixel error seems to alternate a lot more. The minima of the real error
and pixel error never coincide, for the RRE and the pixel error the first three noise levels find
the same iteration number as minimum. Table 6.6 lists the pixel errors of the various minima
corresponding to the different noise levels. The pixel error of the approximation that had a
minimal real error is always somewhat higher, but very close to the minimal pixel error. The
pixel error of the minimal RRE differs from the minimum pixel error only for noise level 103,
and then the difference is only 3 pixels.

57



CHAPTER 6. NUMERICAL EXPERIMENTS

Real error

Iteration Number

E
rr

or
n
or

m
‖f̂

−
fk
‖ 2

No Noise
106 Noise
105 Noise
104 Noise
103 Noise

Pixel Error K

Iteration Number

P
ix

el
E

rr
or

K

No Noise
106 Noise
105 Noise
104 Noise
103 Noise

Reconstructed Residual Error

Iteration Number

A
b
so

lu
te

S
u
m

of
R

R
E

No Noise
106 Noise
105 Noise
104 Noise
103 Noise

0 20 40 60 80 1000 20 40 60 80 1000 20 40 60 80 100
0

1

2

3

4

5

6 ×105

0

50

100

150

200

250

300

1000

2000

3000

4000

5000

6000

7000

Figure 6.16: Left: The Error norm of DART for various noise levels, middle: The Pixel Error
K, right: The absolute sum of the RRE for various noise levels. The asterisks on the plot lines
indicate a minimum. Test problem Blob scanned using 10 angels, chosen ARM was SIRT.

Noise Level Real Error Pixel Error RRE

No noise 578 568* 568*
106 583 582* 582*
105 570 564* 564*
104 625 616* 616
103 862 861* 864

Table 6.6: The pixel error K corresponding to the approximation which was minimal w.r.t. the real
error (2nd column), the pixel error (3rd column) or the absolute RRE sum (4th column). Test problem
Shapes scanned using 30 angles and SIRT was the ARM. The ‘*’ indicates that the iteration number of
the minimum coincides with the minimal pixel error.
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Figure 6.17: Left: The Error norm of DART for various noise levels, middle: The Pixel Error
K, right: The absolute sum of the RRE for various noise levels. The asterisks on the plot lines
indicate a minimum. Test problem Shapes scanned using 30 angels, chosen ARM was LSQR.
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Figure 6.18: Left: The Error norm of DART for various noise levels, middle: The Pixel Error
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indicate a minimum. Test problem Shapes scanned using 30 angels, chosen ARM was SIRT.
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Figure 6.19: The pixel error and absolut RRE sum for test problem Phantom
scanned using 75 angles, noise level 103

In Appendix A.5: Figure A.37 – A.42 the results of experiments with the absolute RRE sum
as error measure are listed. In the case that SIRT was the ARM 100 intermediate iterations
were used, for LSQR and LSMR 20 intermediate iterations were performed. After 100 DART
iterations it was determined which iteration number had minimal absolute RRE sum and for that
approximation the pixel error was recorded. The experiment was run for all the test problems,
with the usual number of projection angles, and noise levels. In the figures the red line represents
the pixel error K after 100 DART iterations, the blue line when the RRE was minimal and the
asterisk is the actual minimal pixel error. Note that for LSQR and LSMR the new measure does
not improve the results of DART, but it does not have an adverse effect either. SIRT performs
somewhat better, especially for the test problem Bone where it finds a reconstruction with
minimal pixel error for every noise level. The test problem Phantom seems to result in bad error
approximations for all ARMs for the higher noise levels. Figure 6.19 shows the development of
the pixel error and the absolute RRE sum in the scenario with noise level 103. Note that the
minimal RRE is found as the first approximation for every ARM, but the pixel error is far from
minimal for those approximations. Figure 6.20 shows the actual reconstructions for all ARMs
when the pixel error is minimal or when the absolute RRE sum is minimal. Note that although
the pixel error is higher for the minimal RRE approximations, the actual reconstructions are
not notably poorer than when the pixel error is minimal, it contains somewhat more speckles.

The RRE does seem to give a rather accurate error measure, albeit in retrospect. Using the
RRE to quantify the quality of a reconstruction corresponds to an educated guess and is thus
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Figure 6.20: The reconstruction for the minimal RRE and the minimal
pixel error for all the three ARMs of test problem Phantom with noise
level 103.

better than choosing the last approximation as final reconstruction, which is actually just a shot
in the dark. Also note that from the development of the pixel errors that are shown in this
section one can conclude that in most cases DART will have found a minimal (in the sense of
minimal pixel error) reconstruction long before 40 iterations were performed. This indicates
that 50 DART iterations are sufficient in most cases to find a satisfying reconstruction.

6.8 A closer look at SIRT

In Section 3.2 SIRT was introduced. Subsequent approximations fk were found as

fk = fk−1 + CW TRrk−1, (6.8)

where C and R correspond to diagonal matrices containing the inverse column and row sums,
respectively. According to [30, p. 63] SIRT applied to the system W f = p with f0 = 0 actually
finds the minimum norm least squares solution to the system Ax = b with A = R1/2WC1/2,
b = R1/2p and then takes f = C1/2x.

Solving a system RW f = Rp, with R a diagonal matrix, will, in general, results in another least
squares solution than the original system W f = p since the residual p − W f is measured in
another norm. Likewise, if one finds the minimum norm least squares solution x for the system
WCx = p, with C diagonal, and takes f = Cx one will, in general, also find another least
squares solution than for the original system (which is assumed to be rank deficient) since f
is measured in another norm. This latter case corresponds to what is called a preconditioning
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which, in general, is used to decrease the condition number of the system matrix in order to
have faster convergence. However, if the matrix is rank deficient the preconditioned system will
generally lead to a different least squares solution for the reasons given before.

The altered systems discussed above actually scale the rows and the columns of the system
matrix when R and C are as they are in SIRT. Of course one should be careful with doing these
scalings and always keep in mind that a meaningful solution is found. In SIRT it might be
argued that this choice of R scales proportional to the influence a ray has to the total system
and C proportional to the number of rays that crosses a certain pixel (cf. Section 2.3).

This scaling of the rows and columns might be the reason why SIRT outperforms LSQR and
LSMR in most cases. Therefore it is sensible to try to apply this scaling to LSQR and LSMR too.
Since the algorithms of these methods are not given explicitly in this work it is more instructive
to apply this scaling to CGLS, which, as was seen in Section 6.4, produced similar results as
LSQR. Recall that mathematically CGLS and LSQR are equivalent. The CG algorithm for
square systems can be written as:

CG

Choose x0

r0 = b − Ax0

d0 = r0

for j = 1, 2, . . . until convergence do
αj−1 =

〈

rj−1, rj−1
〉

/
〈

Adj−1,dj−1
〉

xj = xj−1 + αj−1d
j−1

rj = rj−1 − αj−1Adj−1

βj−1 =
〈

rj, rj
〉

/
〈

rj−1, rj−1
〉

dj = rj + βj−1d
j−1

end for

The system SIRT solves is R1/2WC1/2x = R1/2p, note that C and R are diagonal matrices and
thus evidently symmetric. The normal equations of this system equals

(

R1/2WC1/2
)T (

R1/2WC1/2
)

x =
(

R1/2WC1/2
)T

R1/2p ⇔

C1/2W TRWC1/2x = C1/2W TRp ⇔
CW TRW f = CW TRp (6.9)

Recall that SIRT put f = C1/2x. From (6.9) one can conclude that the system computes the
residual in a different norm and does a left preconditioning with C. When applying CG to this
system one will obtain the scaled CGLS algorithm. Note that while r corresponds to the residual
of the original problem this is not the residual of the system that is being solved. The residual
of this scaled system is z̃ = W TRr. The preconditioning consequently yields the preconditioned
residual z = C z̃.

Multiplying with the preconditioner C might render the system matrix non-symmetric. In [26, p.
245] it is suggested that symmetry is preserved if C−1 is in the form of a Cholesky factorization,
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i.e. C−1 = LLT , but this is not necessary since the operator CW TRW is self-adjoint in the
C−1-inner product:

〈

CW TRWx,y
〉

C−1 =
〈

W TRWx,y
〉

=
〈

x,W T RWy
〉

=
〈

x, C−1CW TRWy
〉

=
〈

x, CW TRWy
〉

C−1 . (6.10)

Thus if every Euclidean inner product in CG is replaced by the C−1-inner product, symmetry
is preserved. This results in changes in terms α and β:

• αj−1 =
〈

zj−1, zj−1
〉

C−1/
〈

CAdj−1,dj−1
〉

C−1 =
〈

z̃j−1, zj−1
〉

/
〈

Adj−1,dj−1
〉

,

• βj−1 =
〈

zj , zj
〉

C−1/
〈

zj−1, zj−1
〉

C−1 =
〈

z̃j , zj
〉

/
〈

z̃j−1, zj−1
〉

,

where A = W T RW . Note that the denominator of α equals
〈

W T RWdj−1,dj−1
〉

or if rewritten
〈

Wdj−1, RWdj−1
〉

which is actually the same denominator as in the original CGLS algorithm,
but now computed in the R-inner product. The resulting algorithm is given below.

Scaled CGLS

Choose f0

r0 = p− W f0

z̃0 = W T Rr0

z0 = C z̃0

d0 = z0

for j = 1, . . . until convergence do
αj−1 =

〈

z̃j−1, zj−1
〉

/
〈

Wdj−1, RWdj−1
〉

f j = f j−1 + αj−1d
j−1

rj = rj−1 − αj−1Wdj−1

z̃j = W T Rrj

zj = C z̃j

βj−1 =
〈

z̃j, zj
〉

/
〈

z̃j−1, zj−1
〉

dj = zj + βj−1d
j−1

end for

Note that scaled CGLS is equivalent to solving R1/2WC1/2x = R1/2p with CGLS and then
taking f = C1/2x. Thus this scaling can be applied to LSQR and LSMR without changing the
algorithms. These algorithms will be referred to as scaled LSQR and scaled LSMR. The hope
is that the fast convergence of CGLS, LSQR and LSMR will be combined with the superior
reconstruction capabilities of SIRT.

The rate of convergence for data with noise of these new scaled algorithms is investigated in the
same way it was done in Section 3.8, i.e. a sinogram of Blob is created using 15 projection angles.
These data are polluted with noise corresponding to 103 number of counts. Subsequently, 250

iterations of the algorithms are performed and the corresponding relative error ek =
‖f̂ − fk‖2

‖f̂‖2
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Figure 6.21: The rate of convergence for the vari-
ous scaled and non-scaled ARMs when the measurement
data was polluted with 103 noise.

is computed for each approximation fk, where f̂ is the vector of the original image. Figure
6.21 and 6.22 show the results of these experiments. From the figures it seems that the scaled
ARMs do not perform as well as hoped; the minimal error reconstruction still has a higher error
than the original ARMs and the divergence after that is greater than the original algorithms.
Nonetheless, some experiments for new DART with these scaled ARMs will be carried out.

Another interesting aspect to investigate is if these scaled ARMs are, just as SIRT, not able to
find holes when the fix probability is equal to 1. Running the same experiment as in Section 6.2
one finds that scaled CGLS actually still is able to find the hole in the Blob, as can be seen in
Figure 6.23. The same is observed for scaled LSQR and scaled LSMR.

In Appendix A.6: Figures A.43 – A.48 the results of experiments with the scaled CGLS and
scaled LSQR algorithms are shown. The new DART construct was used where the number of
neighbours with a different segmented grey value determined the value of the diagonal elements
of the regularization matrix D. The reconstruction with minimal absolute sum of the Recon-
structed Residual Error was considered to be the best reconstruction. All ARMs except SIRT
used 20 initial and intermediate iterations, SIRT used 100 iterations. First of all note that both
scaled algorithms behave similarly, which was to be expected since they are mathematically
equivalent. In some cases the scaled algorithms seem to behave as SIRT (Hexagon, Blob), in
other cases they give practically the same results as the non-scaled algorithms (Bone, Phantom).
In the case of Two Circles the results seem to be miserable, but note the scale on the left axes:
0.25% corresponds to only 40 misclassified pixels and thus the actual pixel error is marginal.
This difference can be explained because of the way simulations are carried out, every simulation
a new noisy sinogram is created and thus neither of the simulations use the same data (recall
the discussion at the end of Section 6.1).

In Figure 6.24 the reconstructions of SIRT, LSQR and the scaled LSQR for the highest noise
levels are depicted. The results of the scaled CGLS algorithm are comparable to those of scaled
LSQR. Note that in almost all cases scaled LSQR gives comparable or better results. Scaled
LSQR performs better than SIRT for Bone and Phantom, but for Shapes SIRT is better able
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Figure 6.22: The rate of convergence for the vari-
ous scaled and non-scaled ARMs when the measurement
data was polluted with 103 noise zoomed in on the first
few iterations.
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Figure 6.23: Scaled CGLS is able, as
regular CGLS, to find the hole in the
Blob.

to reconstruct the actual shapes as homogeneous regions with very little speckles on them. The
grey circle and diamond for example contain very few white and black pixels in comparison to the
scaled LSQR. But the white shapes have a thick grey border, something that is only observed
to a low degree for scaled LSQR. The main advantage is that scaled LSQR only needed 20
intermediate iterations to arrive at these results while SIRT needed 100 iterations. For example,
the new DART with 100 intermediate SIRT iterations needs about 165 seconds to solve Shapes
(scanned using 30 angles) without any noise in the measurement data. For the same problem
scaled LSQR needs only about 44 seconds. Scaled LSQR and scaled CGLS seem to produce the
best results if a small number of intermediate iterations is used, like LSQR and CGLS. For a
higher number of intermediate iterations the effects of the noise increases which is most likely
because of the aforementioned semi-convergence.

66
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Figure 6.24: The reconstructions of DART using SIRT (left), LSQR (middle) or scaled LSQR (right).
The noise level for all test problems was 103.
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Chapter 7

Comparison of the Classic DART

with the New DART

This chapter investigates if the new DART is an improvement on the classic DART. To that end
first both methods, with ‘optimal’ parameters, will be applied to two new test problems. Since
the new DART is trained using the six test problems from Section 5.3 it might be that it has a
bias towards these problems and is actually very poor at dealing with other problems. Hence,
two new test problems will be considered to be sure that none of the methods has an advantage.

Finally, both DARTs are applied to real world experimental µCT data. These data will suffer
from other typical difficulties other than the noise associated with the number of counts. In
experiments the projector and detector may not rotate nicely around the object causing align-
ment issues for example. And in practice cone-beams are used (cf. Section 2.1) and these data
are rebinned, see [15, p. 177–181] and [6, Ch. 7.7.3–7.7.4], to a parallel geometry, this may also
introduce pollution in the measurement data.

7.1 Test Problems

Two new test problems will be introduced on which both types of DART will be tested such
that there will be no clear bias towards either of the methods. The test problems can be found
in Figure 7.1. The first test problem is called ‘Cylinders’ and is an binary image which is quite
intricate, but not as complex as Bone was. It is based on an intersection of the cylinder head of
an engine. The second test problem is referred to as ‘Speckled’ and is an image containing four
grey values, it is more complex than Shapes was, but has fewer grey values than Phantom.

Also for these test problems it will be determined how many projection angles are needed for a
near perfect reconstruction. This will be done in the same way as it was done in Section 6.4, i.e.
the classic DART is used with 50 initial and intermediate ARM iterations and fix probability 1.
Note that the measurement data are not polluted with noise for these experiments. Subsequently,
a slightly larger number of projection angles will be used in the upcoming experiments, which
will include noise.

It was found that a minimum of 25 projection angles was needed to get a near perfect reconstruc-
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(a) (b)

Figure 7.1: New Test problems (a) Cylinders (b) Speckled

tion for Cylinders, hence for the experiments with noise 35 projection angles will be used. For
Speckled 40 projections angles was sufficient and thus 50 angles will be used for the upcoming
experiments. In Appendix B.1: Table B.7 – Table B.8 the pixel errors per ARM is listed for a
various number of projection angles.

Artificial measurement data will be created for these test problems as usual and the correspond-
ing data will be polluted with various levels of noise. Subsequently, both types of DART will
solve the problems to the best of their abilities.

In this work it was found that classic DART performed at its best with fix probability 1, SIRT
as ARM and 20 initial and intermediate iterations. However, the fix probability was set to 1
since other ARMs such as CGLS and LSMR did not fare well with the random subset. SIRT on
the other hand seemed to perform somewhat better with p < 1. Also in [4] it is concluded that
a lower fix probability results in a more robust algorithm for noisy problems, i.e. the more noise,
the lower p should be. Since the noise level is not known in general beforehand a compromise
of p = 0.6 would be reasonable. This introduces another problem, and that is that the number
of variables per iteration is considerably higher than for p = 1, therefore more ARM iterations
would perhaps result in more accurate results. From the foregoing discussion it is decided to
test classic DART in three configurations: 20 iterations and p = 1, 20 iterations and p = 0.6,
and 50 iterations and p = 0.6. Furthermore, the initial guess for classic DART was in this work
set to 0. In [4], however, the non-segmented grey values of the previous approximation were
used for the free pixels as initial guess. For the upcoming experiments classic DART will also
use these non-segmented values rather than the zero vector as initial guess. Also the smoothing
operation after each DART iteration is still performed for classic DART. The experiment consists
of performing 100 classic DART iterations. The last segmented approximation will be the final
reconstruction. Note that the RRE is not used as error quantification.

The new DART will perform 50 iterations with the neighbours construct as choice for D. Also
for this algorithm 3 configurations will be tested in the form of three different ARMs. SIRT
will use 100 initial and intermediate iterations, LSQR will perform 20 iterations, as will scaled
LSMR. The absolute RRE sum is used to find a final reconstruction.

In these experiments every simulation corresponding to a certain noise level will use the same
measurement data. For example, all the simulations for noise level 104, both for the three variants
of classic DART and the three variants of new DART, will use the exact same sinogram. With
this approach all the solutions can truly be compared since no randomness is left in the right
hand side.

In Figure 7.2 the results of the experiments for Cylinders is depicted. Note that classic DART
is very good at reconstructing from almost pure data, i.e. noise levels 106 and 105, for these
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Figure 7.2: Comparison of the performance of classic DART (left) and new
DART (right). The test problem was Cylinders scanned using 35 projection
angles.

Variant 1

K = 1

Classic DART

Variant 2

K = 4

Variant 3

K = 7

K = 71

New DART

K = 35 K = 68

Figure 7.3: Comparison of the actual reconstructions of
classic DART (top) and new DART (bottom) for test prob-
lem was Cylinders scanned using 35 projection angles with
noise level 105.
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Figure 7.4: Comparison of the actual reconstructions of
classic DART (top) and new DART (bottom) for test prob-
lem was Cylinders scanned using 35 projection angles with
noise level 103.

simulations all classic variants find a near perfect reconstruction. Although the performance of
new DART is worse, the reconstructions themselves are also very good, which can also be seen
in Figure 7.3. In this figure the actual reconstructions of all the DART variants can be found
for noise level 105. The top row corresponds to classic DART while the bottom row shows the
reconstructions of new DART. The first column is the reconstruction of the first variant of the
corresponding DART, likewise for the second and third column. Above each reconstruction the
pixel error is given. Indeed, every reconstruction seems to be near perfect. For the higher noise
levels new DART produces considerably better results. The lower fix probability seems to be
beneficial in classic DART. Increasing the number of iterations does not seem to have the desired
effect, on the contrary, it seems that performing 50 iterations results in poorer results than 20
iterations. This can, however, not be concluded from this single experiment. LSQR seems to
perform the poorest for all new DART variants, scaled LSMR performs almost the same as SIRT
and is constantly in between of SIRT and LSQR in terms of pixel error. In Figure 7.4 the actual
reconstruction of noise level 103 are depicted. Note that new DART with SIRT not only has the
minimal pixel error, it is also clearly the superior reconstruction of the six. Classic DART seems
to suffer greatly from the noise, this can most likely be attributed to the reduction of variables.
This causes the effects of the noise only to be distributed among the free pixels. The LSQR
reconstruction has an unstable boundary, scaled LSMR has this to a lesser degree. This is most
likely the result of the scaling that is taken from SIRT (cf. Section 6.2). Table 7.1 lists the
computation times of all the simulations. Clearly, the superior reconstruction comes at a price.
Overall the classic DART is faster, this is not surprising since it solves a smaller system than
new DART. On top of that new DART solves another system, for the RRE, in each iteration.
New DART using LSQR or scaled LSMR is much faster than using SIRT, of course, because
every iteration only 20 intermediate ARM iterations are performed. Note that the computation
times of classic DART seem to increase as the noise level increases, this is because more noise
results in more free pixels and thus a larger reduced system.
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Dart Variant \ Noise level 106 105 104 103

Classic, SIRT, No. It = 20,p = 1 14.90 22.85 23.51 29.44
Classic, SIRT, No. It = 20,p = 0.6 28.54 48.68 50.70 50.34
Classic, SIRT, No. It = 50,p = 0.6 62.20 107.48 110.25 130.57
New DART, SIRT 486.94 454.65 452.48 519.78
New DART, LSQR 72.35 71.18 70.09 78.83
New DART, Scaled LSMR 92.59 91.09 83.83 94.53

Table 7.1: The computation times in seconds corresponding to the various simulations. Test problem
Cylinders was scanned using 35 projection Angles.

In Figure 7.5 the same results are depicted for test problem Speckled. Again one can conclude
that new DART is superior for the higher noise levels, though classic DART is not far behind for
this problem. For the lower noise levels classic DART produces results with lower pixel errors,
but also for this test problem the actual reconstruction of new DART are not qualitative any
worse. SIRT still is the best performing ARM but scaled LSMR also produces good results.
From classic DART it can again be seen that 20 ARM iterations with p = 0.6 leads to the
superior reconstructions. In Figure 7.6 the actual reconstructions for the highest noise levels
are depicted, new DART with SIRT again seems to be the best reconstruction since it does
not contain a lot of speckles as all the other reconstructions do. The other reconstructions are
comparable to each other. The computation times, listed in Table 7.2, show no real surprises.
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Figure 7.5: Comparison of the performance of classic DART (left) and new
DART (right). The test problem was Speckled scanned using 50 projection
angles.
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Figure 7.6: Comparison of the actual reconstructions of
classic DART (top) and new DART (bottom) for test prob-
lem was Speckled scanned using 50 projection angles.

Dart Variant \ Noise level 106 105 104 103

Classic, SIRT, No. It = 20,p = 1 33.55 32.32 40.49 75.81
Classic, SIRT, No. It = 20,p = 0.6 69.88 67.97 65.52 58.40
Classic, SIRT, No. It = 50,p = 0.6 149.31 138.72 161.55 161.85
New DART, SIRT 602.34 582.38 655.63 663.83
New DART, LSQR 106.13 99.11 114.02 103.72
New DART, Scaled LSMR 117.53 121.91 115.36 122.97

Table 7.2: The computation times in seconds corresponding to the various simulations. Test problem
Speckled was scanned using 50 projection Angles.

7.2 Experimental Data

In this section the both types of DART will be applied to experimental µCT data. A diamond
was scanned at 70 kVp in a Scanco µCT 40 X-ray scanner with a circular cone beam geometry.
After the scan, the data was rebinned to a parallel beam geometry, yielding a 1024 × 500 sized
sinogram per slice, for a total of 300 slices, with projection angles distributed equally between
0 and π. See [4] for information regarding this dataset.

For the experiments slice 156 was selected, which is located approximately in the middle of the
object. This thus yields a sinogram of 1024 × 500, i.e. the detector was 1024 pixels wide and
there were 500 projection angles. Since a large part of the sinogram contained no information
a subset of 466 pixels from the middle of the detector are taken. The functionalities in the
ASTRA-toolbox are applied to create a reconstruction of this sinogram. The used reconstruction
algorithm was SIRT, 50 iterations were performed. This yields the reconstruction shown in
Figure 7.7(a). Note that, although one knows that the reconstruction is a diamond (of one single
density with no impurities), the reconstruction contains grey values in the whole spectrum. The
segmentation of this reconstruction is shown in Figure 7.7(b).

In the application field of DART one is usually presented with very little data, few projection
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(a) (b)

Figure 7.7: A reconstruction of the diamond (a) Non-segmented (b) Segmented

angles and few detector pixels. Luckily, one can use knowledge about the object to be able
to make accurate reconstructions. To simulate this scenario only a small part of the original
experimental data will be used. Only the data of every fourth detector pixel will be used and
a number of equally spaced angles will be selected from the 500. Subsequently, classic DART
and new DART with all the variants as in Section 7.1 are used to attempt to reconstruct the
diamond from that data, with the prior knowledge that only 2 grey values should be present in
the reconstruction.

Classic DART:
No. it = 20, p = 1

Classic DART:
No. it = 20, p = 0.6

Classic DART:
No. it = 50, p = 0.6

New DART:
SIRT

New DART:
LSQR

New DART:
Scaled LSMR

Figure 7.8: The reconstruction of the diamond when only
10 projection angles are used.

In Figure 7.8 the reconstructions of the various variants of DART are shown for 10 projection
angles. Variant 1 of classic DART and new DART with LSQR show some unstable boundaries,
but on the whole all the reconstructions seem accurate. Decreasing the number of projection
angles to 5 yields the results from Figure 7.9. Clearly classic DART is having some trouble
with the reconstruction and so does new DART with LSQR as ARM. New DART with SIRT
and new DART with scaled LSMR produce reasonable results, though less accurate than the
experiment with 10 projection angles. Also some speckles around the reconstructed objects
begin to appear. Decreasing the number of projection angles further to only 3 truly shows
big differences in the reconstructions for the various DART variants as can be seen in Figure
7.10. Classic DART variant 2 and 3 produce some very poor and peculiar reconstructions. The
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Classic DART:
No. it = 20, p = 1

Classic DART:
No. it = 20, p = 0.6

Classic DART:
No. it = 50, p = 0.6

New DART:
SIRT

New DART:
LSQR

New DART:
Scaled LSMR

Figure 7.9: The reconstruction of the diamond when only
5 projection angles are used.

symmetry in the reconstructions is a result of the low number of projection angles; the lines
of symmetry coincide precisely with the projection angles. Again new DART with LSQR does
not perform well, but at least better than the aforementioned variants of classic DART. Classic
DART with SIRT performing 20 iterations and fix probability 1 performs reasonably well but
the boundary is not very distinct and some black speckles are contained inside the diamond.
New DART with SIRT and scaled LSMR perform equally well and clearly produce the best
reconstructions. Note the white spots on the left and right of these reconstructions, this is most
likely the same phenomenon as for classic DART variant 2 and 3, but to a far lesser degree.

Classic DART:
No. it = 20, p = 1

Classic DART:
No. it = 20, p = 0.6

Classic DART:
No. it = 50, p = 0.6

New DART:
SIRT

New DART:
LSQR

New DART:
Scaled LSMR

Figure 7.10: The reconstruction of the diamond when only
3 projection angles are used.
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Chapter 8

Conclusions and Future Research

This chapter concludes this work. It will begin with a review of what experiments have been
performed. Subsequently, conclusions are drawn and the research objective is evaluated. This
chapter will end with some recommendations for possible future research.

8.1 Conclusions

The goal of this work was to find out if the DART algorithm could be improved. To that end
several research questions were posed that should help achieve this goal. The three question
read:

• Which algorithm should be used as ARM in DART and does it matter?

• Can better results be obtained by introducing regularization directly onto the set of free
pixels U?

• Are there alternatives for the fixed-free pixels construct?

Chapter 6 treated several numerical experiments which were carried out to find an answer for
the questions above. First of all the classic DART algorithm was studied in more detail and it
was determined that the fix probability p was better to be eliminated immediately. Also two
types of initial guesses for the intermediate ARM iterations were studied. It was found that
better results are obtained if 0 was used as initial guess rather than the non-segmented grey
values of the free pixels from the previous approximation.

Subsequently, the first research question was tackled. It turned out that SIRT and SART
performed particularly well with respect to the other ARMs. ART and CGNE were immediately
labelled as unreliable for they produced very bad results on noisy data. Keeping in mind that
the linear system that would be solved would change considerably, it was decided to also include
LSQR, and sometimes LSMR, in subsequent experiments to have different natured ARMs. A
good default number of intermediate ARM iterations was found out to be 20.

Next it was investigated if regularization introduced on the free pixels leads to better results.
It turned out that the effect of regularization is inconclusive. On the one hand it gives better
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approximations in the sense of lower pixel error, on the other the actual reconstructions did not
look accurate.

Thereafter, an alternative for the fixed-free pixels construct was introduced in the form of a
new linear system. This system is able to regularize the problem in such a way that the user
can steer grey values of some pixel i towards a certain value vi. The magnitude of this steering
is controlled by the value of the diagonal element di of the matrix D. Several choices of di

were investigated and it was found that a value dependent on the number of neighbours with a
different segmented grey value gave the best results. SIRT seemed to perform very bad with this
new DART formulation, one of the possible reasons could be slow convergence; the algorithm
simply needed more iterations to converge. And indeed, 100 intermediate iterations gave much
better results than 20.

The stopping criterion used for DART in this work was just that it needed to perform a fixed
number of iterations. Unfortunately, both the classic and new DART do not produce approx-
imations with a monotonically decreasing error, moreover, because of the strong ill-posedness
of the problem, it was impossible to compute the error. The Reconstructed Residual Error was
introduced to estimate the reconstruction error. Although this did not enable one to have a
different stopping criterion, the minimal absolute RRE sum can only be found in retrospect,
it gave a reasonable indication of which DART iteration gave an accurate reconstruction. An
additional benefit of the RRE is that it can be used to correct wrong segmentation values. Using
the RRE to quantify the quality of a reconstruction corresponds to an educated guess and is
thus better than choosing the last approximation as final reconstruction, which is actually just
a shot in the dark. It was also found that 50 DART iterations were more than enough for most
scenario’s to find a good reconstruction.

The chapter concluded with a detailed inspection of SIRT. This algorithm performed the best
throughout, mainly on data with high noise levels. One reason for this might be that SIRT
computes a solution in a different norm than CGLS and LSQR do. This inherent scaling of SIRT
was applied to CGLS, LSQR and LSMR to obtain scaled algorithms that supposedly performed
better in high noise levels. It was found that these algorithms indeed produced somewhat better
results that mimicked SIRT. The main advantage is that these scaled algorithms only need 20
iterations to arrive at those results while SIRT needs 100 iterations.

Finally, in Chapter 7 the classic DART was compared to the new DART. It seems that the new
DART actually is an improvement over the classic DART for higher noise levels. Classic DART
still performs somewhat better on data with little noise, but the reconstructions of new DART
are by no means poor. The major drawback of new DART, mainly with SIRT as ARM, is the
increased computation time. However, if scaled LSMR is used the computation times can be
decreased dramatically at the expense of some accuracy. New DART also seemed to be able
to work on experimental µCT data and produced superior reconstructions than classic DART
when extremely few projection angles were used.

All in all it can be concluded that the DART algorithm can be improved in the sense of accuracy
on noisy data by means of the new formulation. The classic DART most likely suffers from high
noise levels because the reduced system only contains a fraction of the original variables. In
the new DART all variables are available and only weak constraints are imposed. Moreover,
the heuristic approaches are not part of the new algorithm anymore. SIRT is the best perform-
ing ARM, but if the computation time is a factor than scaled LSMR will provide more than
reasonable reconstructions in about 1/4 the time SIRT needs.
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8.2 Future Research

Although the new DART formulation performs very well there is always room for improvement.
In this section some recommendations will be made for possible future research that could help
improve DART even more.

This work investigated some choices of the di, the diagonal elements of the regularization matrix
D in the new DART formulation. The magnitude of these values gave a measure for how much
a certain pixel i was steered towards the grey value vi. It was found that di dependent on the
number of neighbouring pixels with a different segmented grey value performed quite nicely. A
drawback of this construct is that it is more or less dependent on the number of segmentation
values. If more densities are allowed in the object, more pixels will get a small di value. There
may be better choices that lead to superior reconstructions. It might be possible to formulate
an optimal choice for the di. One could also make the ARMs ‘favor’ solutions that contain the
segmented grey values {ρ1, ρ2, . . . , ρl}. In CGLS for example one might update the values di

during the ARM iterations. This could even render the segmentation step redundant.

All the ARMs solve the tomography problem as if the problem is not discrete, consequently one
can arrive at (non-segmented) solutions with negative grey values, this, of course, is not possible
in practice and thus it might be sensible to adapt the ARMs such that negative values cannot
be part of a solution. One then has to keep in mind that solutions with components in the null
space N (W ) might lead to poor results, and thus simply setting values to 0 as a grey value is
negative is most likely not a good choice.

The reconstructions seemed to suffer from speckles in- and outside the object, mainly the prob-
lems containing more than two grey values. Better solutions might be obtained if the ARM used
produces solutions with more homogeneous regions (although in the case of Bone this might
be counter productive). Total variation minimization might do this trick. But it may also be
obtained by nice regularization choices.

Segmentation was done by simply rounding of the continuous grey values to the nearest seg-
mentation value. There are more elaborate segmentation schemes that might prove beneficial
for the results of the algorithm.

The Reconstructed Residual Error was used to make an error quantification. This was done by
summing up the absolute value of the RRE and the reconstruction with the minimal RRE was
considered to be the best. A lot of information is disregarded by this approach. The RRE, thus
the actual reconstruction of the segmentation error, might contain information that can be used
to improve the subsequent reconstruction.

Noise was added to sinograms using a functionality from the ASTRA-toolbox. Although this
does indeed provide one with a noisy sinogram, it has a couple of peculiarities. The level of
noise needs to be given in by the number of counts, higher values yield less noise. This does
not actually pose a real problem, but it is counter intuitive. What is a problem is that the level
of noise is also dependent on the maximal value in the sinogram. Then noise levels become
problem dependent and thus it becomes harder to compare problems. Analysis of experiments
might benefit from a more proper simulation of the noise.

Lastly, it was found that the new DART had one major drawback: the computation time. With
proper implementation on the GPU the computation time might drop considerably. Especially
SIRT, which can be efficiently formulated as a matrix-vector product, is ideal for parallelization.
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Appendix A

Figures

A.1 Figures: Best ARM
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Figure A.1: The pixel errors corresponding to the noise levels for Hexagon.
Left: 6 angles, right: 10 angles.
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Figure A.2: The pixel errors corresponding to the noise levels for Blob. Left:
10 angles, right: 20 angles.
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Figure A.3: The pixel errors corresponding to the noise levels for Two Circles.
Left: 10 angles, right: 20 angles.
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A.1. FIGURES: BEST ARM
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Figure A.4: The pixel errors corresponding to the noise levels for Bone. Left:
90 angles, right: 105 angles.
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Figure A.5: The pixel errors corresponding to the noise levels for Shapes.
Left: 30 angles, right: 45 angles.
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Figure A.6: The pixel errors corresponding to the noise levels for Phantom.
Left: 75 angles, right 95 angles.

A.2 Figures: Number of ARM iterations
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Figure A.7: The pixel errors corresponding to the noise levels for Hexagon.
Left: SIRT, right: LSQR.
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Noise Level

P
ix

el
E

rr
or

K
in

%

Blob with 10 angles and SIRT

20

35

50

75

100

150

200

Noise Level

P
ix

el
E

rr
or

K
in

%

Blob with 10 angles and LSQR

20

35

50

75

100

150

200

106 105 104 103106 105 104 103

0

5

10

15

20

25

0

5

10

15

20

25

Figure A.8: The pixel errors corresponding to the noise levels for Blob. Left:
SIRT, right: LSQR.
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Figure A.9: The pixel errors corresponding to the noise levels for Two Circles.
Left: SIRT, right: LSQR.
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Figure A.10: The pixel errors corresponding to the noise levels for Bone.
Left: SIRT, right: LSQR.
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Figure A.11: The pixel errors corresponding to the noise levels for Shapes.
Left: SIRT, right: LSQR.
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A.3. FIGURES: REGULARIZATION ON THE FREE PIXELS
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Figure A.12: The pixel errors corresponding to the noise levels for Phantom.
Left: SIRT, right: LSQR.

A.3 Figures: Regularization on the Free Pixels
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Figure A.13: The performance of DART with Tikhonov regularization for Hexagon with 6 angles.
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Figure A.14: The performance of DART with Tikhonov regularization for Blob with 10 angles.
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Figure A.15: The performance of DART with Tikhonov regularization for Two Circles with 10
angles.
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A.3. FIGURES: REGULARIZATION ON THE FREE PIXELS
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Figure A.16: The performance of DART with Tikhonov regularization for Bone with 90 angles.
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Figure A.17: The performance of DART with Tikhonov regularization for Shapes with 30 angles.
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Figure A.18: The performance of DART with Tikhonov regularization for Phantom with 75
angles.
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A.4. FIGURES: ALTERNATIVE TO THE FIXED-FREE PIXELS CONSTRUCT

A.4 Figures: Alternative to the Fixed-Free Pixels Construct

A.4.1 Figures: Mimicking the Classical DART
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Figure A.19: The performance of the new DART that aims to mimic the fixed-free pixels con-
struct. Test problem Hexagon scanned using 6 projection angles.
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Figure A.20: The performance of the after that aims to mimic the fixed-free pixels construct.
Test problem Blob scanned using 10 projection angles.
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Figure A.21: The performance of the new DART that aims to mimic the fixed-free pixels con-
struct. Test problem Two Circles scanned using 10 projection angles.
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Figure A.22: The performance of the new DART that aims to mimic the fixed-free pixels con-
struct. Test problem Bone scanned using 90 projection angles.
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Noise Level

P
ix

el
E

rr
or

K
in

%

Final pixel error before

SIRT
LSQR

Noise Level

P
ix

el
E

rr
or

K
in

%

Final pixel error after

SIRT
LSQR

LSMR

Noise Level

P
ix

el
E

rr
or

K
in

%

Minimal pixel error after

SIRT
LSQR

LSMR

106 105 104 103106 105 104 103106 105 104 103
0

5

10

15

0

5

10

15

0

5

10

15

Figure A.23: The performance of the after that aims to mimic the fixed-free pixels construct.
Test problem Shapes scanned using 30 projection angles.
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Figure A.24: The performance of the after that aims to mimic the fixed-free pixels construct.
Test problem Phantom scanned using 75 projection angles.
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A.4.2 Figures: More Degrees of Fixedness
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Figure A.25: Performance of: left: the classical DART, middle: new DART with the fixed-free
pixels construct, right: new DART with the neighbours construct. The test problem was Hexagon
scanned using 6 angles.
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Figure A.26: Performance of: left: the classical DART, middle: new DART with the fixed-free
pixels construct, right: new DART with the neighbours construct. The test problem was Blob
scanned using 10 angles.
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Figure A.27: Performance of: left: the classical DART, middle: new DART with the fixed-
free pixels construct, right: new DART with the neighbours construct. The test problem was Two
Circles scanned using 10 angles.
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Figure A.28: Performance of: left: the classical DART, middle: new DART with the fixed-free
pixels construct, right: new DART with the neighbours construct. The test problem was Bone
scanned using 90 angles.
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Figure A.29: Performance of: left: the classical DART, middle: new DART with the fixed-free
pixels construct, right: new DART with the neighbours construct. The test problem was Shapes
scanned using 30 angles.
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Figure A.30: Performance of: left: the classical DART, middle: new DART with the fixed-free
pixels construct, right: new DART with the neighbours construct. The test problem was Phantom
scanned using 75 angles.
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A.4. FIGURES: ALTERNATIVE TO THE FIXED-FREE PIXELS CONSTRUCT

A.4.3 Figures: Number of ARM iterations
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Figure A.31: Performance of the new DART with the neighbours construct
for a various number of ARM iterations. Test problem Hexagon scanned using
6 angles.

Noise Level

P
ix

el
E

rr
or

K
in

%

SIRT

20

35

50

75

100

150

200

Noise Level

P
ix

el
E

rr
or

K
in

%

LSQR

20

35

50

75

100

150

200

106 105 104 103106 105 104 103
0

0.5

1

1.5

2

2.5

3

3.5

0

0.5

1

1.5

2

2.5

3

3.5

Figure A.32: Performance of the new DART with the neighbours construct
for a various number of ARM iterations. Test problem Blob scanned using 10
angles.
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Figure A.33: Performance of the new DART with the neighbours construct
for a various number of ARM iterations. Test problem Two Circles scanned
using 10 angles.
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Figure A.34: Performance of the new DART with the neighbours construct
for a various number of ARM iterations. Test problem Bone scanned using 90
angles.
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Figure A.35: Performance of the new DART with the neighbours construct
for a various number of ARM iterations. Test problem Shapes scanned using
30 angles.
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Figure A.36: Performance of the new DART with the neighbours construct
for a various number of ARM iterations. Test problem Phantom scanned using
75 angles.
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A.5 Figures: The Reconstructed Residual Eror
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Figure A.37: The pixel error after 100 DART iterations, when the reconstructed residual error
is minimal and the minimal pixel error. Test problem Hexagon scanned using 6 angles.
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A.5. FIGURES: THE RECONSTRUCTED RESIDUAL EROR
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Figure A.38: The pixel error after 100 DART iterations, when the reconstructed residual error
is minimal and the minimal pixel error. Test problem Blob scanned using 10 angles.
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Figure A.39: The pixel error after 100 DART iterations, when the reconstructed residual error
is minimal and the minimal pixel error. Test problem Two Circles scanned using 10 angles.
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Figure A.40: The pixel error after 100 DART iterations, when the reconstructed residual error
is minimal and the minimal pixel error. Test problem Bone scanned using 90 angles.
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Figure A.41: The pixel error after 100 DART iterations, when the reconstructed residual error
is minimal and the minimal pixel error. Test problem Shapes scanned using 30 angles.
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Figure A.42: The pixel error after 100 DART iterations, when the reconstructed residual error
is minimal and the minimal pixel error. Test problem Phantom scanned using 75 angles.
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A.6 Figures: A closer look at SIRT
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Figure A.43: The performance of various ARMs, the minimal absolute RRE
sum was used as error measure, the asterisks and diamonds correspond to the
actual minimal pixel error of the traditional methods and the Scaled methods
respectively. Test problem Hexagon scanned using 6 angles.
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Figure A.44: The performance of various ARMs, the minimal absolute RRE
sum was used as error measure, the asterisks and diamonds correspond to the
actual minimal pixel error of the traditional methods and the Scaled methods
respectively. Test problem Blob scanned using 10 angles.
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A.6. FIGURES: A CLOSER LOOK AT SIRT

Noise Level

P
ix

el
E

rr
or

K
in

%

Two Circles

SIRT
LSQR
CGLS
Scaled CGLS
Scaled LSQR

106 105 104 103
0

0.05

0.1

0.15

0.2

0.25

Figure A.45: The performance of various ARMs, the minimal absolute RRE
sum was used as error measure, the asterisks and diamonds correspond to the
actual minimal pixel error of the traditional methods and the Scaled methods
respectively. Test problem Two Circles scanned using 10 angles.

Noise Level

P
ix

el
E

rr
or

K
in

%

Bone

SIRT
LSQR
CGLS
Scaled CGLS
Scaled LSQR

106 105 104 103
0

1

2

3

4

5

6

Figure A.46: The performance of various ARMs, the minimal absolute RRE
sum was used as error measure, the asterisks and diamonds correspond to the
actual minimal pixel error of the traditional methods and the Scaled methods
respectively. Test problem Bone scanned using 90 angles.
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Figure A.47: The performance of various ARMs, the minimal absolute RRE
sum was used as error measure, the asterisks and diamonds correspond to the
actual minimal pixel error of the traditional methods and the Scaled methods
respectively. Test problem Shapes scanned using 30 angles.
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Figure A.48: The performance of various ARMs, the minimal absolute RRE
sum was used as error measure, the asterisks and diamonds correspond to the
actual minimal pixel error of the traditional methods and the Scaled methods
respectively. Test problem Phantom scanned using 75 angles.
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Appendix B

Tables

B.1 Tables: Minimal Angles

Method \ Angles 2 3

ART 36 2

SIRT 96 80

SART 140 135

CGLS 0 0

LSQR 0 0

CGNE 4 0

LSMR 0 0

Table B.1: The pixel errors per angle for Hexagon.

Method \ Angles 2 3 4 5 6 7

ART 1414 316 33 13 4 2

SIRT 1239 345 76 31 21 9

SART 1298 268 116 45 32 18

CGLS 1111 100 28 17 3 0

LSQR 1111 101 26 17 3 1

CGNE 1392 100 24 12 3 1

LSMR 1111 106 31 19 4 0

Table B.2: The pixel errors per angle for Blob.
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APPENDIX B. TABLES

Method \ Angles 2 3 4 5 6 7

ART 455 455 455 455 455 0

SIRT 455 455 455 455 455 0

SART 455 455 455 455 455 0

CGLS 455 455 455 455 455 0

LSQR 455 455 455 455 455 0

CGNE 455 455 455 455 455 0

LSMR 455 455 455 455 455 0

Table B.3: The pixel errors per angle for Two Circles.

Method \ Angles 40 45 50 55 60 65 70 75 80

ART 268 199 81 60 16 3 4 1 0

SIRT 506 457 338 363 322 320 291 278 284

SART 337 260 165 142 108 79 72 52 38

CGLS 316 143 78 84 22 18 12 11 9

LSQR 332 127 69 81 28 16 11 11 9

CGNE 296 163 93 48 26 32 5 1 0

LSMR 282 142 93 75 35 23 18 10 7

Table B.4: The pixel errors per angle for Bone.

Method \ Angles 2 3 4 5 6 7 8 9 10 15 20

ART 5357 4085 1953 2038 1536 391 206 211 164 62 0

SIRT 5250 4276 1962 1700 1271 883 345 371 370 224 131

SART 5367 4168 2086 1641 1369 961 375 391 373 192 67

CGLS 5125 5477 1946 1727 1706 287 202 228 154 78 0

LSQR 5125 5377 1976 1703 1736 284 209 233 162 78 0

CGNE 5575 5442 1987 1626 1684 280 210 226 157 59 0

LSMR 5125 5273 1988 1595 1711 276 212 224 165 81 2

Table B.5: The pixel errors per angle for Shapes.

Method \ Angles 25 30 35 40 45 50 55 60 65

ART 4383 3997 3710 3297 2447 2077 3 0 0

SIRT 3740 3526 3074 2548 1895 1393 993 865 829

SART 4163 3784 3608 3285 2928 2749 2227 1684 802

CGLS 4386 4023 3776 3324 3128 2486 42 11 2

LSQR 4384 4074 3761 3321 3083 2320 42 12 2

CGNE 4312 4003 3758 3278 2932 2222 4 2 0

LSMR 4342 4026 3777 3424 3146 2543 494 55 26

Table B.6: The pixel errors per angle for Phantom.
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B.1. TABLES: MINIMAL ANGLES

Method \ Angles 10 15 20 25

ART 467 124 26 3

SIRT 607 281 169 81

SART 595 283 96 39

CGLS 494 98 22 2

LSQR 475 98 26 2

CGNE 477 89 24 3

LSMR 484 100 28 2

Table B.7: The pixel errors per angle for Cylinders.

Method \ Angles 25 30 35 40

ART 142 191 5 0

SIRT 593 425 341 324

SART 481 425 280 200

CGLS 151 50 20 1

LSQR 173 51 19 2

CGNE 126 32 3 1

LSMR 237 120 63 14

Table B.8: The pixel errors per angle for Speckled.
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